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ABSTRACT

Just, Fabian M.S.E.C.E., Purdue University, December 2013. A Strategy for Minimiz-
ing Parkinsonian Noise from a Joystick Controlled Wheeled Mobile Robot . Major
Professor: Raymond A. DeCarlo.

This thesis investigates movement of an electric wheelchair as a wheeled mobile robot

(WMR) with a battery rechargeable through regenerative braking.The WMR has two

wheels, each of which can propel or brake. This leads to four modes of operation:

propel-propel, brake-brake, propel-brake, and brake-propel. Braking can be either

done by a propelling wheel using negative torques or by regenerative braking which

also applies a negative torque.

The thesis begins with a presentation of the WMR model. Performances Indices

(PI) are introduced as metrics for specific driving scenarios. For almost all scenarios,

the PI is used in a model predictive control (MPC) strategy for the following set

of scenarios with and without noisy measurements on the distance to a wall which

simulate a noisy sensor measurement for:

-a wall following scenario

-a wall cornering scenario

-a combined scenario

Results of a combined scenario with Parkinsonian noise on distance to the wall mea-

surements and velocity with and withoutthe use of a notch filter are presented and

interpreted.
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Finally Parkinsonian noise is imposed on a joystick wheelchair control scenario with

and without the use of a notch filter.

The central result of this thesis is to erase the Parkinsonian tremor from the in-

put of the joystick of a electric wheelchair to improve the life quality of disabled

users.
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1. WHEELED MOBILE ROBOT SYSTEMS AND

PARKINSON’S DISEASE: BACKGROUND AND

INTRODUCTION OF RESEARCH OBJECTIVES

1.1 Introduction of the problem in general terms

People with Parkinson’s disease have problems with interacting with their environ-

ment. Specifically in regards to limb tremors. The most simple all-day tasks like eat-

ing, drinking and writing can become difficult and exhausting problems. Elderly peo-

ple, who are the main target group of this disease, need help and lose more and more

independence. Devices like personal computers, smartphones and electric wheelchairs

are built to make life easier and strengthen our communication and movement abil-

ities. All these devices have input/output interfaces. A correct handling of these

interfaces is needed to obtain the desired support for people who suffer from Parkin-

son’s disease.

The Parkinsonian tremors are especially responsible for incorrect input signals to

the above named interface devices. This makes it nearly impossible for some Parkin-

son patients to drive safely with an electric wheelchair. In this thesis the effect of

Parkinson Disease tremor on the joystick controller of an electric wheelchair are ana-

lyzed and a solution to the underlying control problem is given. The goal of this thesis

is to minimize the influence of the disease tremor on a joystick operated wheelchair

and to make it possible for the wheelchair to operate as if it’s users were having no

tremors in their limbs. The idea and algorithms presented in this thesis are not only

valid for electric wheelchairs, but might apply for other devices like personal com-

puter mouse devices and smartphones. We note that a wheeled mobile robot (WMR)

is used synonymously with an electric wheelchair.
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1.2 Past work in the research area

1.2.1 Parkinson’s disease tremor

The Parkinson’s disease (PD) is caused by a degenerative dysfunction of the central

nervous system. For PD the tremor is the most significant symptom. It is necessary

to mention that the exact medical origin of Parkinson’s disease remains unknown. [1]

Classical Parkinsonian tremor is defined as a rest tremor and postural/kinetic tremor.

Both tremors have a slightly different frequency. Mostly the rest tremor is inhibited

during movement and may reoccur at the same frequency when adopting a fixed pos-

ture. [2] The cardinal frequency range of the tremor is between 3 Hz ad 6 Hz, but the

exact frequency depends on multiple factors. [3]. Actually it is possible that in the

early stage of the illness the tremor frequency is between 3 Hz and 9 Hz. [2] After the

early stage, where the cells are attacked for the first time and the impact on the tremor

is causing more fluctuations, the tremor frequency is in a more steady frequency range.

Another interesting characteristic of PD is a gained freedom of pattern movements.

Normal humans can’t execute rhythm patterns simultaneously with different fre-

quencies and only professional musicians are trained to deal with these frequency

dissociations. People with PD in general have more frequency independence in that

involuntary tremor movements, because they can occur synchronously with other in-

dependent wanted movements in the same limb. An interesting fact is that if you

consider a different tremor frequency at an arm (5.2 Hz) and at a leg (3.8 Hz) and

the contralateral arm has to perform for example tapping movements at 2 Hz, we will

recognize a common frequency of 4.6 Hz in the specific arm and leg. This implies the

existence of more than one oscillator system in the brain. It shows that the frequency

dissociation in PD of different limbs imply more degrees of independence, but a stim-

ulation with a special frequency can influence and change another contralateral PD

tremor frequency. [4]
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For our investigations the tremor of the wrist is important. Given test data shows

that the tremor with the highest consistency overall involved wrist flexors in PD. The

instantaneous frequency for one test user is 4.3 Hz± 0.05 Hz for 102 out of 120 time

periods of 0.5 s. [4] This shows the extraordinary consistency of the wrist tremor of

PD. In the case of electric wheelchairs a user gives input values to the system with

a controlled joystick. For the movement of the joystick, mostly the wrist flexors are

used, because the rest of the arm is lying on an arm rest. For the research objective

to erase the tremor caused by PD given on the input joystick of a WMR, these results

emphasize the stationary behavior of the specified tremor frequency. In this thesis a

Parkinsonian main frequency of 3.8 Hz is used, because it is a common frequency for

Parkinsonian wrist tremor. [5]

It is important to know that the overall frequencies of PD decrease for the rest tremor

at 0.09 Hz
year

and for PD postural tremor at about 0.08 Hz
year

. [6] This suggests that an

adaptive filter is the long term objective of this first study.

As a main result out of these investigations, it is possible to obtain the tremor fre-

quency of a PD user during a test trial and then adapt the software to this frequency.

Another main result is a recognized bias in the Parkinsonian noise affecting the move-

ments, which can be erased to achieve better results. As we have seen the frequency

is steady state and slowly decreasing over years. More clinical data is needed to de-

termine the frequency variation during WMR operations. With this technique we can

improve the driving ability of a PD user immensely by using adaptive notch filtering.

1.2.2 Wheeled mobile robot systems

A wide and challenging research area is motion planning with an underlying WMR

dynamic system. Therefore robot dynamics have to be derived to build up a high

fidelity simulation model. [7] A system of states, algebraic variables and constants
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with physical content is modeled and can be used with different driving modes and

switches to perform sliding and rolling movements. [8]

There are approaches for driving scenarios like modeling and feedback linearizing

control of an autonomous powered wheelchair for a wall following and a cornering

scenario. Infrared sensors are used to get information about the distance to the wall

and wheel encoders give exact measurements of angular velocities of the wheels. [9]

Standard electric wheelchair skill tests are used to estimate the behavior of the user

and joystick signals are sampled at 200 Hz. [10]

1.3 Structure of the thesis

After starting with a discussion about the dynamics of theWMR, autonomous switches

for the WMR wheels are introduced in chapter 2. Four modes of operation are

used: propel-propel, brake-brake, propel-brake, and brake-propel. A high fidelity

simulator based on projection is developed and the model is validated with acknowl-

edged research results. In chapter 3, wall following driving scenarios with the electric

wheelchair are presented. Regarding to safety issues of a human user these scenarios

are efficiently solved. Model predictive control (MPC) is introduced and used to solve

the same scenarios. In chapter 4 a cornering scenario is introduced. Additionally a

combined scenario with two wall following parts and a cornering part in the middle

is solved via MPC. Random Gaussian noise is added on this scenario to count for

distance to the wall measurement errors of sonar sensors. In chapter 5, Parkinsonian

like noise is added to the distance and velocity references to mimic the joystick input

behavior of a user with PD. With erasing the bias and the use of a constructed notch

filter, the Parkinsonian tremor is filtered out of the input of the joystick. Plots with

and without filtering of the simulated driving scenarios are compared. In Chapter

6, real joystick data is taken as the reference and Parkinsonian noise is added on

it to simulate the same scenarios with human joystick input data. Again the posi-
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tive impact of the used filtering strategies are shown. In chapter 7, further research

perspectives are shown. Improvements of the used model, modes and strategies are

described and explained.
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2. HILARE WHEELED MOBILE ROBOT MODEL

In this chapter the concept of the Hilare Robot Model is presented and the state

equations of the robot model are derived. All characteristics and abilities of the

used system model is described. The system is compared with acknowledged research

results, after it is implemented in MATLAB.

2.1 Robot dynamics and equations of the Hilare Robot Model

The robot dynamics and structure of the robot model is introduced and with dif-

ferent shown scenarios the state equations of the robot model are properly derived.

Autonomous switches for the wheels for changes between rolling and sliding are in-

troduced and integrated in the system.

2.1.1 Robot Dynamics

The Hilare Robot Model consists of two wheels treated as right circular cylinders

with radius r and a rectangular parallelepiped body with length and width equal to

2L. The red arrow in Fig. 2.1. shows the forward direction of the WMR and the

wheels are marked with their reference number. For the robot model it is important

to define Iw as the moment of inertia of a wheel around its rotational axis, Ib as the

moment of inertia of the square cube body and Iv as the moment of inertia of a wheel
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Fig. 2.1. Isometric 3D view of the WMR

around the center of rotation of the whole WMR. That means for the calculation of

inertias: [11]

Ib =
2L2mb

3

Iw =
r2mw

2

Iv = mw

(

r2

4
+ L2

)

(2.1)

These formulas are important for the derivation of the state equations. The mass of

a wheel will be defined as mw and the mass of the WMR body will be stated as mb.

For further considerations and because of clarity arguments it is necessary to define

a total inertia It and a total mass mt of the WMR with the following connection.

It = Ib + 2Iv

mt = mb + 2mw

(2.2)

It is important to mention that the used robot model includes regenerative brak-

ing for every wheel individually and natural drag caused by friction forces, which will

all be introduced precisely in further explanations.
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2.1.2 Derivation of the state equations

The used Hilare Robot Model has two independently driven wheels. Every wheel

of the WMR can either slide or roll depending on the magnitude of the constraint

forces and friction coefficients. Every wheel related variable will be marked with the

related wheel number. The control inputs u = (u1, u2) drive wheels 1 and 2 with the

power provided by a rechargeable battery pack. [8] The following graph shows how

the velocities vx and vy are integrated into the coordinate system.

X

Y

(x )c c,Y

vx

vy

θ

wheel 1

wheel 2

Fig. 2.2. Orientation of used robot velocities based on the coordinate
system

A positive velocity vx implies a forward movement consequently a negative vx indicates

a backward movement. A positive velocity vy means a sliding drive to the left and

a negative velocity vy indicates a sliding drive to the right. The point xc =(xc,yc) is

the center of rotation of the WMR and will be considered as the center of reference

for all equations. By inspection the following state equations can be derived:

ẋc = vx cos(θ)− vy sin(θ) (2.3)

ẏc = vx sin(θ) + vy cos(θ) (2.4)
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The turn velocity ω is defined as follows:

Θ̇ = ω (2.5)

This means a forward left turn results in a positive ω and for a forward right turn a

negative turning velocity ω follows. By derivation of (2.3) and (2.4) and considering

the related ground reaction forces the next two state equations describing the deriva-

tives of the WMR velocities in the local robot coordinate system can be constructed.

As seen in Fig. 2.2 the formulas for the velocities are:

v̇x = ωvy +
Fx1 + Fx2

mt

(2.6)

v̇y = −ωvx +
Fy1 + Fy2

mt

(2.7)

The following state equations have to be derived with the existing wheel forces equi-

librium equations. Fig. 2.3 shows these components of wheel 1. The direction vx

indicates the forward direction. A positive input u1 causes an acceleration in the

vx

Fx1
u1

r

Φ

r

Fig. 2.3. Wheel 1 with radius r and considered angle φ

forward direction. The ground reaction force Fx1 works against the input torque u1

and has do be considered in the equilibrium force equation. By inspection you can

see that the applied input torque minus the ground force multiplied with the radius
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of the wheel has to be the inertia of the wheel multiplied with the rotation velocity

of the considered wheel. The state equations for the rotation velocities of the wheel

1 and wheel 2 arising out of these equilibriums are:

ẇ1 =
−Fx1r + u1

Iw
(2.8)

ẇ2 =
−Fx2r + u2

Iw
(2.9)

The last of the eight state equations describing the WMR model delineates the be-

havior of the derivative of the turning velocity ω. As already mentioned a forward

left curve causes a positive turning velocity. If a positive derivative of this velocity is

wanted, the ground reaction force of the right wheel has to be higher than the ground

reaction force of the left wheel. For the derivation you have to consider the inertia of

the whole system introduced in equation (2.2) as It. It follows the equation:

ω̇ = L
Fx1 − Fx2

It
(2.10)

As already mentioned the input to the presented robot system are the input torques

u1, u2ǫ[−60, 60]. When the regenerative brake is on, the input torques slow the WMR

down depending on the rotation velocity of the related wheel. [8]

u(i) =











−Kbwi, if |wi| ≤ 6

−60sgn(wi) if |wi| > 6

i = 1, 2 (2.11)

A drag function is added to the model. The input torques have to be subtracted by

the rotation velocity of related wheel multiplied by a constant to imitate the drag

behavior on arbitrary grounds. In this thesis c = 0.09 is used.

u1 = u1 − w1c

u2 = u2 − w2c
(2.12)



11

2.1.3 Derivation of the algebraic variables for rolling wheels

For the difference between the rolling and sliding mode it is important to introduce

relative velocities. They are zero if there is no difference between movements caused

by the rotation of the wheel and the total movement in the coordinate system. This

means the following formula has to hold:

vr1,r2 =





vrx1,rx2

vry1,ry2



 =





vx ± Lω − rw1,2

vy



 =





0

0



 (2.13)

To present the equation for the ground reaction forces Fx1, Fx2, Fy1 and Fy2 in the

rolling mode, the formula (2.13) is derived in the next equation.










v̇x + Lω̇ − rẇ1

v̇x − Lω̇ − rẇ2

v̇y











=











0

0

0











(2.14)

With insertion of the affiliated state equations and solving the system of equations

the wanted ground reaction forces are:

Fx1 =
IwL

2mt (r (u1 + u2)− 2Iwvyω) + Itr (mtr
2u1 + Iw (u1 − u2 −mtrvyω))

(2IwL2 + Itr2) (2Iw +mtr2)
(2.15)

Fx2 =
IwL

2mt (r (u1 + u2)− 2Iwvyω) + Itr (mtr
2u2 − Iw (u1 − u2 +mtrvyω))

(2IwL2 + Itr2) (2Iw +mtr2)
(2.16)

The ground reaction forces in y direction Fy1 = Fy2 =
Fy

2
is defined with the equation:

Fy1 = Fy2 =
ωvxmt

2
(2.17)

2.1.4 Derivation of the algebraic variables for sliding wheels

In the sliding mode the relatives velocities are not zero. This could be in a scenario,

where the WMR has less grip because of the ground, velocity, acceleration or other

operating forces.

vr1,r2 =





vrx1,rx2

vry1,ry2



 =





vx ± Lω − rw1,2

vy



 6=





0

0



 (2.18)
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In the sliding mode the ground reaction forces originiate from Coulomb’s law. [8]

Fx1 = µd

mtg

2‖vir‖
vrx1 (2.19)

Fx2 = µd

mtg

2‖vir‖
vrx2 (2.20)

Fy1 = µd

mtg

2‖vir‖
vry1 (2.21)

Fy2 = µd

mtg

2‖vir‖
vry2 (2.22)

With these equations the algebraic variables in the sliding mode are described. For

the modeling of a flexible WMR wheel system, which can change between the two

modes, rules for the change between them have to be set up. The static friction force

is important as a limit for the applied forces to secure rolling for the WMR. The

formula can be easily derived with the gravitational acceleration g = 9.81, the static

coefficient of static friction µs and the total mass mt of the WMR.

Fstatic =
mt

2
µsg (2.23)

In this consideration an autonomous switching process from rolling to sliding of wheel

1 or wheel 2 occurs, when the related magnitude of the constraint force F1,2 =
(

Fx1,x2 Fy1,y2

)

is higher as the magnitude of the static friction Fstatic < ‖F1,2‖.

For the change from sliding to rolling two conditions have to apply. First the magni-

tude of the constraint force of the appropriate wheel has to be lower or equal to the

magnitude of static friction Fstatic ≥ ‖F1,2‖ and second the relative velocity of the

related wheel 1 or wheel 2 has to be zero.

vr1,r2 = 0 (2.24)

If these equations hold, then the related wheel mode switches to rolling again.
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2.1.5 Introduction of mode projection

For the use of cost functions and control in the next chapters four different modes

vi, i = 1, 2, 3, 4 have to be initialized.

v1 = wheel 1 propelling and wheel 2 propelling

v2 = wheel 1 propelling and wheel 2 braking

v3 = wheel 1 braking and wheel 2 propelling

v4 = wheel 1 braking and wheel 2 braking

(2.25)

All mode values vi, i = 1, 2, 3, 4 have to sum up to 1 to be a valid mode structure

v1 + v2 + v3 + v4 = 1, which is a convex combination of the modes. Every scenario

uses the associated formulas for each wheel and has independent variables for the

calculation of the whole setting. The mode with the highest vi, i = 1, 2, 3, 4 has the

biggest impact on the actual torque given on the system. With a projection method,

shown in the next section, the input torques u1 and u2 are calculated and integrated

in the high fidelity simulator.

2.2 Implementation and comparison with proved research results

In this section the implementation of the WMR model in the programming environ-

ment MATLAB is shown and results are compared with known research results of

Prof Zefran from University of Illinois at Chicago.

2.2.1 Simulink and MATLAB implementation

One way of approaching the problem is a implementation in Simulink.
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Fig. 2.4. Simulink model
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Fig. 2.4 gives a short overview over the implementation of the model with all implied

bigger subsystems described as boxes too. Because of the mass of blocks and subsys-

tems needed, the higher complexity of the system is easy to see. A lot of simulation

time was needed to finish easy tasks, due to the amount of calculations and the way

of subsystem integration in Simulink. This approach has a big weakness, when model

changes occur. Code can easily be changed, but the structure of a Simulink model

sometimes needs to change radically. This is why for the simulations in the next

chapter a coding approach is taken, which is more clear and better performing in

simulation time. For the simulation in MATLAB the nonstiff differential equations

solver ode23 is used. This solver is used for high fidelity simulations in every following

chapter too. The implementation is devided in two programs.

The first program contains the equations. This function has as an input the ele-

ment time t, the states x, actual input torques u1 and u2 and the needed physical

constants. Every needed constant and algebraic variable is calculated. All result val-

ues are inserted into the state equations and the derived state vector ẋ is given back

to the main function.

This main function is the second program, which includes the call of the ode23 solver.

Starting conditions for the states are given and updated each call of the equation

solver. The time intervals for t can be varied and input torques for the WMR system

are calculated there. Everything is included in a for loop, because it is necessary to

call ode23 consistently until the simulated time interval ends.

This coding approach is more clear and better performing in simulation time. Changes

to the program can easily be integrated.
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2.2.2 Comparison with acknowlegded research results

Professor Zefran’s simulation results are used for this comparison. [8] With this given

torque data it is possible to start the same simulations with the ode23 nonstiff dif-

ferential equations solver. Therefore it is necessary to change the main function to

a loop to enter input data for the solver about the regenerative brakes and input

torques for the wheels used. For every following simulation in the thesis the following

projection method is used for the imposed input torques u1 and u2 on the WMR:

u1 = u11v1 + u12v2 + u13v3 + u14v4

u2 = u21v1 + u22v2 + u23v3 + u24v4

(2.26)

In Professor Zefran’s datasets the regenerative braking signifier is a boolean variables,

where 1 means regenerative brake of related wheel is on and 0 that the regenerative

brake is off. Drag is not used in Professor Zefran’s simulations, but as already shown

it is possible to add this for following considerations in the next chapters. Prof. Ze-

fran’s input torque sequence for the simulation is used as the input for the simulation

With the given data the WMR is starting with the center of rotation at (xc, yc) = (0, 4)

in the coordinate system with both wheels in the sliding mode. The used constant

values for this simulation are mb = 1, mw = 0.5, L = 1, r = 4, µd = 0.6, µs = 0.7

and g = 9.8 and the used initial state is zT0 = (x0, y0, θ0, vx,0, vy,0, ω0, w1,0, w2,0)
T =

(0, 4, 1, 1, 2, 0, 0.5, 1)T . All the data is one to one taken from Prof. Zefran’s data.

The given input torques get both wheels back into the rolling mode and the robot

stops at the origin. The differences in the trajectories, as seen in Fig. 2.5, lie in the

different equation solvers used and in not exact equal conditions for a change between

rolling and sliding, but it shows that the used underlying code is correct and can be

used as a basis for upcoming WMR simulations.
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Fig. 2.5. Comparison between Prof. Zefran’s results and ode23 results
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3. CONTROL STRATEGIES FOR THE WALL

FOLLOWING SCENARIO

In this chapter driving scenarios for electric wheelchairs with exact measurements of

the environment are presented and needed variables for the simulation are derived.

The results of controlled simulations are presented and differences are discussed.

3.1 The wall following scenario

In this section the wall following scenario will be presented. First the Performance

Index is developed and constants for the simulation are chosen. Simulation results

will be shown to evaluate the driving behavior of the WMR.

3.1.1 Introduction of the wall following scenario

This scenario is set in a cartesian coordinate system as in Fig. 3.1. The WMR with

the center of rotation (xc, yc) should have the distance dref to the wall, which is

shown as the shaded area in Fig. 3.1. R is an offset of the wall from the origin of

the coordinate system. The objective is to drive the WMR from an initial point

(xc(t0), yc(t0)) = (x0, y0) to a final point (xc(tF ), yc(tF )) = (xF , yF ) along a trajectory

parallel to the wall, but with a distance dref from the wall. The angle of the wall

in the coordinate system is arbitrary, but denoted by the value of 90◦ − γ. d = d(t)

denotes the actual distance from the center of rotation of the WMR to the wall as

shown in Fig. 3.1.

Movement requires velocity and human safety requires bounds on the velocity and
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ref

R

y

x

Fig. 3.1. Geometry of wall following scenario

its derivative. For the investigation in this chapter the safety bound for the forward

velocity is orientated at the maximum speed of the electric wheelchairs:

|vx(t)|2 =
(

1.8
m

s

)2

(3.1)

The velocities vx(t) and vy(t) are the velocities in respect to the local coordinate

system of the robot, whereas x and y and their derivative denote the global cartesian

coordinate system. If a parallel wall following with 90◦ − γ = 45◦ and θ = 45◦ is

considered, the axis bounds ẋ(t) and ẏ(t) as seen in equation (2.3) and (2.4) for

movement in the coordinate system have the same value. The maximum speed of

1.8m
s
from a standstill should be reached in a minimum time of 2s to fulfill safety

preconditions. Therefore bounds on the forward acceleration require:

|v̇x(t)| ≤ 0.9
m

s2
(3.2)
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Finally for a maximum of safety, sliding should be prevented. We require that the

following inequalities for the ground reaction force Fi of the i’th wheel of the WMR

is satisfied:

|Fi| ≤ Fstatic = µs

(mb

2
+mv

)

g (3.3)

In the next subsection we take up the problem of intuitively developing the needed

PI to achieve wall following as in Fig 3.1.

3.2 Heuristic Development of the Performance Index

3.2.1 Introduction of the general form of Performance Indices

The Performance Index (PI) typically has an integral quadratic form

J =

tf
∫

t0

(

c1 [Errors]
2 + c2 [Energy Consumption]2

)

dt (3.4)

Possible ”errors”-terms in the integrand of equation (3.4) include:

(i) the distance to the wall w.r.t. a reference:

(dref (t)− d(t))

(ii) the orientation of the robot in regards to the angle θ:

(θref (t)− θ(t))

(iii) the magnitude of the WMR’s forward velocity:

(vref (t)− vx(t))

(iv) the distance to a final stopping point:

∥

∥

∥

∥

∥

∥





xF (T )

yF (T )



−





x (t)

y (t)





∥

∥

∥

∥

∥

∥

2
Of course there are many other types of errors not discussed here.
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3.2.2 Wall following with a final point

Specific to the wall following scenario with a final point the first squared error of the

PI is the distance to the final goal xF (T ) = [xF (T ), yF (T )]
T , given by the equation:

cxf (xF (T )− x(t))T (xF (T )− x(t)) (3.5)

This part of the integrand is normalized on the quadratic distance between the start-

ing point x(t0) and the final point xF (T ).

cxf
(xF (T )− x(t))T (xF (T )− x(t))

(xF (T )− x(t0))T (xF (T )− x(t0))
(3.6)

A second error used in this PI integrand is:

cd (dref − d(t))2 (3.7)

This part of the PI is normalized on the quadratic reference distance to the wall.

cd

(

dref − d(t)

dref

)2

(3.8)

In this chapter we assume that d(t) is known exactly computed through formulas set

forth in appendix A3.1. In particular from equation (3.26) we note that the exact

distance of the center of the WMR to the wall is:

d(xc, yc, γ) = cos (β) ·
√

x2
c + y2c +R (3.9)

With Fig. 3.23 and equation (3.26) the angle β is given by:

β = 180◦ − γ − arctan

(

yc

xc

)

(3.10)

The same result for d(t) can be achieved by taking the equation of the wall as a line

and calculate the distance to a arbitrary point, here the center of rotation x(t) =

[xc(t), yc(t)]
T is used as well as the slope m and the y-intercept value b of the wall as

seen in equation (3.11).

ywall = mxwall + b (3.11)
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The formula has the following form and for the presented wall following scenario

m = 1 and b = −
√

(2) are used:

d(xc(t), yc(t),m, b) =
‖yc(t)−mxc(t)− b‖

√

(m2 + 1)
(3.12)

A removal of the absolutes in the nominator would give to possibility to have a posi-

tive distance to the wall as a normal case and a negative distance to the wall, when

the robot is located physically in the wall.

With attached wheel encoders every movement in the cartesian coordinate system

is known as well as the starting point of the WMR. The control problem is to find

u1(t), u2(t), v1(t), v2(t), v3(t) and v4(t) so that JWall in equation (3.14) is minimized

over the interval [0, T ]:

min
ui,vi

JWall (3.13)

Subject to:

(i) model equations of chapter 2

(ii) constraint equations of section 3.1

(iii) T = 10 s

(iv) x(t0) = [x(t0), y(t0)]
T = [1, 0.5]T

(v) xF (T ) = [xF (T ), yF (T )]
T = [10, 10]T

(vi)
∑4

i=1 vi(t) = 1

For the wall following mode with a chosen final point the PI can be taken as:

JWall =

T
∫

0

cxf
(xF (T )− x(t))T (xF (T )− x(t))

(xF (T )− x(t0))T (xF (T )− x(t0))
+ cd

(

dref − d(t)

dref

)2

dt (3.14)

d(t) =
√

(x(t)− xminwall(t))2 + (y(t)− yminwall(t))2 (3.15)

Where the point (xminwall(t), yminwall(t)) is the point on the wall with the minimum

distance to the center of rotation of the WMR. The vector xF (T ) is the already intro-

duced final goal to reach for the WMR in the Interval from 0 to T . In our example it
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is a point in a hallway with the wanted distance dref = 1 to the wall, xF (T ) = (10, 10).

The constants cxf and cd are the weight parameters for the performance index. They

indicate tradeoffs in penalizing deviations from dref and the distance to the final point.

This is interesting, because the presence of the final point penalty and its high impact

on the PI drives the WMR automatically to the final goal. These constants influence

the whole trajectory of the electric wheelchair. They should be chosen wisely, so that

the ride for the user is comfortable and practicable.

3.2.3 Wall following with a final point and a velocity profile

In this subsection an addition to the introduced wall following PI is demonstrated. A

velocity references is added to the PI to control the velocity on the way to the final

goal. This should secure a smooth drive for the test user. The additional part for the

PI is:

cv

(

vref (t)− vx(t)

vref,max

)2

(3.16)

The constant cv is the weight factor of the velocity profile and the velocity reference

in shown in Fig. 3.2. The constant vref,max = 1m
s
is the maximum velocity in the

velocity profile of Fig. 3.2.
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Fig. 3.2. Velocity profile for the finite PI

This means for the total PI:

JFinWall =

T
∫

0

[

cxf
(xF (T )− x(t))T (xF (T )− x(t))

(xF (T )− x(t0))T (xF (T )− x(t0))
+ cd

(

dref − d(t)

dref

)2

+cv

(

vref (t)− vx(t)

vref,max

)2
]

dt

(3.17)

3.2.4 Infinite wall following

Again the distance to the wall is a very important part of the PI. The earlier used

normalized squared error to dref :

cd

(

dref − d(t)

dref

)2

(3.18)
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The PI for the infinite wall following mode doesn’t has a final point penalty as part of

the integrand. Rather we use a reference angle and a reference velocity. The reference

angle squared error:

cθ (θref − θ(t))2 (3.19)

The angle θref is the angle of the wall in the coordinate system with respect to the

x-axis, because a parallel movement of the WMR is wanted. Thus the angle θ(t) is the

actual angle of the robot with respect to the x-axis. Any deviations from the reference

angle are penalized by the PI. It is not convenient to normalize this term, because

the reference angle θref could be zero. The second new part of the PI integrand is a

magnitude velocity reference:

cv (vref (t)− v(t))2 (3.20)
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Fig. 3.3. Velocity profile for the infinite PI
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The profile in Fig. 3.3 is the identical profile of the finite point scenario. This part

of the PI is normalized with the maximum reference velocity vref,max = 1m
s
as seen

in Fig. 3.3. A reference velocity is needed, because there is no specified final point.

Thus after the WMR reaches its nominal speed of 1m
s
, it maintains its velocity. The

velocity profile is chosen carefully, because additionally it shows a reference velocity.

These references are defined within the bounds of velocity and derivative of velocity

defined in equation (3.2).

cv

(

vref (t)− vx(t)

vref,max

)2

(3.21)

In total the PI of the infinite wall following scenario is:

JInfWall =

T
∫

0

[

cd

(

dref − d(t)

dref

)2

+ cθ (θref − θ(t))2 + cv

(

vref (t)− vx(t)

vref,max

)2
]

dt

(3.22)

For the following simulations it is possible to combine the two different PI’s to one

and it is only necessary to add the values of the constants to make clear, what the

scenario is all about.

JTotal =

T
∫

0

[

cxf
(xF (T )− x(t))T (xF (T )− x(t))

(xF (T )− x(t0))T (xF (T )− x(t0))
+ cd

(

dref − d(t)

dref

)2

+cθ (θref − θ(t))2 + cv

(

vref (t)− vx(t)

vref,max

)2
]

dt

(3.23)

To obtain the infinite wall following PI only the constant cxf has to be set to zero.

For the scenario with a final point cθ and cv should be equal to zero. For the finite

wall following scenario with a final point only cθ should be zero.

3.3 Simulation results with introduced PI

3.3.1 Wall following with a final point

The trajectory of the wall following scenario with a final point with the parameters

cxf = 10, cd = 1.5 and cθ = cv = 0 are shown below. The continuous blue line
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represents the wall, the doted red line represents the wanted distance to the wall and

the black continuous curve shows the trajectory of the WMR.

This scenario using the PI opf equation (3.14) is optimized over the whole inter-

val of 10 s.The numerical solution uses a discretization based on collocation over 100

partitions of a 10 s interval. That means each partition is 0.1 s in length. The be-

havior of the WMR shows that it wants to reduce the distance to the wall to the

smallest possible and simultaneously drive to the final goal at xF (T ) = (10, 10) as

fast as possible. With the assumed safety bounds on the WMR this result mimics

also the behavior of a human in a driving task.
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Fig. 3.4. WMR embedded solution forward velocity in the optimal solution
scenario
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The forward velocity plot in Fig. 3.4 shows that the robot wants to reach the max-

imum speed of 1.8 m
s
as fast as possible with the maximum allowed acceleration of

0.9 m
s2
. It reaches 1.8 m

s
in 2 s. The velocity stays at the maximum value until the

WMR nears the final point.

After 8 s the WMR slows down to stop at the final point xF (T ) = (10, 10). It

slows down, because the scenario is slowed over a fixed time interval and a overshoot

of the final point would raise the total cost of the PI. As a result out of this process

we obtain the minimum cost of the PI. The cost in this simulation is J = 34.243.
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Fig. 3.5. WMR trajectory in the optimal solution scenario
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The trajectory in Fig. 3.5 nears the optimal line asymptotic close and performs a

smooth driving scenario.
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Fig. 3.6. WMR control inputs in the optimal solution scenario
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In the diagram of the input torques, Fig. 3.6, it is easy to see that in the first 2 s high

torques are used to push the WMR to its maximum allowable speed. Also differences

between u1 and u2 are easy to see. This difference is because of the turning behavior

to move the WMR to the reference distance dref . Between 2 s and 8 s a steady state

behavior can be seen, because the WMR is driving towards the final goal with the

same speed. After 8 s a lot of negative torques can be seen to decelerate the WMR

as fast as possible to obtain a standstill directly on the final point. For this graph

as well as for all other input torque graphs the projection method as introduced in

equation (2.26) is used.
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Fig. 3.7. WMR mode values in the optimal solution scenario
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The modes as already introduced in Chapter 2 with equation (2.25) are used in

Fig. 3.7. The modes values reflect the situations the WMR is in. Mode 1 is for the

whole interval from 0 s to 8 s active, because the WMR accelerates and keeps the

maximum speed all the time. Both wheels have to propel. In the process of accelera-

tion the mode value of v1 is equal to 1, because in this situation it is impossible that

the WMR could be in one of the other modes and use regenerative breaking, which

is not wanted in acceleration processes.

In the interval from 2 s to 8 s the mode value for v1 is about 0.9. In this inter-

val it is only needed to keep the maximum speed and not to accelerate. The mode

value for v1 is nevertheless high enough, which fits to the whole scenario properties.

As already seen in Fig. 3.4 a high deceleration process with a partial negative forward

velocity starts after 8 s. The mode value of v1 sinks immediately down and the mode

values of v2, v3 and v4 rise up. The WMR has to use regenerative breaking to reduce

the forward velocity and to keep close to the final point. This part is also consistent

with the scenario properties.
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Fig. 3.8. Comparison between the forward velocity vx(t) of the WMR of
a high fidelity simulation with the embedded solution of Fig. 3.4

In Fig. 3.9 and Fig. 3.8 the input torques and mode values of the embedded solution

are used for the input of a high fidelity simulation. In Fig. 3.8 the high fidelity

simulation, here called simulation, is again done by the ode solver 23 of MATLAB,

which is a nonstiff differential equations solver. The velocities of the high fidelity

simulation and the embedded solution are similar.
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Fig. 3.9. Comparison between the trajectories of the WMR of a high
fidelity simulation with the embedded solution

The trajectories in Fig. 3.9 are identical as well as the forward velocities vx(t) in

Fig. 3.8. That means that a embedded solution with a interval length of ts = 0.1 has

a similar performance as the high fidelity simulation. It shows that the discrete low

fidelity simulation of the optimization process is nearly identical to the high fidelity

simulation in a 10 s simulation with 100 partitions ahead. This demonstrates the

accurateness of the discrete low fidelity model and underlines the high quality of the

further work with these tools in the next chapters.



36

3.4 Model predictive control

In this section model predictive control (MPC) is introduced and used on the pre-

sented wall following scenario with a final point as well as on the infinite wall following

scenario.

3.4.1 Introduction of MPC

MPC is a optimization method with the possibility to look into the future behavior of

a system with a finite and iterative prediction horizon. Every future partition obtains

constant inputs u1 and u2, which can change every partition to fulfill the goals of a PI.

The prediction horizon gives the possibility to plan ahead with the control input, but

still the short term actions of reducing costs are steering the behavior of the model.

futurepast

prediction horizon (window)

k k+1 k+2 k+3 k+4

reference traj.

predicted traj.

past traj.

input values

Fig. 3.10. Introduction of MPC theory

Fig. 3.10 gives an overview over the theoretical system of model predictive control.

There we see a finite prediction horizon of four partitions and the chosen input values

for the system. The past trajectory of the observed variable as shown, as well as the

predicted trajectory for the future. The reference trajectory is the goal to reach. This

is implemented with a penalty on the difference to the reference, the introduced errors.
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Every dot represents a data packet, because the system is evaluated discrete every

window size, which is here ts = 0.1. The window size and the prediction horizon have

an important influence on the dynamics of the system, because they are responsible

for the range of the prediction horizon. More distance between each measurements

provides more freedom to the system, but for real time application it should be rea-

sonable small.

The MPC solution is the minimum energy solution that minimizes the errors of the

actual system. Although only a limited knowledge about the future is known with

this technique, the good performance achieved in simulations is incontestably. MPC

receives feedback from the virtual environment every ts = 0.1, this is why errors can

never accumulate. This is why MPC is robust and achieves good simulation results

in this and the following chapters. One major question in this thesis is the robustness

of the model with MPC control strategy to Gaussian and Parkinsonian noise, which

causes uncertainty in the optimization process.

3.4.2 MPC on wall following with a final point

The WMR has to drive again to a final point and keep a reference distance to the

wall but using MPC. That means the overall performance of the driving task is not

only to immediately reduce cost, which would maybe drive a WMR in a situation,

where the future cost is very high. For the MPC a reference distance of 1 m to the

wall with a penalty of cd = 1.5 is chosen. The penalty on the final goal is cxf = 10

and cθ = cv = 0 again. The used partition length is ts = 0.1 with a prediction horizon

of 4 partitions.
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Fig. 3.11. WMR velocity of the wall following scenario with a final point

The velocity profile shows that for the turn movement the velocity increases to the

maximum possible in the acceleration bounds. The maximum velocity of 1.8m
s
is

reached in minimum time of 2 s. The behavior of the optimal method and the MPC

is equal in this point. Coming closer to the final point the WMR decelerates and

reaches the final goal after 84 partitions.

The used partition length is again 0.1 s, so that the WMR arrives at the final goal

after 8.4 s. The main difference between MPC and the optimal method is, that the

last method has a fixed time to reach the final goal. That is why the WMR deceler-

ates to zero. In the MPC solution a prediction horizon of 0.4 seconds is known that

means that the WMR will only slow down a short period of time before the final goal.
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It is travelling with 1.8 m
s
that means in 0.1 seconds a distance of 0.18 m is covered.

Because of the size of the prediction horizon the WMR will slow down only in the

last partitions of the whole scenario with maximum deceleration of 0.9m
s2

to achieve

minimum cost.
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Fig. 3.12. WMR trajectory of the wall following scenario with a final point

The trajectory shows a turn to the line of the reference distance to the wall and then

a consequent follow of the wall in the right distance just as expected. After 1 m of

driving the WMR has already finished the full turn is on the reference line. MPC has

a finite prediction horizon. This is why the trajectory is not similar to the result of

the full interval solution in Fig. 3.5 and there are differences in the process of getting

close to the optimal line. The MPC solution has a smaller radius to perform the turn

as the optimal solution. The maximum acceleration is used in the turn movements

of the MPC solution as well as in the optimal solving method.
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Fig. 3.13. WMR mode switches of the wall following scenario with a final
point
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Similar to the solution with optimal knowledge, mode 1 is dominant in the first part

of the scenario from 0 s to 3 s with high mode values. In the constant velocity phase,

mode 1 is still dominant with mode values of about 0.44. After 8 s the mode value

of mode 1 sinks, because the final goal is nearly reached and maximum deceleration

is used. The mode values of mode 4 for regenerative braking on both wheels are

significant higher than mode 1 values. That means that for every braking in the

MPC the regenerative braking is used to charge the battery.
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Fig. 3.14. WMR control inputs of the wall following scenario with a final
point
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In Fig. 3.14 the differences of both input torques u1 and u2 are easy to see when the

WMR processes a turn movement and when it brakes with the regenerative brake. In

turn movements and deceleration the input torques differ, but in the movement with

constant velocity and constant moving direction between 3 seconds and 8 seconds

both input torques are constant and nearly on the same level. The regenerative

braking is used in the last partitions to force a slowdown of the WMR to the final

goal. The cost of the scenario has the following value:

Table 3.1
Comparison of the total costs of the optimal solution and MPC

optimal MPC

J = 34.243 J = 34.948

The table shows only a 2% cost increase of the MPC method, which fits to other

comparism of optimal methods and MPC methods in research.

3.4.3 MPC on wall following with a final point and velocity profile

In this section the WMR has to drive to a final point and to keep a reference distance

to the wall using MPC. The only difference to the last scenario is an additional

velocity profile as introduced in Fig. 3.2. For this scenario we maintain a reference

distance of 1 m to the wall but with a penalty of cd = 1.5. The penalty on the final

goal is cxf = 10. The penalty on the velocity profile cv = 20. The partition length is

ts = 0.1 with a prediction horizon of 4 partitions.
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Fig. 3.15. WMR velocity of the wall following scenario with a final point
and a velocity profile

According to the velocity profile of Fig. 3.3 the WMR is restricted to a maximum

forward driving velocity of 1m
s
. The forward velocity sticks to the profile and only

small deviations, when the maximum reference velocity is reached, can be seen. The

acceleration and deceleration have a maximum value of 0.5m
s2

because of safety issues.

With these restrictions it is possible for a human to drive a WMR safely.
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Fig. 3.16. WMR trajectory of the wall following scenario with a final point
and a velocity profile

The trajectory looks similar to the trajectory without a velocity profile. A small

difference are near the starting point. Here the WMR is restricted to the velocity

profile with a maximum of 1m
s
, which means that it can never reach the maximum

possible velocity of vx,max = 1.8m
s
that the unrestricted method can achieve.
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Fig. 3.17. WMR mode switches of the wall following scenario with a final
point and a velocity profile
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Similar to the optimal solution, mode 1 is dominant in the turning movement from

0 s to 2 s with mode values of v1(t) nearly 1 everywhere. In the constant velocity

phase, v1(t) is still dominant with mode values of about 0.8. After 13 s the mode

value of mode 1 sinks to about 0.6, because the final goal is nearly reached and regen-

erative braking is needed to slow the vehicle down with the given deceleration rate.

Differences to the MPC solution without a velocity profile can be seen. because of the

still dominant value of mode 1 in this scenario. Through the constant deceleration

regenerative braking is only partially needed.
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Fig. 3.18. WMR control inputs of the wall following scenario with a final
point and a velocity profile
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In Fig. 3.18 the difference in the both input torques u1 and u2 are easy to see when

the WMR processes a turn movement. In turn movements and deceleration the input

torques differ, but in the movement with constant velocity and constant moving

direction between 2 s and 13 s both input torques are on the same level. The cost of

this MPC solution with velocity profile has the following value:

Table 3.2
Comparison of the total costs of the optimal solution, MPC, MPC with
velocity profile and infinite MPC with given cost coefficients of the PI

optimal solution MPC MPC with velocity profile

J 34.243 34.948 54.905

cxf 10 10 10

cd 1.5 1.5 1.5

cv 0 0 20

cθ 0 0 0

3.4.4 MPC on infinite wall following

The WMR has to drive at a reference angle, keep a reference distance to the wall and

should follow a velocity profile . The velocity is exactly designed for the infinite wall

following scenario as possible to see in Fig. 3.19. For the MPC a reference distance

of 1m to the wall with a penalty of cd = 10 is chosen. The penalty on the final

goal is cxf = 0, but a final point is taken as a stopping criterion for the simulation.

The penalty on the velocity profile cv = 5. The reference angle term used a penalty

constant of cv = 1. The used partition length is ts = 0.1 with a prediction horizon of

4 partitions.
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Fig. 3.19. WMR velocity of the infinite wall following scenario with a
velocity profile

In the graph of the forward velocity vx in Fig. 3.19 the velocity trajectory follows the

reference velocity. In the acceleration phase in the beginning are small deviations,

which are due to the more complex turning movement towards a parallel movement to

the reference wall. In the acceleration process the velocity is a small amount higher,

because the approximation of the optimal angle and penalty on the distance to the

wall is forcing the WMR further. After the acceleration process no deviations are

present.
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Fig. 3.20. WMR trajectory of the infinite wall following scenario with a
velocity profile

In Fig. 3.20 the trajectory of the WMR in the coordinate system is shown. The

turning radius is as small as in the optimal solution and both trajectories are similar.

A smooth approximation of the optimal line is possible to see and a lot of similarities

to the optimal solution can be seen.
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Fig. 3.21. WMR mode switches of the infinite wall following scenario with
a velocity profile
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Mode 1 is dominant in the turning movement until 3 s. After this all mode values

are constant which fits to the trajectory and velocity profile.
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Fig. 3.22. WMR control inputs of the infinite wall following scenario with
a velocity profile



56

Typical for the turning movement, in Fig. 3.22, the input torque values differ a lot.

After the constant driving phase is reached both torques are constant on about 2 Nm.

Only energy is used to compensate the energy losses through drag.

Table 3.3
Comparison of the total costs of the optimal solution, MPC, MPC with
velocity profile and infinite MPC with given cost coefficients of the PI

optimal solution MPC MPC with velocity profile infinite MPC

J 34.243 34.948 54.905 2.1033

cxf 10 10 10 0

cd 1.5 1.5 1.5 10

cv 0 0 20 5

cθ 0 0 0 1

3.5 Appendix: Derivation of the distance to the wall formula

In every situation and angle the distance to the wall it is the most important fact for

the control algorithms. Therefore a formula got developed, which derivation can be

reproduced by the following graph:
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Fig. 3.23. Derivation of minimum distance formula

Again the center of rotation (xc, yc) of the electric wheelchair is used as the reference

point for the distances and the wall is shaded in gray for clarity reasons. The constant

R denotes the shifting distance from the wall to the origin. The angle α is arctan
(

yc
xc

)

.

The distance dcenter (xc, yc, γ) is the minimum distance from the center of rotation of

the wheelchair to the wall. The angle γ sets the orientation of the wall in the cartesian

coordinate system. The angle β for the computation of the minimum distance to the

wall follows out of the trapezoid angle relations:

α = arctan

(

y1c
xc

)

(3.24)
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β = 360◦ − 90◦ − 90◦ − γ − arctan

(

yc

xc

)

= 180◦ − γ − arctan

(

yc

xc

)

(3.25)

With triangle angle relations it follows the equation for the minimum distance to the

wall:

d(xc, yc, γ) = cos (β) ·
√

x2
c + y2c +R (3.26)
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4. THE CORNERING SCENARIO AND COMBINED

SCENARIOS WITH AND WITHOUT GAUSSIAN NOISE

This chapter provides an overview of the cornering scenario. As a next step a com-

bined scenario with two wall following parts and one cornering part are introduced

and simulated. As the final result of this chapter the combined scenario is simulated

with random Gaussian white noise on the distance to the wall measurements, which

mimics the behavior of sonar sensor measurements in a real scenario.

4.1 The cornering scenario

In this section the corning scenario is introduced and the derived PI is shown. Simu-

lation results are presented, evaluated and classified.

4.1.1 Introduction of the cornering scenario

In this scenario we consider a polar coordinate system as a basis for the distance to

the corner calculation and convert our cartesian information into polar coordinates.

The objective in this scenario is that the WMR performs a turn with constant velocity

and a constant radius to the corner.
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Fig. 4.1. Overview of the cornering scenario
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Fig. 4.2. Angle relations of the cornering scenario

At the start of the cornering scenario, the center of rotation (xc, yc) of the wheelchair

has the distance d0 = r0 to the shown shaded wall as seen in Fig 4.1. This distance is
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also the distance we want to retain during the turn. The needed velocities are gener-

ated by constant input torques u1 and u2. These are given on the electric wheelchair

in each time interval via the already introduced projection in equation (2.26). A

starting velocity of vx = 0.5 m
s
is used in this scenario, because the WMR should

reach the turn at this velocity. In the calculations it is important to consider the

corner point (px, py) as the origin of the new polar coordinate system. The angle φ

and the distance r to the corner point in Fig. 4.2 are determined by the following

formulas:

d(t) =
√

(xc(t)− px(t))2 + (yc(t)− py(t))2 (4.1)

φ = arctan

(

yc − py

xc − px

)

(4.2)

With this transformation it is easy to maintain a constant radius r = dref and a

constant turning velocity φ̇ = ω. The radius is just the 2-norm of the distance

between the corner point and the center of rotation of the WMR. For the actual

implementation a constant turning velocity is realized with a time dependent change

of the reference angle θ of the WMR. A time dependent system is more realistic and

θ is a state in the model, which makes it easy to control. In addition the turning

velocity ω has to be constant, which is also a state in the WMR model.

θref (t) =
π

4
− 1

2
t (4.3)

Here t represents the time elapsed after the cornering scenario starts. A similar

approach with the same effect would specify a constant rotational velocity:

ωref (t) = θ̇ref (t) = −1

2
(4.4)

4.1.2 Heuristic Development of the Performance Index

Different to the wall following scenario a penalty for not reaching the final point is

absent. As already specified the PI errors in the distance to the corner point:

cd

(

dref − d(t)

dref

)2

(4.5)
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This penalty enforces a constant radius of r = dref = 1 m around the corner point.

Again we assume that d(t) is known through equation 4.1.

The next part of the PI is a penalty on deviations from the time dependent angle θ(t)

from θref (t) presented in equation 4.3.

cθ (θref (t)− θ(t))2 (4.6)

The error in the velocity profile from a constant velocity of vref = 0.5 m
s
is another

part of the PI:

cv

(

vref − vx(t)

vref

)2

(4.7)

The last part of the PI is a term that penalizes the use of input torque related to

the mode value for the embedded solution. By mildly penalizing energy this usage

promotes regenerative braking. Only the input torques in the propelling mode are

chosen here, because regenerative braking absorbs kinetic energy.

ce
[

v1(t)
(

um11(t)
2 + um21(t)

2
)

+ v2(t)
(

um22(t)
2
)

+ v3(t)
(

um13(t)
2
)]

(4.8)

The input torques are related to the wheel i ǫ {1,2} and mode j ǫ {1,2,3,4}:

umij(t) = 2uij(t)− 1 (4.9)

The input torques are not directly penalized. Rather the modulation, umij(t), with

values between -1 and 1, are penalized.

The full PI then has the following form:

JCorner =

T
∫

0

[

cd

(

dref − d(t)

dref

)2

+ cθ (θref (t)− θ(t))2

cv

(

vref − vx(t)

vref

)2

+ ce
[

v1(t)
(

u11(t)
2 + u21(t)

2
)

+ v2(t)
(

u22(t)
2
)

+ v3(t)
(

u13(t)
2
)]

]

dt

(4.10)
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4.1.3 Simulation of the cornering scenario

A MPC control strategy with a four partition window is used. The size of each win-

dows is ts = 0.1 s and the size of the prediction horizon is 0.4 s. The introduced PI of

equation (4.10) is used for MPC. Fig. 4.3 shows a corner turn with a distance to the

corner point, angle, velocity and energy penalty on the behavior of the WMR. The

cost coefficients were chosen to achieve good overall performance. The results are

achieved with the chosen parameters cd = 1.5, cθ = 10, cv = 10 and ce = 0.01. The

energy coefficient ce = 0.01 supports regenerative braking in deceleration situations

immense. If this weight coefficient is chosen to be higher, then the WMR would not

move, because every use of energy and therefore every propelling is penalized.

A high emphasis with a weight of 10 on velocity and angle reference is important

in the cornering scenario. A powered wheelchair user wants a constant turning veloc-

ity and constant forward velocity. The distance to the corner weight coefficient is in

the ratio 6.6 : 1 smaller. That means that small deviations from the reference should

not be corrected in a immense way, because this would affect the velocity references

negatively. In simulation this ratio was considered to be good for an overall good

performance.
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Fig. 4.3. WMR velocity of the wall following scenario with a final point

Because of the already mention starting velocity vx = 0.5 m
s
and the constant reference

velocity vref = 0.5 m
s
, an overall constant velocity as shown in Fig.4.3 minimizes the

velocity error.
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Fig. 4.4. WMR trajectory of the wall following scenario with a final point

From Fig. 4.4, we observe that the trajectory is very close to the reference trajectory

and performs a nearly perfect quarter circle.
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Fig. 4.5. WMR mode switches of the wall following scenario with a final
point
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Because of an existing small transient effect in the beginning of the turn, the mode

value of v1 is not 1 in the second partition in Fig. 4.5. Elsewhere the mode value is

1, because no regenerative braking is needed in a task, where a turn with a constant

velocity should be managed. Modes 2, 3 and 4 contain regenerative braking com-

ponents, that means that mode 1 is the only option for the chosen scenario with an

overall impact on the system of nearly 100% everywhere.
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Fig. 4.6. WMR control inputs of the wall following scenario with a final
point
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In Fig. 4.6 the mentioned transient effect is easy to recognize in the first 0.5 s, due to

the torque fluctuations. After the model is stable in the turning scenario the ground

reaction force is still reducing the speed of the WMR. Constant positive torques,

depending on the rotational velocity of each wheel, need to be applied to the wheels

for the rest of the scenario.
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4.2 Sonar sensors for distance to the wall measurements

The use of sensors in a real scenario is necessary to achieve a wanted distance to

the wall and proper orientation in the coordinate system. The WMR sensors need to

detect and locate corners to force a change between the different possible performance

metrics. In this example the sonar sensors have a cone of more than 30◦ and are

mounted with 30◦ angle different on top of the WMR as in Fig 4.7. As usual vx

points in the forward direction of the WMR and all sensors are mounted on the

center of rotation x(t) = [xc(t), yc(t)]
T of the WMR. The distances d1 and d2 are the

measured distances to the wall of sonar sensor 1 and 2.

30°

30°

vx

d2

α1

d1

α2

dp

αp

d3

(x  ,y )c c

Fig. 4.7. Distance to the wall measurements through sonar sensors

With the law of cosines in Fig. 4.7, d3 can be calculated as:

d3 =
√

d21 + d22 + 2d1d2 cos (30◦) (4.11)

Using the law of sines:

α1 = sin

(

d2 sin (30
◦)

d3

)−1

(4.12)
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In Fig. 4.7, it is easy to see that αp = 180◦ − α1. That means that the perpen-

dicular and minimum distance to the wall can be calculated in every situation with

measurements of two sonar sensors and from the equation:

dp = d2 sin (π − α1) (4.13)

In a real sensor scenario, one would expect a 5% Gaussian error on the measurements

of d1 and d2. Technically one would then compute the combined influence on the

actual measurements:

dp =
dp1 + dp2

2
(4.14)

However for the simulations it was convenient without any loss of generality to simply

set the measured distance to the wall according to:

d(t) = dexact(t) + 0.05N
(

µ, σ2
)

(4.15)

The mean µ = 0, σ2 = (0.5)2 and N (µ, σ2) denotes a Gaussian distribution.

4.3 The combined scenario

This scenario is a combination of the wall following scenario and the cornering sce-

nario. Again a four parition MPC control strategy with a prediction horizon of 0.4 s

is used to solve the control problem. For the two wall following scenarios the following

PI constants are used: The distance to the wall penalty is cd = 1.5, the penalty on

the final point of the wall following task is cxf = 10. An additional velocity penalty

of cv = 10 secures the safety of the driving maneuver with a velocity profile. In the

cornering scenario the distance to the wall penalty has the same value cd = 1.5. The

error in angle θ penalty is cθ = 10. The velocity has to be controlled due to the

time dependent angle references. The user should receive the minimum amount of

centripetal force and though the velocity should be constant with a used weight co-

efficient of cv = 10. A energy cost coefficient of ce = 0.01 support again regenerative

braking.
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Table 4.1
Weight coefficients in the wall following and corning part of the combined
scenario

cxf cd cv ce cθ

wall following 10 1.5 10 0.01 0

cornering 0 1.5 10 0.01 10

From now on plots of combined scenarios with several PI parts will be divided in the

plot with dashed black lines. The first part is the first wall following part. Between

the dashed lines the cornering part is executed. After the second and last black

dashed line the second wall following part is simulated.
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Fig. 4.8. WMR distance to the wall of the combined scenario

The distance to the wall of the WMR in Fig. 4.8 directly comes close to the references

dref . In the cornering part a accumulated error can be seen, which is corrected in

the beginning of the second wall following simulation. The system used is based on a

partition length of ts = 0.1 s. That means it is possible to change the PI every 0.1 s.

In chapter 4 a time based angle profile is used, which assumes the starting point of

the cornering part at (10, 10). Because of the way the model is designed the cornering

start at a point slightly over the ideal value, because it has to recognize first, that

the cornering part is reached.

Additional the weight factor of the angle profile is about the factor 7 higher than

the distance to the corner point weight factor, which would correct the accumulation.
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This is why we have a small constant accumulated error of the distance to the corner

point in the cornering part. This effect occurs in every simulation with an angle

profile in the PI.

In chapter 6 the scenario is simulated without the time based angle profile with

significant good results, which shows that both approaches are possible. In chapter 4

and chapter 5 the angle profile provides safety to the cornering part of the scenario.
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Fig. 4.9. WMR velocity of the combined scenario

The velocity of the WMR sticks very closely to the reference velocity. Small deviations

can be seen in the beginning of each wall following mode, because there the penalty

of the final goal has priority. Overall the performance is very close to the reference.
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Fig. 4.10. WMR trajectory of the combined scenario

For example, the trajectory is perfectly on the reference trajectory as seen in Fig. 4.10.

The offset in the beginning of the scenario is compensated very fast.
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Fig. 4.11. WMR mode values of the combined scenario
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In Fig. 4.11 the mode values of the scenario show a 100% use of mode 1 in acceleration

and constant driving parts. This mode represents that both wheels propel. In the

deceleration parts it is possible to see a high value in mode 4, which represents both

wheels are braking regenerative. As discussed in the model equations, regenerative

braking torque is a value based on the rotational velocity of the related wheel. That

means a wanted deceleration can only be achieved as a compromise between the

propelling and braking mode. This is why the value and also the importance of the

regenerative braking mode 4 is changing in the deceleration process in order to achieve

the same deceleration rate.
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Fig. 4.12. WMR control inputs of the combined scenario
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The input torques reflect the behavior of the WMR. Overall no torques higher than

40 Nm and lower than -15 Nm are used. In the scenario parts the changes in input

torque are not high, that means that the acceleration and deceleration forces on the

user are minimal, which provides a smooth ride for the powered wheelchair user.

4.4 The combined scenario with Gaussian noise on distance to the wall

measurements

4.4.1 Development of the used PI

In the combined scenario with Gaussian noise on the distance to the wall measure-

ments all past parts of the combined scenario PI are used again with the same cost

coefficients. Only the distance to the wall part changes with a additional included

Gaussian noise vector N (t) with zero mean and a standard deviation of 0.5. The 5%

Gaussian error is caused by the MAXBOTIX sonar sensors used for measuring the

distance to the wall in a real scenario. [12]
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Fig. 4.13. Sample of used Gaussian noise N (t) over 30 s

Because of the Gaussian noise being the result of measurement problems, the noise

affects the system at every new measurement, which is the partition size of the control

ts = 0.1, so the plot has a underlying frequency of 10 Hz. The next formula shows

the implementation of the presented noise in the PI.

cd

(

dref − [d(t) + cnN (t)]

dref

)2

(4.16)

The constant cn = 0.05 produces an approximate 5% error on the distance to the

wall measurement. This error is included to mimic the measurements of sonar sensors

in real implementations. For every following simulation the same noise vector was

used in the optimization process to make drawing comparisons possible and allow

transparency of the whole optimization process. The simulations with noise should
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additionally show the stability of the MPC control solution. The used full PI has the

following form:

Jgaussian =

T
∫

0

[

cxf
(xF (T )− x(t))T (xF (T )− x(t))

(xF (T )− x(t0))T (xF (T )− x(t0))

+cd

(

dref − [d(t) + cnN (t)]

dref

)2

+ cθ (θref (t)− θ(t))2

cv

(

vref − vx(t)

vref

)2

+ ce
[

v1(t)
(

u11(t)
2 + u21(t)

2
)

+ v2(t)
(

u22(t)
2
)

+ v3(t)
(

u13(t)
2
)]

]

dt

(4.17)

Again depending on the different scenario, the PI is changed by setting the not appro-

priate coefficients to zero. The weight coefficients are chosen as the best performing

combination for the driving tasks and are given in Table 4.2.

Table 4.2
Weight coefficients in the wall following and corning part of the combined
Gaussian scenario

cxf cd cv ce cθ cn

wall following 10 1.5 10 0.01 0 0.05

cornering 0 1.5 10 0.01 10 0.05

The simulation results give an impression of the robustness of MPC to uncertainty

caused by Gaussian noise.

4.4.2 simulation of the presented scenario

Following a simulation is needed to show the stability and reaction of the model due

to noise and therefore wrong assumptions in the optimization process.
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Fig. 4.14. WMR distance to the wall of the combined scenario with Gaus-
sian noise

The behavior of the distance to the wall function of the WMR in Fig. 4.14 is similar

to the behavior in Fig. 4.8. The only difference is the Gaussian noise on with zero

mean, which forces the WMR to smaller correction on the way to the final goal. In

the cornering part again an accumulated error can be seen, which is similar to Fig. 4.8

corrected in the beginning of the second wall following simulation. In the second wall

following part of the simulation in Fig. 4.14 the noise with zero mean is influencing

the trajectory and the actual distance to the wall.
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Fig. 4.15. WMR velocity of the combined scenario with 5% Gaussian
noise

It is possible to recognize small oscillations in the velocity due to the noise, but still

everything is close to the reference. These oscillations are so small and have nearly

no impact on the velocity tracking. Nevertheless this shows an enormous stability

of the model with noise on the distance to the wall measurements. The black doted

lines as boundaries of the cornering scenario tell us that the transition of the PI is

still working and the normal cornering speed is reached.
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Fig. 4.16. WMR trajectory of the combined scenario with 5% Gaussian
noise

In the trajectory plot small deviations from the reference line can be seen. It is

easy to recognize that the noise has zero mean, because the WMR spends an equal

amount of time under and above the optimal line. Because of the small noise factor

of cn = 0.05 it is not a problem for the control to reasonably optimize the trajectory

to the reference path. The error is causing oscillations in the trajectory, but the

overall performance of the MPC solution is still extraordinary good. This supports

the specific robustness of MPC in this driving scenario.
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Fig. 4.17. WMR mode values of the combined scenario with 5% Gaussian
noise
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In the mode diagram it is possible to see the impact of the noise clearly. Mode 1

has for most of the parts of the wall following scenario about v1 = 0.95, which fits to

the noise factor of cn = 0.05, which is given on the system. In comparison with the

mode diagram of the combined scenario without noise the mode value in Fig. 4.17 is

not mostly on a mode value of 1. The use of regenerative braking in the deceleration

parts of the scenario is similar to the results without noise used. This supports

the statement that although noise is imposed on the system the energy penalty still

fulfills the goal to regain energy with regenerative braking in deceleration parts of the

scenario.
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Fig. 4.18. WMR control inputs of the combined scenario with 5% Gaus-
sian noise
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In Fig. 4.18 the input torques in comparison with the noiseless simulation of Fig. 4.11

are higher. That means the scenario is more difficult to control in terms of input

torque than the simulation without noise and corrections in direction and velocity

have to be taken. This result fits to the other plots, because even small turning

movements every ts = 0.1 s can only be covered with raised input torques.
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5. THE EFFECT OF PARKINSON’S NOISE ON THE

COMBINED SCENARIO WITH AND WITHOUT

COMPENSATION STRATEGIES USED

In this chapter Parkinsonian noise is imposed on the driving scenario. A filter strategy

is derived and used to lower the impact of the noise on the system. Both results are

compared and the positive impact of the strategies is evaluated.

5.1 Parkinsonian noise on the combined scenario

In this section the used MPC control strategy will be described and important facts

about the simulation will be stated. The PI will be developed and presented.

5.1.1 Overview control system and input conversion

Important for the system is the 100 Hz input for velocity and distance to the wall

references.

v (t)ref

d (t)ref

joystick
algebraic
mapping

Fig. 5.1. Origin and interpretation of joystick data

A joystick conveys information about position and acceleration. In Fig. 5.1 we see

that out of the joystick we have to use these datasets. This is done with an algebraic

1 to 1 mapping on the velocity and distance to the wall references. After the mapping
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is defined, the Parkinsonian noise enters the same way in a 1 to 1 mapping on the

used references.

v (t)ref

d (t)ref

algebraic
mapping

joystick
filter

no
filter

controllerwheel torques
u1

u2

Fig. 5.2. Block diagram of system

Fig. 5.2 shows the whole system. The references influenced by Parkinsonian noise

then can be used for further simulations in two possible ways. The first way is to take

the negative bias out of the signal and filter the system afterwards to remove a main

frequency part of the noise. The other way is to no signal manipulations. After this

the 100 Hz references need to fit to the 10 Hz MPC control problem. We are using a

special averaging algorithm to calculate the 10 Hz data. For each point kts in time,

where kǫN0, this value is the sum out of the actual value and the 9 past values of the

100 Hz signals.

vref (k) = 0.7vref (k) +
1

30

(

9
∑

j=1

vref (k − j))

)

(5.1)
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dref (k) = 0.7dref (k) +
1

30

(

9
∑

j=1

dref (k − j))

)

(5.2)

As a result we receive the velocity and distance to the wall reference, which will

be given on the controller in Fig. 5.2. The unfiltered and filtered scenario will be

simulated in the next sections. First of all it is important to describe the used

controller in Fig. 5.2, which is a MPC controller.

5.1.2 MPC controller

For the following simulations the same MPC control strategy as in chapter 4 will be

used. That means a performance based control strategy with a 4 partition window

will be used. The size of each window is ts = 0.1 s. This means the size of the

prediction horizon is 0.4 s. As seen in Fig. 5.2 out of the MPC optimization process

the torques u1 and u2 for the first calculated partition will be applied to the high

fidelity continuous simulation of the WMR.

u ,u1 2

vref

dref

Performance
Based MPC
Controller

filtered

unfiltered

filtered

unfiltered
wheelchair
adapted
torques

control objective: min J  =  min
u ,u1 2 u ,u1 2u ,u1 2

u1u1

u2u

Fig. 5.3. Block diagram of the MPC controller

Fig. 5.3 indicates that the filtered or the unfiltered 10 Hz references will be used in

the performance based MPC controller as a basis for the optimization process. The

goal of this process is the minimization of a cost J , which is defined by a PI with



92

penalty values if the robot is not moving the wanted way. In the MATLAB simulation

the tolerances for the MPC controller in the optimization toolbox are all set to 10−7.

That means that TolCon = 10−7, TolX = 10−7 and TolFun = 10−7. The exact PI

will be discussed in the next subsection.

5.1.3 Heuristic Development of the Performance Index

The PI of the Parkinsonian noise scenario differs from the used PI in the combined

scenario with Gaussian noise in chapter 4 in the velocity and distance parts. Velocity

and distance references now have an underlying Parkinsonian noise influence, which is

changing the reference trajectory, which the control attempts to track. The Gaussian

noise due to the noisy distance to the wall measurements of the two sonar sensors is

still included as done in chapter 4. The Gaussian noise coefficient is still cn = 0.05.

The used Parkinsonian noise in this chapter is mimicked real Parkinsonian power

spectrum data. The postural and not the rest tremor is used, because a handling of a

joystick needs movement in the wrist and arm. [13] For our purposes we considered the

side lobes at ±1 Hz with 40% and ±2 Hz with 20% of the center frequency maximum

power to be the most significant characteristics. Although in the paper a frequency

of 5 Hz was considered the Parkinsonian frequency is depending on multiple factors.

In this research a center frequency of 3.8 Hz is considered, because it is a common

Parkinsonian wrist tremor and is close to the frequencies of other research that de-

termined a steady state frequency behavior of the Parkinsonian wrist tremor. [4] To

develop the Parkinsonian noise function, an amplitude modulated cosine wave with

magnitudes as peak values is given:

(K0 +K1 cos (2πt Hz) +K2 cos (2πt2 Hz)) cos (2πt3.8 Hz) (5.3)
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The effective value of a cosine wave K cos (ωt) is Keff = K√
2
, but this is not relevant

because the
√
2 terms are cancelling out of the formula. With the trig identity used

it is possible to present the function in another form:

K0 cos (2πt3.8 Hz) + 0.5K1 cos (2πt2.8 Hz) + 0.5K1 cos (2πt4.8 Hz)+

0.5K2 cos (2πt1.8 Hz) + 0.5K2 cos (2πt5.8 Hz)
(5.4)

Cosines of different frequencies are orthogonal functions. Therefore the power in each

cosine of a different frequency is proportional to the square of the magnitude. Thus

to achieve a 40% and 20% relationship in the side lobe powers:

0.4K2
0 = 0.25K2

1 ⇒ K1 =
√
1.6K0 ≈ 1.265K0

0.2K2
0 = 0.25K2

2 ⇒ K2 =
√
0.8K0 ≈ 0.9844K0

(5.5)

Another characteristics of Parkinsonian noise is a negative bias, which is responsible

for a 2 to 1 ratio of the negative amplitude in comparison with the positive amplitude

of the total signal. [13] With a K0 = 1 the bias adjustment of the function has a value

of 1 too. The total formula then has the following form

np(t) = −1 +
(

1 +
√
1.6 cos (2πt Hz) +

√
0.8 cos (2πt2 Hz)

)

cos (2πt3.8 Hz) (5.6)

This amplitude modulation with a center Parkinsonian frequency of f0 = 3.8 Hz de-

rived from real frequency power spectrum data of persons suffering under Parkinson’s

disease is used for the simulations.
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Fig. 5.4. Sample of used Parkinsonian noise np(t) over 30 s.

For the implementation a Parkinsonian error of 10% and 20% caused by the disease

was considered as reasonable. For the 10% error a cp = 1
30

and for the 20% error a

cp =
2
30

is needed. The velocity term is one of the affected parts of the PI:

cv

(

[vref (t) + cpnp(t)]− vx(t)

vref,max

)2

(5.7)

The last affected term is the reference distance to the wall, which part of the PI has

already the Gaussian noise included:

cd

(

[dref + cpnp(t)]− [d(t) + cnN (t)]

dref

)2

(5.8)
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All together a cost function JPark follows:

Jp =

T
∫

0

[

cxf
(xF (T )− x(t))T (xF (T )− x(t))

(xF (T )− x(t0))T (xF (T )− x(t0))

+cd

(

[dref + cpnp(t)]− [d(t) + cnN (t)]

dref

)2

+ cθ (θref (t)− θ(t))2

+ cv

(

[vref (t) + cpnp(t)]− vx(t)

vref,max

)2

+ ce
[

v1(t)
(

u11(t)
2 + u21(t)

2
)

+ v2(t)
(

u22(t)
2
)

+ v3(t)
(

u13(t)
2
)]]

dt

(5.9)

The actual weight coefficients used are the best coefficients after a quantitative and

qualitative search with the goal of achieving the best performance for the driving

scenarios.

Table 5.1
Overview of the cost coefficients used in the Parkinsonian noise on distance
and velocity references scenario

cxf cd cv ce cθ cn cp

wall following 10 1.5 10 0.01 0 0.05 1
30

or 2
30

cornering 0 1.5 10 0.01 10 0.05 1
30

or 2
30

5.2 Notch filtering of the Parkinsonian noise on the combined scenario

5.2.1 Introduction of noise filtering

It is known that the maximum intended joystick frequency oscillations are between

4 Hz and 10 Hz. [14] Parkinson’s disease center frequency tremor in the wrist is

between 3.5 Hz and 7.5 Hz. [15] That means that it is not possible to use a high

pass filter, because then other important wanted actions are filtered out too. Other

researchers just lowered the sensitivity of the device, but this is a not comparable

inefficient and performance losing strategy. [16] It is necessary to filter out the main
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lobe of the Parkinsonian noise effectively with a narrow frequency range. This way

the WMR drives extraordinary good not only under safety aspects but with high real

time performance.

5.2.2 Derivation of the notch filter

To build a notch filter it is possible to take a Butterworth low-pass filter of first order

with the transfer function in the Laplace coordinate system:

HLP (s) =
1

s+ 1
(5.10)

This Butterworth filter has a ideal response for frequencies between 0Hz and 1 Hz

and at 1 Hz it is 3dB down and decreases with 20dB/decade. Using a low-pass filter

to band-reject transformation:

s ∼ Bs

s2 + w2
0

(5.11)

We obtain the transfer function of a band-reject filter. In this thesis a notch frequency

of f0 =
w0

2π
= 3.8 Hz and bandwidth of B = 1 rad

s
is used for the filter:

HBR(s) =
s2 + w2

0

s2 + Bs+ w2
0

(5.12)

As a next step a bilinear transformation is needed to transform from the Laplace

world to the Z world, because we’re considering a discrete system implementation.

The bilinear transformation follows using the following substitution:

s =
2

Ts

z − 1

z + 1
(5.13)

Ts = 1
fs

is the sampling interval. We are assuming that fs is sufficiently high to

avoid frequency warping. The transfer function of a second order notch filter in the

Z-domain is:

HBR(z) =
Output(z)

Input(z)
=

y(z)

u(z)
=

α0 + α1z
−1 + α2z

−2

1 + β1z−1 + β2z−2
(5.14)
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Fig. 5.5. Block diagram of the transfer function

It is possible to implement this structure to the known canonical form shown in

Fig. 5.6.

x(n) y(n)
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α
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α
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-β
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z
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z
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Fig. 5.6. Canonical form of the block diagram of the transfer function
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For the used filter the transfer function is:

HBR(z) =

(

w2
0 +

4
T 2
s

)

+ z−1
(

2w2
0 − 8

T 2
s

)

+ z−2
(

w2
0 +

4
T 2
s

)

(

w2
0 + B 2

Ts
+ 4

T 2
s

)

+ z−1
(

2w2
0 − 8

T 2
s

)

+ z−2
(

w2
0 −B 2

Ts
+ 4

T 2
s

) (5.15)

To get the exact form as described in equation (5.14) it is necessary to perform a last

manipulation.

HBR(z) =

(

w2

0
+ 4

T2
s

w2

0
+B 2

Ts
+ 4

T2
s

)

+ z−1

(

2w2

0
− 8

T2
s

w2

0
+B 2

Ts
+ 4

T2
s

)

+ z−2

(

w2

0
+ 4

T2
s

w2

0
+B 2

Ts
+ 4

T2
s

)

1 + z−1

(

2w2

0
− 8

T2
s

w2

0
+B 2

Ts
+ 4

T2
s

)

+ z−2

(

w2

0
−B 2

Ts
+ 4

T2
s

w2

0
+B 2

Ts
+ 4

T2
s

) (5.16)

The named αi, iǫ {0, 1, 2} and βj, jǫ {1, 2} of equation (5.14) will be used as a sub-

stitution of the calculated terms of equation (5.16). To connect equation (5.16) to a

different equation consider that:

(

1 + β1z
−1 + β2z

−2
)

y(z) =
(

α0 + α1z
−1 + α2z

−2
)

u(z) (5.17)

The inverse Z-transformation is used to obtain the discrete output equation y(k) of

the filter:

y(k) + β1y(k − 1) + β2y(k − 2) = α0u(k) + α1u(k − 1) + α2u(k − 2) (5.18)

y(k) = α0u(k) + α1u(k − 1) + α2u(k − 2)− β1y(k − 1)− β2y(k − 2) (5.19)

This equation is simply a manipulation of the input-output data stream and can be

implemented in the discrete model.
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5.3 Presentation of used references and uncertainty influences for simu-

lations

5.3.1 The 10 percent Parkinsonian noise scenarios
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Fig. 5.7. WMR velocity reference of the combined scenario with 10%
Parkinsonian and 5% Gaussian noise
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The velocity reference in Fig. 5.7(a) shows at 100 Hz the influence of the 10% Parkin-

sonian and 5% Gaussian noise on the ideal velocity reference. The negative bias and

the high peak to peak noise of 0.3m
s
is easy to recognize. Both plots are stopping at a

specific nonzero point in the deceleration process, because the connected simulation

reached the used specific stopping criterion. The velocity reference in Fig. 5.7(b) is

smoother and a bias to the ideal reference is not possible to recognize. The peak

to peak amplitude of the noise is only 50% of the unfiltered reference. The filtered

forward velocity reference is one of the major differences why the trajectory looks

significantly better than in the normal Parkinsonian scenarios without filter methods

used.
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Fig. 5.8. WMR distance to the wall reference of the combined scenario
with 10% Parkinsonian and 5% Gaussian noise
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In Fig 5.8 the filtered and biased distance to the wall reference is shown in comparison

to the unfiltered distance reference. The peak to peak noise amplitude in Fig. 5.8(b)

is only 40% of the unfiltered distance to the wall reference. This shows that the used

notch filtering methods erased a main part of the Parkinsonian noise. The mean of

the filtered signal is again 1 m, which improves the quality and safety of the driving

scenario immense.
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5.3.2 The 20 percent Parkinsonian noise scenarios
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Fig. 5.9. WMR velocity reference of the combined scenario with 20%
Parkinsonian and 5% Gaussian noise
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Fig. 5.9 presents the comparison between the unfiltered and filtered velocity references

in the 20% Parkinsonian noise scenarios. Again the velocity reference in Fig. 5.9(b) is

much smoother and the bias of the Parkinsonian scenario without notch filter is not

possible to recognize. The peak to peak noise caused by the Parkinsonian tremor are

shrinking through filtering to 50% of the old value. As mentioned already in the 10%

scenario, the filtered velocity reference in Fig. 5.9(b) is one of the major points why

the filtered simulation is significantly better than in the unfiltered scenarios. Already

at this state without simulations, the filter strategies show there high potential in

erasing Parkinsonian noise.
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Fig. 5.10. WMR distance to the wall reference of the combined scenario
with 20% Parkinsonian and 5% Gaussian noise
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Fig 5.10(b) shows the filtered and biased distance to the wall reference after a 20%

influence of Parkinsonian noise. The overall peak to peak distance shrinked to about

0.2 m for the worst cases. The higher frequency content between the mentioned worst

case amplitudes has a overall peak to peak distance of 0.1 m. This a significant better

result than the 20% Parkinsonian noise scenario without the used control elements

and proves again the success of the used filtering methods.

5.3.3 Uncertainty through sensor measurements

For all simulations similar to chapter 4, Gaussian noise enters the calculation of the

distance to the wall. This is not a reference but a uncertainty for the whole MPC

optimization process with impact on the behavior of the WMR. In Fig. 4.13 the noise

N (t) was introduced. The scaled 5% Gaussian noise of cnN (t), where cn = 0.05,

enters exactly into this optimization process. The Gaussian and Parkinsonian noise

are causing a high uncertainty and the simulation result will show the performance

and robustness of this specific MPC scenario.
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5.4 Simulation results of the scenarios

5.4.1 The 10 percent Parkinsonian noise scenarios
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Fig. 5.11. WMR unfiltered velocity reference in connection with the re-
lated WMR forward velocity of the combined scenario with 10% Parkin-
sonian and 5% Gaussian noise
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In Fig. 5.11(b) the simulated forward velocity vx of the WMR is shown. The unfiltered

10% Parkinsonian scenario is presented. In comparison with the forward velocity in

Fig. 5.11(b) the peak to peak noise is about 100% bigger in the reference velocity plot

Fig. 5.11(a). This is because of the dynamics of the system and the safety restrictions

on the acceleration and velocity as presented in chapter 3 with equation (3.1) and

equation (3.2). It is not possible for the system to follow these extreme changes in

the velocity reference, although the weight coefficient is relatively high. Additional a

energy use penalty is on torque used to propel the wheels. This supports the goal to

not to fulfill all of the occurring velocity reference changes.
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Fig. 5.12. WMR filtered velocity reference in connection with the related
WMR forward velocity of the combined scenario with 10% Parkinsonian
and 5% Gaussian noise
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The filtered 10% Parkinsonian scenario is shown in Fig. 5.12. Similar to the unfiltered

scenario the peak to peak noise amplitude shrinks massively in Fig. 5.12(b) because

of the included safety bounds and energy use penalties. This happens, although the

peak to peak noise amplitude of the reference in Fig. 5.12(a) was already reduced due

to the filtering process. Overall the filtering strategies worked and no bias is possible

to recognize in the reference and actual forward velocity vx.
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Fig. 5.13. WMR unfiltered distance reference in connection with the
related WMR distance to the wall of the combined scenario with 10%
Parkinsonian and 5% Gaussian noise
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In Fig. 5.13(a) the already known 100 Hz distance reference of the unfiltered 10%

scenario is displayed. In Fig. 5.13(b) this reference distance is shown in 10 Hz, be-

cause this is the way the reference enters in the 10 Hz simulation and impacts the

optimization process. Fig. 5.13(b) indicates the strong desire of the MPC controller

to converge to the distance reference. It also shows the bias of the reference impacting

the trajectory of the WMR, because the robot is closer than 1 m to the wall nearly

at every point of the simulation.
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Fig. 5.14. WMR filtered distance reference in connection with the related
WMR distance to the wall of the combined scenario with 10% Parkinso-
nian and 5% Gaussian noise
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In direct contrast the filtered scenario in presented in Fig. 5.14. As expected the

simulated distance to the wall in Fig. 5.14(b) is summed up directly on 1 m. This

confirms the argument that mainly only a 5% Gaussian noise vector is influencing the

WMR. Additional this proves that a main part of the Parkinsonian noise is notched

out successfully.
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Fig. 5.15. WMR trajectory of the combined scenario with 10% Parkinso-
nian and 5% Gaussian noise
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In comparison with Fig. 5.15(a) the result of Fig. 5.15(b) shows a smoother trajectory

and an good driving behavior improvement. It is not possible to recognize any bigger

oscillations in the filtered scenario. As seen in Fig. 5.15(b) the WMR is more on the

optimal line and deviations are equally distributed over and under the optimal line.

Fig. 5.15(a) is closer to the wall due to a bias caused by the Parkinsonian tremor.

Both trajectories are influenced by 5% Gaussian noise on the distance to the wall

measurement. Even though this fact has a negative effect the driving performance

in both scenarios is extraordinary good. These results support the stability of the

chosen model and the robustness of the specific MPC controller.
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5.4.2 The 20 percent Parkinsonian noise scenarios
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Fig. 5.16. WMR unfiltered velocity reference in connection with the re-
lated WMR forward velocity of the combined scenario with 20% Parkin-
sonian and 5% Gaussian noise
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Similar to the results in the 10% scenario in Fig. 5.17 the reference velocity and the

simulated forward velocity vx of the WMR are shown. In direct contrast the filter has

to deal with a much higher peak to peak noise amplitude and the mean of reference

velocities in the wall following and cornering parts of the scenario are much lower.

Again the peak to peak noise amplitude is much lower in Fig. 5.16(b), because of the

already introduced safety bounds of the system and energy penalties of the controller.

For example in Fig. 5.16(a), the velocity reference, it is possible that the reference is

changing in ts = 0.1 s about 0.3 m
s
. Because of the acceleration bounds in equation

(3.2) of the system, the WMR can only change 0.09 m
s
in 0.1 s. That is less than 1

3

and similar relations are possible to recognize in Fig. 5.17.
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Fig. 5.17. WMR filtered velocity reference in connection with the related
WMR forward velocity of the combined scenario with 20% Parkinsonian
and 5% Gaussian noise
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In the filtered scenario in Fig. 5.17 the safety bounds have a similar effect on the

forward velocity vx. Here maximum changes of 0.2 m
s
in ts = 0.1 s are possible.

The peak to peak noise amplitude of the forward velocity in Fig. 5.17(b) is only

1
2
of the reference velocity. In comparison to the scenario without filters used the

simulated forward velocity vx in Fig. 5.17(b) is a big improvement for a smooth

driving performance.
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Fig. 5.18. WMR unfiltered distance reference in connection with the
related WMR distance to the wall of the combined scenario with 20%
Parkinsonian and 5% Gaussian noise
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Similar to the 10% case, in Fig. 5.18(a) the already known 100 Hz distance reference

of the unfiltered 20% scenario is displayed. In Fig. 5.18(b) this reference distance is

shown in 10 Hz, because this is the way the reference enters in the 10 Hz simulation

and impacts the optimization process. Fig. 5.13(b) indicates again the strong desire

of the MPC controller to converge to the distance reference. In comparison with the

10% scenario, the oscillations of the simulated distance to the wall in Fig. 5.18(b) are

immense and caused by big torques changing the forward direction of the WMR on

the way to the goal permanent. The peak to peak oscillations are about 0.1 m. This

result shows a bad driving performance. This also indicates that diseased wheelchair

users with a similar tremor strength would have problems performing driving tasks

on an electric wheelchair without filter strategies used.
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Fig. 5.19. WMR filtered distance reference in connection with the related
WMR distance to the wall of the combined scenario with 20% Parkinso-
nian and 5% Gaussian noise
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In the filtered scenario in Fig. 5.19 the most important point in comparison with

the unfiltered scenario are less oscillations in the simulated distance to the wall.

Fig. 5.19(b) indicates that for some parts of the scenario no oscillations are possible

to see, other parts have oscillations with damped amplitudes. In both diagrams the

bias caused by the disease is perfectly erased.
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Fig. 5.20. WMR trajectory of the combined scenario with 20% Parkinso-
nian and 5% Gaussian noise
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In comparison with Fig. 5.20(a) the result of Fig. 5.20(b) shows a very smooth tra-

jectory and an immense improvement. It is not possible to recognize any bigger

oscillations. A bias in the trajectory of the WMR is not recognizable. This result

supports the utility of our implemented control strategies. It additionally underlines

the improved driving performance of the WMR with the filter strategies used and

guarantees a safer and smoother driving experience of a diseased user of the electric

wheelchair. Although so many uncertainty is imposed on the system in Fig. 5.20(a),

this result underlines additionally the robustness of the used MPC control solution.

5.5 Summary of results

Cleary the notch and bias filter achieved the desired objective with significant im-

provements. In the next chapter we simulate real Parkinsonian tremor on a joystick

and apply our approved control and filter strategies.
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6. JOYSTICK SIMULATIONS WITH PARKINSONIAN

NOISE

6.1 A WMR driving scenario with real joystick data

6.1.1 Introduction of a WMR driving scenario with real joystick data

A real time simulation of the WMR dynamics with a joystick as an input device was

designed. The joystick position is interpreted as a torque command, which fulfills

the velocity references, rotational velocity references and acceleration references of

100 Hz given by the user.
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Fig. 6.1. WMR trajectory of the joystick steered scenario of a test user
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In Fig. 6.1 a user trying to drive on the red optimal line is shown. The user had no

experience with the usage of electric wheelchairs, which explains the small deviation

of the optimal line. Because he had visual feedback on a screen, he could compensate

his input mistakes similar to a real scenario on a powered wheelchair.
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Fig. 6.2. WMR velocity of the joystick steered scenario of a test user

Fig. 6.2 is the forward velocity commanded by the test user. It is possible to see that

the shape of his velocity profile is close to our assumptions of velocity references in

the past chapters. Constant acceleration and deceleration are used and he tries to

maintain a constant driving velocity after he reached a acceptable moving velocity.

In the wall following scenarios a similar reference velocity of 1m
s
is used in Fig. 6.2.

In the cornering scenario a smaller and nearly constant velocity is used.
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For the following simulations with real joystick data references for velocity and dis-

tance to the wall have to be defined.

vref (t) = vref,actual(t) + cpnp(t) (6.1)

The velocity vref,actual(t) is the shown actual forward velocity vx of the WMR as seen

in Fig. 6.2. The constant cp =
2
30

to mimic a 20% Parkinsonian error with the noise

function np(t) presented in equation (5.6). For the reference distance to the wall:

dref (t) = dexact +∆dref,actual(t) + cpnp(t) = dref,actual(t) + cpnp(t) (6.2)

dexact = 1 m and ∆dref,actual(t) is the deviation from the optimal line in meters based

on the underlying real data. Then dref,actual(t) = dexact +∆dref,actual(t) is the actual

calculated distance to the wall of the real joystick data. Again the constant cp = 2
30

for a 20% Parkinsonian error with the scaled Parkinsonian noise function np(t).

The shown references are the basis for simulations with and without compensation

control strategies used. We expect a similar trajectory with the filter and bias shift

used. Problematic results for the simulation without these elements used are proba-

ble. Then the 100 Hz signals have to be averaged to provide data structure for the

following 10 Hz simulation. Therefore the same averaging is used, which provides an

additional filter of the raw data.

vref (k) = 0.7vref (k) +
1

30

(

9
∑

j=1

vref (k − j))

)

(6.3)

dref (k) = 0.7dref (k) +
1

30

(

9
∑

j=1

dref (k − j))

)

(6.4)

The PI used in the following simulations is similar to the PI used in chapter 5. But the

angle profile in the cornering part of the scenario is not longer used. This achieves

even higher performance, because the optimization is only orientating itself at the

velocity and distance to the wall references given. This proves that the cornering,
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which is even more complex than the wall following part, can be simulated with a

MPC prediction horizon of 0.4 s.

Table 6.1
Weight coefficients in the real joystick data scenarios

cxf cd cv ce cθ cn cp

wall following 10 1.5 10 0.01 0 0.05 2
30

cornering 0 1.5 10 0.01 0 0.05 2
30
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6.1.2 Simulation of the WMR driving scenario with 20 percent Parkin-

sonian noise
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Fig. 6.3. WMR velocity reference of the unfiltered real joystick data sce-
nario with 20% Parkinsonian noise

In Fig. 6.3 the velocity reference vref calculated at 100 Hz shows the influence of the

20% Parkinsonian noise on the actual velocity reference vref,actual, performed by the

wheelchair user via joystick. Similar to chapter 5 the bias influence and the peak to

peak noise of about 0.3m
s
is easy to recognize.
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Fig. 6.4. WMR distance to the wall reference of the unfiltered real joystick
data scenario with 20% Parkinsonian noise

In Fig. 6.4 the same influence in bias and peak to peak noise on the real data dref,actual

is present.
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Fig. 6.5. WMR trajectory of the unfiltered real joystick data scenario with
20% Parkinsonian noise

Fig. 6.5 shows the influence of Parkinsonian noise on the forward velocity vx. The

negative bias and the slower forward velocity compared to the real data is causing

changes in the time the WMR reaches and finishes the cornering part of the scenario.

The peak to peak noise amplitude of only 0.1m
s
is due to the dynamics of the system

and the safety bounds of the system on acceleration.
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Fig. 6.6. WMR trajectory of the unfiltered real joystick data scenario with
20% Parkinsonian noise
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As seen in Fig. 6.5 the Parkinsonian noise causes the WMR to drive slower. With

the given limited data it is not possible to reach the final goal in Fig. 6.6. The lower

velocity reference designed for the cornering scenario is shifted more into the end of

the first wall following scenario. It is easy to see that both trajectories compared

don’t have a common behavior.
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Fig. 6.7. WMR mode values of the unfiltered real joystick data scenario
with 20% Parkinsonian noise
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As expected due to the noise mode 1 is not as dominant as in other simulations. This

driving scenario would not be useful for an electric wheelchair user, because Fig. 6.7

shows a lot of influence of mode 2,3 and 4. That means propel and brake is used in

an alternate way too much. In past simulations a dominant mode 1 was a sign of

smoothness in trajectory and velocity.
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Fig. 6.8. WMR control inputs of the unfiltered real joystick data scenario
with 20% Parkinsonian noise
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In addition to the mode diagram, Fig. 6.8 reveals that high torques are used to follow

the velocity and distance to the wall references. The bounds on torques with 60 Nm

and -60 Nm are reached in some intervals in Fig. 6.8. That means without filter

strategies used the 20% Parkinsonian noise scenario results show impressively the

necessity of our filter strategies.

6.1.3 Simulation of the WMR driving scenario with 20 percent Parkin-

sonian noise and control strategies used
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Fig. 6.9. WMR velocity reference of the filtered real joystick data scenario
with 20% Parkinsonian noise
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In Fig. 6.9 the effects of the filter strategies used can be seen. The bias is out of

the calculation and the peak to peak noise amplitude is shrinking to 0.2m
s
. These

differences in comparison to Fig. 6.3 have an positive impact on the driving behavior

of the WMR.
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Fig. 6.10. WMR distance to the wall reference of the filtered real joystick
data scenario with 20% Parkinsonian noise

In Fig. 6.10 a similar positive effect on the distance to the wall reference is easily

detectable. To achieve a smaller peak to peak amplitude the used filter erases the

main lobe of the Parkinsonian frequency content.
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Fig. 6.11. WMR forward velocity of the filtered real joystick data scenario
with 20% Parkinsonian noise

As seen in Fig. 6.11 the mean of forward velocity vx of the WMR matches the actual

joystick data. The peak to peak noise is much smaller than in the filtered scenario,

which supports the achievements reached with the used filter strategies in the real

joystick data scenario.
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Fig. 6.12. WMR trajectory of the filtered real joystick data scenario with
20% Parkinsonian noise
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As seen in Fig. 6.12 both trajectories look very similar. That shows that the used

filter strategies are erasing a high percentage of the Parkinsonian noise influencing

the system. In this case the actual joystick data is approximately reproduced and

following a similar driving performance is reached.
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Fig. 6.13. WMR mode values of the filtered real joystick data scenario
with 20% Parkinsonian noise



145

The mode value diagram in Fig. 6.13 underlines the good results in velocity and

trajectory plots. In mode 1, where both wheels propel, higher mode values v1(t) over

all intervals can be seen. This dominance of mode 1 is responsible for better and

smoother results in trajectory and velocity and shows again the success of the taken

filter strategies.
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Fig. 6.14. WMR control inputs of the filtered real joystick data scenario
with 20% Parkinsonian noise
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In Fig. 6.14 the input torques reflect what was already predicted through the good

performance in trajectory and velocity plots. Less input torque is used in the simula-

tion, which means that less corrections in direction and speed were taken. This is a

result based on the filtered and smoother velocity and distance to the wall references.

6.2 Summary of the WMR driving scenario with real joystick data

One of the main results of this chapter is that Parkinsonian noise imposed on real

joystick data has on one hand fatal influence on the driving behavior of a human. On

the other hand it was possible to achieve similar good driving performance with filter

strategies used and to approximately duplicate the reference scenario. These results

are so close to the real joystick data that it is possible to support the use of our filter

strategies for further implementations immensely. This would improve life quality of

wheelchair users with Parkinson’s disease significantly.



148

7. FURTHER RESEARCH AND PERSPECTIVES

In the last chapter of the thesis changes in the model are presented to improve the

driving performance. Additionally the possibility to use the filter strategies for the

disease multiple sclerosis is shown.

7.1 Improvements in the WMR model

In this section changes of the terms in the nonlinear constraints of the optimization

process and a change of the modes are displayed.

7.1.1 Changes in the regenerative braking term

In this thesis the regenerative braking was depending on the rotational velocity of

the wheel only and had a fixed value in the model. The constant Kb = 10 has a fixed

value and the following equation (7.1) for the input torques fulfills the continuity

condition:

u(i) =











−Kbwi, if |wi| ≤ 6

−60sgn(wi) if |wi| > 6

i = 1, 2 (7.1)

This means if you want to regenerative brake in a wanted constant deceleration sce-

nario, the regenerative braking mode on both wheels v4 is only able to deliver a

specific torque based on the rotational velocity of the wheel that provides a specific

deceleration rate. The related value v4 and the impact of regenerative braking on

the system have to change every time depending on the actual fixed special torque

given to provide the same wanted deceleration rate. The solution to this problem

is the integration of a modulator mi(t) for each wheel i,iǫ{1, 2} in the model. The

regenerative braking of the system provides a fixed value of torque that is directly
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applied on the wheels. In the new implementation the power provided by regenera-

tive braking is only partially with a factor of mi(t) transferred on the wheels. The

modulator mi(t)ǫ [0, 1] can then be used in the system with the following equation:

u(i) =











−mi(t)Kbwi, if |wi| ≤ 6

−mi(t)60sgn(wi) if |wi| > 6

i = 1, 2 (7.2)

Before this integration the regenerative braking mode was a one to one mapping

from rotational velocity of a wheel to input torque. With given velocity profiles

in simulations, the optimization process had to use changes in the mode values to

regulate the impact of regenerative braking. With the modulator that can change

over time immediately a new dimension is added to the system. The regenerative

braking mode is not longer a one to one mapping but a line, where the optimal point

can be found in the process of optimization. This is giving a lot of value to the

regenerative braking mode. As one result the mode values of regenerative braking

will be a lot higher in deceleration scenarios. The effects are caused by the flexibility

given to the regenerative braking mode.

7.1.2 Mode changes in the WMR model

In this thesis a convex combination of mode values is used, but for both wheels already

combined.

v1 = wheel 1 propelling and wheel 2 propelling

v2 = wheel 1 propelling and wheel 2 braking

v3 = wheel 1 braking and wheel 2 propelling

v4 = wheel 1 braking and wheel 2 braking

(7.3)
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A different approach is to divide the mode in two main modes, each representing the

behavior of a related wheel. In each wheel mode a convex combination of propelling

and braking is used.

v1 = wheel 1 where:

v1p = wheel 1 propelling

v1b = wheel 1 braking

v1p + v1b = 1

v2 = wheel 2 where:

v2p = wheel 2 propelling

v2b = wheel 2 braking

v2p + v2b = 1

(7.4)

With this new approach it is possible to look at each wheel mode independently, which

gives more freedom to the system and it closer to a real scenario implementation.

7.2 Adaptivity of the control strategies to multiple sclerosis tremor

Multiple sclerosis (MS) tremor is affecting the driving behavior of a powered wheelchair

user in a similar negative way as Parkinsonian tremor does. But there are major dif-

ferences in the frequency range of the tremor. In comparison to Parkinsonian postural

tremor the multiple sclerosis postural tremor in fingers has two main frequency ranges.

The first space is between 2 Hz and 4 Hz. The other important frequency range is

between 6 Hz and 10 Hz. [17] The two tremor frequency ranges superimpose to the

actual MS tremor. Every limb can have different frequencies similar to Parkinsonian

noise. It is important to mention that the actual frequencies with high tremor power

are close to tremors healthy elderly people develop. The actual tremor power in MS

is doubled in comparison. [17] With the use of two notch filters in the control strategy
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the problem can be solved and a huge amount of tremor influenced movements can

be erased.
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