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ABSTRACT 
 
 
 

Doppler, Megan S. M.S., Purdue University, December 2013. Cowbird behavioral 
responses to lights tuned to their visual system: implications for bird-aircraft collisions. 
Major Professor: Esteban Fernández-Juricic. 
 
 
 
Collisions between birds and aircraft cause extensive monetary expenses and are a risk to 

human lives, as well as the lives of endangered and threatened birds. Birds are highly 

visual organisms with visual system substantially different from humans. Previously, 

studies show that the use of white broad-spectrum lights have the potential to enhance 

bird avoidance behavior; however, no study has investigated the effects of light colors 

that would be more salient from the avian perspective. The purpose of this project was to 

assess detection and avoidance responses of brown-headed cowbirds exposed to a radio-

controlled (RC) aircraft with a lighting system with high visual saliency from their visual 

perspective (blue LED lights, 470 nm). In the first experiment (RC aircraft static), we 

found that birds showed alert behaviors more quickly in response to the RC aircraft with 

the lights on compared to that with the lights off. In the second experiment (RC aircraft 

approaching the animals), we found a significant speed effect. Cowbird alert responses 

were delayed at higher speeds when the RC aircraft had the lights off. However, the 

speed effect diminished with the type of light. We found a less pronounced (but still 

significant) speed effect when the lights were pulsing, but when the lights were steady, 

the speed effect was no longer significant. Time to “collision” at avoidance was only 

significantly affected by ambient noise. Our findings suggest that developed to maximize 

avian visual systems can attract their attention to the aircraft and potentially enhance the 

ability of birds to detect the aircraft even at high speeds, particularly when the lights are 

steady. 
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INTRODUCTION 
 
 
 

Collisions between wildlife and moving vehicles (i.e., aircraft, cars, etc.) have been on 

the rise in recent years (Dolbeer 2011). For instance, over 100,000 bird and aircraft 

collisions (bird-strikes) have been documented in the last 22 years (Dolbeer 2011) and 

many more strikes have gone unreported (80-70%,Burger 1985; Blackwell & Wright 

2006). Bird-strikes cause economic losses (i.e., $700 million annually in the US) and 

pose safety risks to passengers (e.g., 23 human deaths and 223 injuries from 1990 to 2011 

in the US) (Dolbeer 2011). In addition, bird-strikes are a conservation concern, especially 

when threatened or vulnerable species are struck, such as the endangered Hawaiian duck, 

Newell’s shearwater (Linnell et al. 1999), and Tasmanian wedge-tailed eagle (Bekessy et 

al. 2009). Airports have implemented multiple management strategies to reduce the 

density of species that can cause damaging strikes (Cleary & Dolbeer 2005). However, 

these strategies are limited because many strikes occur  beyond airport jurisdiction 

(Dolbeer 2011). Recent research has enhanced our understanding of how birds interact 

with aircraft, which could potentially lead to some remediation techniques.   

Birds engage in avoidance behavior when encountering aircraft in their flight path 

in a way similar to that displayed during anti-predator behavior (Frid & Dill 2002; 

Bernhardt et al. 2010; Blackwell et al. 2012). For instance, birds performed evasive 

maneuvers prior to collisions with aircraft (Bernhardt et al. 2010). Therefore, we can use 

the framework of anti-predator theory to help identify the key factors involved in a bird-

aircraft collision course (Blackwell et al. 2013). To avoid collision, birds must detect the 

presence of the aircraft, recognize it as a potential threat, and change their flying path 

quickly (Blackwell et al. 2012).  

Establishing when birds respond to aircraft can help predict potential outcomes of 

bird-aircraft interactions. This is especially important given that aircraft speeds are faster 
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than the typical predator that birds have evolved to detect and avoid. It is then essential to 

determine which conditions would allow birds enough time to veer away from the 

approaching object. Time to “collision” at alert is the time between aircraft detection and 

potential collision, with higher values indicating a quicker alert response (Blackwell, 

Fernández-Juricic, et al. 2009; Blackwell et al. 2012). The time between the bird 

initiating avoidance behavior (e.g., flight, rapid movement away from the approach, etc.) 

and potential collision is the time to “collision” at avoidance (Blackwell et al. 2012). 

Finally, the difference between time to “collision” at alert and at avoidance is the buffer 

time, which is a proxy of how quickly a bird can initiate avoidance behavior after 

detection. Shorter buffer times indicate a greater ability of a bird to respond to aircraft by 

engaging quickly in avoidance maneuvers. From a safety perspective, increasing the 

probability of detecting the aircraft might provide birds with the extra time necessary to 

reduce the chances of collision. This could be accomplished by making aircraft more 

visually conspicuous to birds (Blackwell et al. 2013).  

Aircraft lights may increase visibility to birds (Lustick 1973; Larkin et al. 1975). 

For instance, brown-headed cowbirds and Canada geese respond sooner to approaching 

vehicles with pulsing white lights on than with the lights off (Blackwell & Bernhardt 

2004; Blackwell et al. 2012). However, birds have different visual systems from humans 

and white lights may not necessarily be a salient cue from an avian visual perspective. 

Birds have four single cone photoreceptors (Hart, 2001a), allowing them to have a wider 

color space than humans. They also have oil droplets, caretenoid-filled lipid-based 

organelles in their photoreceptors, which filter light as it enters the retina, enhancing 

color discrimination (Goldsmith et al., 1984; Partridge, 1989; Hart, 2001b). Adding lights 

tuned to the avian visual system may enhance alert and avoidance behaviors.  

 However, bird responses to approaching objects can be influenced by the 

properties of the object (e.g., speed) as well as the visual environment (e.g., ambient light 

conditions). For instance, approach speed affects the perception of a looming stimulus, 

with an increase in speed decreasing the perceived looming (Wann et al. 2011). 

Consequently, birds are more likely to be struck on roadsides with higher speed limits 

(Farmer & Brooks 2012; Legagneux & Ducatez 2013). This suggests a perceptual 
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constraint on the ability of birds to determine time to contact with a fast approaching 

object. Additionally, ambient light conditions can influence the probability of detecting 

an approaching object (Blackwell, Fernández-Juricic, et al. 2009). At higher ambient 

light intensities, brown-headed cowbird alert responses quickened when exposed to an 

approaching truck with steady lights; however, this effect was reversed when the light 

was pulsing (Blackwell, Fernández-Juricic, et al. 2009).  

It is unknown whether lights specifically tuned to avian visual systems are 

effective at capturing birds’ attention, leading to detection and avoidance behaviors. 

Therefore, the goal of this study was to determine the responses of brown-headed 

cowbirds (Molothrus ater) to an approaching aircraft with lights that maximize their color 

visual sensitivity. Cowbirds are an appropriate model species because their visual 

systems have been thoroughly described (Blackwell, DeVault, et al. 2009; Dolan & 

Fernández-Juricic 2010) and they show avoidance behavior when exposed to approaching 

objects (Blackwell et al. 2012). Specifically, we (1) determined the wavelength of light 

that would be more salient to cowbirds using perceptual modeling (Vorobyev & Osorio 

1998), (2) tested the assumption that cowbird behavior would change when presented 

with these lights tuned to their visual system compared to their baseline behavior, and (3) 

measured time to “collision” at alert,  time to “collision” at avoidance and buffer time in 

response to an approaching radio-controlled (RC) aircraft with lights off, and lights on 

steady and pulsing. We also considered other factors that could be affecting the 

perception of the aircraft: speed, ambient light conditions, and ambient noise (i.e., faster 

speeds would increase engine noise). Understanding the responses of birds to lights tuned 

to their visual systems can open up new possibilities to develop in the future systems that 

enhance the detection of approaching vehicles, which can have important management 

implications to minimize wildlife-vehicle collisions. 
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METHODS 
 
 
 

Brown-headed cowbirds were captured in Erie County, Ohio in collaboration with the 

U.S. Department of Agriculture, Animal and Plant Health Inspection Service. We 

transferred individuals to West Lafayette, and color banded them. Cowbirds were housed 

in 0.61 m x 0.61 m x 0.76 m enclosures with a 14:10 h light-dark cycle in animal 

facilities at Purdue University. No more than four individuals were permanently housed 

together at a time. We fed individuals a mix of white millet, game bird chow, and 

sunflower seeds ad libitum. All housing, handling and experimental procedures were 

approved by Purdue Animal Care and Use Committee (protocol # 1201000582). 

 

Visual saliency 

Understanding the visual contrast of an approaching object from a different species’ 

sensory perspective is important, as birds have a much more complex visual system than 

humans. We first determined the visual saliency of colored lights (what color LED light 

stood out the most from the visual background from the perspective of cowbirds). We 

tested the visual saliency of LED lights by calculating chromatic contrast using Vorobyev 

and Osorio’s physiological visual model (Vorobyev & Osorio 1998) in Avicol v5 

(Gomez, 2006). We entered the following parameters into the visual model: 1) irradiance 

(spectral properties of ambient light), 2) reflectance of the visual background, 3) 

reflectance of the object of interest (LED lights), and 4) the sensitivity of the cowbird  

visual system (peak absorbance of visual pigments and oil droplets as well as the relative 

density of the photoreceptors, which were characterized in a previous study, Fernández-

Juricic et al. 2013).  

 Irradiance and background reflectance measurements were taken at Purdue’s 

Forestry and Natural Resources Farm. Irradiance and reflectance were measured using a 
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StellarNet EPP2000 portable spectroradiometer (StellarNet, Tampa, FL, U.S.A) under 

sunny, cloudy, and partly cloudy conditions in different days. Irradiance was measured at 

the height of the cowbird head and at a 90° angle parallel to the ground at the four 

cardinal directions and pointed 90° up towards the sky. We averaged the irradiance 

measurements (Watts m-2) to obtain one measurement for each wavelength, which was 

converted from Watts m-2 to μMolm-2s-1nm-1 for the visual contrast model.   

 With our experimental approach (animals in an enclosure with aircraft 

approaching them, see below), cowbirds would have different background elements. 

Therefore, we video recorded the approach of the RC aircraft in our study area from the 

cowbird’s head height. Reflectance of the background included measurements from the 

sky, tree line, grass and the aircraft. We averaged the reflectance of these different 

components considering their relative proportions. For the sky, reflectance was taken at 

cowbird head height with the probe held at an upward 45° angle pointed towards the sky. 

Reflectance of the tree line was taken at the same height but with the probe held at a 90° 

angle towards the trees. Reflectance for the ground was taken with the reflectance probe 

pointed towards the ground. The aircraft was multi-colored (white, red, yellow and blue), 

and thus reflectance measurements were taken on all the colored sections and averaged 

together taking into account their relative proportions. We then calculated the proportion 

of the aircraft relative to the proportion of the sky when the RC aircraft was at two 

locations (a far distance, ~50-100 m, and a close distance, ~5-15 m) relative to the 

enclosure position. The reflectance measurement of the background included the 

weighted proportion of the aircraft at the two distances, as well as the weighted 

proportion of the sky, tree line and ground.   

Methods used to obtain LED light reflectance measurements were slightly 

modified from Blackwell et al (2012). We were restricted by the viewing angle of 

commercially available lights. Since we were interested in having the birds see the lights 

from the ground (i.e., below the aircraft), we used lights with a wide viewing angle (70°) 

and high light intensity (greater than 3.5 cd per light). We obtained LED light spectra 

from CoolLED, Andover, UK (http://www.coolled.com/Life-Sciences-

Analytical/Technical-Information/LED-Wavelengths/) and used five LED light 

http://www.coolled.com/Life-Sciences-Analytical/Technical-Information/LED-Wavelengths/
http://www.coolled.com/Life-Sciences-Analytical/Technical-Information/LED-Wavelengths/
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wavelengths (470 nm, 525 nm, 585 nm, 595 nm and 635 nm) that are representative of 

different portions of the wavelength range of the spectrum that birds can perceive. We 

could not find a commercially available light in the UV range of the spectrum that would 

have the comparable luminance and visual angle. We fitted individual curves to match 

those from CoolLED and normalized the fitted curves to a reflectance value of 20,000 

photon counts, the peak reflectance of the standard white light (Blackwell et al. 2012). 

We then estimated chromatic contrast of each light at the two distances from the 

enclosure to establish which light would have the highest saliency from the cowbird’s 

visual perspective. Chromatic contrast is calculated in units of “just noticeable 

differences”, or JNDs, where values > 1 suggest that the object can be discriminated from 

the background (Vorobyev & Osorio 1998). The LED light with the highest chromatic 

contrast was used in our behavioral experiments.  

 

Behavioral experiments  

We conducted two behavioral experiments. The first evaluated the ability of cowbirds to 

respond to the lights mounted to the static aircraft at two distances. The second assessed 

different behavioral responses to the RC aircraft moving towards the birds. Experiments 

were conducted in semi-natural conditions in a grass field in Tippecanoe County, Indiana, 

near Purdue University’s Airport (latitude: 40.417, longitude: -86.942). Trials were 

performed between May and November 2012, from 0730 to 1200 hrs under calm weather 

conditions. During the trials, we held the birds in bottomless circular enclosures made of 

hardware cloth (mesh with 0.912 mm wire; 38.1 cm tall and 40 cm radius). The enclosure 

had a wooden base with 3 cm plastic tubing placed on a 1.5 cm grid and spray painted 

green to mimic the grassy substrate. Before each trial, we spread fresh sawdust and 

approximately 5.0 g of white millet on the base. Black landscape fabric was used as 

blinds towards the sides and back of the enclosure (Fig. 1) to obstruct view of the 

observer. Three cameras were used to monitor the enclosure, one from 1.5 m above and 

two from behind (1 m away; Fig. 1). We used a PelikanCam CRM-36DW B&W 

Weatherproof Infrared Cameras (“bulletcams”) above the enclosure and two JVC Everio 

(GZ-MG330AU) camcorders behind the enclosures (Fig.1). To record video, we used a 
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portable DVR system that consisted of a video splitter, Ganz DVR and a monitor that 

allowed all videos to be synced together. 

We used an electric powered RC aircraft (General TrainerTM) for both 

experiments. The aircraft had a wing span of 157.5 cm and fuselage length of 130.8 cm. 

We mounted high contrasting LED lights (7.4 mm; 3.5 cd per LED light) to the underside 

of each wing separated by 1.03 m facing towards the direction of movement. Four LED 

lights were clustered side by side (two on top and two on the bottom) on each side of the 

wing. For the lights steady treatment, the lights on the aircraft were continuously on; for 

the lights pulsing treatment, the lights were alternatively pulsing at a rate of 2 Hz (lights 

were on under one wing while the lights under the other wing were off). A lithium 

polymer 4-cell battery pack powered the RC aircraft, both sets of lights, as well as the 

motor. Two individuals (C. Wall and T. Snyder) custom-built a circuit into the fuselage 

of the aircraft that allowed the pilot to control the lights (lights off, lights on steady, lights 

on pulsing). The RC aircraft was flown by two experienced pilots (R. Needham or C. 

Meyers).  

For each trial, temperature, humidity, and wind speed were recorded using a 

portable Kestrel hand-held weather station. Cloud cover was recorded by visual 

estimation. We measured ambient light intensity with a portable digital lux meter and 

ambient noise levels with a portable digital sound meter. All measurements were taken 

behind the experimental enclosure blinds before the stimulus, with the exception of 

ambient noise level that was recorded as the aircraft went over the enclosures.  

  

Static aircraft experiment 

This experiment allowed us to determine if cowbirds changed their alert behavior to a 

static RC aircraft with lights off or on (pulsing or steady). We used 92 wild-caught 

cowbirds, which were randomly assigned to pairs, totaling 46 pairs. This experiment 

consisted of two independent factors: light treatment (lights off, lights steady and lights 

pulsing) and distance to static aircraft (25 m and 100 m).  

A pair of birds, in a single enclosure, was exposed to the aircraft throughout each 

trial (Fig. 1a). In addition to the camcorders recording the enclosure, one JVC Everio 
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(GZ-MG330AU) camcorder was placed approximately 10 m away from the experimental 

area to focus on the static aircraft to record when the lights were presented to the 

individuals (Fig. 1a). Individuals were placed into the experimental enclosure and 

allowed to forage for 3 min before the stimulus was presented remotely from a controller. 

Three minutes after the birds were exposed to the stimulus, the trial was ended. 

Temperature, humidity and wind speed ranges were 0.2 to 19.9 °C, 53.0 to 97.2 % and 

0.0 to 10.5 km hr-1, respectively. Cloud cover, light and sound intensity ranges were 0 to 

100%, 4,500 to 58,300 lux and 56.8 to 102.2 dB, respectively.  

 

Moving aircraft experiment 

This experiment aimed at assessing how cowbirds responded to an approaching RC 

aircraft with lights off, lights on steady, and lights on pulsing. For this experiment, we 

used 140 wild-caught cowbirds that were randomly placed into pairs, totaling 70 pairs. 

To increase the number of birds exposed to the aircraft per trial (due to logistic, weather, 

and regulatory restrictions to fly the RC aircraft close to an airport), we had two 

enclosures (with two birds in each) separated by a visual barrier (Fig. 1b). Therefore, two 

pairs of birds were exposed to each light treatment in each trial. We exposed 20 pairs of 

birds to the lights off treatment, 22 pairs to the light steady treatment, and 28 pairs to the 

light pulsing treatment. However, only 9, 10, and 11 pairs were used for analysis, 

respectively. The other trials were compromised because of mechanical problems with 

the aircraft, changes in its trajectory due high winds, aircraft crashing after take-off, 

either before, during or after the approach.  

  The aircraft took off from a take-off strip that was centered 207 m away in front 

of the two enclosures (Fig. 1b). The pilot was located on the take-off strip and a 

camcorder operator was located to the side of the approach pathway, approximately 

halfway between the enclosures and take-off strip (Fig. 1b). The approach path was 

oriented so that the aircraft flew in a southwest trajectory to reduce the effect of 

crosswinds (Fig. 1b). A camcorder was situated perpendicular to the flight path about 50 

m from the enclosures to observe when the aircraft flew over them (Fig. 1b). A second 

camcorder was placed 102 m in front of the enclosures 50 m off perpendicular to the 
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flight path (Fig. 1b). An operator (obstructed from the birds’ view by a large bush) 

rotated the second camcorder to follow the aircraft from approach to landing. A third 

camcorder was placed at the end of the take-off strip, approximately 50 m perpendicular 

to the flight path to record when the aircraft took off and began the approach (Fig. 1b). 

All camcorders were synced as described above. Markers were placed every 9 m parallel 

to the flight path (Figure 1b). These markers and camcorders were used to calculate the 

speed of the aircraft for each trial (see below for details).  

 A trial was begun by simultaneously releasing a pair of birds into each of the 

enclosures. Each pair was allowed to acclimate to their enclosure for 5 min. After the 

acclimation period, the aircraft took off and flew above the approach path approximately 

6 m above ground level until it reached the enclosures. The aircraft then ascended to 

approximately 40 m and circled back to the take-off strip to land. Five minutes after the 

aircraft landed, the trials ended. Temperature, humidity and wind speed ranges were 2.0 

to 34.6 °C, 41.0 to 90.2 % and 0.0 to 13.1 km hr-1, respectively. Cloud cover, light and 

sound intensity ranges were 0 to 100 %, 8,000 to 81,200 lux and 55.7 to 76.3 dB, 

respectively.  

 

Behavioral coding 

Virtual Dub (Avery Lee, Version 1.9.11) was used for frame by frame analysis with 29.9 

frames per second (fps). The behavior of both individuals in the cage was analyzed 

separately. The focal individual was examined for 1,000 frames before the stimulus onset 

to establish its baseline behavior. The first change in behavior after stimulus onset 

associated with alert behavior was recorded (refer to Table A.1 for description of 

behaviors observed and Figure A.1 for their schematic representation). The most 

common behavior seen was stretched neck, followed by head up movements, and 

crouching. 

In the static experiment, we first went through the videos to determine the frame 

for when the first individuals in the arena began to forage (first peck) and the frame of 

stimulus onset (i.e. when the aircraft lights turned on). In order to assign a frame of 

stimulus onset to the no light treatment, which was meant to establish the baseline alert 
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behavior, we used the frame 3 minutes after the first peck, as the stimulus was presented 

3 minutes after the first peck.  

  During the static aircraft experiment, we measured the amount of time it took 

each bird to alert to the light stimulus at the different distances (latency to alert) using 

frame by frame analysis. Only birds that were able to detect the stimulus within the trial 

time were included in the statistical analysis. There were 13 individuals from the 92 for 

which we could not determine their alert behavior from the videos (5 for lights off, 3 for 

steady lights, and 5 for pulsing lights). Latency to alert was measured from the onset of 

the stimuli, thus smaller values indicate a quicker response. 

 In the moving aircraft experiment, frame by frame analysis was used to determine 

the aircraft speed, as well as  time to “collision” at alert and at avoidance. We used two 

camcorders along the flight path to determine the frame in which the aircraft began 

approach and reached the vertical plane of the arenas (expected collision frame), 

respectively. Using these two frames, and knowing the distance of the approach, we 

calculated the speed of the aircraft (207 𝑚 / [𝑘 ∗ 1/𝑓𝑝𝑠] −  [𝑎 ∗ 1/𝑓𝑝𝑠]; where fps is 

frames per second; 17.846 ± 2.659 m s-1). During some trials, camcorder 9 malfunctioned 

during a trial and we were unable to get the exact frame for when the aircraft began the 

approach. In these cases, we used camcorder 8 to determine a known location with the 

markers and used that known distance, rather than 207 m, accordingly.  

Two types of behavioral responses were measured for each individual to the 

approach of the RC aircraft: alert and avoidance response. We first recorded the frame at 

which these behaviors occurred and then calculated the time it would take the aircraft to 

reach the individual after alert and avoidance behavior, called time to “collision” at alert 

and time to “collision” at avoidance, respectively. We defined alert response as the first 

change in behavior of the individual after the aircraft began the approach. Avoidance  

response was when the individual changed its behavior to avoid the approaching aircraft 

(e.g., flush,  body movement away from the aircraft; refer to Appendix 1 for description 

of coded behaviors and their schematic representation). To determine the alert and 

avoidance frames, the individual was watched frame-by-frame for 1,000 frames before 

the aircraft took off to determine baseline behavior. The frame at alert response was 
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determined as the first alert behavior the bird showed toward the aircraft (generally head-

up movement, stretched neck, crouch or body movement towards the aircraft; see 

Appendix 1 for details). The frame at avoidance response was the first avoidance 

behavior the bird showed in response to the aircraft (generally a crouch, body movement, 

jump or flush; e.g., Blackwell et al. 2009; see Appendix 1 for details).  

Time to “collision” times were calculated by the following equation: (expected 

collision frame – frame at alert or avoidance) / 29.907 frames per s. Higher values of time 

to “collision” time (both alert and avoidance) indicate that the individual responded 

quicker to the aircraft after it began approach, as the aircraft was further away when the 

individual responded. We also measured the buffer time (i.e., difference in time between 

time to “collision” at alert and at avoidance), which is a proxy of how long it took the 

individual to avoid the aircraft after it became alert. Higher values of buffer time indicate 

that after becoming alert to the aircraft, the focal individual took longer to avoid the 

approaching aircraft.  

 

Statistical analysis 

We used a general linear mixed model to analyze the time to alert in the static aircraft 

experiment, in which we included light treatment (lights off, lights on pulsing, lights on 

steady), distance to the aircraft (25 and 100 m from the enclosure), and their interaction 

as categorical factors. We also included ambient light intensity and wind speed as 

continuous factors. Trial was considered a random factor. We also ran a generalized 

linear model to establish the effects of light treatment, distance to the aircraft, and their 

interaction on the probability of animals showing alert behavior over a 30 s period. In this 

model, we also included ambient light intensity and wind speed as covariates.  

 We used general linear mixed models to assess the factors influencing time to 

“collision” at alert, time to “collision” at avoidance, and buffer times (i.e., difference 

between time to “collision” at alert and at avoidance). We included in the models: light 

treatment (lights off, lights on pulsing, lights on steady), aircraft speed, ambient light 

intensity, ambient noise, and wind speed. We also included the interaction between 

ambient light intensity and light treatment as a similar effect was found to influence 
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cowbird responses to vehicle approach in a previous study (Blackwell, Fernández-Juricic, 

et al. 2009). Additionally, we tested for an interaction between light treatments and 

aircraft speed as vehicle speed could potentially enhance or decrease the perceptual 

limitations to detect objects at different speeds. In these models, we included 

experimental arena as a random subgroup to control for the two arenas tested per trial. 

We used t-tests to assess differences. 
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RESULTS 
 
 
 

Visual contrast of lights 

Visual saliency, or chromatic contrast, was measured from five different LED light 

wavelengths (470 nm, 525 nm, 585 nm, 595 nm, and 635 nm), in three ambient light 

conditions (sunny, cloudy, partly cloudy), and when the aircraft was about 50 m and 5 m 

away from the birds. Higher values of chromatic contrast would indicate a higher visual 

saliency of the lights in relation to the background from the perspective of the brown-

headed cowbird visual system. Across all ambient light conditions, chromatic contrast 

decreased as the aircraft became closer to the birds for the 525 nm, 585 nm, 595 nm, and 

635 nm LED lights, but the 470 nm LED light showed the opposite pattern (Table 1). 

Overall, chromatic contrast values were highest for 470 nm lights across all ambient light 

conditions irrespective of distance (Table 1).   

   

Static aircraft experiment 

The time it took cowbirds to show alert behaviors to a static RC aircraft varied with the 

type of treatment (Table 2a; Fig. 2a). Cowbirds showed alert behaviors more quickly in 

response to the static RC aircraft with the light steady (t 34.7 = 4.82, P < 0.001) and with 

the lights pulsing (t 33.9 = -5.81, P < 0.001) compared to the baseline alert behavior 

recorded when the lights were off (Fig. 2a), irrespective of the distance between the birds 

and the aircraft. We did not find significant differences in time to show alert behaviors 

between lights steady and lights pulsing (t 35.2 = 1.27, P = 0.213). All other factors were 

not significant (Table 2a).  

Additionally, we found a significant light treatment effect on the probabilities of 

cowbirds showing alert behavior to the RC aircraft within 30 s (Table 2b), with >75% 

probability of reacting to the lights pulsing and steady compared to ~15% baseline 
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reaction when the lights were off (Fig. 2b). All other factors were not significant (Table 

2b).  

 

Moving aircraft experiment 

Time to “collision” at alert was significantly affected by light treatment and aircraft speed 

(Table 3). Time to “collision” at alert increased when the lights were off (9.85 ± 0.43 s) 

than when steady (7.82 ± 0.51 s; t35.9 = 3.10, P = 0.004). No significant differences were 

found in time to “collision” at alert between lights pulsing (9.09 ± 0.70 s) and the other 

two light treatments (P > 0.150). Additionally, cowbirds became alert more quickly in 

response to slower aircraft speeds than higher speeds (coefficient, -0.73 ± 0.22, t35.7 = 

3.30, P = 0.002).  

However, these independent effects on time to “collision” at alert cannot be 

interpreted separately as both light treatment and aircraft speed interacted significantly 

(Table 3). When the lights were off, we found a strong and significant speed effect (slope, 

-0.92 ± 0.15, R2 = 0.70; t40.3 = 5.94, P < 0.001), by which cowbirds took significantly 

longer to become alert when the RC aircraft approached at higher speeds (Fig. 3a). When 

the lights were pulsing, the negative speed effect on alert time was still significant (t41 = 

4.19, P < 0.001), but its strength decreased (slope, -0.88 ± 0.21; R2 = 0.53; Fig. 3b). 

However, when the lights were steady, there was no significant relationship between alert 

time and speed (slope, 0.17 ± 0.16, R2 = 0.03; t40.4 = 1.10, P = 0.280; Fig. 3c). No other 

factors significantly influenced the time it took cowbirds to become alert to the 

approaching aircraft (Table 3).  

 Time to “collision” at avoidance was significantly influenced by ambient noise 

levels when the aircraft flew over the enclosures (Table 3). Higher ambient noise levels 

significantly delayed cowbird avoidance responses to the RC aircraft approach, although 

this was a weak relationship (slope, -0.05, R2 = 0.09). No other factor significantly 

affected time to “collision” at avoidance (Table 3). Given the significant noise effect, we 

ran a similar model but including the interaction between light treatment and noise, which 

did not turn out to be significant (F2, 40 = 0.31, P = 0.736). Additionally, aircraft speed 

was not significantly correlated with ambient noise levels (r = 0.36, P = 0.063).  
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 Finally, the time difference between time to “collision” at avoidance and time to 

“collision” at alert (buffer time) was affected significantly by light treatment as well as 

aircraft speed (Table 3). It took significantly longer for cowbirds to avoid the aircraft 

after becoming alert when the lights were off (7.29 ± 0.39 s) compared to when the lights 

were steady (5.70 ± 0.48 s; t35.2 = 2.61, P = 0.013). We did not find significant differences 

in buffer times between lights pulsing (6.36 ± 0.61 s) and the other two light treatments 

(P > 0.200). Furthermore, cowbirds took longer to avoid the aircraft after becoming alert 

at slower aircraft speeds than higher speeds (coefficient, -0.88 ± 0.20, t34.9 = 4.32, P < 

0.001).  

We also found a significant interaction effect between light treatment and aircraft 

speed affecting buffer times (Table 3, Fig. 4). When the lights were off, buffer times 

decreased significantly with aircraft speed (slope, -0.95± 0.15, R2 = 0.73; t39.4 = 6.40, P 

<0.001; Fig. 4a). However, this speed effect decreased slightly with lights pulsing (slope, 

-0.56 ± 0.20; R2 = 0.56; t40.1 = 2.81, P = 0.008; Fig. 4b), and became non-significant with 

lights steady (slope, 0.15 ± 0.16; R2 = 0.03; t39.5 = 0.92, P = 0365; Fig. 4c). No other 

factor influenced buffer times significantly (Table 3).
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DISCUSSION 
 
 
 

In the context of detection and response to a static and approaching aircraft by brown-

headed cowbirds, we found: the cowbird visual system would perceive 470 nm aircraft 

mounted LED lights with greater saliency than other commercially available lights, 

cowbird alert behavior changed when exposed to a static RC aircraft with visually salient 

lights compared to one with lights off, and cowbird responses to an approaching aircraft 

were affected by light treatment, aircraft speed and ambient noise.  

Using published data on the physiology of the cowbird visual system (i.e., 

sensitivity of the visual pigments and oil droplets, relative density of cone 

photoreceptors; Fernández-Juricic et al. 2013) we used perceptual models to estimate the 

degree of visibility of different lights. This step has rarely been implemented in studies 

aimed at developing wildlife attractants and repellents. This allowed us to use a visual 

stimulus that was more likely to be tuned to the cowbird visual system, which is 

particularly relevant with birds due to their substantially different visual system 

compared to humans (Bowmaker et al. 1997). An implicit assumption we made was that 

greater visual saliency would enhance alert and flight responses of cowbird. Cowbirds 

did show alert and avoidance responses to the approaching aircraft, but with our design 

we cannot tease apart whether the response was the result of the salient light or the 

looming stimulus. Future studies should test the relationship between visual saliency of 

colors of various wavelengths and type of response (avoidance, attraction).  

 Previous studies have shown that lights affect avian behavior (Jones & Francis 

2003; Blackwell, Fernández-Juricic, et al. 2009; Blackwell & Bernhardt 2004; Blackwell 

et al. 2012), suggesting that birds pay attention to lights, although this explicit assumption 

had not been tested. The results of our static aircraft experiment provided some 

corroboration in cowbirds by showing that they changed their behavior to the aircraft 
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with lights on compared to their baseline alert behaviors (i.e., aircraft with lights off). 

Previously, cowbirds and geese have been shown to respond more quickly to an 

approaching object with pulsing white lights compared to steady white lights (Blackwell 

et al., 2004; Blackwell et al., 2012). Furthermore, European starlings increase their 

activity (i.e., movements within the experimental arena) when presented with a pulsing 

laser lights compared to steady ones (Lustick 1973). Overall, birds appear to allocate 

visual attention to the sudden appearance of lights, including the ones that show higher 

saliency to their visual systems, which supports the contention that their detection 

behavior could be manipulated (e.g., enhanced) with this kind of artificial stimuli.  

 When the aircraft approached the animals, we found an effect of aircraft speed 

that depended upon the type of light condition. When the lights were off, cowbird alert 

responses were delayed at high aircraft speeds. In an anti-predator context, predator speed 

actually enhances prey alert behaviors (reviewed in Stankowich & Blumstein 2005). 

However, the range of speeds of our RC aircraft was relatively higher than the approach 

speeds of some aerial predators (e.g., red-tailed hawks, ~ 8 to 17 m/s; Broun & Goodwin 

1943). It is possible that the aircraft is approaching faster than what cowbirds are capable 

of detecting. The ability of organisms to detect the looming stimuli may decrease at 

higher speeds (Wann et al. 2011). There are some neurons that are sensitive to looming 

objects in the optic tectum of birds, of which one type is sensitive to object speed (Sun & 

Frost 1998). Slow approach speeds elicit quicker responses from these neurons (Sun & 

Frost 1998). Perhaps, at our high aircraft speeds, the firing rate of these neurons reached a 

plateau, reducing the ability to track the movement of the aircraft. As it happens, higher 

vehicle speeds have been found to increase mortality (European birds, Legagneux & 

Ducatez 2013; amphibians, birds, mammals, frogs, lizards, toads, snakes, Farmer & 

Brooks 2012).  

In the pulsing lights treatment, the speed effect was still significant but decreased 

in strength. One potential explanation is that the bird’s visual attention may have been 

mostly focused on the aircraft as it was the most constant cue from the approaching 

object, resulting in the same overall pattern seen with lights off. The reduced effect of 

speed may have come from additional information provided by the pulsing lights, as large 
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luminance differences increases the probability of visual attention to an appearing object 

(Rauschenberger 2003). If so, cowbirds may have used each light pulse to better establish 

the relative position of the aircraft during the approach. The aircraft traveled shorter 

distances in between pulses of light at slower speeds compared to higher speeds, so that 

there would be more information present during the slow approaches than fast 

approaches. This would facilitate looming neurons to track the object and determine time 

to contact (Wang & Frost 1992; Sun & Frost 1998) and thus enhance alert response 

behaviors.  

Interestingly, the steady light treatment essentially eliminated the negative effects 

of aircraft speed on alert time. The bird’s visual attention may have been focused on the 

lights rather than the aircraft itself. The aircraft with steady lights had higher luminance 

per unit time because its luminance came from all eight LED bulbs on at the same time 

compared with the aircraft with the lights pulsing where only four LED bulbs were on at 

a time. The increase in visual attention on the lights would allow the birds to track the 

aircraft across all speeds.  

Time to “collision” at avoidance was significantly negatively influenced by noise 

level: birds delayed showing avoidance behaviors to the aircraft at higher noise levels 

(35% higher) than lower levels. However, this was a very weak relationship. No other 

factors influenced time to “collision”; it may be the case that regardless of other factors, 

cowbirds avoided the aircraft at the same point in time. Studies show that avoidance 

behavior is influenced by the approaching object’s start distance (Blumstein 2003; 

Cooper et al. 2009; Rodríguez-Prieto et al. 2009), where greater starting distances lead to 

greater avoidance times. Furthermore, faster objects tend to have a stronger influence on 

avoidance time at different starting distances (Cooper et al. 2009). We found no light 

treatment differences nor speed effect; implying that these factors to not alter the 

appearance on starting distance. If  these factors were to increase or decrease the 

perceived starting distance, we would see either an increase or decrease in avoidance 

times, respectively. Buffer times, the difference between time to “collision” at alert and 

avoidance initiation time, were influenced by light treatment and speed. With lights off, 

buffer times were lower at higher speeds, but this effect was less pronounced with the 
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pulsing lights. With the steady lights, speed no longer influenced buffer times. Changes 

in buffer time could be the result of at least three scenarios: 1) variation in time to 

“collision” at alert with time to “collision” at avoidance remaining constant, 2) time to 

“collision” at alert remaining constant with time to “collision” at avoidance changing, 3) 

changes in both alert and time to “collision” at avoidance but at different rates. Because 

time to “collision” at alert was similarly influenced by light treatment and speed, and 

time to “collision” at avoidance was not significantly affected by either, our data supports 

scenario 1. Therefore, to increase the time the animal has available to make a decision to 

avoid the approaching vehicle (i.e., increasing buffer times), our results suggest that 

enhancing alert behavior is key for cowbirds.  

 

Applied implications 

We found that avian alert responses may potentially be associated with constraints in the 

visual system of birds. We found that the lights could ameliorate the speed effects. 

Because commercial aircraft move at different speeds depending on the flight phase, we 

suggest that light stimuli should also vary with flight phase to maximize potential 

detectability. One possibility is having two sets of lights, tuned to the visual system of 

birds, which could be used to alter bird behavior: a set of static lights near the runway and 

a set of onboard lights. Birds’ alert time is quicker for static objects when lights (steady 

or pulsing) are present; thus, static lights along runways could be coordinated just prior to 

taxiing to bring the attention of the birds to the runway. The second set of lights onboard 

could be off or on and pulsing to enhance alert behaviors at different speeds, as aircraft 

begin to move for take-off (taxiing at 3.1-10.3 m s-1). During aircraft take-off 

(approximately 27.7 m s-1), steady lights could be used because they significantly reduce 

the effects of aircraft speed on alert behavior. The use of continuous onboard, steady 

lights beyond airport property could potentially enhance alert behavior of in-flight birds 

to a fast approaching aircraft.  

Overall, our results provide a new window to understanding the responses of birds 

to aircraft. As air travel increases, the rate of bird strikes will increase, escalating human 

and wildlife mortality, as well as the cost of damage. The design of aircraft lights can be 
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used to minimize bird strikes. Our results show that more future studies should look into 

the effects of other light wavelengths on the behavioral response of birds commonly 

involved in bird-strikes to  provide additional insight into more effective lighting 

systems.  
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TABLES 

 

Table 1 

Chromatic contrast values of LED lights from the visual perspective of brown-headed 

cowbirds. Chromatic contrast was calculated when the aircraft was at two locations on 

the approach path (aircraft at a far distance and at a close distance, relative to the bird’s 

position), as well as three different ambient light treatments (sunny days, cloudy days and 

partly cloudy days). Numbers in bold reflect the LED light with the highest saliency in 

each ambient light scenario.  

    LED lights from CoolLED¹ 
    470 nm 525 nm 585 nm 595 nm 635 nm 
Sunny 

     
 

Far Aircraft 187.62 144.23 64.38 152.03 148.34 

 
Close Aircraft 199.06 137.73 50.49 135.76 136.10 

Cloudy 
     

 
Far Aircraft 179.47 150.44 75.97 164.56 157.29 

 
Close Aircraft 196.77 139.28 52.56 139.11 137.89 

Partly Cloudy 
     

 
Far Aircraft 186.42 143.75 67.22 153.73 151.79 

  Close Aircraft 200.27 138.49 51.25 135.61 137.33 
¹Values in table given in Just Noticeable Distance (JNDs). The higher the visual contrast value, 
the, the greater the saliency of the object in relation to the visual background.  
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Table 2 

(a) Latency to alert, and (b) probability of reaction within 30 s to a static RC aircraft 

under three treatment treatments: aircraft with lights off (NL), lights on steady (BS), 

lights on pulsing (BP). Significant values are marked in bold.  

 

(a) 

 F d.f. P 
Light treatment 21.41 2, 34.6 <0.001 
Distance 1.05 1, 34.3 0.3133 
Light treatment X Distance 3.23 2, 33.6 0.0522 
Ambient light intensity 0.01 1, 39.7 0.9304 
Wind speed 0.02 1, 31.9 0.8894 
 

(b) 

 χ2 d.f. P 
Light treatment 42.70 2 <0.001 
Distance 3.66 1 0.056 
Light treatment X Distance 5.90 2 0.052 
Ambient light intensity 0.34 1 0.562 
Wind speed 0.31 1 0.580 
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Table 3 

General linear mixed model showing the factors affecting the time it took BHCO to 

become alert and avoid, as well as the difference between alert and avoidance, in 

response to an approaching RC aircraft under three treatment treatments: aircraft with 

lights off, lights on steady, lights on pulsing. Significant values are marked in bold.  

 F d.f. P 

Time to “collision” at alert  
  

Light treatment 7.10 2, 35.8 0.003 
Ambient light intensity 0.18 1, 35.9 0.671 
Light treatment X Ambient light intensity 0.12  2, 36.2 0.887 
Wind speed 0.13  1, 36.9 0.721 
Aircraft speed 7.34  1, 35.9 0.010 
Noise level 1.81  1, 36.3 0.186 
Light treatment X Aircraft speed 7.22  2, 35.6 0.002 

Time to “collision” at avoidance 
   

Treatment 3.14 2, 41.4 0.054 
Ambient light intensity 2.20 1, 41.8 0.146 
Light treatment X Ambient light intensity 2.55 2, 41.9 0.091 
Wind speed 0.80 1, 41.9 0.376 
Aircraft speed 0.00 1, 42.9 0.971 
Noise level 5.64 1, 43.2 0.022 
Light treatment X Aircraft speed 2.41 2, 41.4 0.102 

Difference between time to “collision” at alert and avoidance  

Light treatment 8.65 2, 35 0.001 
Ambient light intensity 3.02 1, 35.1 0.091 
Light treatment X Ambient light intensity 1.32 2, 35.4 0.280 
Wind speed 0.29 1, 36 0.593 
Aircraft speed 10.93 1, 35.1 0.002 
Noise level 0.31 1, 35.8 0.578 
Light treatment X Aircraft speed 7.36 2, 34.8 0.002 
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 (a) Experimental set-up for Static Aircraft Experiment. Aircraft silhouette: the two 

distances in which the RC aircraft was located (either 100 m or 25 m from the 

experimental enclosures); open large circles: the enclosures – each housing two 

individuals; dark circle with numbers: the locations of all the cameras used; numbers 

refer to the camera input and channel when analyzed. (b) Experimental set-up for Moving 

Aircraft Experiment. T-Shape: the take-off/landing strip – aircraft pilot stands here; 

aircraft silhouette: where the RC aircraft begins the approach; dashed arrow line: the 

approach path of the flying aircraft; small dark circles: the distance markers used to 

locate the aircraft during approach (separated by 9 m); open large circles: the enclosures 

– each housing two birds; numbered dark circle: the locations of all the cameras used; 

numbers refer to the camera number. 
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Figure 2 

 

Cowbird a) latency to alert (higher values indicate more delayed responses) and b) 

probability of showing alert behavior within 30 s to an static RC aircraft under different 

treatment treatments: aircraft with lights steady, pulsing, and off.    
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Figure 3 
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Figure 3. 

 

Time to “collision”  when brown-headed cowbirds alert to an approaching aircraft with 

varying speeds. Lights mounted on the aircraft were a) off, b) pulsing and c) steady. 

Higher values indicate a quicker response.  
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Figure 4 
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Figure 4. 

 

Cowbird buffer time (amount of time it took bird to avoid the aircraft after becoming 

alert to it) to the approaching RC aircraft with varying speeds when the  (a) lights were 

off, (b) pulsing, and (c) steady. 
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APPENDIX 
 
 
 

Static aircraft Experiment 

We coded when the individual became alert to the stimuli. Common behaviors were 

stretched neck, head-up movement, and crouch. We did not code flight behaviors, as the 

individuals did not avoid the static stimuli.  

 To determine head-movement rate before and after the presentation of the stimuli, 

we recorded the following behaviors: crouch, stretched neck, body maintenance, body 

movement, head-up, head-down, head-up movement, and peck (refer to Table A.1 for 

description of behaviors observed and Figure A.1their schematic representation). For 

these instances, body movement included: walk, hop, jump, and flush.  

  

Moving Aircraft Experiment 

We coded when the individual became alert (frame at alert response) to the stimulus and 

when the individual avoided (frame at flight response) the stimulus. Frame at alert 

response was determined as the first alert behavior the bird showed toward the aircraft 

(generally head-up movement, stretched neck, crouch and body movement). Frame at 

flight response was when the individual changed its behavior to avoid the approaching 

aircraft. The avoidance was the first flight behavior the bird showed in response to the 

aircraft (generally a crouch, body movement, jump and flush; e.g., Blackwell et al. 2009; 

see Table A.1 for details).  
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Figure A.1 

A visual representation of alert and flight behaviors seen during the videos. HUM: Head-

Up Movement; SN: Stretched Neck; BM: Body Movement; C-Crouch; BU; Body Up; J: 

Jump; F; Flush.  Alert behaviors consisted of: HUM, SN, BM and C. Flight behaviors 

consisted of all the behaviors. Refer for Table A.1 for a description of these behaviors.  

 
 

  

a.   HUM b.   SN

d.   Cc.   BM

e.   BU

g.   F

f.   J
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Table A.1 

Observed behaviors of brown-headed cowbird reactions when presented with an 

approaching aircraft 

Behavior Description 

Alert Behaviors     

  
Head-Up Movement 

  
Move head while in a head-up body posture (beak held parallel 

to ground) (A.1a) 

  
Stretched Neck 

  
Elevate head with neck while in a head-up body posture. The 

head position does not move (A.1b) 

  
Body Movement 

towards aircraft 
  

Move body form one location to another in the enclosure by 

walking or hopping towards the front of the enclosure(A.1c) 

  Crouch   Lower whole body close to the ground (A.1d) 

Flight Behaviors     

  

Head-Up Movement 
  

Move head while in a head-up body posture (beak held parallel 

to ground) (A.1a) 

  

Stretched Neck 
  

Elevate head with neck while in a head-up body posture. The 

head position does not move (A.1b) 

  

Body Movement 

away from aircraft 
  

Move body form one location to another in the enclosure by 

walking or hopping towards the back of the enclosure (A.1c) 

  Crouch   Lower whole body close to the ground (A.1d) 

  

Body Up 

  

Move body from a head-down posture to a head-up posture 

(A.1e) 

  

Jump 

  

Move body from one position to  another while remaining in the 

same location (A.1f) 

 

Flush   Move body off the ground to begin flight (A.1g) 
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