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Abstract

Background: Ruminococcus flavefaciens is a predominant cellulolytic rumen bacterium, which forms a multi-enzyme
cellulosome complex that could play an integral role in the ability of this bacterium to degrade plant cell wall
polysaccharides. Identifying the major enzyme types involved in plant cell wall degradation is essential for gaining a better
understanding of the cellulolytic capabilities of this organism as well as highlighting potential enzymes for application in
improvement of livestock nutrition and for conversion of cellulosic biomass to liquid fuels.

Methodology/Principal Findings: The R. flavefaciens FD-1 genome was sequenced to 29x-coverage, based on pulsed-field
gel electrophoresis estimates (4.4 Mb), and assembled into 119 contigs providing 4,576,399 bp of unique sequence. As
much as 87.1% of the genome encodes ORFs, tRNA, rRNAs, or repeats. The GC content was calculated at 45%. A total of
4,339 ORFs was detected with an average gene length of 918 bp. The cellulosome model for R. flavefaciens was further
refined by sequence analysis, with at least 225 dockerin-containing ORFs, including previously characterized cohesin-
containing scaffoldin molecules. These dockerin-containing ORFs encode a variety of catalytic modules including glycoside
hydrolases (GHs), polysaccharide lyases, and carbohydrate esterases. Additionally, 56 ORFs encode proteins that contain
carbohydrate-binding modules (CBMs). Functional microarray analysis of the genome revealed that 56 of the cellulosome-
associated ORFs were up-regulated, 14 were down-regulated, 135 were unaffected, when R. flavefaciens FD-1 was grown on
cellulose versus cellobiose. Three multi-modular xylanases (ORF01222, ORF03896, and ORF01315) exhibited the highest
levels of up-regulation.

Conclusions/Significance: The genomic evidence indicates that R. flavefaciens FD-1 has the largest known number of fiber-
degrading enzymes likely to be arranged in a cellulosome architecture. Functional analysis of the genome has revealed that
the growth substrate drives expression of enzymes predicted to be involved in carbohydrate metabolism as well as
expression and assembly of key cellulosomal enzyme components.
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Introduction

Ruminococci are cellulolytic Gram-positive cocci in the order

‘Clostridiales’, which inhabit the rumen community. They are

responsible for degrading cellulosic plant cell wall material, and

also for solubilizing components that can be utilized by other

rumen bacteria [1]. Members of the Ruminococcus genus were first

described by A. K. Sijpesteijn in the early part of the twentieth

century which were followed by equivalent descriptions by R. E.

Hungate [2,3]. The R. flavefaciens FD-1 strain was first isolated by

Marvin P. Bryant from a bolus containing ruminal microorgan-

isms used to improve rumen function in calves [4]. Although the R.

flavefaciens type strain is C94, its cellulolytic activity is much lower

than that of FD-1, particularly on more crystalline forms of

PLoS ONE | www.plosone.org 1 August 2009 | Volume 4 | Issue 8 | e6650



cellulose [5]. R. flavefaciens strains are known to vary widely in their

activities against intact plant cell wall material, and against

different forms of cellulose, but many strains share with FD-1 the

ability to attack highly crystalline forms of cellulose [6]. Most R.

flavefaciens strains exhibit a preference for more complex sugars, as

evidenced by the uptake of cellobiose but the absence of an uptake

system for glucose [7]. R. flavefaciens-related bacteria are also

thought to play a role in plant cell wall polysaccharide digestion in

the large intestine in herbivorous mammals and in man [8].

The diversity and organization of cellulases and other proteins

involved in plant cell wall breakdown by rumen cellulolytic bacteria

is fundamental to understanding how ruminants extract energy

from their diet. The cellulolytic enzyme system from R. flavefaciens

FD-1 has been shown to include a variety of exo-b-1,4-glucanases,

endo-b-1,4-glucanases and cellodextrinases [9,10,11,12]. Difficul-

ties were encountered in initial fractionation of these enzymes as

they appeared to exist in high-molecular-weight protein complexes

resembling cellulosomes [12,13], and enzymatic activity was lost

rapidly when the complexes were disrupted [12]. Individual b-

glucanase genes (celA, celB, celC, and celD) were cloned from R.

flavefaciens FD-1 with a view to studying their regulation

[14,15,16,17,18]. Meanwhile, parallel studies in the related R.

flavefaciens strain 17 also led to the sequence analysis of a number of

xylanases and cellulases. This revealed the presence of multiple

catalytic modules in xylanases [19,20,21] and the presence of non-

catalytic dockerins [19,22] and of substrate-binding modules [23] in

both cellulases and xylanases. The hypothesis that these dockerin-

containing enzymes are organized into cellulosomes was supported

by the discovery of the sca cluster of genes in R. flavefaciens 17 that

encodes the cohesin-containing scaffolding or anchoring proteins

ScaA, B, C and E [24,25,26,27]. Evidence was obtained in R.

flavefaciens 17 that many enzymes are assembled into the cellulosome

complex via cohesin-dockerin interactions involving the ScaA

‘‘scaffoldin’’ protein, while other, currently unknown, proteins

appear to be accommodated via the ScaC adaptor protein [24,27].

ScaA in turn binds via its C-terminal dockerin to ScaB, which is held

into the cell surface via another cohesin-dockerin interaction with

the cell-wall anchored protein ScaE [25,26]. The homologous sca

cluster has now been identified in R. flavefaciens FD-1 and shows

close alignment in gene order with that in R. flavefaciens 17, although

interesting interstrain differences exist in the modular structures of

ScaA and ScaB [28]. Experimental verification of specific cohesin-

dockerin interactions indicates that a broadly similar cellulosome

organization exists in R. flavefaciens FD-1 and 17 [28]. Genes

encoding several molecular chaperones (groES, groEL, and dnaK)

have also been described from R. flavefaciens FD-1 that could be

involved in the assembly of cellulosome-like structures [29].

Genome sequencing of R. flavefaciens FD-1 offers the prospect of

obtaining far more extensive information on the range and diversity

of enzymatic and structural components of the cellulosome, on its

organization, range of cohesin-dockerin interactions, and on the

regulation and assembly of cellulosomal subunits. At the same time,

significant information is obtained on non-cellulosomal proteins.

Here, the genome of R. flavefaciens FD-1 was sequenced to

approximately 296-coverage, and the resulting collection of

contiguous sequences screened for open reading frames (ORFs)

that may encode proteins involved in fiber-degradation. The large

number of protein-encoding sequences containing dockerin mod-

ules detected indicates that R. flavefaciens FD-1 has the largest

collection of cellulosome-associated proteins of any known fiber-

degrading bacterium thus far described. Comparison with known

enzymes from R. flavefaciens 17 indicates many subtle differences

between the two strains in modular organization among enzymes

involved in lignocellulose degradation. Additionally, gene expres-

sion profiling using microarray technology has allowed us to obtain

functional information about the majority of the genome by

comparing gene expression when R. flavefaciens FD-1 is grown on

cellulose or cellobiose. These experiments have revealed that the

substrate drives expression of the different enzymes involved in the

degradation of cellulosic material, and suggests that the cellulosome

plays a central role in this process.

Results and Discussion

Assessing functional coverage of the R. flavefaciens FD-1
draft genome

In combination with suppressive subtractive hybridization

(SSH) sequences obtained from our previous comparative studies

of R. flavefaciens FD-1 and JM1 [30], 430,226 sequence reads from

GS FLX pyrosequencing and 28,681 ESTs from Sanger

sequencing were assembled using the PHRED/PHRAP system

[31,32,33], producing 119 primary contiguous sequences (Table 1).

These contigs range in size from 205 bp (i.e. single unique reads)

to 31,187 bp. A total of 4,339 ORFs were identified in R.

flavefaciens FD-1. Of these, 2,289 (52.8%) could be assigned to

biological role categories, 385 (8.9%) were conserved hypothetical

proteins or conserved modular proteins, 422 (9.7%) were of

unknown function, 79 (1.8%) were unclassified with no assigned

role category, and 1,241 (28.6%) encoded hypothetical proteins.

There appears to be one ribosomal operon harboring single copies

of genes encoding the 16S and 23S rRNA molecules.

The total amount of unique sequence is 4,573,803 bp with an

average GC content of 45%. This compares with an approximate

estimate of 4.4 Mb genome based on pulsed-field gel estimates for the

genome of the closely related strain, R. flavefaciens 17. According to the

Poisson distribution, 296 coverage worth of genome sequencing

should produce approximately 99.999% of the genome. An inventory

of functional sequences was conducted based on TIGR’s Annotation

Engine output. It was decided to focus first on sequences related to

amino acid biosynthesis for which we expected relatively conserved

biosynthetic pathways. Previously, a gapped genomic approach was

Table 1. Summary of genome characteristics and features for
Ruminococcus flavefaciens FD-1.

Molecule length 4,576,399 bp

GC content (%) 45

Total number of open reading frames 4,339

assigned function 2,289 (52.8%)

conserved hypothetical 385 (8.9%)

unknown function 422 (9.7%)

unclassified, no assigned role category 79 (1.8%)

hypothetical proteins 1241 (28.6%)

Average gene length (base pairs) 918

Transfer RNA 56

Ribosomal RNA 7

ncRNA 2

Ribozyme 1

tmRNA 1

Percent coding (%) 87.1

Percent coding or tRNA, rRNA, or repeat (%) 87.1

doi:10.1371/journal.pone.0006650.t001

Genome R. flavefaciens
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used to provide a functional analysis of amino acid metabolism of

Thiobacillus ferrooxidans and to estimate the extent of genome coverage

[34]. Rumen bacteria, such as R. flavefaciens, have long been

documented to require free ammonia in the medium, therefore the

organism must be able to synthesize all of the necessary amino acids

de novo [35,36]. MetaCyc was utilized to help visualize the metabolic

steps for each of the amino acid families [37].

Of the 90 expected ORFs necessary for biosynthesis of the

major families of amino acids in R. flavefaciens FD-1, 83 were

detected suggesting that the overall genome size predicted by

PFGE may be an underestimate. Nineteen ORFs encode enzymes

involved in the biosynthesis of aromatic amino acids, and 19 ORFs

encode enzymes involved in biosynthesis of the aspartate family of

amino acids. In addition 23 ORFs were involved with the

biosynthesis of the glutamate family, 19 ORFs with the pyruvate

family, eight ORFs with the serine family and ten ORFs with the

histidine family of amino acids (Table S1).

An inventory of full and partial ORFs revealed several

sequences that matched those obtained previously by cloning

and sequencing of individual genes. These include genes

implicated in cellulose degradation (celA, celB and celD), as well as

ammonia assimilation, and the heat shock (general stressor)

response. This genome assembly has corrected for sequencing

errors in the celB sequence currently in GenBank (gi|736356).

Genome sequencing showed that the celB gene is actually 3471 bp,

and has homology with the R. flavefaciens 17 family 44 cellulase.

New features of the celB protein are a CBM, T-rich linker region

and a dockerin domain. No sequence was detected for celE

(gi|152634). Sequences matching the previously sequenced

glutamate dehydrogenase (gdhA; gi|27461937) and glutamine

synthetase type III (glnA; gi|2895903) were also represented in

the draft sequence data: ORF01204 and ORF03347, respectively.

Several ORFs that were identified match the cloned heat shock

genes: ORF01108 and ORF02365 (for dnaK; gi|37779192) and

ORF03100 and ORF03101 (for groESL; gi|37779196).

Cellulases and associated glycoside hydrolases
Based on comparison with the Carbohydrate Active Enzymes

(CAZy) database (http://www.cazy.org) [38], sequences from the

R. flavefaciens FD-1 genome were classified according to families

and modules. Glycoside hydrolases, including those found in

cellulases and hemicellulases (the latter referred to as xylanases and

mannanases), have been organized into 114 families in the CAZy

database. ORFs containing at least one predicted GH module can

be seen in Table S2. The distribution of the 25 glycoside hydrolase

families identified in R. flavefaciens FD-1 is dominated by families 5

and 9 (14 and 12 identified catalytic modules, respectively;

Figure 1). These GH modules are characteristic of processive,

endo-acting beta-1,4-glucanases. The repertoire of detected GH

modules is summarized in Figure 1A and, in addition to families 5

and 9, includes representatives of families 2, 3, 10, 11, 13, 16, 18,

24, 25, 26, 31, 36, 42, 43, 44, 48, 53, 74, 77, 94, 95, 97, and 105.

The presence of a GH family 48 module in ORF03925 is

indicative of the presence of a processive exo-acting beta-1,4-

glucanase. This ORF is also phylogenetically related to Cel48A

from R. albus [39], which provides further evidence that this

enzyme is a processive exo-acting enzyme (Figure S1; Table S3). A

dockerin has also been detected in the same ORF supporting its

integration into the R. flavefaciens FD-1 cellulosome.

Genes associated with the breakdown and utilization of
xylans

One of the GH family 3 modules found in ORF02396 is

homologous with the GH3 module from a b-xylosidase gene,

which is included in a xylan utilization operon previously

identified in R. flavefaciens 17 [40]. This GH3 enzyme is presumed

to function as a b-xylosidase and/or a-arabinofuranosidase, since

these activities were associated with the cloned region [41].

Homology extends downstream to include the gene for xylose

isomerase (xsi), and three genes encoding components of an ABC

transporter system (ugpA, B and E) (Figure 2). The gene encoding

xylulokinase is located elsewhere in the FD-1 genome (ORF02846)

whereas in most bacteria it is adjacent to the isomerase gene.

ORF02390 encoding a dockerin-containing protein is found

immediately downstream of the transporter genes in FD-1, while

the gene for another dockerin-containing protein, XynD [20], is

encoded by the region upstream of the GH3 xylosidase in R.

flavefaciens 17 (Figure 2).

ORFs that include GH10 or GH11 xylanase modules

commonly showed multiple catalytic modules. In one case, GH

modules representing family 10 and 43 are detected in the same

ORF (ORF03865; Table S2). One larger ORF (ORF03896;

4.5 kb) appears to encode a tetrafunctional endo-1,4-b-xylanase/

acetyl xylan esterase, with a predicted molecular weight of

167,983 Da. The ORF contains several modules separated by

glutamine-asparagine-rich linkers – two glycoside hydrolase 11

modules, a GH family 10 module, a CBM family 22 module, and

a carbohydrate deacetylase at the C-terminal end. Additionally, a

dockerin module is present indicating that it is cellulosome

associated. This ORF was previously identified in the suppressive

subtractive hybridization comparisons with R. flavefaciens JM1;

[30]. Southern blots had indicated that both the GH 10 and 11

modules appeared in at least two separate EcoRI restriction

fragments, and support the modular arrangement described in

Table S2. A comparison of the modular organization inferred for

xylanolytic enzymes from R. flavefaciens strains FD-1 and 17 is

shown in Figure 3, which shows that while similar features are

present, no two modular arrangements are identical between the

two strains. The non-cellulosomal (ie. non dockerin-containing)

enzyme XynA from R. flavefaciens 17 was previously reported to

include a large NQ-rich linker, interconnecting GH11 and GH10

modules [21]. Although T-rich linkers are predominant in

glycoside hydrolases from FD-1, three gene products were

detected that carry NQ-rich linkers, or in one case a mixture of

T-rich and NQ-rich linkers (Figure 4). The average amino acid

composition of the five linkers within FD-1-ORF03896 (33% N,

35% Q, 10% W) was quite similar to that of the single large linker

in R. flavefaciens 17 XynA (45% N, 26% Q, 16% W) [21]. The

presence of the aromatic residue tryptophan in such linker regions

is particularly unusual.

Carbohydrate-binding modules
Permutations of glycoside hydrolases and carbohydrate-binding

modules that occur in R. flavefaciens FD-1 are displayed in Table

S4. The presence of CBMs in tandem with catalytic modules

provides prolonged association with the substrate and can be

found at either the N- or C-terminus of fiber-degrading enzymes.

They are usually separated from the catalytic module by linker

segments that are rich in proline, threonine and serine residues

[42]. Over half of the identified CBMs in R. flavefaciens FD-1 are

family 22 and 35 (Figure 1). Members of CBM families 3, 4, 6, 13,

32, and 48 were also identified. Additionally, there were 5 putative

CBM modules that are presently unclassified in CAZy. The five

CBM family 3 modules in the R. flavefaciens FD-1 genome were all

found in tandem with a GH9 module. All five CBM3 modules fell

within the CBM3c subfamily when compared to CBM3 modules

from other organisms (Figure S2; Table S5). When paired with a

particular subfamily of GH9, the CBM3c subfamily is thought to

Genome R. flavefaciens
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Figure 1. Abundance of glycoside hydrolase modules and carbohydrate-binding modules detected in R. flavefaciens FD-1. A. The 101
GH family modules predicted in R. flavefaciens FD-1. B. The 68 detected CBMs, according to family type.
doi:10.1371/journal.pone.0006650.g001

Genome R. flavefaciens
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Figure 2. Comparison of chromosomal regions encoding xylose isomerase and associated genes involved in utilization of xylo-
oligosaccharides between R. flavefaciens strains FD-1 and 17.
doi:10.1371/journal.pone.0006650.g002

Figure 3. Modular structures of multi-modular enzymes involved in xylan breakdown from R. flavefaciens FD-1 and 17. Catalytic
modules are indicated by glycoside hydrolase enzyme family (GH10, GH11, CE3 etc). Families of carbohydrate binding modules (CBM22 etc) and
dockerin modules (Doc) are also indicated. All complete ORFs carry a predicted signal peptide at the N terminus (not shown). Incomplete ORFs are
indicated by an asterisk.
doi:10.1371/journal.pone.0006650.g003

Genome R. flavefaciens
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contribute in some cases to the property of processivity, allowing

the enzyme to exhibit both endo- and exoglucanase activities

[43,44,45]. The fact that none of the CBM3s map into subfamilies

3a or 3b indicates that none of them fulfill a defined binding

capacity for crystalline cellulose. In ten ORFs, multiple CBMs are

detected (ORF01222, ORF01406, ORF1541, ORF02983,

ORF3116, ORF03219, ORF3447, ORF03865, ORF4012, and

ORF04293). Of the 52 GHs found in tandem with CBMs, eight

are of the GH43 family and all eight are encoded in tandem with

dockerins. The majority of these encode arabinofuranosidases and

arabinases. A close homologue was also found in ORF01571-

ORF01570 for the new CBM family of cellulose-binding module

that was identified adjacent to the GH44 catalytic module of R.

flavefaciens 17 EndB (Cel44A) enzyme [23]. Another suspected new

CBM is present in the EndA cellulase of R. flavefaciens 17 [22] and

again a close homologue was detected in R. flavefaciens FD1

(ORF01388). Homologues (ORF03116) were also detected for the

two new CBMs recently detected in the cell wall-attached, non-

catalytic, dockerin-containing protein CttA that is encoded by the

sca gene cluster [46].

Phylogenetic relationships of GH5 and GH9 catalytic
modules

The hypothetical translations representing the most prevalent

glycoside hydrolases (GHs) detected (families 5 and 9) were aligned

with other GH representatives from a variety of other fiber-

degrading organisms using ClustalX [47]. The neighbor-joining

tree produced from the GH family 5 alignment demonstrates an

Figure 4. Instances of unusual NQ-rich linker regions in enzymes from R. flavefaciens FD-1 and 17. The linker sequences are shown in full,
while the catalytic modules and binding modules that they connect are indicated by appropriate abbreviations (GH10 etc).
doi:10.1371/journal.pone.0006650.g004

Genome R. flavefaciens
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interesting phenomenon with relation to repeated modules within

the same ORF (Figure S3; Table S6). Most known GH5 enzymes

show cellulase activities, although numerous members of this

family display xylanase and mannanase activities. In the GH

family 5 phylogeny the two modules from ORF01388 appear less

related to each other relative to the other representatives. The N-

terminal module (ORF01388a) appears more closely related to the

GH family 5 module detected in ORF00389 and ORF02868 and

map together with known endoglucanases from R. albus and R.

flavefaciens strain 17, whereas the C-terminal module from

ORF01388 (ORF01388b) appears more closely related to the

module detected in ORF00227, both of which are predicted

mannanases. ORF03338 and ORF04165 map on a branch

together with known xylanases.

As indicated in the previous section, five of the twelve GH

family 9 modules, contained in ORF01045, ORF01053,

ORF01132, ORF02970, and ORF02981, appear in tandem with

CBM subfamily 3c modules. In these five processive endogluca-

nases, the family 3c CBMs appear adjacent to the GH family 9

module, towards the C-terminal end of the polypeptide (Table S2).

The five GH9-CBM3c enzymes present one of the major thematic

architectural schemes, which characterize this family of cellulases.

The five GH9 catalytic modules map on one of the major

branches of the phylogenetic tree (Figure S4; Table S7), together

with two other GH9 modules (ORF01327 and ORF01899), each

of which bears a module currently annotated as an unknown

module in place of the CBM3c. It will be interesting in the future

to determine whether this type of unknown module functions as a

CBM and modulates the activity characteristics of the GH9

catalytic module. The remaining five family GH9 enzymes of R.

flavefaciens FD-1 map on the phylogenetic tree on the second major

branch together with GH9 enzymes of other bacterial species that

include a family 4 CBM (Figure S4; Table S7). Indeed, all five of

the latter enzymes bear an N-terminal CBM4, in accord with a

second major thematic architectural scheme of the GH9 enzymes.

In contrast to the situation with polypeptides that carry GH10

and GH11 xylanase modules (Figure 3), there were rather few

instances where GH5 or GH9 modules were combined with other

catalytic modules in the same polypeptide. Thus for the six

completed ORFs that include a GH5 module, and the four

completed ORFs that include a GH9 module, these were the only

identified catalytic module present, as opposed to some examples

of multiple catalytic modules that occur in GH9 and GH5

enzymes of the Clostridium thermocellum cellulosome. Among

incomplete ORFs, however, one (ORF01388) showed evidence

of two GH5 modules of divergent specificities.

Presence of cellulosome components in R. flavefaciens
FD-1 – scaffoldins and complementary cohesin and
dockerin modules

Scaffoldin sequences have been previously described and

characterized for R. flavefaciens 17 [24,25,26,48]. Using this

sequence information, FastA searches of the R. flavefaciens FD-1

genome sequence were initially conducted in order to determine

what components are maintained between R. flavefaciens strains,

particularly components crucial to cellulosome formation. This led

to the subsequent sequence and functional analyses between the

scaffoldins of strains 17 and FD-1 described recently [28]. These

studies showed a general similarity in cellulosome organization

between the strains, including homologs of ScaA, ScaB, ScaC, and

ScaE (see Table S8). However, the studies also revealed that ScaB

from the FD-1 strain is comprised of two divergent cohesin types,

unlike ScaB from strain 17, which is comprised of a single cohesin

type. This description of scaffoldins in R. flavefaciens complements

the previous identification of dockerin-like modules in both R.

flavefaciens and R. albus [22,49,50,51]. The presence of dockerin-

containing proteins in R. flavefaciens FD-1 was expected, given the

presence of cohesin-carrying scaffoldins. According to our

analyses, the genome appears to encode for 225 dockerin-

containing proteins (including those found in the aforementioned

scaffoldins). The dockerins are found within almost all of the

glycoside hydrolase-containing ORFs (Figure 1A and Table S2).

Signal peptides were detected in all completed ORFs that include

a dockerin, thus indicating secretion of these proteins (Table S8).

Presence of non-carbohydrate active enzyme dockerin-
containing ORFs

Analysis of the cellulosome associated ORFs revealed an

astonishing number of non-carbohydrate acting enzymes linked

to dockerins that made up 21% of the cellulosome associated

ORFs. These ORFs include such modules as leucine rich repeats

(LRR), transglutaminases, and serine protease inhibitors (SER-

PIN). Although these modules may not have a direct role in plant

cell wall degradation, they could play a role in cell adhesion and

protein-protein interactions. The LRR modules in particular have

been shown to form protein-protein interactions [52], and thus

they could act as a new type of cohesin.

Comparing abundance of carbohydrate active enzymes
among cellulolytic bacteria and the rumen metagenome

A recent study by Brulc et al. [53] sequenced the metagenome

of the rumen of three steers, and looked specifically for

carbohydrate active enzyme (CAZy) families in both the

planktonic and fiber-adherent fractions of the rumen contents.

The results of this study showed a large variety and abundance of

GH families, most of which can also be found within the genomes

of R. flavefaciens FD-1 and C. thermocellum (Table 2a). The most

abundant GH families in both R. flavefaciens FD-1 and C.

thermocellum are the GH families 5 and 9, whereas in the rumen

metagenome the GH families 2 and 3 had the highest number of

copies detected. The most likely reason for this is due to the fact

that both R. flavefaciens and C. thermocellum specialize in crystalline

cellulose degradation and thus two of the cellulase families are seen

in the highest abundance, whereas in the rumen environment the

population of cellulolytic bacteria is low compared to the overall

microbial population and thus we see comparatively few cellulases

detected. Alternatively, there may be difficulties in releasing of

DNA from ruminococci as they are Gram positive and are in tight

association with insoluble substrate. In the C. thermocellum and R.

flavefaciens FD-1 genomes there are also many types of CBMs,

though few were detected in the rumen metagenome (Table 3).

The most abundant CBMs in the R. flavefaciens FD-1 genome were

from family 22 (19 copies), and in the C. thermocellum genome the

most abundant CBMs were from family 3 (23 copies). The total

number of carbohydrate esterases (CE) detected in the rumen were

comparable to the numbers seen in the R. flavefaciens and C.

thermocellum genomes (Table 3). A single polysaccharide lyase (PL)

was detected in the rumen samples, but the number of PLs

compared to other carbohydrate active enzyme types was also

rather low in both genomes (Table 3). The feature unique to R.

flavefaciens FD-1, however, is the large copy number of dockerin

sequences (225) compared to C. thermocellum (76 copies). Surpris-

ingly, a mere 3 copies of dockerin modules were detected in the

rumen metagenome (Table 3), which is most likely due to the

rarity of cellulosome-based systems for plant cell wall degradation

within the rumen community and the limits of the short

pyrosequencing read lengths, as described by Brulc et al [53].
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Table 2. Comparison of copy numbers of glycoside hydrolase (GH) families in the genomes of R. flavefaciens FD-1 (Rf) and
Clostridium thermocellum (Ct), and the pyrosequenced rumen metagenome.

CAZy Family Ct genome Rf FD-1 genome Pooled Liquid Fiber-Adherent 8 Fiber-Adherent 64 Fiber-Adherent 71

GH1 2 0 7 4 7 20

GH2 1 2 218 185 228 114

GH3 3 6 207 194 207 96

GH4 0 0 16 9 7 2

GH5 11 14 7 11 5 4

GH8 1 0 8 3 4 ND

GH9 16 12 7 6 6 5

GH10 6 6 10 5 7 4

GH11 1 11 2 ND 1 ND

GH13 2 4 47 36 37 39

GH15 1 0 ND ND ND 1

GH16 2 5 ND ND ND 1

GH18 3 1 2 ND 3 1

GH23 2 0 ND ND ND ND

GH24 0 1 ND ND ND ND

GH25 0 9 1 1 ND ND

GH26 3 6 2 5 6 5

GH27 0 0 16 21 23 5

GH28 0 0 9 9 ND ND

GH29 0 0 31 34 29 16

GH30 0 0 3 3 2 1

GH31 0 1 101 72 80 42

GH32 0 0 12 8 5 2

GH33 0 0 2 ND 1 1

GH35 0 0 21 8 9 10

GH36 0 1 47 43 48 48

GH38 0 0 22 16 19 11

GH39 0 0 2 3 3 1

GH42 0 1 10 7 15 13

GH43 6 10 68 72 69 35

GH44 1 2 ND ND ND ND

GH48 2 1 ND ND 1 ND

GH51 1 0 73 54 86 44

GH53 1 1 15 16 18 17

GH54 0 0 ND ND 3 1

GH57 0 0 2 ND ND 1

GH74 1 1 ND ND ND ND

GH77 0 1 ND ND 2 ND

GH78 0 0 41 37 38 18

GH81 1 0 ND ND ND ND

GH92 0 0 43 67 66 28

GH94 3 1 ND ND ND ND

GH95 0 1 ND ND ND ND

GH97 0 2 47 67 59 20

GH105 0 1 ND ND ND ND

GH106 0 0 9 9 11 4

Total GH 70 101 1108 1005 1105 610

doi:10.1371/journal.pone.0006650.t002
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None of the dockerin modules from the rumen metagenome were

consistent with those of R. flavefaciens FD-1.

Microarray gene expression profiling upon growth of R.
flavefaciens FD-1 on cellulose or cellobiose

A clone-based cDNA microarray was created by amplifying

clone inserts from the most recent library used in the sequencing of

the R. flavefaciens FD-1 genome to compare gene expression when

R. flavefaciens FD-1 was grown on cellulose or cellobiose as a carbon

and energy substrate. Clone sequences encoding ORFs believed to

be associated with the cellulosome or involved in degradation of

polysaccharides, were identified by BLAST searches of a local

database and by the genome annotation of R. flavefaciens FD-1,

which was provided by TIGR’s Manatee annotation engine.

Normalized signal ratios for each spot corresponding to ORFs

involved in polysaccharide degradation were calculated represent-

ing gene expression for cells grown on cellulose compared to those

grown on cellobiose. Clones with an FDR-adjusted p-value less

than 0.5 were considered significant. A transcript was considered

to be up-regulated if the average of the signal ratio for the ORF

was 2-fold or greater, and considered down-regulated if the

average of the signal ratio was 0.5-fold or less. The expression of

any gene transcript falling below 2-fold and above 0.5-fold was

considered to be unaffected by the substrate [54].

Cellulosome-associated ORFs included any ORF that encoded

a dockerin module. As reported above, the draft genome of R.

flavefaciens FD-1 encodes 225 predicted dockerin modules. These

ORFs, the number of clones in each ORF that was included on

the microarray, and the corresponding average signal ratios can be

Table 3. Comparison of copy numbers of carbohydrate active enzyme families in the genomes of R. flavefaciens FD-1 (Rf) and
Clostridium thermocellum (Ct), and the pyrosequenced rumen metagenome.

CAZy Family Ct genome Rf FD-1 genome Pooled Liquid Fiber-Adherent 8 Fiber-Adherent 64 Fiber-Adherent 71

CBM3 23 5 ND ND ND ND

CBM4 4 7 ND ND ND ND

CBM6 10 3 ND 1 ND ND

CBM9 1 0 ND ND ND ND

CBM11 1 0 ND ND ND ND

CBM13 2 10 1 ND 1 2

CBM22 4 19 ND ND ND ND

CBM25 2 0 ND ND ND ND

CBM30 1 0 ND ND ND ND

CBM32 1 3 ND 3 ND 1

CBM35 7 13 ND ND ND ND

CBM42 4 0 ND ND ND ND

CBM44 1 0 ND ND ND ND

CBM48 1 2 ND ND ND ND

CBM_NC* 0 6 ND ND ND ND

CE1 3 8 5 10 22 8

CE2 1 3 1 1 1 ND

CE3 1 3 ND ND ND ND

CE4 3 5 6 2 5 4

CE6 0 0 ND ND ND 1

CE7 1 0 ND 2 3 1

CE8 1 1 ND ND ND ND

CE9 2 0 ND ND ND ND

CE12 1 5 ND ND ND ND

CE15 0 1 ND ND ND ND

PL1 2 6 ND ND ND ND

PL9 0 1 ND 1 ND ND

PL11 1 6 ND ND ND ND

COH 29 18 ND ND ND ND

DOC 76 225 2 ND 1 ND

Total CBM 62 68 1 4 1 3

Total CE 13 26 12 15 31 14

Total PL 3 13 0 1 0 0

*Not characterized.
doi:10.1371/journal.pone.0006650.t003
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seen in Table S9. Of these 225 cellulosome-associated ORFs: 56

were up-regulated, 14 were down-regulated, 135 were unaffected,

and 20 were not represented on the microarray. The 20 dockerin-

containing ORFs not represented on the microarray due to the

inclusion of only 26 coverage of the genome on the microarrays

included numerous additional modules and/or domains: 15 ORFs

contain domains of unknown function, the remaining five ORFs

contain a serpin, a leucine-rich (LRR) domain, a CBM4-GH9, a

CBM35-GH26, and a GH18.

The Sca cluster in R. flavefaciens FD-1, which includes the main

scaffoldins: ScaA, ScaB and ScaC, was significantly up-regulated

en bloc approximately 4.5 fold, which suggests that these genes are

co-expressed either as a polycistronic mRNA or sharing the same

regulator with similar affinity for these genes. The last two genes of

the Sca cluster, cttA and ScaE, do not appear to be co-expressed

with ScaA, ScaB, and ScaC, and appear to have different

regulators. The last scaffoldin gene of the cluster – the putative

cellulosome anchoring scaffoldin, ScaE, had significant relative

expression of 2.94. The product of the linked gene cttA, exhibited a

relative expression of 0.75 fold and thus appeared to be unaffected

by the substrate. Fold changes for ScaA, ScaB, ScaC, and ScaE

can be seen in Table S9. Of the other putative scaffoldins,

ORF00794, ORF04069, and ORF04333 were unaffected,

ORF03129 appears to be down-regulated (0.47 fold) and

ORF01453 was significantly up-regulated 4.27 fold.

Results for some other genes were of particular interest.

ORF01132 contains a family-9 processive endoglucanase, which

has been described as an important cellulosome component of

other species of bacteria [55,56,57]. This processive endogluca-

nase was up-regulated 4.49 fold. CelA (ORF00507) and CelD

(ORF01899) were unaffected (1.10 fold) and up-regulated (4.93

fold) respectively (Table S10), which is consistent with previous

results [18,58]. CelB (ORF01869) was unaffected (1.13 fold; Table

S9), which contradicts previous data that indicated that it was

inducible by cellulose [17,58,59]. A putative exo-acting GH48 of

the R. flavefaciens FD-1 genome (ORF03925) was unaffected by the

substrate, unlike the observed up-regulation of the C. thermocellum

cellulosomal GH48 [60,61,62]. These apparently different expres-

sion patterns are likely due to the different environmental

conditions to which these two bacteria are exposed, including

oxygen concentrations and plant cell wall substrate type.

The proportion of cellulases compared to enzymes cleaving

non-cellulosic plant cell wall polysaccharides and other ORFs

within the cellulosome-associated ORFs that encode a dockerin

module is shown in Figure 5. Cellulases (GH families 5, 8, 9, and

48) made up 25% of the up-regulated ORFs compared to 10% of

all dockerin-encoding ORFs. The enzymes cleaving non-cellulosic

plant cell wall polysaccharides made up 23% of all dockerin-

encoding ORFs and 34% of the up-regulated cellulosomal ORFs.

Enzymes cleaving non-cellulosic plant cell wall polysaccharides

Figure 5. Proportions of cellulases, enzymes cleaving non-cellulosic plant cell wall polysaccharides (including carbohydrate
esterases) and other predicted ORFs among the total cellulosome-associated genes and the up-regulated cellulosome-associated
ORFs. Up-regulated genes are those dockerin-containing ORFs that have fold changes of 2-fold or greater when grown on cellulose. For the
purposes of this work, the putative cellulases include any ORF containing glycoside hydrolase (GH) families 5, 8, 9, and 48. The enzymes cleaving non-
cellulosic plant cell wall polysaccharides (mainly hemicellulases) include ORFs containing GH families 10, 11, 16, 26, 43, 44, 53, 74 105, some
subfamilies of GH5, all families of polysaccharide lysases (PL) and carbohydrate esterases (CE). ORFs that did not have any significant hits in the
database are grouped as ‘‘unknown,’’ and ORFs that do not fall into any of the previous categories are grouped as ‘‘other.’’ Putative b-glucosidases
and b-xylosidases were ORFs containing sequences consistent with GH family 3.
doi:10.1371/journal.pone.0006650.g005
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also accounted for some of the highest relative expression when

grown on cellulose. The three cellulosome-associated ORFs with

the highest regulation were the multi-modular xylanases: SIGN-

GH11-CBM22-GH10-DOC-CBM22-CE4 (ORF01222), SIGN-

GH11-CBM22-GH10-DOC1-GH11-CE4 (ORF03896) and

SIGN-GH11-CBM22-DOC-GH11-CE3 (ORF01315) with re-

spective significant relative expression levels of approximately 63,

50, and 25 fold above those of cellobiose-grown cells. The

predicted ORF03896 product is one of the ORFs containing NQ-

rich, rather than T-rich linker sequences. Such linkers have been

reported previously in only one non-cellulosomal xylanase from R.

flavefaciens 17 that also included GH11 and GH10 catalytic

modules [21].

Non-cellulosomal open reading frames, i.e. those ORFs that do

not contain a dockerin module, are listed in Table S10. Of the 71

genes included in this list, 4 (6%) were up-regulated, 6 (8%) were

down-regulated, 54 (76%) were unaffected, and 7 (10%) were not

included on the microarray. The genes that are not on the

microarray are composed of five GH family 25 modules (two of

which are found in a single ORF), a GH family 3 module, a CBM

family 22 module, and a glycosyltransferase family 28 module.

Comparison of relative gene expression using
quantitative real-time reverse transcriptase PCR

RNA samples that were extracted from cellulose- and

cellobiose-grown cultures of R. flavefaciens FD-1 were used for

quantitative real-time reverse transcriptase PCR (qRT-PCR), in

order to validate the microarray data. The same RNA samples

that were used for the microarray experiments were used for these

qRT-PCR experiments. Five genes of particular interest to us were

selected based on their putative function and/or dramatic change

in relative gene expression between the two conditions. These

genes include: a multi-modular xylanase (ORF03896), a GH

family 9 processive endoglucanase (ORF01132), a GH family 48

exoglucanase (ORF03925), ScaA (ORF03114), and a highly

down-regulated dockerin-containing gene of unknown function

(ORF04112). The primer sequences for these genes and the

normalization gene, gyrA, are listed in Table S11. The gene, gyrA,

was chosen as a reference gene to normalize the qRT-PCR data

because it did not have a statistically significant change in

expression, based on the results of the microarray experiments,

and it has been commonly used as a normalization gene for

bacteria in other studies [63,64,65,66]. The 16S gene was also

intended for use as a normalization gene, but was found to

produce inconsistent results with these samples (data not shown). A

relative standard curve method was used to determine the relative

expression of these genes (Applied Biosystems User Bulletin 2;

[67]). Serial dilutions of R. flavefaciens FD-1 genomic DNA were

used to generate standard curves to determine the relative copy

numbers of the cDNA samples by correlating the samples to

particular concentration.

The qPCR data confirmed the up-regulation of three ORFs,

and the down-regulation of one, although the magnitude of the

regulatory changes was greater than in the microarray study

(Table S12, Figure 6). In the case of the GH48 enzyme encoded by

ORF03925, up-regulation was detected by qPCR but not by

microarray. The difference between the qPCR and microarray

data for ORF03925 could be due to decreased sensitivity of the

microarray or could be explained by a low correlation between

microarray and qPCR results in genes that exhibit low changes in

expression between treatments [68]. The qPCR results, which

indicate up-regulation of the GH48 enzyme, are more in accord

with the previously reported data for the orthologous C.

thermocellum enzyme [60,61,62].

Conclusion
Portions of the cellulolytic enzyme system from R. flavefaciens

strain FD-1 have been previously characterized as a variety of exo-

b-1,4-glucanases, endo-b-1,4-glucanases, and cellodextrinases

[9,10,11,12]. Evidence was found for two major endo-b-1,4-

glucanase complexes, one including at least 13, and the other at

least 5, electrophoretically separable endo-b-1,4-glucanase activ-

ities [12]. This is consistent with the large diversity of genes found

here that have the potential to encode endoglucanase activity.

Complex multi-modular organization, involving multiple cata-

lytic and substrate-binding modules within the same polypeptide,

has been documented previously for plant cell wall degrading

enzymes, especially xylanases, from the related strain R. flavefaciens

17 [19,20,21,22]. This genomic analysis establishes that such

organization is a common feature in particular of xylanases and

Figure 6. Comparison of microarray data to qRT-PCR data in terms of relative expression (fold change) of five selected ORFs. Each
number on the x-axis corresponds to the ORF designation assigned by TIGR’s annotation engine.
doi:10.1371/journal.pone.0006650.g006
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esterases from R. flavefaciens FD-1. Interestingly, however, despite

many close similarities and common features, it was not always

possible to identify precise homologues of these multi-modular

enzymes between the two strains. Of the five xylanases and

esterases characterized from R. flavefaciens 17, for example, none

showed an exact match in modular structure to a homologue in

strain FD-1. R. flavefaciens FD-1 ORF02390, for example, shares

close homology with R. flavefaciens 17 CesA (CE3B) through its

family 3 esterase and an unknown domain, at the N and C

terminus respectively, but includes an additional CBM22 module.

R. flavefaciens FD-1 ORF03896 and R. flavefaciens 17 XynA are

superficially similar in carrying GH11 and GH10 xylanase

modules and NQ-rich linkers, but the FD-1 ‘superzyme’ differs

in carrying additional CE4 and GH11 modules and a dockerin.

This suggests that there is considerable evolutionary plasticity in

the modular structures of these enzymes, with domain shuffling

occuring readily to produce new variations within a given strain

[69]. Close homologues were, however, observed for certain

enzymes, such as R. flavefaciens 17 EndB (Cel44A).

Close similarities in gene order between R. flavefaciens FD-1 and

17 were identified for two important chromosomal regions

concerned with the utilization of plant cell wall polysaccharides.

Conservation of the four key cellulosomal scaffoldin genes within

the sca cluster, scaC, scaA, scaB, and scaE was reported recently [28].

An additional gene cttA, found within the cluster whose product is

concerned with cell adhesion to cellulose [46] was also conserved.

The microarray results also showed that when grown on cellulose,

scaA, scaB, and scaC in R. flavefaciens FD-1 all have similar signal

ratios (approximately 4.5 fold above that of cellobiose) implying

that they are transcribed together, forming an operon. Compared

to R. flavefaciens 17, however, differences were observed at the level

of modular organization with the R. flavefaciens FD-1 ScaA protein

carrying one fewer cohesin module than ScaA from R. flavefaciens

17, and with the FD-1 ScaB protein exhibiting two types of

cohesin [28]. Along with the frequent differences in enzyme

modular structures noted above, this suggests that there may be

many differences in the detailed organization of the cellulolytic

enzyme complexes between the two strains. We were also able to

demonstrate a region of synteny between genes concerned with the

utilization of xylo-oligosaccharides [40] that include the b-

xylosidase, xylose isomerase and components of an ABC

transporter system. In both of the strains, this region was found

to be flanked by genes that encode cellulosomal enzymes

associated with the degradation of hemicellulose.

The variety of dockerin-containing enzymes in the R. flavefaciens

FD-1 genome suggests that there are many configurations that the

cellulosome can assume. Expression profiling using microarrays,

and verified by qRT-PCR, revealed that the type of substrate

utilized by R. flavefaciens FD-1 drives the potential cellulosome

composition. This is expected to result in the production of an

incredibly heterogeneous collection of cellulosomes during the

course of plant cell wall polysaccharide degradation. It is

interesting to note that the minority (33%) of the 225 dockerin

containing ORFs was made up of the cellulases and enzymes

active against non-cellulosic structural polysaccharides (Figure 5).

However, when looking exclusively at the up-regulated dockerin-

containing ORFs, the cellulases and enzymes active against non-

cellulosic structural polysaccharides made up 59% of the ORFs.

This indicates that when grown on a cellulose substrate, R.

flavefaciens FD-1 preferentially expresses enzymes that are designed

for hydrolysis of complex carbohydrates. Curiously, of these

ORFs, the most highly up-regulated enzymes during growth on

cellulose were the hemicellulases, not the cellulases. The three

most highly up-regulated enzymes show remarkably complex

structures, each with three catalytic modules and one or more

CBMs. Interestingly, previous studies on R. flavefaciens 17 showed

by zymogram analysis that high molecular weight xylanase

polypeptides (.70 kDa) were expressed during growth on

cellulose, or in some cases only on xylan or oat straw, but not

on cellobiose [70]. A likely explanation for these findings is that, in

nature, R. flavefaciens rarely comes across pure cellulose, because

cellulose is typically accompanied by other plant cell wall

polysaccharides. Therefore, in order to depolymerize these other

non-cellulosic components and gain access to the cellulose, the

microbe would need to use enzymes other than the cellulases to

remove the non-cellulosic plant cell wall components. In addition,

many R. flavefaciens strains are able to utilize products from xylan,

as well as cellulose breakdown, for growth [40].

Materials and Methods

Organisms and culture conditions
R. flavefaciens FD-1 from the Department of Animal Sciences

culture collection was used as the source of genomic DNA in

library construction and was cultivated in a defined medium as

described by Antonopoulos et al [71]. Cells were grown at 37uC in

crimped butyl rubber stoppered bottles (Bellco Glass, Inc.,

Vineland, NJ) saturated with 95% CO2/5% H2 atmosphere.

Stock cultures were maintained on solid agar slants at 2120uC.

Escherichia coli One ShotH MAX EfficiencyH DH10BTM (Invitrogen,

Carlsbad, CA) was used as the host in library constructions.

Transformed E. coli cells were grown in LB medium supplemented

with 100 mg/mL of ampicillin (Sigma-Aldrich, St. Louis, MO) for

selection and maintenance of plasmids.

Genomic DNA extraction and shotgun library
construction

Extraction of genomic DNA from R. flavefaciens FD-1 has been

described previously [29]. Chromosomal DNA extracted from R.

flavefaciens FD-1 was subjected to high-pressure shearing (N2) via a

nebulizer and then treated with Bal31 nuclease (New England

Biolabs, Beverly, MA) to remove single-strand overhangs. This

pool of sheared DNA fragments was then size fractionated (i.e.

fragments between 1.5–3 kb were gel excised), gel purified, and

subjected to a series of ‘‘polishing’’ reactions by T4 DNA

polymerase and Klenow fragment (Invitrogen, Carlsbad, CA).

Shrimp alkaline phosphatase was then used in a dephosphoryla-

tion treatment to remove 59-phosphoryl groups (Roche Applied

Science, Penzberg, Germany). Cloning of the sheared, ‘‘polished’’,

and dephosphorylated fragments was performed using the

pCRH4Blunt-TOPOH vector (Invitrogen, Carlsbad, CA). Trans-

formation of Escherichia coli One ShotH MAX EfficiencyH

DH10BTM cells (Invitrogen, Carlsbad, CA) was conducted by

electroporation (transformation efficiency of 107 transformants/mg

DNA) followed by immediate plating onto ampicillin-supplement-

ed LB agar plates.

Sequencing and assembly of contigs
In total 11,520 transformants were picked robotically using a

QPix robot (Genetix, UK) and transferred into starter freeze-down

media in 384-well plates. Following overnight incubation the

plates were transferred to a 280uC freezer for storage. To

sequence the selected clones, they were transferred from the frozen

stocks to 96-well plates, grown overnight, and a QIAGEN 9600

robotic system was then used to extract the plasmids. Big Dye

terminator chemistry, in conjunction with standard M13-based

forward and reverse primers based on the pCRH4Blunt-TOPOH

vector, was used for the sequencing reactions on an ABI 3700
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capillary system (conducted at the W. M. Keck Center for

Comparative and Functional Genomics on the UIUC campus). In

addition to Sanger sequencing, extracted genomic DNA was

subjected to a pyrosequencing run on a Roche 454 GX-FLX

system at the W. M. Keck Center for Comparative and Functional

Genomics on the UIUC campus. Vector trimming, sequence

editing, and quality control was handled by the Bioinformatics

Unit of the W.M. Keck Center, as well as the maintenance of the

sequence database on their servers. Base calling and contig

assembly were conducted using Phred/Phrap and visualized with

Consed [31,32,33]. Subsequent, manual linking of contigs was

performed using Consed [33]. The genome sequence (119 contigs)

has been deposited into the DDBJ/EMBL/GenBank databases

under the accession number ACOK00000000.

ORF identification and annotation
Following contig assembly and vector trimming, the contigs

comprising the assembly were used in BlastX comparisons with

the locally stored non-redundant GenBank database (a cut-off E-

value of e205 was used for the initial survey; [72]). These

preliminary sequence identifications were supplemented by

focused searches of the assembly using the FastA collection of

programs and individual sequences of interest as queries [73].

Identification and annotation of putative genes from the R.

flavefaciens FD-1 sequence assembly was also performed by TIGR’s

Annotation Engine (a service funded by the US Department of

Energy; see TIGR’s Annotation Engine website for further details

at http://www.tigr.org/edutrain/training/annotation_engine.

shtml). The Glimmer software package was used initially to

identify likely candidates for genes [74,75]. Several searches were

then performed using the candidate ORFs identified by Glimmer

as queries. BLAST-Extend-Repraze (BER) was used to search

TIGR’s non-redundant amino acid database (nraa) containing all

proteins available from GenBank, PIR, SWISS-PROT, and

TIGR’s Comprehensive Microbial Resource (CMR) database

[72]. A second round of searches were performed against hidden

Markov models using the hmmpfam program [76]. AutoAnnotate

was then used to analyze the BER and HMM searches and to

assign a function to each of the sequences.

Organisms and growth conditions for microarrays
Ruminococcus flavefaciens FD-1 [4] was grown anaerobically in

defined media containing either 0.1% w/v pebble milled cellulose

(filter paper) or 0.4% w/v cellobiose, 0.2% w/v Bacto-Tryptone,

0.1% w/v Bacto-Yeast Extract, 5% v/v mineral solution 1 and 2

[77], 1% v/v volatile fatty acid (VFA) solution [78], 0.0001% w/v

resazurin, 0.4% w/v NaHCO3 and 0.025% w/v cysteine-sulfide.

Cultures were grown at 37uC in butyl rubber-stoppered flasks

under a 95% CO2/5% H2 atmosphere. Growth curves were

determined for both cellobiose and cellulose cultures by measuring

optical density at 600 nm for cellobiose and by monitoring

substrate disappearance for cellulose (data not shown). Growth

curve data were also compared to growth curves performed by

Odenyo et al. (1992; 1994). Media containing cellobiose was

grown for approximately 9 h late to log phase [79]. Media

containing cellulose was grown for approximately 19 h to late log

phase (Odenyo, 1992 PhD thesis, University of Illinois at Urbana-

Champaign). Four independent replicate cultures were grown in

triplicate for each substrate.

RNA extractions
Cells were pelleted for RNA extraction by first adding 75 ml of

ice-cold RNase free DEPC-treated water per 50 ml of cell culture,

placing on ice for 5 min, then centrifuging at 4uC for 5 min at

2,800 x g. Supernatant fluids were removed, and cells were

resuspended in 2.5 ml ice-cold RNase free DEPC-treated water.

One ml aliquots of the cell suspension were transferred to 2.0 ml

screw cap tubes and centrifuged at room temperature for 15 s at

13,000 x g. Supernatant fluids were removed, and cell pellets were

stored at 220uC until needed for RNA extraction. RNA was

extracted from the cell pellets using the RNeasy Kit – Yeast III

Protocol (Qiagen, Valencia, CA) according to the manufacturer’s

instructions. A mini-bead beater set to homogenize was used as

part of the lysis process. Cells were homogenized in the mini-bead

beater 3 times for 2 min each and cooled on ice for 2 min between

each homogenization. A DNase digestion was carried out using

the On-column DNase Digestion with RNase-free DNase Set

(Qiagen, Valencia, CA) according to the manufacturer’s instruc-

tions. RNA quality was assessed by 1% agarose gel electrophoresis

after treatment with an equivalent volume of 10 M urea and

heating at 70uC for 5 min to eliminate any secondary structure.

RNA concentrations were estimated by absorbance at 260 nm

using a Beckman DU-7000 spectrophotometer.

Microarray design and construction
6,144 PCR-amplified clone inserts from the RF03 library were

spotted in duplicate onto slides at the W.M Keck Center for

Comparative and Functional Genomics, using a Gene Machines

OmniGrid 100 Microarrayer (Genomic Solutions, Ann Arbor,

MI). Controls consisted of R. flavefaciens FD-1 genomic DNA, R.

flavefaciens FD-1 16S V3 rDNA tag, E. coli genomic DNA, E. coli

16S V3 rDNA tag, and a no template control consisting of the

buffer only. The RF03 library is the most recent clone library to be

included into the R. flavefaciens FD-1 draft genome, and therefore

the microarrays contain the R. flavefaciens FD-1 genome at

approximately 26coverage (Antonopoulos 2004 PhD dissertation,

University of Illinois at Urbana-Champaign).

Aminoallyl-labeling of RNA
RNA was labeled by reverse transcription as follows: 5 mg of

RNA was mixed with 2 ml of random hexamer primers (3 mg/ml)

(Invitrogen, Carlsbad, CA) in a final volume of 18.5 ml, and

incubated at 70uC for 10 min then placed on ice. The labeling

reaction (0.5 ml of RNase inhibitor (Invitrogen, Carlsbad, CA),

6 ml of 56First Strand Buffer (Invitrogen, Carlsbad, CA), 3 ml of

0.1 M DTT (Invitrogen, Carlsbad, CA), 0.6 ml 506 aminoallyl-

dNTP mix [25 mM dATP, 25 mM dCTP, 25 mM dGTP, 5 mM

dTTP, 7 mM aa-dUTP], and 2 ml SuperScript III RT

(200 U//L) [Invitrogen, Carlsbad, CA]) was added to the mixture

and the reaction was incubated at 46uC overnight. RNA was

hydrolyzed by addition of 10 ml each of 1 M NaOH and 0.5 M

EDTA, followed by incubation at 65uC for 15 min. The reaction

was neutralized by addition of 10 ml of 1 M HCl. Ten ml of 3 M

NaNAcetate, pH 5.2 was added to facilitate binding of cDNA to the

Qiagen column. Unincorporated aa-dUTP and free amines were

removed using a Qiagen QIAquick PCR Purification Kit protocol,

according to manufacturer’s instructions, and substituting phos-

phate wash buffer [5 mM KPO4 pH 8.5, 80% EtOH] for Buffer

PE and phosphate elution buffer [4 mM KPO4, pH 8.5] for Buffer

EB. The elution step was carried out twice with 30 ml of phosphate

elution buffer.

Dye incorporation
Purified cDNA samples were dried in an Eppendorf Vacufuge

for approximately 1 h. Alexa-fluor 555 and 647 (Invitrogen,

Carlsbad, CA), which correspond to Cy3 and Cy5 respectively,

were resuspended in 9 ml of 0.1 M Na2CO3 then transferred to the

cDNA sample and mixed. The reactions were incubated in the
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dark for 1 h at room temperature. Uncoupled dyes were removed

using the Qiagen PCR Purification Kit according to the

manufacturer’s instructions. The elution step was carried out

twice with 40 ml of Buffer EB. The labeling reactions were

analyzed by measuring absorbance at 260 nm and either 550 nm

(Alexa-555) or 650 nm (Alexa-647). The amount in pmol of

cDNA, incorporated Alexa-555 and Alexa-647 dyes were

calculated, and a cDNA/dye ratio was determined for each

sample; greater than 30 pmol of dye incorporation and a ratio less

than 50 nucleotides/dye molecule is optimal. Samples were dried

to completion in an Eppendorf Vacufuge.

Microarray hybridization, washing and scanning
The microarrays were prepared for hybridization by first

binding the DNA to the slides by rehydrating the microarray over

steam, drying on a heat block (,70uC), then placing in a UV

stratalinker at 300 mJ. Microarrays were washed vigourously in

0.2% SDS (w/v), then twice in ddH2O for two minutes each. The

microarrays were added to preheated (42uC) pre-hybridization

buffer [20% Formamide (v/v), 56 Denhardt’s, 66 SSC, 0.1%

SDS (w/v), 25 mg/ml tRNA] and incubated at 42uC for 45 min,

shaking occasionally. Microarrays were washed in ddH2O five

times, once in isopropanol, then dried immediately by centrifu-

gation.

Hybridization was performed with four biological replicates,

which included a dye swap. Labeled cDNA was resuspended in

80 ml of preheated (68uC for 15 minutes) SlideHyb #1 (Ambion).

Samples were heated at 95uC for 5 min, then all 80 ml was applied

to the microarray slide. 10 ml of ddH2O was added to the

hydration chambers of the waterproof Corning hybridization

chamber (Corning Life Science) to ensure a humid environment.

Microarrays were allowed to hybridize in a 42uC water bath in the

dark for approximately 3 d.

Coverslips were removed after hybridization and the micro-

arrays were washed in 16SSC, 0.2% w/v SDS at 42uC, followed

by 0.16SSC, 0.2% w/v SDS at room temperature, and twice in

0.16 SSC at room temperature agitating for 5 min at each step.

The microarrays were dried immediately by centrifugation and

scanned using an Axon GenePix 4000B scanner (Molecular

Devices).

Microarray analysis
Slide images were analyzed using the spot finding feature of

GenePix Pro 6.0 (Molecular Devices). Microarrays were manually

edited and aberrant spots were flagged for exclusion later on in the

analysis. The resulting files were loaded into GeneSpring GX 7.3

(Agilent Technologies). The microarrays were normalized using

Lowess normalization and the t-test p-values were FDR adjusted

such that spots with an FDR p-value of less than 0.05 were

considered significant. Each spot, which corresponds to a sequence

from the genome assembly, was mapped back to the most current

R. flavefaciens FD-1 genome assembly. Fold changes of dockerin-

containing ORFs and glycoside hydrolase-containing ORFs were

analyzed using Microsoft Excel to calculate the average of the

signal ratios. Fold changes greater than or equal to 2-fold were

considered up-regulated and fold changes less than or equal to 0.5-

fold were considered down-regulated [54]. Microarray data were

submitted to the Gene Expression Omnibus (GEO) in accordance

with MIAME standards under GEO accession number

GSE15916.

Quantitative real time RT-PCR
qRT-PCR was performed to confirm the gene expression results

of the microarrays. Aliquots of 0.5 mg of RNA were converted to

cDNA via the SuperScript III First Strand Synthesis SuperMix for

qRT-PCR (Invitrogen, Carlsbad, CA) according to the manufac-

turer’s instuctions. Each qPCR reaction consisted of 16 SYBR

Green Master Mix (Applied Biosystems, Foster City, CA), 50 nM

of forward primer, and 50 nM of reverse primer to which 1 ml of

undiluted cDNA was added. All reactions were done in triplicate.

Primers were designed for ORFs 1132, 3114, 3896, 3925, and

4112, as well as for gyrA (ORF02752), using Primer3 (http://

workbench.sdsc.edu/) and synthesized by Sigma-Genosys (Table

S11). The reactions were run on an ABI 7900HT Sequence

Detection System (Applied Biosystems, Foster City, CA). The

cycling conditions consisted of a hold at 50uC for 2 min, a hold at

95uC for 10 min, 40 cycles of 95uC for 15 s and 60uC for 1 min,

and then a dissociation profile of 95uC for 15 s, 60uC for 15 s, and

95uC for 15 s. The relative standard curve method was used to

determine the relative amount of gene expression in R. flavefaciens

FD-1 when grown on cellulose or cellobiose. R. flavefaciens FD-1

genomic DNA was serially diluted in TE Buffer, pH 8.0 from 1021

to 1026 to be used as standards for the standard curves from which

the quantities of cDNA in the samples were determined. The gyrA

gene (ORF02752) was used to normalize the Ct values from each

sample prior to comparison [64,80].

Supporting Information

Figure S1 Unrooted dendrogram of the putative glycoside

hydrolase family 48 modules (pfam02011) detected in R.

flavefaciens FD-1 compared with those of other organisms.

Found at: doi:10.1371/journal.pone.0006650.s001 (0.70 MB TIF)

Figure S2 Unrooted dendrogram of putative family 3 carbohy-

drate-binding modules detected in R. flavefaciens FD-1 compared

with those from other organisms. ‘‘RfFD-1’’ refers to R.

flavefaciens FD-1, and is followed by ORF designation number

assigned by TIGR’s Annotation Engine. ‘‘Clotm’’ refers to C.

thermocellum, ‘‘Rumal’’ refers to R. albus, and these are followed

by the enzyme name.

Found at: doi:10.1371/journal.pone.0006650.s002 (0.80 MB TIF)

Figure S3 Unrooted dendrogram of glycoside hydrolase family 5

modules detected in R. flavefaciens FD-1 compared with those

from other organisms. ‘‘Rf’’ refers to R. flavefaciens, and the ORF

number refers to TIGR’s Annotation Engine designation. The

scale bar indicates the percentage (0.1) of amino acid substitutions.

Found at: doi:10.1371/journal.pone.0006650.s003 (0.82 MB TIF)

Figure S4 Unrooted dendrogram of glycoside hydrolase family 9

modules detected in R. flavefaciens FD-1 compared with those

from other organisms. ‘‘Rf’’ refers to R. flavefaciens, and the ORF

number refers to TIGR’s Annotation Engine designation. The

scale bar indicates the percentage (0.1) of amino acid substitutions.

Found at: doi:10.1371/journal.pone.0006650.s004 (0.77 MB TIF)

Table S1

Found at: doi:10.1371/journal.pone.0006650.s005 (0.04 MB

XLS)

Table S2

Found at: doi:10.1371/journal.pone.0006650.s006 (0.04 MB

XLS)

Table S3

Found at: doi:10.1371/journal.pone.0006650.s007 (0.09 MB

DOC)

Table S4

Found at: doi:10.1371/journal.pone.0006650.s008 (0.02 MB

XLS)
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Table S5

Found at: doi:10.1371/journal.pone.0006650.s009 (0.11 MB

DOC)

Table S6

Found at: doi:10.1371/journal.pone.0006650.s010 (0.14 MB

DOC)

Table S7
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DOC)
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XLS)

Table S9
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XLS)

Table S10

Found at: doi:10.1371/journal.pone.0006650.s014 (0.02 MB

XLS)

Table S11
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XLS)

Table S12
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