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ABSTRACT

Cellular concrete is one kind of lightweight concrete, which are widely used in thermal insulation engineering 
project. In this study, a three dimensional (2D and 3D) finite-volume-based models was developed for analyzing 
the heat transfer mechanisms through the porous structures of cellular concretes under steady-state heat transfer 
condition and also for investigating the differences between 2D and 3D modeling results. 2D and 3D reconstructed 
pore networks were generated from the microstructural information measured by a 3D image captured by X-ray 
computerized tomography (X-CT). In addition, the 3D-computed value of the effective thermal conductivity was 
found to be in better agreement with the measured value, in comparison with that computed on the basis of 2D 
cross-sectional images. Finally, the thermal conductivity computed for different porous 3D networks of cellular 
concretes were compared with those obtained from 2D computations, revealing the differences between 2D and 
3D image-based modeling: a correlation was thus derived between the results computed with 3D and 2D models.

Keywords: finite volume method, thermal conductivity, image-based modeling, cellular concrete, guarded hot-plate 
method.

1. INTRODUCTION

In recent years, builders around the world have become 
increasingly interested in using cellular concrete in 
their projects. This interest comes from the decreasing 
volume of load-bearing elements, as well as the 
superior thermal properties of lightweight concrete 
compared with conventional concrete. Regarding the 
latter advantage, dry densities of 300–500 kg/m3 are 
usually applied. As there are no strict requirements to 
strength characteristics, thermal performance plays the 
more domain role (Aldridge, 2000; Jones & McCarthy, 
2005b; Kearsley & Mostert 2005b; Narayanan & 
Ramamurthy, 2000; Esmaily & Nuranian, 2012). 
Therefore, the accurate determination of the effective 
thermal conductivity, ke is the essential for engineering 
application. Furthermore, it is possible to design the 
properties of cellular concrete to meet the construction 
requirement by varying material parameters such as 
cement paste composition, bubble size, and volume 
friction. To this end, an accurate evaluation of the 
relationship between the microstructure and thermal 
transfer properties of such porous lightweight building 
materials is required. Determination of the relationship 
between the microstructure and effective thermal 
property of porous materials can be accomplished 
either experimentally (Mydin & Wang, 2012; Nooraini, 

Ismail, & Ahmad Mujahid, 2009) or analytically by 
assuming simplified geometries (Wiener, 1904; 
Hashin & Shtrikman, 1962; Landauer, 1952; Russell, 
1935; Glicksmann & Schuetz, 1994; Ahern, Verbist, 
Weaire, Phelan, & Fleurent, 2005; Bhattacharya, 
Calmidi, & Mahajan, 2002). The former approach 
is expensive and time consuming, and the validity 
of the results is usually limited to the experimental 
conditions. The latter approach is limited by the 
validity of the underlying assumptions for the complex 
geometry. Some of these limitations can be overcome 
by the combined experimental–numerical technique 
presented in this article.

This study aimed at developing 2D and 3D image-
based finite volume models to analyze the heat 
transfer mechanisms through the porous structure of 
cellular concrete under steady-state condition.

The microstructure of cellular concrete was 
quantitatively characterized by a three dimensional-X-
ray computerized tomography technology (3D-XCT) 
considering two phases, namely the pores and 
the matrix. The numerical results were validated 
by comparison with experimental results. Finally, 
comparisons of the effective thermal conductivities 
obtained from the 3D image, 2D cross-sectional 
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images revealed some differences between 2D and 
3D modeling.

2. TheRmAL CONDUCTIVITy meASURemeNT

The measurement apparatus used in this study 
is a guarded hot-plate that was designed based 
on the standards for steady-state measurement 
(ISO 8990:1994, 2006; EN 12939:2000, 2000; EN 
12664:2001, 2001). The guarded hot-plate method 
(GHP) (see Figure 1) establishes a one-dimensional 
heat flow through a pair of specimens by reducing 
undesired lateral heat flows to negligible proportions 
(Yesilata & Turgut, 2007; Zarr, 2001). The apparatus 
presented here was adapted from the one used to 
measure U-value of a wall according to the standard 
for steady-state measurement ISO 8990 (Wei, Yiqiang, 
Yunsheng, & Jones, 2013).

Our system is able to host materials with a thickness 
ranging from10 to 100 mm. Figure 1 shows the collocation 
of specimens between hot and cold slabs. Heat is 
supplied electrically at a known rate to the hot-slab, 
maintaining a constant temperature difference between 
the hot and cold slabs. The temperature differences are 
controlled by means of thermocouples on the slabs’ 
surfaces. Energy consumed is registered by means of 
an external wattmeter that analyzes and transmits the 
data to a computer. The temperature is continuously 
measured and controlled with a proportional–integral-
Derivative (PID) regulator to maintain the required 
temperature gradient. The guarded plates play role of 
thermal barriers to secure the one dimensional heat flow 
from the main heater to the cold plate, which makes it 
possible to measure the value of Q exactly.

In our experiments, the specimens and both cold 
and hot-slabs initially are at the same temperature, 
and then, at the beginning of the experiment, the 
temperature of the cold plate is suddenly lowered from 
313 to 273 K. The humidity of the room was controlled 
and maintained lower than 50%.

The box was placed in a hot chamber operating at 
controlled fixed temperatures, humidity, and air flow 
conditions. Temperature and relative humidity sensors 
are positioned at several points to measure the 
corresponding air conditions.

After 28 days’ sealed curing, the specimens of cellular 
concrete (300 mm × 300 mm × 30 mm) were oven 
dried at a temperature of 80°C until constant mass 
(approximately 4 days). This was done to eliminate 
any moisture retained in the slabs, as it would have 
had effect on the conductivity results (Russell, 1935).

Heat was allowed to flow between the two plates until 
the system stabilized. The maximum time allowed 
for the samples to stabilize was about 3 h. Then the 
thermal conductivity based on GHP method can be 
calculated using the Fourier heat flow equation:

 
�

=
⋅

⋅
k Q d

C T
 (1)

Where k is the effective thermal conductivity of 
tested sample. Q is the time rate of heat flow. d is the 
thickness of the tested sample. C and ΔT are cross-
sectional area and temperature difference across the 
sample, respectively. This test method is especially 
useful for generating thermal data on deformable 
flexible specimens and has been considered as a 
primary technique for precise thermal conductivity 
measurement. The expanded uncertainty of thermal 
conductivity measurements considering both random 
and systematic errors was evaluated to be 2% with a 
confidence level of 95%.

3. FINITe VOLUme NUmeRICAL mODeL

The implementation of a finite-volume method for 
estimating the effective thermal conductivity of porous 
concrete was first proposed by Wei et al. (2013).The 
method is based on the analysis of the temperature 
distribution in the foam microstructure by considering 
the governing differential equation of steady-state 
heat conduction without internal heat generation. The 
model simulates steady-state thermal conductivity 
measurement apparatus as discussed above. 
The piece considered is a slab of porous material 
with perfectly insulated sides which is sandwiched 
between two slabs of non-porous solid maintained at 
temperatures Thot and Tcold (Figure 2). The steady-state 
heat conduction equation expresses the heat balance 
at each point of the two-phase porous material.

Additionally, conduction through the solid phase, 
conduction through the gas phase, convection of the 
gas and radiation are generally the main mechanisms 
which may contribute to the thermal conductivity of a 
cellular material (Gibson & Ashby, 1997). Taking into 
account previous works by Skochdopole (1961) and 

Figure 1. Experimental apparatus. The guarded hot-plate method 
establishes one dimensional heat flow through a pair of specimens. 
The guarded plate was made of expanded polystyrene (EPS).
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Lu and Chen (1999), the heat transfer by convection 
does not exist for cell diameters smaller than 4 mm, 
and the experimental temperature for ETC is not very 
high. Therefore, only the conduction mechanism of 
two phases is considered in this study.

Figure 2. 2D illustration of the principle of the ETC computation.

3.1 2D numerical model

In the 2D model, the steady thermal transfer equation 
can be expressed as follow:

 

∂
∂

∂
∂







 + ∂

∂
∂
∂









 =

x
T
x y

T
yi j i j� �, , 0  (2)

In which λi,j is the thermal conductivity and T is the 
temperature. With regards to a 5-point integration 
formula, a schematic view of a cell of the domain 
(i.e., a pixel of the binary image) and its four neighbor 
is presented in Figure 3. For the particular case of 
square pixels, the above equation can be discretized 
as follows:
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In which λ(i +1/2, j) represents the thermal conductivity 
between cell centres (i, j) and (i +1, j), and can be 
expressed as:
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The thermal conductivity λ(i,j) is assigned to each pixel 
depending on its corresponding materials (e.g., cement 
paste for the white pixels and pores for the black ones). 
For the considered images, the boundary conditions 
are settled by applying a constant temperature on the 

left side edge (e.g., 313.5 K ) as well as on the right side 
(e.g., 273.5 K), and a zero flux is applied for the other 
two edges (i.e., top and bottom). The corresponding 
mathematical expression is
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3.2 3D numerical model

Regarding the three dimensional model, a lattice of 
the domain is shown in Figure 4. The corresponding 
steady thermal transfer equation can be expressed as:
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Figure 3. Schematic view of a cell in 2D model, including its four 
neighbors.

Figure 4. Schematic view of a cell in 3D model, including its six 
neighbors.
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In which λi,j,k is also the thermal conductivity and T 
is the temperature. For the case of cubic voxels, the 
above equation can be discretized as follows:
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Where λ(i+1/2,j,k) also represents the thermal 
conductivity between lattices centers(i,j,k) and (i+1,j,k), 
and can be expressed as:
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The thermal conductivity λ(i,j,k) is assigned to the 
voxels in the similar way as for 2D model. In addition, a 
zero flux boundary condition was applied for the other 
four lateral faces. The corresponding mathematical 
expression of boundary condition can be expressed 
as: 
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3.3 2D and 3D sparse matrix

Applying the Equations (3) and (7) to all the cells in 2D 
and 3D models respectively, we will have P equations 
(P2D= X×(Y-2),P3D= X× (Y-2)×Z) for P unknown cell 

temperatures. Both Equations (3) and (7) can be 
written in a matrix form as

 � � �
�T S=  (10)

Where the matrix �� is a sparse multi-diagonal 
symmetrical matrix and 

�
T  is a vector of P components 

which correspond to the unknown cell temperatures. 
The right-hand side vector 

�
S has a length P and is 

composed of zero values with the exception of the 
edge elements (y = 0 and y = Y) where the boundary 
temperatures are imposed (here temperatures of 
273.5 and 313.5 K, respectively).

As an illustration, Equation (3) can be written for a 
3 × 4 two-dimensional network (see Figure 5) as
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While for a 3×4×2 three-dimensional network (see 
Figure 6), Equation (7) can be written as
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Figure 5. Schematic overview of a 2D thermal resistor network 
(X × Y = 3 × 4).

Figure 6. Schematic overview of a 3D thermal resistor network 
(X × Y × Z = 3 × 4 × 2).

The off-diagonal elements V, H, and B of matrix ��
correspond respectively to the thermal conductivity 
of the neighbor links in x, y-direction, and in the 
thickness direction z. The diagonal elements D are 
the sum of the thermal conductivities of the neighbor 
links. Considering the case of large system of 
equations, the use of iterative algorithms is required 
to accelerate convergence and thus to reduce the 
required computational time. Once the temperature 
distribution over the lattice is know, it is possible 
to compute the heat fluxes Qk along the y direction 
passing through each horizontal slice of the lattice 
(3D). These fluxes are equal for all the slices under 
steady-state conditions. Finally, the effective thermal 
conductivity keff between the hot and cold slabs in 3D 
model can be simply obtained by:

 
k

Q Y
X Z T Teff

k

hot cold

=
⋅
⋅

×
−
1

 (11)

Regarding the 2D model, the lattice number in z 
direction is equal to 1, thus keff can be expressed as:
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4.  TheRmAL CONDUCTIVITy OF CemeNT 
PASTe AND POReS

An experimental value of 0.5 W m-1 K-1, determined 
for a full dense sample (without air agent), was used 
for the thermal conductivity of the solid phase and this 
is consistent with other literature values (Fu & Chung, 
1999; Russell, 1935). Regarding the pores, it can be 
assumed as approximation that they contain trapped 
air for which the thermal conductivity may be estimated 
as 0.025 W m-1 K-1 at room temperature. The thermal 
conductivity of air tends to increase with temperature 
but the Knudsen effect (Collishaw & Evans, 1994; 
Litovsky, Shapiro, & Shavit, 1996) tends to decrease it 
on the other hand, so that the influence of micro pores 
in cement paste on the thermal conductivity of air was 
not considered in the present study.

5. NUmeRICAL ReSULTS AND ANALySIS

5.1 Benchmarks

To validate the algorithm and the codes of the 2D and 
3D models, the numerical predictions are compared 
with the theoretical solutions for two hypothetical 
structural cases: Parallel mode and series mode 
(see Table 1). The porous structures are formed 
in two phases and the thermal conductivities are 
0.5  and 0.025 W m-1 K-1, respectively. To make 
comparison easily, the fractions of the two phases 
are equal so that the calculated effective thermal 
conductivity is 0.2625 W m-1 K-1 for parallel mode and 
0.04762 W m-1 K-1 for series mode. Table 1 lists our 
predictions of the ETCs and the deviations from the 
simple analytical solutions as functions of the lattice 
number. It is interesting to note that the predicted 
values by 2D model are the same with corresponding 
3D model. The reason for this is that the 3D structures 
of parallel mode and series mode are repetitive or 
symmetrical in the thickness direction (z).

It is also clear that our predictions agree perfectly 
well with the theoretical solutions with the maximum 
deviation less than 2% when the lattice number is larger 
than 60. The results validate the proposed algorithm 
and the boundary condition processing. A larger lattice 
number results in more accurate modeling result yet 
requires a higher computational cost. In the following 
modeling, lattice number is set to 80 × 80 × 80 for 3D 
model and 500 × 500 for 2D model unless specified 
requirement.

5.2  Computation of the thermal conductivity for the 2D 
and 3D models

The thermal conductivity corresponding to each 
3D-XCT image was predicted by 3D modeling. 2D 
calculations were also carried out on cross-sections 
of the 3D-XCT real image (Figure 7). To obtain a 
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reliable value, six cross-sections (500 × 500 pixels) 
of the 3D-XCT image were used and the results were 
then averaged. Examples of numerical modeling the 
temperature distribution of 3D and 2D structures are 
shown in Figures 8a and 8b, respectively.

The calculated results show that the 2D thermal 
conductivities were 0.121 ± 0.04 W m-1 K-1 for the 
cross-sectional 2D images (shown in Table 2). On the 
other hand, the 3D predicted thermal conductivity was 

0.154 W m-1 K-1 (shown in Table 2), which was found 
to be in better agreement with the experimental result 
(0.158 W m-1 K-1). This consistent result indicates that 
the 3D reconstructed image can be representative of 
a real non-AAC in terms of thermal conductivity. It is 
also worth to point out that the 3D calculated thermal 
conductivity is higher than the 2D calculated one 
by about 15% for the same parameters to generate 
image.

Table 1. Predictions of effective thermal conductivities for two kinds of structures (parallel and series modes).

Lattice number (X × y × z) Parallel mode Series mode

Predictions 
(W m-1 K-1)

Deviations (%) Predictions 
(W m-1 K-1)

Deviations (%)

2D 10 × 10 0.2917 11.12 0.0529 11.09
60 × 60 0.2669 1.68 0.0484 1.64
80 × 80 0.2658 1.26 0.0482 1.21

3D 10 × 10 × 10 0.2917 11.12 0.0529 11.09
60 × 60 × 60 0.2669 1.68 0.0484 1.64
80 × 80 × 80 0.2658 1.26 0.0482 1.21

(a) Original image (b) Binary image

Figure 7. 2D real porous structure from the 3D cross-sectional XCT image. (a) Original image, (b) binary image.

(a) 2D cross section structure (b) 3D-XCT structure

Figure 8. Numerical calculated temperature distribution of 2D structure and 3D-XCT structure. (a) 2D cross-
section structure. (b) 3D-XCT structure.
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Table 2. Predicted thermal conductivities calculated based on 
images with 2D and 3D modeling, using FVM.

Structure type Porosity (%) Thermal conductivity (W m-1 K-1)

FVm measured

2D 67.24 0.121 ± 0.04 0.158
3D 67.22 0.154 –
Dense material 0 – 0.5

The conditions for non-autoclaved aerated concrete 
production and thermal conductivity characterization 
are described in references (Esmaily & Nuranian, 
2012; Xia, Yan, & Hu, 2013; Yang, Yan, & Hu, 2013).

6. CONCLUSIONS

This work was devoted to implement 2D and 3D 
image-based finite volume model for analyzing the 
heat transfer property through a porous structure, 
such as non-aerated concrete. The 3D calculated 
value of the thermal conductivity was 0.154 W m-1 K-1, 
which is higher than the 2D predictions. However, it 
is in better agreement with the experimental value of 
0.158 W m-1 K-1.

It is worth mentioning that the 2D calculated thermal 
conductivities are lower than the 3D one either using 
the 2D cross-section image. The reason for that is the 
heat conduction in the third direction is omitted in 2D 
simulation, leading to the underestimation of effective 
thermal conductivity in the same boundary conditions. 
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Notation
C  Cross-sectional area across the tested sample
d  Thickness of the tested sample
k Effective thermal conductivity (W m-1K-1)
K3D  3D numerical prediction of thermal conductivity 

(W m-1K-1)
K2D  2D numerical prediction of thermal conductivity 

(W m-1K-1)
keff Effective thermal conductivity (W m-1K-1)

kf  Thermal conductivity of fluid phase  
(W m-1K-1)

kg Thermal conductivity of air (W m-1K-1)
ks  Thermal conductivity of solid phase  

(W m-1K-1)
X Number of lattices along x-axis
Y Number of lattices along y-axis
Z Number of lattices along z-axis
P  Number of lattices with unknown temperature
P2D  Number of 2D lattices with unknown 

temperature
P3D  Number of 3D lattices with unknown 

temperature
Q Time rate of heat flow (W)
Qk Heat fluxes along the y-axis (W)
T Temperature (K)
Tcold  Temperature of cold boundaries (K)
Thot Temperature of hot boundaries (K)
x Coordinate along the x-axis
y Coordinate along the y-axis
z Coordinate along the z-axis

greek letters
ε Porosity
λ Thermal conductivity, W m-1K-1
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