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Accurately estimating aboveground vegetation biomass productivity is essential for local ecosystem assessment
and best land management practice. Satellite-derived growing season time-integrated Normalized Difference
Vegetation Index (GSN) has been used as a proxy for vegetation biomass productivity. A 250-m grassland bio-
mass productivity map for the Greater Platte River Basin had been developed based on the relationship between
Moderate Resolution Imaging Spectroradiometer (MODIS) GSN and Soil Survey Geographic (SSURGO) annual
grassland productivity. However, the 250-m MODIS grassland biomass productivity map does not capture de-
tailed ecological features (or patterns) andmay result in only generalized estimation of the regional total produc-
tivity. Developing a high or moderate spatial resolution (e.g., 30-m) productivity map to better understand the
regional detailed vegetation condition and ecosystem services is preferred. The 30-mLandsat data provide spatial
detail for characterizing human-scale processes and have been successfully used for land cover and land change
studies. Themain goal of this study is to develop a 30-m grassland biomass productivity estimationmap for cen-
tral Nebraska, leveraging 250-m MODIS GSN and 30-m Landsat data. A rule-based piecewise regression GSN
model based onMODIS and Landsat (r= 0.91)was developed, and a 30-mMODIS equivalent GSNmapwas gen-
erated. Finally, a 30-m grassland biomass productivity estimationmap, which provides spatially detailed ecolog-
ical features and conditions for central Nebraska, was produced. The resulting 30-m grassland productivity map
was generally supported by the SSURGObiomass productionmap andwill be useful for regional ecosystem study
and local land management practices.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Accurately describing and assessing aboveground vegetation bio-
mass productivity is very important for best land management prac-
tices. Previous aboveground vegetation biomass production and yield
information have been derived from ground observations
(e.g., National Agricultural Statistics Service (NASS) crop yield data,
Soil Survey Geographic (SSURGO) rangeland productivity estimates,
and flux tower observations). The limitations of these approaches in-
clude (1) county level statistics with very low spatial resolutions;
(2) sparse field observations that lack the continuous spatial coverage
of vegetation canopy; and (3) spatial discontinuities, such as differences
across state and county lines due to the slightly different criteria for
their soil surveys (Curran & Williamson, 1985, 1986; Gu, Wylie, &
Bliss, 2013; Han, Yang, Di, & Mueller, 2012; Tieszen, Reed, Bliss, Wylie,
& DeJong, 1997). Satellite remote sensing data, which have wide cover-
ages and high spatial and temporal resolutions, have been widely used
for monitoring and characterizing landscape scale vegetation dynamics
and ecosystem services (Anderson, Hardy, Roach, & Witmer, 1976; Gu,

Brown, Verdin, & Wardlow, 2007; Gu & Wylie, 2010; Gu, Wylie, &
Howard, 2015; Potter et al., 1993; Reed et al., 1994; Tucker, Vanpraet,
Sharman, & Van Ittersum, 1985; Wylie et al., 2008). Satellite-derived
growing season integrated (or averaged) Normalized Difference Vege-
tation Index (NDVI) has been used as a proxy for vegetation biomass
productivity because the growing season integrated NDVI (GSN) cap-
tures the seasonal dynamics throughout the growing season
(Becker-Reshef, Vermote, Lindeman, & Justice, 2010; Funk & Budde,
2009; Gu et al., 2013; Gu, Wylie, Howard, Phuyal, & Ji, 2013b; Hobbs,
1995; Ji et al., 2012; Tieszen et al., 1997; Wang, Rich, Price, & Kettle,
2004; Wylie et al., 1995).

In our previous study, we assessed the relationship betweenModer-
ate Resolution Imaging Spectroradiometer (MODIS) GSN and SSURGO
annual grassland productivity for the Greater Platte River Basin
(GPRB) and developed an empirical equation to estimate grassland bio-
mass productivity based on theMODISGSN (Gu et al., 2013). The advan-
tage of MODIS is that it has high temporal resolution (1 to 2 days revisit
time) and awide range of wavelengths (36 spectral bands, wavelengths
range from 0.4 μm to 14.4 μm), which made the MODIS land surface
products reliable and robust (e.g., maximum value composites of NDVI
data, cloud removal, and atmospherically corrected for cloud, cloud
shadows, and aerosols, https://lpdaac.usgs.gov/products/modis_
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products_table/modis_overview). A 250-m MODIS GSN-based grass-
land productivity estimationmapwas generated over theGPRB. The de-
rived grassland productivity estimation map improved the regional
consistency of the SSURGO grassland productivity map and provided
useful information for land management (Gu et al., 2013). However,
this 250-m grassland productivity map can only provide a generalized
ecological condition and coarser scale pattern information of a region
and could not capture more detailed site-specific information for spe-
cific areas. Therefore, a high spatial or moderate resolution (e.g., 30-
m) productivity map is needed to better understand the regional de-
tailed ecosystem condition and services.

An approach was recently developed that combined 250-m
MODIS GSN and 30-m Landsat multiple-date observations to down-
scale MODIS GSN to 30 m and generated a quality improved, atmo-
spherically corrected, high spatial resolution (30 m) GSN map for a
single Landsat path/row located in northeastern Colorado (Gu &
Wylie, 2015). This multiple sensor method retains the detailed sea-
sonal dynamic information captured by MODIS while leveraging
the high-resolution information from Landsat. The derived 30-m
GSN map provides detailed biophysical information for high and
moderate scale ecological features (Gu & Wylie, 2015). The objec-
tives of this study are to (1) apply this previous method (Gu &
Wylie, 2015) to a large area (e.g., two adjacent Landsat path/rows
in central Nebraska with different scene acquisition dates), (2) de-
velop a single rule-based piecewise regression GSN model that
spans the two Landsat path/row data sets (facilitates automation
and regional analysis), (3) predict the 30-m MODIS-Landsat GSN
and investigate the GSN spatial dynamic for the study area, and
(4) develop a 30-m grassland biomass productivity estimation map
for central Nebraska, which will provide spatially detailed ecological
features and conditions of central Nebraska and will be useful for re-
gional ecosystem study and local land management.

2. Materials and method

2.1. Study area

The study area is located in central Nebraska (within the red box in
Fig. 1) and crosses two Landsat path/rows (light blue polygon for path/
row 30/31 and green polygon for path/row 29/31 in Fig. 1). The main
vegetation cover types in the study area are grasslands (~49%) and cul-
tivated crops (~41%). Other vegetation cover types include forest, pas-
ture and hay, and shrubland (Jin et al., 2013). The broad range of
vegetation productivities in the study area (i.e., GSN ranges from 0.3
to 0.8) can help to develop a robust, unbiased, and reliable GSN predic-
tion model.

2.2. Data

2.2.1. Landsat 8 data
Our previous study indicated that GSN can be successfully predicted

based on the three-date (across the growing season) Landsat data and
that the cloud mask data were not useful in the GSN model (Gu et al.,
2015). In this study, we selected three similar dates for each Landsat
path/row (Julian dates 184 and 193, 232 and 241, and 264 and 273 for
each path/row) with low cloud cover during the 2013 growing season.
The 30-m Landsat 8 Level 1 T (Standard Terrain Corrected data which
were the best available Landsat 8 data when this study started, http://
landsat.usgs.gov/Landsat_Processing_Details.php) data for the seven
Landsat 8 bands (bands 2–7 for vegetation mapping and band 9 for
cloud detection) for the three selected dates of each Landsat path/row
were obtained through the Global Visualization Viewer (http://glovis.
usgs.gov/). All Landsat data layers were clipped within the boundary
of the study area (Fig. 1). Pixels outside each Landsat scene but within
the study area were set to “0” (lower panel in Fig. 1) in order to allow

Fig. 1. Location of the study area (inside the red outline), the land cover types as identified by the National Land Cover Database (NLCD) 2011, and the locations of the two Landsat path/
rows (light blue and green polygons). All Landsat 8 variable values were set to “0” when the pixels were outside the Landsat scene but within the study area (lower panel).
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the single overall GSNmodel to successfully recognize the data gaps be-
tween the two selected Landsat path/rows (i.e., “0” value regions in Fig.
1) and force the GSN predictions to use only the available Landsat path/
row scene data (i.e., based on the none “0” data). The 30-m Landsat data
were then upscaled to 250-m using the “spatial averaging” method.

2.2.2. MODIS GSN and grassland mask
The 7-day maximum value composites of 250-m MODIS NDVI data

for 2013 were obtained from the USGS expedited MODIS (eMODIS)
data archive (https://lta.cr.usgs.gov/emodis). An enhanced maximum
value composite algorithm, which filters out input surface reflectance
data with bad quality, negative values, clouds, snow cover, and low
view angles based on the MODIS quality assurance (QA) data, was
used in the eMODIS 7-day composite NDVI generation (Jenkerson,
Maiersperger, & Schmidt, 2010). The 2013 time series of NDVI data
were smoothed using a weighted least-squares approach to reduce ad-
ditional atmospheric noise (Swets, Reed, Rowland, & Marko, 1999). The
2013 growing season averagedNDVIwas then calculated using the start
of season time as early April (∼ Julian date 100) and the end of season
time as late October (∼ Julian date 300). The derived GSN map was ap-
proximately classified into three classes of productivity (low, medium,
or high) based on the GSN values. The USGS 30-m Multi-Resolution
Land Characteristics (MRLC, 2011) data (http://www.mrlc.gov/
nlcd2011.php) were used to identify grassland pixels. A total of
24,295,466 grassland pixels (about 22,000 km2) were located within
the study area.

2.3. Developing a 30-mMODIS-Landsat GSNmap for the two Landsat path/
rows

In this study, we used a data mining method to generate a 30-m
MODIS-Landsat GSN map for the two adjacent Landsat path/rows lo-
cated in central Nebraska. Cubist software (http://www.rulequest.
com),whichdevelops a generalized set of ruleswith associatedmultiple
regressionmodels (a series of piecewise regressions) constrained by the
data ranges of the input variables, was used to build the GSN models.
The main procedures for developing the MODIS-Landsat GSN model
and generating the 30-m GSN map for the 2-Landsat path/row study
area included the following steps:

1. Selected ~9000 randomly stratified samples from the study area
based on the threeMODIS GSN (productivity) classes, with each pro-
ductivity category having ~3000 random samples.

2. Extracted the 250-m MODIS GSN (dependent variable) and the 3-
date 7-band 250-m averaged Landsat 8 data for the two Landsat
path/rows (independent variables) for the selected samples (pixels).

3. Developed a data-driven rule-based piecewise regression MODIS-
Landsat GSN model at 250-m resolution using Cubist.

4. Estimated the 250-m MODIS-Landsat predicted GSN based on the
250-m averaged Landsat 8 data and the derived 250-m GSN model.

5. Generated the GSN absolute difference map at 250-m based on the
actual MODIS GSN and the predicted GSN, evaluated the high error
(i.e., absolute GSN difference ≥ 0.2) areas, and confirmed the accu-
racy and consistency of the derived GSN model prediction. No high
error regions were observed in this study, but if the high error re-
gions were large enough, additional training samples would need
to be selected in these regions and added into the entire training
data set to insure a robust GSN mapping model.

6. Mapped the 30-m MODIS-Landsat predicted GSN by applying the
250-m GSN mapping model to the original 30-m Landsat 8 data.

Fig. 2 is a flowchart summarizing the “2-Landsat path/row down-
scaling GSN” approach presented in this study. The derived 30-m
MODIS-Landsat GSN map was evaluated by comparing it with Google
Earth images, the original 30-m Landsat RGB (Red, Green, Blue) images,
and the 250-m MODIS GSN map.

2.4. Generating a 30-m grassland productivity map for central Nebraska

A 30-m grassland biomass productivity estimation map for central
Nebraska was generated based on the 30-m predicted GSN derived
from this study and an empirical equation (Eq. (1)) in Gu et al. (2013):

Grassland biomass productivity kg ha−1 year−1
� �

¼ 9936:5� GSN−1554 ð1Þ

Eq. (1) was developed based on the eMODIS GSN, and the 30-m pre-
dicted GSN is downscaled eMODIS GSN; therefore, data consistencies
for Eq. (1) are preserved. The spatial patterns and the locations of the
productive and the unproductive grasslands in central Nebraska were
evaluated using the derived 30-m grassland productivity estimation
map. The resulting 30-m grassland productivity estimation map was
assessed and validated by the 30-m SSURGO total biomass productivity
map.

3. Results and discussion

3.1. MODIS-Landsat GSN model for the two Landsat path/rows

A data-driven rule-based piecewise regression MODIS-Landsat GSN
mapping model was developed for the two Landsat path/rows in the
study area at a 250-m spatial resolution. The correlation coefficient

Fig. 2. Flowchart on developing the 2-Landsat path/row 30-m MODIS-Landsat GSN map.
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(r) between the predicted GSN and the actual GSN at 250-m resolution
is 0.91 with a mean absolute error of 0.026 for the 1491 test samples
(Fig. 3a), indicating that the derived 250-m resolution GSN model can
successfully predict GSN across the study area based on the two Landsat
path/row data. The important Landsat variables that were used in the
GSN model are data from Landsat bands 2 to 7. Landsat band 9 (Cirrus
1.36–1.38 μm band, used for detection of cirrus cloud contamination;
http://landsat.usgs.gov/best_spectral_bands_to_use.php) is the least
important variable used in the GSN model (Table 1).

The absolute differencemap between the actualMODIS GSN and the
250-mpredictedGSN indicated that only a very small portion (~0.2%) of
the study area had high absolute GSN difference (≥0.2). These small
areas primarily consisted of open water, cultivated crops, pasture and
hay, and some grasslands. The good spatial agreement at the 250-m res-
olution indicates that the GSN mapping model can successfully recog-
nize useful data availability across the two different Landsat path/rows
and that the GSNmapping model was robust and reliable. This also im-
plies that the 2-Landsat path/row downscaled GSN method can be ap-
plied to the multiple adjacent path/rows (e.g., four or more adjacent
Landsat path/rows).

3.2. 30-m MODIS-Landsat predicted GSN map for central Nebraska

Figs. 3b and 3c are the 30-mMODIS-Landsat predicted GSN and the
250-m MODIS actual GSN maps, respectively, for central Nebraska. The
30-m MODIS-Landsat predicted GSN map (Fig. 3b) provides a spatially
explicit and seamless GSN image despite being estimated from two dif-
ferent Landsat path/rowswith different scene dates (Fig. 1). The general
spatial patterns of the GSN are similar for the 30-m and 250-m GSN
maps (Fig. 3b and c). For example, the GSN values (productivity) in-
crease fromwest to east through the study area because of the different
climate conditions (dry to wet climate conditions). Both 30-m and 250-
mGSNmaps illustrate very lowGSNvalues (i.e., lowproductivity) in the
SandHills ecoregion (within the purple boundary) because of the sandy
soil condition. These results demonstrated the robustness and reliability
of the 2-Landsat path/row MODIS-Landsat GSN model at 250-m
resolution.

Fig. 4 provides a detailed view of a region in Holt County, Nebraska
(Fig. 3b, Box 1): (a) 30-m MODIS-Landsat predicted GSN, (b) Google
Earthmap, and (c) 250-mMODIS actual GSN. The center pivot irrigation
systems are clearly shown in the 30-m GSN and the Google Earth maps
(Fig. 4a and b) but could not be identified from the 250-mMODIS GSN

map (Fig. 4c) because of the coarse spatial resolution. The 30-m
MODIS-Landsat GSN estimation map can even provide very small envi-
ronment features of the region. For example, the “Sand blow out” areas
and the “Fence lines” detected from the Google Earth map (Fig. 4 zoom
maps 1 and 2) were characterized as very low GSN values in the 30-m
GSN estimation map (red areas indicated by the blue arrow in Fig. 4a).
Furthermore, the 30-mGSN estimationmap can reflect the seasonal dy-
namics of a region rather than a single time observation map derived
from Google Earth, since the GSN represents vegetation conditions

Fig. 3. (a) Scatterplots for the actual MODIS GSN and the predicted GSN for the 1491 test samples, (b) 30-mMODIS-Landsat based predicted GSN, and (c) 250-mMODIS actual GSNmaps
for the study area (includes all land covers).

Table 1
Attribute usage in the 2-Landsat path/row rule-based piecewise GSN regressionmodel (at
250-m resolution). Only those variables with ≥40% average usage in the GSN model are
shown in the table. Name explanation: (1) thefirst three characters of the name represent
the Julian dates and (2) B1-9 represent Landsat 8 bands 1–9.

Name Usage in rule
stratification (%)

Usage in
regression model (%)

Average
usage (%)

264B2 61 91 76
184B2 52 90 71
273B4 33 96 65
241B2 26 97 62
273B5 29 93 61
264B5 44 66 55
184B5 22 77 50
241B5 16 82 49
241B3 7 90 49
193B2 6 90 48
241B4 8 87 48
193B6 0 95 48
273B2 5 88 47
264B7 2 90 46
193B4 7 85 46
184B4 11 80 46
264B4 0 90 45
241B6 0 90 45
232B4 13 75 44
273B9 2 86 44
193B5 0 88 44
264B3 0 87 44
241B7 7 79 43
273B6 3 82 43
193B7 8 76 42
193B3 2 81 42
184B7 1 82 42
184B6 5 76 41
273B3 1 79 40
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over the growing season. For example, there is a very low productivity
region located in the southern part of a center pivot system in the 30-

m GSN map (i.e., within the “dark blue oval” in Fig. 4a), implying that
this region might be abandoned land or half harvested land (chopped

Fig. 4. A detailed view of a region in Holt County, Nebraska (Box 1 in Fig. 3b). (a) 30-mMODIS-Landsat predicted GSN for 2013, (b) Google Earth mapwith imagery datedMarch 11, 2012,
and (c) 250-mMODIS actual GSN map for 2013. Zoom 1 and Zoom 2 are the maps from Google Earth. Zoom 3 is the Landsat 8 RGB map obtained from September 30, 2013 (Julian date
273), for the “dark blue oval” region.

Fig. 5. A detailed view of Columbus, Nebraska (Box 2 in Fig. 3b). (a) 30-mMODIS-Landsat predicted GSN for 2013, (b) Google Earth map dated October 06, 2013, and (c) 250-mMODIS
actual GSN map for 2013. Zoom 1 is the 30-m MODIS-Landsat predicted GSN map. Zoom 2 is the map from Google Earth.
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for silage or hayed) (Fig. 4 Zoom 3, Landsat RGB image), but this phe-
nomenon could not be captured by the single-time observation of the
Google Earth map (Fig. 4b “dark blue oval”).

Fig. 5 is an example for a developed region around Columbus, Ne-
braska (Box 2 in Fig. 3b). The detailed ecological and environmental
conditions for the Columbus region are clearly shown in the 30-m
GSN estimation map and the Google Earth map (e.g., the downtown
area, the roads, and the river) (Fig. 5a and b), but did not show up in
the 250-mGSNmap (blurry image in Fig. 5c). An extremely lowGSN re-
gion located in the 30-m GSNmap (Fig. 5a and Zoom 1, black arrow re-
gion) was identified as a gravel pit from the Google Earth map (Fig. 5b
and Zoom2, black arrow region). On the other hand, a very highGSN re-
gion located in the 30-m GSN map (Fig. 5a and Zoom 1, pink arrow re-
gion) was also identified from the Google Earth map (Fig. 5b and
Zoom 2, pink arrow region), which might be a field of alfalfa.

In summary, the derived 2-Landsat path/row based MODIS-Landsat
GSNmodel can successfully predict the 30-m GSN for central Nebraska.
The 30-m MODIS-Landsat predicted GSN map is seamless for the two
Landsat path/rows and provides detailed ecological and vegetation dy-
namic information of the study area, which will be useful for regional
ecosystem study.

3.3. 30-m grassland biomass productivity estimation map for central
Nebraska

Fig. 6a is the final estimated grassland biomass productivity map for
central Nebraska. Large seamless spatial variations of productivity in the
study area can be found in the figure. For example, productivity is low
within the Sand Hills ecoregion because of sandy soils. On the other

hand, productivity is high along the Platte River because of the favorable
vegetation growth conditions and possible intensivemanagement (irri-
gation and fertilization) in that area (Fig. 6a). To illustrate the spatial
variations of productivity in the study area more clearly, two small
boxes representing low productivity (the same Box 1 in Figs. 3b and
6a) and high productivity (Box 2 in Fig. 6a) were selected. Box 1 is lo-
cated within the Sand Hills ecoregion with low grassland productivity;
productivities in most of this box were less than 3300 kg ha−1 year−1

(Fig. 6 Zoom box 1). The sand blow out area and the fence line area
that were previously identified by the Google Earth map (Fig. 4 Zoom
1 and Zoom 2) can also be recognized in the 30-m productivity estima-
tionmap (i.e., very lowproductivity areaswithin the black circle and the
purple oval regions, Fig. 6 Zoom box 1). The highly productive grassland
area within the red circle in Fig. 6 Zoom box 1 is assumed to be an irri-
gated cropland region, which was not identified by the 2011 NLCDmap
but apparent in Google Earth (Fig. 4b red circle). This center pivot was
either misclassified or was a new center pivot irrigation system. Box 2
is located along the LoupRiverwith veryhighgrasslandproductivity; pro-
ductivities in most of this region were greater than 3300 kg ha−1 year−1

(Fig. 6 Zoom box 2). This 30-m grassland biomass productivity estima-
tion map provides spatially detailed biomass productivity information
for central Nebraska, which can be used as a reference for local land
management practices.

3.4. Validation of the 30-m predicted grassland productivity map using
SSURGO biomass production data

To confirm and validate the derived 30-m grassland productivity
map (Fig. 6a), the 30-m SSURGO total biomass production map for a

Fig. 6. (a) 30-mpredicted grassland biomass productivity map for 2013, and (b) 30-m SSURGO total productivity map for a normal year for central Nebraska. Zoombox 1 and box 2 in the
lower panel are the 30-m predicted grassland productivity and the 30-m SSURGO biomass productivity close-up maps for the two selected areas.
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normal year for central Nebraska (Fig. 6b) was used to evaluate the
resultingmap. The SSURGO total biomass productionmap is considered
as the best available high spatial resolution ground observation based
production map. SSURGO data were created county by county through
collaboration with the states and the Natural Resources Conservation
Service (NRCS), each county uses slightly different criteria for their
soil surveys. One disadvantage of SSURGO data is that they have spatial
discontinuities (e.g., differences across state and county lines) (Gu et al.,
2013).

Fig. 6a–b indicates that the general spatial pattern of the 30-m pre-
dicted grassland productivity map is in good agreement with the
SSURGO total biomass productivity map. Both productivity maps show
relatively low productivities in the Sand Hills ecoregion because of the
sandy soil condition. Productivity increases from west to east through
the study area in the two production maps (Fig. 6a and b) because of
the dry to wet climate conditions. The two zoom-in boxes also illustrate
the good agreement in spatial variations of the two productivity maps
and the detailed ecological features that the 30-m predicted productiv-
ity map provided (e.g., “Sand blow out” areas and the “Fence lines”).

Some differences, however, existed between the two productivity
maps because of the different sampling time with the different weather
and climate conditions. For example, the 30-m predicted grassland pro-
ductivities in the Zoombox 1 area are lower than the 30-m SSURGObio-
mass productivities. The reason for this difference is because the
SSURGO data were derived from a normal climate year with a normal
productivity condition, whereas the 30-m predicted grassland produc-
tivity map was derived from a severe drought year (2013) for the box
1 region (http://droughtmonitor.unl.edu/MapsAndData/MapArchive.
aspx) and thus lead to a lowproductivity in that region.One can also no-
tice that the 30-m predicted grassland productivities are relatively
higher than the 30-m SSURGO biomass productivities in some regions
within the Zoom box 2, and may be due to the intensive agricultural
management (e.g., irrigation) in those regions.

To further assess the agreement of the two productivity maps, the
percentage differences between the 30-m predicted productivity and
the SSURGO productivity was estimated (Fig. 7). The result shows that
there is only a small portion (b15%) of the study area that has large pro-
ductivity difference (N30% difference). The large negative difference re-
gions are mainly located within the Sand Hills ecoregion (Fig. 7), and
were mainly caused by the severe drought in 2013. Overall, the derived
30-m grassland productivity map generally agreed with (b30%

difference) the SSURGO biomass productivity map in most regions
(N85%) of the study area, implying that the 30-m grassland productivity
map was generally supported by the ground observations.

3.5. Discussion

In this study, Landsat 8 data were used to develop the 250-m
MODIS-Landsat GSNmodel and predicted the GSN at a 30-m resolution.
Landsat 8 data were used instead of Landsat 7 data in this study (1) to
demonstrate the high quality of 12-bit Landsat 8 data, (2) to avoid the
data gaps that were caused by the failure of the Scan Line Corrector
(U.S. Geological Survey, 2012) in the Landsat 7 data, and (3) to ensure
the high quality of the model training data. Landsat 8 provides an im-
proved signal-to-noise performance that enables more accurate charac-
terization of land cover state and condition (http://landsat.usgs.gov/
landsat8.php) and thus helps to improve the MODIS-Landsat GSN
model robustness and reliability. However, there was only one year
(2013) of Landsat 8 data available for this investigation. In a future
study, we plan to usemultiple year, high-level Landsat 8 data to develop
a long-term 30-m grassland biomass productivity data set for central
Nebraska when more data are available and to advance automation of
this downscaling technique.

Because all the training data used for developing theMODIS-Landsat
GSN model were done at the 250-m resolution to match the MODIS
data, some extreme values (e.g., extreme high or low values) in the
30-m Landsat data may be smoothed by 250-m model development.
Therefore, the 250-m MODIS-Landsat GSN model may not capture the
extreme cases when estimating the 30-m GSN. For example, some ex-
treme low GSN areas (GSN b 0.3, red color in Fig. 3c) in the Sand Hills
ecoregion in the 250-m MODIS GSN map did not show up in the 30-m
predicted GSN map (Fig. 3b). On the other hand, some extreme high
GSN areas (GSN N 0.8, light blue color in Fig. 3c) around the Platte
river region did not show up in the 30-m predicted GSN map (Fig. 3b).
Therefore, addingmoremodel trainingdata points for these extreme re-
gions or applying an “extrapolation” approach for the GSNmodel to es-
timate the 30-m predicted GSN (Gu, Howard, Wylie, & Zhang, 2012) is
proposed in future studies. An “extrapolation” approach is to set a rela-
tively high extrapolation allowance in the GSNmodel, which will allow
a wide range of the predicted GSN values (i.e., beyond themodel devel-
opment data range).

Fig. 7. Percentage difference (PD) map between the 30-m predicted grassland productivity (P) and the SSURGO biomass productivity (S). PD = 100 × ((P− S) / S).
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Using the original 30-m Landsat NDVI data to calculate the 30-m
GSN might be simple and easy; however, the derived GSN values may
bemuch lower than the actual GSN values for the cloud-impacted pixels
(Gu & Wylie, 2015). Based on the results from Gu and Wylie (2015),
using the original Landsat NDVI data to calculate the GSN can cause
large errors, our proposed GSN model can improve the correlation
from the original Landsat scene. The advantage of the approach pre-
sented in this study is that it uses both original Landsat data and atmo-
spherically corrected MODIS GSN data to develop the MODIS-Landsat
GSN model, the derived GSN model captures the growing season long
vegetation dynamics and handles the infrequent cloudy conditions
well (Gu et al., 2015). In summary, this approach retains the advantages
of the MODIS data (e.g., atmospherically corrected for cloud and aero-
sols, high temporal resolution that can capture the detailed seasonal dy-
namic information) but leverages the high-resolution spatial context
from Landsat, which provides an effective method for downscaling the
MODIS GSN data.

Moreover, collecting ground observation data to further validate the
derived 30-m MODIS-Landsat productivity map is needed for future
studies. Examples of ground observations include identifying the spe-
cific land cover types based on ground observations (e.g., NASS Crop-
land Data Layer data or the local land use records) to explain the high
productive areas (e.g., pink arrow area in Fig. 5) and land cover change
(i.e., red circle area in Fig. 6 Zoombox 1map); investigating the cause of
the half harvested region in Fig. 4a and Zoom 3 map (e.g., is it an aban-
doned land?) based on ground observations (e.g., interview the land
owner about their crop histories); and further verifying the grassland
productivity based on NASS or other ground record data.

4. Conclusion

This study developed a 30-m MODIS-Landsat GSN map and esti-
mated grassland biomass productivity for the two Landsat path/rows lo-
cated in central Nebraska. The derived 2-Landsat path/row rule-based
piecewise regression GSN model can successfully predict the GSN
(r= 0.91 and themean absolute error= 0.026). The resulting seamless
30-m grassland biomass productivity estimation map, which provided
spatially detailed ecological features and conditions of central Nebraska,
was generally supported by the SSURGO biomass production map and
will be useful for regional ecosystem study and local land management
practices.
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