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Quantifying Vitamin K-dependent Holoprotein Compaction 
caused by differential γ-carboxylation using HPSEC

Nicholas C. Vanderslicea, Amanda S. Messera,b, Kanagasabai Vadivelb, S. Paul Bajajb, 
Martin Phillipsc, Mostafa Fatemia, Weijie Xua, and William H. Velandera,*

aProtein Purification and Characterization Laboratories, Department of Chemical and 
Biomolecular Engineering, 207 Othmer Hall, University of Nebraska, Lincoln 68588, USA

bProtein Science Laboratory, UCLA/Orthopaedic Hospital, Department of Orthopaedic Surgery 
and Molecular Biology Institute, 615 Charles E. Young Dr South, University of California, Los 
Angeles 90095, USA

cUCLA-DOE Biochemistry Instrumentation Facility, Department of Chemistry and Biochemistry, 
607 Charles E. Young Drive East, UCLA, Los Angeles, CA 90095, USA

Abstract

This study uses high-pressure size exclusion chromatography (HPSEC) to quantify divalent metal 

ion (X2+)-induced compaction found in vitamin K dependent (VKD) proteins. Multiple X2+ 

binding sites formed by the presence of up to 12 -carboxyglutamic acid residues (Gla) are present 

in plasma-derived (pd-) and recombinant (r-) Factor IX (FIX). Analytical ultracentrifugation 

(AUC) was used to calibrate the Stokes radius (R) measured by HPSEC. A compaction of pd-FIX 

caused by the filling of Ca2+ and Mg2+ binding sites resulting in a 5-6% decrease in radius of 

hydration as observed by HPSEC. The filling of Ca2+ sites resulted greater compaction than for 

Mg2+ alone where this effect was additive or greater when both ions were present at physiologic 

levels. Less X2+ induced compaction was observed in r-FIX with lower Gla content populations 

which enabled the separation of biologically active from inactive r-FIX species by HPSEC. 

HPSEC was sensitive to R changes of ~0.01 nm that enabled the detection of FIX compaction that 

was likely cooperative in nature between lower avidity X2+ sites of the Gla domain and higher X2+ 

avidity sites of the EGF1-like domain.
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1. Introduction

The Vitamin K-dependent (VKD) family of plasma proteins are key participants in the 

coagulation cascade of hemostasis[1,2]. This family includes the anticoagulant proteins C, S 

and Z, and the procoagulant factors (F) VII, IX, X and prothrombin [3]. The first nine amino 

terminal glutamic acids of these glycoproteins are well conserved and are -carboxylated to 

form “γ-carboxyglutamic acid (Gla) residues”. These residues are part of the “Gla domain” 

which contains 7-8 divalent metal (X2+) binding sites that are essential to the function of 

VKD coagulation proteins. This function is highly regulated by the formation of multi-

protein complexes at the phospholipid surfaces of injured vascular endothelium. A spatially 

quantitative measure of overall holoprotein folding as a function X2+ site filling would 

provide insight into the process by which coagulation protein complexes are formed.

The conformational attributes of the Gla domain have been well studied using NMR and x-

ray crystallography [4-9]. Since VKD proteins are also glycoproteins the Gla domain is 

usually isolated to enable study by crystallography. The Gla domain has also been studied 

using X2+, conformational-dependent monoclonal antibodies [10-14]. These previous 

studies have observed the cooperative folding within the Gla domain that occurs with filling 

of Ca2+- and Mg2+-binding sites [4,5,8,15]. Conformational changes have been also 

observed in all the VKD coagulation proteins using fluorescence quenching due to specific 

X2+ site binding [8,16,17]. FIX is an example of a VKD protein with X2+ binding sites not 

only in the Gla domain but it also contains two additional Gla residues that help to form an 

additional Mg2+ site [18-20]. FIX also contains a Ca2+ site in one of two epidermal growth 

factor-like domains and also in its C-terminal serine protease domain [1,2].

Recombinant biosynthesis of VKD proteins frequently results in subpopulations of partially 

carboxylated proteins with modified structure and function [19,21-24]. As with other VKD 

proteins, recombinant (r-) FIX has important uses as a biotherapeutic where partially and 

fully -carboxylated structures yield different biological activity [19,24]. The high-pressure 

size exclusion chromatography (HPSEC) method presented here provides a quantitative 

assessment of overall changes in VKD macromolecular extension due to filling of the Ca2+ 

and Mg2+ sites that can be directly correlated with in vitro coagulation activity. This 

technique is demonstrated using plasma-derived (pd-) FIX with a full complement of 10 

total X2+ binding sites that is compared to r-FIX populations with less γ-carboxylation.

2. Experimental

2.1. Reagents

All buffer components were purchased from VWR International LLC (Radnor, PA, USA) or 

Thermo Fisher Scientific (Waltham, MA, USA) or Sigma (St. Louis, MO, USA) unless 

otherwise stated. In order to minimize degradation, purification processes were performed at 
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4°C. The stocks of pd, immunoaffinity purified, therapeutic grade FIX (Mononine, CSL 

Behring, USA) were expired for clinical use, but when used in experiments, exhibited full 

procoagulant activity (150-250 U/mg). Human FIX from the milk of transgenic swine (r-

FIX) was purified using a modified version of the procedure of Lindsay et al. [25]. HPSEC 

was used to isolate the purified sample into low carboxylated zymogen r-FIX that was 

inactive (<10 U/mg), zymogen r-FIX that had native coagulation activity (150-200 U/mg), 

and activated r-FIX (r-FIXa) (>3000 U/mg). Inactive and active r-FIX contained no r-FIXa 

according to SDS-PAGE. All activities were confirmed by one-stage clotting assay [25-27].

2.2. High-Pressure Size Exclusion Chromatography

The FIX products were concentrated and exchanged into 20 mM Tris, 200 mM NaCl, pH 

7.0 (running buffer) using an Amicon Ultra 10 kDa molecular cut off centrifugal filter 

(Millipore, Billerica, MA, USA). The running buffers were treated with the sodium form of 

Chelex Analytical Grade 100 resin (Bio-Rad Laboratories, Hercules, CA USA) to remove 

X2+ contamination. Some studies used running buffer that contained CaCl2 and or MgCl2 

which was added after Chelex 100 resin treatment. All injected samples were formulated 

with Chelex treated buffer. All sample injection volumes were less than 50 μL, and were 

diluted by a factor of at least 10-fold by the 500 μL buffer volume in the sample loop. The 

FIX products were loaded onto a 60 cm X 2.15 cm I.D. TSK gel G3000SW column (Tosoh 

Bioscience, King of Prussia, PA, USA) equipped with a guard column and a pre-filter.

Briefly, the chromatography was performed on the Knauer (Berlin, Germany) Smartline 

chromatography station described above. Flow rate was set at a constant 0.5 mL/min and the 

run length was 45 minutes for all studies. Effluent's absorbance was measured at an 

absorbance of 280 nm. Samples were run in triplicates and the center of the elution peaks 

were used to calculate residence time (with standard deviation <0.016). All elution volumes 

can be found by multiplying the elution time by 0.5 mL/min.

2.3. Sodium Dodecylsulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)

Samples were analyzed by SDS-PAGE stained with colloidal Blue gel stain (Invitrogen, 

Carlsbad, CA, USA) using Invitrogen Novex precast gels and the Invitrogen Surelock XL 

apparatus. All gels were NuPage 12% Bis-Tris run with 2-(N-morpholino) ethanesulfonic 

acid (MES) running buffer (Invitrogen). Briefly, samples were mixed with 4x LDS sample 

buffer (Invitrogen) and deionized water followed by heating at 75 °C for 10 min. For 

reduced gels, samples were mixed with 10x reducing agent (Invitrogen) prior to heating.

2.4. Analytical Ultracentrifuge

pd-FIX in 0.15 M NaCl, 50 mM Tris, pH 7.5 with either 10mM EDTA or CaCl2 and/or 

MgCl2 was examined by sedimentation velocity in a Beckman Optima XL-A analytical 

ultracentrifuge at 52,000 or 55,000 rpm and 20 °C in 12 mm path length double sector cells 

using absorption optics at 280 nm. All samples were at the same protein concentration, 0.3 

mg/ml. Apparent sedimentation coefficient distributions, uncorrected for diffusion, were 

determined as g(s) plots using the Beckman Origin based software (Version 3.01). These 

plots display a function proportional to the weight fraction of material with a given 

sedimentation coefficient, s. The function g(s) was calculated as:

Vanderslice et al. Page 3

Anal Biochem. Author manuscript; available in PMC 2016 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where s is the sedimentation coefficient, ω is the angular velocity of the rotor, co is the initial 

concentration, r is the radius, rm is the radius of the meniscus, and t is time. The x-axis is 

converted to sedimentation coefficient by:

These plots display a function proportional to the weight fraction of material with a given 

sedimentation coefficient, s [28]. The S20,w values were calculated using a partial specific 

volume which was corrected to a value of 0.708 as determined by the amino acid and 

carbohydrate composition of FIX [29,30]. The Stokes radius (R) was calculated using a 

molecular weight of 62,800. R is inversely proportional to the sedimentation coefficient, 

S20,w, where compaction of the pd-FIX increases the sedimentation coefficient. Specifically, 

the sedimentation coefficient was used to calculate R defined by the relationship:

where M is the molecular weight, Ṽ is the partial specific volume, ρ is the solvent density, 

N is Avogadro's Number and η is the viscosity [31].

2.5. Modeling of X2+ Free and Bound pd-FIX

The X2+ equilibrated solution structures of pd-FIX were obtained from Perera [32]. The 

MODELLER program [33] was employed to model the X2+ free pd-FIX holoprotein by 

additionally utilizing NMR structures reported for pd-FIX Gla domain (PDB ID: 1CFX, [8]) 

as templates. No molecular shape was apriori assumed as part of the model. The built 

models were further refined by energy minimization using the CHARMM program with 

CHARMM19 force field [34] consisting of 50 steps of Steepest Descent, followed by 500 

steps of Adopted Basis Newton-Raphson. Harmonic restraints of 10 kcal/mol/Å2 were 

applied on the Cα atoms of the protein during the entire minimization.

2.6. Mass Spectrometry of the Gla Domain

The γ-carboxylation of the Gla domain of pd-FIX and r-FIX were assessed using LC-ESI-

TOF mass spectrometry (MS). Samples of r-FIX and active r-FIX were activated with 

Factor XIa (FXIa) (Haemtech, Essex Junction, VT) using a 1:100 (w:w) enzyme to substrate 

ratio in 5mM CaCl2, 1X TBS, pH 7.4 at 37°C for 1.0 hour. After activation, the samples 

were quenched with 1.2 moles of EDTA per mole of calcium and stored at -80°C until 

further analysis.

MS analysis was performed on an Agilent 1200 capLC system with an Agilent 6210 ESI-

TOF MS [35]. Solvent A was 0.1% formic acid (Fluka) (v/v) in deionized water. Solvent B 

was 0.1% formic acid (v/v) in acetonitrile (Burdick and Jackson). The column was an 
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Agilent 300SB-C8 Poroshell column: 7.5 cm L x 0.5 mm ID, 5 micron particle size. MS 

data were acquired with MassHunter in positive mode with the following parameters: 4000 

V source voltage, 325°C nebulizing gas temperature, 7 L/min gas flow rate, internal 

reference mass of 922.01 m/z. MS data were analyzed using Agilent's Qualitative Analysis 

(version B.01.03).

2.7 One stage coagulation assay

FIX specific activity was determined using a one stage coagulation assay [36]. Briefly, 50 

μL each of PTT Automate 5 reagent (Diagnostica Stago, Inc., Parsippany, NJ, USA), 50 μL 

of FIX deficient plasma (George King Bio-Medical, Overland Park, Kansas, USA), or 50 μL 

sample was added to the measurement cuvette and incubated at 37 °C for 3 min. After the 

incubation period, 50 μL of 25 mM CaCl2 was added and the clotting time was measured 

using the STart Hemostasis Analyzer (Diagnostica Stago, Inc., Parsippany, NJ). Normal 

human plasma (Diagnostica Stago, Inc., Parsippany, NJ) was used as the defined standard 

reference where normal human plasma contains 1 international unit of FIX clotting activity 

per mL. The concentration of purified r-FIX was determined spectrophotometrically at 280 

nm using an extinction coefficient, ε1% =13.4.

3. Results and discussion

3.1. Predicted holoprotein size changes in pd-FIX induced by X2+

Herein, we use HPSEC calibrated by AUC to quantitatively measure holoprotein folding 

contributed by different domains due to the filling of both Ca2+/Mg2+ sites relative to Ca2+ 

and Mg2+sites alone. Molecular modeling of X-ray crystallography and NMR data was used 

to help predict the nature and magnitude of the holoprotein size change that would be 

expected from the filling of all X2+ sites within different domains of FIX. The predicted 

structures of X2+ free and bound of FIX containing the full complement of 12 Gla residues 

are shown in Fig. 1. In the presence of physiologic levels of Ca2+ (~1.1 mM) and Mg2+ 

(~0.6 mM), four sites (numbered 2, 3, 5 and 6) are occupied by Ca2+ and three (numbered 1, 

4, and 7) by Mg2+ [4,37]. It is important to note that all metal sites in the Gla domain will be 

filled by Ca2+ at greater than 2 mM in the absence of Mg2+. The Mg2+-site 4 is predicted to 

switch to Ca2+ upon binding of the Gla domain to phospholipid (PL) [38].

Our modeling predicted a linear structure with a more extended structure in the case of 

vacant relative to X2+ filled sites. Our model predicted an overall radius of gyration (Rg) of 

34.46 Å for the X2+ free state and 32.75 Å for the X2+ filled pd-FIX holoprotein with a 

relative change in Rg of ~5%. As expected, the largest contributor to changes in molecular 

extension arose from the filling of both Ca2+ and Mg2+ sites in the core Gla domain (Fig. 

1A, 1B). Currently, there is a lack of crystallographic data that studies the Gla domain under 

conditions having only Mg2+ filled sites.

Interestingly, other more subtle changes with X2+ dependent conformation were predicted 

by our model which were caused by domains outside of core Gla domain. For example, the 

Gla residues at amino acid 36 and 40 do not affect FIX biological activity in vitro [19] and 

are not present in other VKD proteins. Recombinant biosynthesis frequently results in the 

lack of γ-carboxylation at these two positions and therefore the inability to form the number 
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eight X2+ site that is Mg2+-specific [7,19]. Our model also predicts that the Ca2+ specific 

binding site which occurs in the EGF1-like domain [39] will be the next largest contribution 

to the overall compaction of pd-FIX relative to the Gla domain. The Ca2+ specific site in the 

protease domain [40,41] was predicted to give a negligible contribution to pd-FIX 

compaction.

3.2. Homogeneity of the pd-FIX and rFIX preparations studied here

Previous studies have reported protein aggregation in pd-FIX in the presence of X2+ 

observed by AUC at concentrations of >0.3 mg pd-FIX/ml [16]. Thus, we used SDS-PAGE 

and HPSEC to ascertain the extent of aggregation in the pd-FIX and r-FIX preparations 

studied here. For example, Fig. 2A shows SDS-PAGE analysis under non-reducing 

conditions of immunoaffinity purified, therapeutic grade pd-FIX where an estimated 100 ng 

band at 47 kDa was observed. This subpopulation of proteolyzed FIX is commonly present 

in pd-FIX and has a 10 kDa fragment removed from its carboxy- terminus [42]. Thus, we 

estimate that the pd-FIX here contained >95% zymogen having a Mr of 57 kDa and 0.1-5% 

proteolyzed pd-FIX. Fig. 2B and 2C show the typical HPSEC chromatographic profiles for 

injections of 25 and 50 μg pd-FIX that was obtained at physiologic pH in the presence of 1.1 

mM Ca2+ alone and of 0.6 mM Mg2+ alone, respectively. Fig. 3-5 present the HPSEC 

chromatographic behavior for analysis of 100 μg injections. In all cases studied, the HPSEC 

behavior possessed a single predominant and symmetrical peak. In the case of the 100 μg 

injection, a peak height signal was observed which was about 4- and 2-fold larger than those 

observed for the 25 μg and 50 μg injections. Taken together, the samples predominately 

contained intact pd-FIX which showed no appreciable tendency to form aggregates at any of 

the X2+ and protein concentrations examined here by HPSEC or AUC.

3.3. HPSEC Elution Profile Sensitivity to pd-FIX size changes resulting from presence of 
Ca2+ alone

We observed changes in overall HPSEC elution times of FIX in sequence of 

chromatographies with incrementally higher Ca2+ levels known to metal site filling in the 

higher avidity catalytic and EGF1-like domains followed by the lower avidity Gla domain. 

For example, Fig. 3A shows the HPSEC chromatographic profiles for pd-FIX collected over 

a range of sub- to supra-physiologic Ca2+ levels in the absence of Mg2+. A baseline 

residence time of about 17.1 minutes was obtained for the elution peak of pd-FIX when 

chromatographed under X2+ free conditions (Fig. 3A: curve 1). When chromatographed at a 

subphysiologic level of 0.5 mM Ca2+ at which higher avidity sites in the catalytic and 

EGF-1 like domains should approach being filled [39, 43] the residence time shifted to a 

longer time of 17.9 minutes (Fig. 3A: curve 2). This compaction phenomena was observed 

to increase with increasing levels of Ca2+ (Figure 3A: curve 3-5) up to a supra-physiologic 

concentration of 10 mM Ca2+ where a 19.0 elution peak residence time was observed. An 

asymptotic level of lengthening residence times of about 19.05 minutes occurred when pd-

FIX was chromatographed at 15 mM Ca2+ (Fig. 3A: curve 6). At this supra-physiologic 

conditions, each X2+ binding site in the core Gla domain has been previously reported to be 

occupied by Ca2+ [38].

Vanderslice et al. Page 6

Anal Biochem. Author manuscript; available in PMC 2016 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Using a plot of HPSEC elution peak residence times versus Ca2+concentration, the change 

in chromatographic behavior seen at different X2+ ion concentrations can be correlated with 

the filling of specific sites as measured by other techniques [7,19,39-41,43,44]. Two 

compaction regimes were observed by HPSEC. The inset plot of Fig. 3B shows the presence 

of a compaction regime occurring at a Ca2+ level of 0-0.5 mM. Our modeling (Figure 1) 

predicted that significant compaction would result from filling of the Ca2+ specific site in 

EGF1-like domain while a negligible amount of compaction would result from filling of the 

Ca2+ site in the catalytic domain. This HPSEC data is a first time direct observation of FIX 

holoprotein compaction as a result of the higher affinity Ca2+ sites filling in those domains. 

In contrast, a separate compaction regime that was detected at about 0.3 to 5 mM Ca2+ was 

consistent with compaction predicted for the core Gla sites. In summary, the compaction 

behavior of pd-FIX observed at supra-physiologic levels of Ca2+ is likely the combined 

filling of both high avidity Ca2+-specific sites in the EGF1-like and protease domains along 

with the lower avidity Ca2+ sites of the Gla domain.

3.4. HPSEC Elution Profile Sensitivity to pd-FIX size changes resulting from presence of 
Mg2+ alone

We also observed changes in overall HPSEC elution times of FIX in sequence of 

chromatographies with incrementally higher Mg2+ levels known to fill the 3 sites within and 

the single site proximal to the core Gla domain. Starkly less compaction was observed in the 

presence of Mg2+ alone than that seen for Ca2+ alone (Fig. 4A). For example, the presence 

of the physiologic level of 0.6 mM Mg2+ resulted in a decreased, but discernable 0.3 minute 

increase in residence time shift over that of X2+ free buffer (Fig. 4A: curves 1 and 2). 

Similarly small shifts were observed at the supraphysiologic Mg2+ concentrations of 5 and 

10 with no shift detectable at 15 mM Mg2+ (Fig. 4A: curves 3, 4, and 5 respectively).

A single compaction regime was observed in a plot of the net residence time shift versus 

Mg2+ concentration over the range of sub to supra-physiologic levels of Mg2+ (Fig. 4B). 

Past studies have shown that all Mg2+-specific sites within the core Gla domain of VKD 

coagulation proteins are at least half-maximally filled at physiologic levels of Mg2+ [45]. 

The compaction response observed by HPSEC seen with Mg2+ relative to Ca2+ is consistent 

with the lesser number of Mg2+ sites and their peripheral positioning in the Gla domain (Fig. 

1B).

3.5. HPSEC elution profile sensitivity to pd-FIX compaction resulting from presence of 
both Mg2+ and Ca2+

We investigated the dependence of the compacted conformation on the simultaneous 

presence of both X2+. In the presence of physiologic levels of both Mg2+ and Ca2+ (Fig. 5: 

Curve 4), pd-FIX eluted at later times than that obtained in the presence of no X2+ (Fig. 5: 

curve 1), 0.6 mM Mg2+ alone (Fig. 5: curve 2) and 1.1 mM Ca2+ alone (Fig. 5: curve 3). 

Importantly, the HPSEC residence time shift resulting from the simultaneous presence of 

both X2+ was essentially additive relative to that obtained in the presence of Ca2+ and Mg2+ 

alone. This is indicative of the respective X2+ specificity of sites which contribute to pd-FIX 

compaction.
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It is noted that the compaction of pd-FIX resulting from the filling of the both Ca2+ and 

Mg2+ metal binding sites within the Gla domain can be visualized by the organization and 

formation of the -loop (Fig. 1B). The -loop has been shown to be an important structure 

necessary for biological activity [7,37,38,46]. X2+ sites 2 to 6 strongly affect the positioning 

of the -loop which spans amino acids 1-14 and is central to phospholipid binding. Upon 

binding of phospholipid, site 4 is converted from a Mg2+ to a Ca2+ site which results in 

profound repositioning of the -loop to the interior of the Gla domain [7,38]. Supra-

physiologic concentrations of Ca2+ can also result in the filling of site 4 by Ca2+ and a 

repositioning of the -loop. In the absence of Mg2+, all sites are occupied by Ca2+ at 2 mM 

[38] while at physiologic levels of Ca2+ and Mg2+ positions 1, 4, 7 and 8 are occupied by 

Mg2+. However, at supraphysiologic levels at which asymptotic compaction by Ca2+ was 

observed here by HPSEC, Mg2+ at site 4 would be displaced by Ca2+ [38].

3.6. HPSEC observed changes in compaction for partially carboxylated r-FIX

We investigated the X2+ dependent compaction properties of r-FIX having different extents 

of γ-carboxylation and coagulation activity. We observed a difference in the compaction 

between high and low Gla content r-FIX at 10 mM Ca2+(Fig. 6). Table 1 presents a 

comparison of biotherapeutic grade pd-FIX with the two major HPSEC chromatographic 

fractions obtained from a pool of already highly purified r-FIX. Peak 1 possessed the 

shortest elution time and it consisted of lower Gla content r-FIX that was inactive. Peak 2 

eluted at a longer time and possessed a specific coagulation activity that was comparable to 

therapeutic grade pd-FIX. It also predominately consisted of 10-12 -carboxylated Gla 

species Gla content r-FIX. The extent of γ-carboxylation in r-FIX has been previously 

shown to be a primary determinant of coagulation activity [47,48]. In summary, the inactive 

and active r-FIX fractions demonstrated starkly different Ca2+ dependent compaction (Fig. 7 

A and B).

We observed similar X2+ dependent compaction regimes for the active r-FIX fraction as that 

observed in pd-FIX. In contrast, the inactive r-FIX fraction exhibited a general lack of 

compaction. Interestingly, at the level of <0.4 mM Ca2+, the inactive r-FIX fraction 

displayed minimal compaction while both the active r-FIX and pd-FIX displayed a similar 

but distinguishable compaction. This suggests that the compaction induced by the high 

affinity Ca2+ site in the EGF1-like domain which is proximal to the Gla domain is affected 

by Gla domain folding. At >0.4 mM Ca2+, the asymptotic maximum in the total residence 

time shift was reduced by 82% for inactive r-FIX relative to active r-FIX fractions.

For chromatographies done in the presence of Mg2+ alone, the compaction of the active r-

FIX fraction was nearly identical to that of fully -carboxylated pd-FIX. In contrast, the 

inactive r-FIX fraction displayed only a <0.05 minute shift in compaction at 0.6-1.1 mM 

Mg2+ (Fig. 7 C and D). Thus, this lack of compaction observed using HPSEC indicates that 

γ-carboxylation deficiencies likely occurred at positions essential to the formation both Ca2+ 

and Mg2+ sites within the core Gla domain.
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3.7. Analytical ultracentrifuge calibration of HPSEC for predicting R

We used AUC to both confirm the general compaction phenomena and to calibrate the 

observed HPSEC chromatographic behavior for the correlative estimation [49-51] of the 

Stokes hydrodynamic radius (R) at the X2+ ion concentrations studied here. It is important to 

note that past AUC studies of VKD coagulation proteins were used to examine for the 

presence or absence of aggregation. Table 2 provides the sedimentation coefficient (s) and 

calculated R values which were obtained by AUC for pd-FIX in the absence and presence of 

physiologic levels of Ca2+ and Mg2+. We observed an S20,w of 3.72 ± 0.006 Svedburgs 

(n=3) by AUC in 10 mM EDTA at 0.3 mg pd-FIX/ml and this translates to an estimated R= 

4.35 nm ± 0.006. This contrast previous AUC studies which showed an increase in FIX size 

due to aggregation [16]. These studies reported S20,w values were 4.17 Svedburgs for pd-

FIX measured in the presence of 2 mM EDTA and also for 2.5 mM Ca2+ [16].

Since the presence of Ca2+ exerted a predominant effect on compactionas observed by 

HPSEC, we used the AUC observations obtained for 1.1 mm Ca2+ with or without Mg2+ as 

a statistical group for estimating its impact of the presence of Ca2+ on S20,w : we obtained a 

value S20,w = 3.84 ± 0.014 Svedburgs (n=2) corresponding to R= 4.22 nm ± 0.014. In 

summary, the sedimentation behavior obtained by AUC supports a stark compaction effect 

by Ca2+ both observed by HPSEC and predicted by molecular modeling.

3.8. Estimation of the amount of compaction observed by HPSEC

We used the values of R obtained by AUC for X2+ free pd-FIX and in the presence of 1.1 

mm Ca2+ to estimate column parameters needed to predict the change in R from all other 

HPSEC data. Fig. 8 shows a strong interpolative consistency for the R vs. Ca2+ 

concentration behavior using HPSEC values in the range of 0 to 1.1 mM Ca2+. These values 

were trend-wise consistent with the remaining experimental values obtained by AUC not 

used to calibrate column parameters. At a physiologic level of Ca2+ at about which half 

maximal filling of Ca2+ specific sites occurs in the Gla domain, an overall decrease in R of 

2.7% occurred relative to the X2+ free pd-FIX. An asymptotic decrease in R of about 5.6% 

was observed by HPSEC resulting from the complete filling of X2+ sites at supraphysiologic 

Ca2+ levels. The change in the Rg predicted by our modeling was similar at about 5%. In 

summary, we have shown that the holoprotein compaction phenomena due to both Mg2+ and 

Ca2+ can be quantitatively measured by HPSEC. Furthermore, the sensitivity of this 

measurement provides new insight into the cooperative nature of the folding phenomena 

between Gla and EGF1 domains not provided by previous studies using crystallography, 

circular dichroism and light scattering [14,52-55].

3.10. Scope and Limitations of Determining Compaction with HPSEC and AUC

We have demonstrated the use of HPSEC calibrated by AUC for determining the X2+ 

dependent compaction of VKD proteins. HPSEC is a greatly more facile technique than 

AUC for obtaining replicate analyses needed for statistical comparisons of data sets under 

different conditions. While a significant disadvantage is that at least 25 μg of highly purified 

material must be used to study the compaction with HPSEC, this material is fully 

recoverable. Using these methods, we have demonstrated that HPSEC is capable of 

detecting the changes in the radius of hydration on the scale of ~0.01 nm. The gradual filling 

Vanderslice et al. Page 9

Anal Biochem. Author manuscript; available in PMC 2016 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of X2+ sites in different domains of the VKD holoprotein can be detected on this scale due 

to this sensitivity. Within a purified mixture of rFIX, we showed that HPSEC is grossly 

capable of distinguishing between different levels of -carboxylated species due to 

differences in compaction. This then enables HPSEC to be used for the fractionation of 

subpopulations of VKD proteins from within the mixture.
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Fig. 1. 
Modeled structures of intact FIX without (A) and with (B) X2+ ions predicted from the 

crystallographic data. The Gla, EGF1-like, EGF2-like and the protease domain in FIX are 

colored red, yellow, purple and cyan, respectively. FIX contains 10 Ca2+/Mg2+ binding 

sites, which are numbered 1 through 10; eight of these are in the Gla domain (number 1-8), 

one in the EGF1-like domain (number 9) and one in the protease domain (number 10). The 

Ca2+-specific sites are shown as green spheres, whereas the sites 1, 4, 7 and 8 could be 

occupied by either Ca2+ or Mg2+ are shown as magenta spheres. As a result of X2+ binding, 

a major structural change occurs in the Gla domain and a minor change in the EGF1-like 

domain of FIX. The properly formed ω-loop is clearly visible and positioned below metal 

sites 3, 4 and 5.
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Fig. 2. 
Homogeneity and extent of aggregation of starting samples of purified FIX. SDS-PAGE and 

HPSEC as a function of the injection amount was studied: A) Non-reducing SDS-PAGE of 

purified FIX: Lane 1. Molecular weight markers; Lane 2. FIX (2 μg). Arrow indicates 

proteolyzed pd-FIX. B) HPSEC chromatographic profiles of FIX at 25 μg (curve 1) and at 

50 μg injected (curve 2) at physiologic 1.1 mM Ca2+ and C) HPSEC chromatographic 

profiles of FIX at 25 μg (curve 1) and at 50 μg injected (curve 2) at physiologic 0.6 mM 

Mg2+.
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Fig. 3. 
HPSEC residence time behavior of FIX in the presence of CaCl2 only. In each case, amount 

of FIX injected was 100 μg. A) Curve 1: no X2+, Curve 2: 0.5 mM CaCl2, Curve 3: 1.1 mM 

CaCl2, Curve 4: 5 mM CaCl2, Curve 5: 10 mM CaCl2, Curve 6: 15 mM CaCl2. B) Net 

residence time shift in the HPSEC residence time by FIX with change in CaCl2 

concentration in the range from 0 - 15 mM; inset, magnified view of residence time shift 

induced in the range from 0 – 0.5 mM CaCl2. Each data point condition was performed in 

triplicate with a standard deviation <0.016 minutes. Arrow indicates physiological levels of 

CaCl2.
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Fig. 4. 
HPSEC residence time behavior of FIX in the presence of MgCl2 only. In each case, amount 

of FIX injected was 100 μg. A) Curve 1: no X2+, Curve 2: 0.6 mM MgCl2, Curve 3: 5 mM 

MgCl2, Curve 4: 10 mM MgCl2, Curve 5: 15 mM MgCl2. B) Net residence time shift in the 

HPSEC residence time by FIX with change in MgCl2 concentration in the range from 0 - 15 

mM. Each data point condition was performed in triplicate with a standard deviation <0.016 

minutes. Arrow indicates physiological levels of MgCl2.
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Fig. 5. 
HPSEC residence time behavior of FIX in the presence of physiologic levels of both CaCl2 

and MgCl2: Curve 1: no X2+, Curve 2: 0.6 mM MgCl2, Curve 3: 1.1 mM CaCl2, Curve 4: 

1.1 mM CaCl2 & 0.6 mM MgCl2. Each data point condition was performed in triplicates 

with a standard deviation <0.016. Arrows indicate physiological levels of MgCl2 or CaCl2.
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Fig. 6. 
HPSEC chromatogram of the fractionation of purified r-FIX populations. Table 1 presents 

characterization of Peak 1 and Peak 2. Peak 1) low Gla, inactive r-FIX; Peak 2) high Gla, 

active FIX; Peak 3) FIXa.
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Fig. 7. 
HPSEC net residence time shift of r-FIX in the presence of 0-15 mM MgCl2 and CaCl2. In 

each case, amount of r-FIX injected was 100 μg. A) 0-15 mM CaCl2 B) 0-0.5 mM CaCl2 C) 

0-15 mM MgCl2 D) 0-1.1 mM MgCl2. Each data point condition was performed in triplicate 

with a standard deviation <0.016 minutes. Arrows indicate physiological levels of MgCl2 or 

CaCl2.
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Fig. 8. 
Estimated CaCl2-dependent change in Stokes radius of FIX as measured by HPSEC. R 

values by HPSEC made by correlation method of Laurent and Killander [33], Acker [34], 

and Fish and Reynolds et al. [35]. A) ◆ HPSEC Value; ▲ AUC Value B) ■ Percent change 

in R estimated by HPSEC (%). Arrows indicate AUC values used to determine coefficient of 

the HPSEC correlation.
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Table 1

Total Gla content and activity of purified r-FIX populations fractionated by HPSEC.

Sample Total Gla Content % Gla Activity (Units/mg) % FIXa

pd-FIX 12 Gla 100 200 0

Peak 1 10 Gla >30 3 0

6-9 Gla <70

Peak 2 10-12 Gla >80 249 0

8-9 Gla <20
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Table 2

Sedimentation coefficients and estimated Stokes radii from analytical centrifugation of FIX. The 

sedimentation coefficient S is given for FIX centrifuged in the presence of EDTA, Ca2+ and/or Mg2+.

Solvent
1 S20,w (Svedberg) Stokes Radius (nm)

10 mM EDTA 3.71
4.36

a

10 mM EDTA 3.72
4.35

a

10 mM EDTA 3.72
4.35

a

0.6 mM MgCl2 3.82 4.24

0.6 mM MgCl2 + 1.1 mM CaCl2 3.83 4.23

0.3 mM CaCl2 3.82 4.24

1.1 mM CaCl2 3.85
4.21

a

3.0 mM CaCl2 3.89 4.16

a
Used to determine coefficient of the SEC correlation by methods developed in Laurent and Killander (1964).

1
The buffer contained 50 mM Tris, 0.15 M NaCl, pH 7.5 and either EDTA or X2+ as indicated
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