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ABSTRACT

The degradation of concrete material under multiple freeze–thaw cycles is an important issue for structures in 
cold and wet regions. This paper proposed a physical and mechanical model to explain the deformation behavior 
observed in previous experiments, from internal pressure calculation to mesoscale simulation, and for both closed 
and open freeze–thaw tests. Three kinds of internal pressures are considered in this study: hydraulic pressure 
due to ice volume expansion, crystallization pressure, and cryosuction pressure due to liquid–ice interface. The 
hydraulic pressure model combines Power’s model with poromechanical theories, which can well explain the 
reverse phenomenon (from expansion to contraction) observed in the closed test. The total internal pressure will 
be applied in a discrete numerical method (Rigid Body Spring Model) to simulate the deformation during each 
cycle, as well as the unrecoverable cracking (residual strain) at the end of each cycle. The constitutive laws are 
also modified considering the features of those internal pressures. Finally, the deformation behaviors of mortar, 
mortar–aggregate interface (closed test, 30 cycles), and the concrete (open test, 300 cycles) are simulated and 
compared with experiment measurements, which are found in a satisfactory agreement.

1.  INTRODUCTION

Frost damage is an important issue for concrete 
structures, and has been studied for several decades. 
Kaufmann (2002) developed a qualitative sequential 
damage model, separating a freeze–thaw cycle into 
five phases and discussed it in detail. Fagerlund 
(2002) discussed the different effects between 
open and closed freeze–thaw tests and the effect of 
saturation degree. For the open test, the deformation 
measure by Hasan, Okuyama, Sato, and Ueda (2004) 
up to 300 cycles showed a continually increasing 
behavior. However, recent closed tests by the authors 
up to 30 cycles showed a different phenomenon: 
there was expansion during the first few cycles, 
but was converted to contraction as the number 
of cycles increased (Sicat, Gong, Zhang, & Ueda, 
2013). Although the damage of material would affect 
the measured deformation, this change of tendency 
can only be explained by the change of forces: from 
positive forces dominant to negative forces dominant. 
Thus, a more comprehensive stress model is needed 
to explain this complex strain behavior.

The stress that causes frost damage is believed to be 
due to the hydraulic pressure at the beginning. Powers 
(1949) developed the hydraulic pressure model based 
on Darcy’s law, which is a time-dependent approach. 
Recent studies discussed that other than hydraulic 
pressure, the crystallization pressure is another 

mechanism (Scherer & Valenza, 2005), because 
damage was still observed in partially saturated 
cases in which hydraulic pressure could be avoided. 
In addition, due to the thermodynamic equilibrium 
between three phases of moisture, there is always 
cryosuction pressure in the unfrozen water. Another 
static model by Coussy and Monteiro’s (2008) was 
developed based on the poromechanics, but did not 
consider the hydraulic flow and pressure release (like 
Powers’ model). By combining Powers’ model with 
poromechanics, both deformation compatibility and 
pressure release can be taken into consideration, as 
well as the shrinkage by cryosuction pressure.

After achieving a more flexible and comprehensive 
pressure model, the estimated internal forces will 
be applied on Rigid Body Spring Model (RBSM), a 
discrete numerical model to simulate the deformation 
and damage (Kawai, 1977). Mesoscopic analysis is 
relatively more precise to simulate each component 
(mortar, aggregate, and their interface) in the 
concrete. In addition, this discrete model has the 
advantage of showing the cracking and failure mode. 
Previous researchers have used RBSM to simulate 
the concrete materials under static load (Nagai, Sato, 
& Ueda, 2004), fatigue load (Matsumoto, Sato, Ueda, 
& Wang, 2008), and also the mechanical properties of 
frost-damaged concrete (Ueda, Hasan, Nagai, Sato, & 
Wang, 2009). However, there is still no simulation on 
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the degradation process itself, with quantitative input 
of internal forces.

Therefore, this article will present the modified internal 
pressure model, which can explain the previous 
observations in both closed and open tests, and then 
apply the estimated internal forces on the RBSM 
program, and finally, the simulated results will be 
compared with the macro experiment phenomenon.

2.  INTERNAL PRESSURES

2.1 H ydraulic pressure

There are two main hydraulic theories for the freezing 
process in porous cement-based materials. One is 
proposed by Powers (1949), which aims to determine 
the suitable spacing factor of the air bubbles to avoid 
frost damage in the concrete. In his model, it was 
assumed that liquid water can be expelled into the 
entrained air voids once ice forms in the surrounding 
material. According to Darcy’s law, a pressure gradient 
is a must to drive such kind of water flow; thus hydraulic 
pressure generates. And a simple expression is:

	
�= ⋅ ⋅p q
k

dh � (1)

where ph is the local hydraulic pressure in pores, k is 
the permeability of porous body (m2), η is the viscosity 
of liquid water (Pa • s), and d is the equivalent distance 
from the empty voids. q is the water flow (m/s), which 
depends on the volume changing rate during ice 
formation. 

Other than Powers’ model, Coussy and Monteiro 
(2008) neglected the water flow and proposed a 
poromechanical model for saturated porous materials 
in which the increased volume can be balanced 
by  the  compression of water and ice, giving liquid 
pressure as:
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Where ψc is the normalized ice content; therefore
� �= −1L C is the liquid water content. KC and KL are 
the bulk moduli of the ice and liquid, respectively. 
This model also describes an ideal condition, which 
is based on the assumption that the hydraulic 
pressure resulting from the volume change cannot 
escape (sealed condition or the air voids are very far 
apart). However, in reality, both water flow and self-
compression will exist depending on the distribution 
of empty pores (like entrained air) and permeability 
of the materials. Thus, a comprehensive expression 
would be:

	 − = − −Q0.09 C p C C L L�� � �� � �� �
� (3)

where Q represents the water flow by Powers’ model, 
which only accounts for part of the increased volume; 
f is porosity and e is the volume strain with subscripts 
p, C, and L for porous body, ice (crystal) and water 
(liquid), respectively. And the other part is balanced 
by the deformation of materials and water (liquid 
and solid). The time differential form of Equation (3) 
becomes:
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Figure 1. Equivalent empty space and influential volume. 
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3 3 . rE and RE are the  

equivalent radii of the entrained air (or the empty 
pores) and the influential volume. rE can be chosen as 
the weighted mean value of empty volume, according 
to the pore size distribution ν(r):
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Where r0  is the critical radius between empty and 
filled pores. rE  and RE should also satisfy:

	 = − ⋅r R Sr(1 )E E
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where Sr is the saturation occupied by ice and liquid, 
equals to +L C� � . The q in Equation (4) can be 
approximately written as:
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Actually, the pressure gradient is not exactly as 
Equation (7), but since here we discuss this problem 
on a larger scale, only the equivalent or average value 
is needed. At the same time, due to this pressure ph, 
the material will expand while the liquid and ice will be 
compacted, that is:
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where = +b 2 / (1 )� �  is the Biot coefficient (Coussy, 
2004) and Kp is the bulk modulus of porous body. 
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Here linear behavior was assumed for all these three 
components for convenience. Then take Equations (7) 
and (8) into Equation (4), it becomes:
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Then by solving Equation (9), hydraulic pore pressure 
(ph) can be obtained during the whole freeze–thaw 
cycle.

The ice forming rate � = ⋅d dT dT dt( ) ( )C C� �  can be 
determined by the cooling rate and the ice content 
at each temperature, for example, Sun & Scherer's 
DSC data (2010a). The viscosity h in Equation (9) 
is also depending on the temperature, which gives 
(Coussy, 2005)
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where = ⋅Pa s0.00180�  is the viscosity of water at the 
temperature of 0°C. In addition, once the pore network 
is partially blocked by the formed ice, the permeability 
k will also decrease. According to Coussy’s paper 
(2005), the modified form of van Genuchten equations 
for concrete materials are:
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where k0 is the saturated permeability (without ice),  
kr is the relative value showing the reduction due to 
ice formation, =SL L�  is the liquid saturation degree, 
and R is the critical pore size for freezing under 
different temperatures. =R nm4.26*  for cement-based 
materials, a parameter related to the percolation 
(Coussy, 2005). Then, the parameter m can be 
determined according to Sun’s DSC data (2010b), 
and it is approximately 0.5. Therefore, the relative 
permeability by liquid saturation should be:
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2.2  Cryosuction and crystallization pressure

Due to the surface tension, there is a pressure 
difference between liquid and crystal on the crystal/
liquid interface, and also a difference between liquid 
and gas on the liquid/vapor interface. If assuming 
the pressure of the gas is the same as the ambient 
pressure (0), then the cryosuction pressure is always 
negative and depends on the temperature (Sun & 
Scherer, 2010a):

	 = ⋅ −p S T T( )l L fv 0� � � (14)

Figure 2. Crystallization pressure and cryosuction pressure in a 
cylindrical pore.

where T0 = 0°C, �Sfv ≈ ⋅1 2. cmJ/ K3
 is the molar entropy 

of fusion. The crystallization pressure acting on the 
pore wall is always accompanied by the cryosuction 
pressure (Figure 2):

	 = − ⋅ − −p S T T(1 ) ( )c C fv 0� � � � (15)

where l is the pore shape factor (0 for sphere pore 
and 0.5 for cylindrical pore) (Sun & Scherer, 2010a). 
And here it is regressed based Sun’s data as:

	 = − +T0.0095 0.125� � (16)

Therefore, the crystallization pressure can be 
calculated as:

	 = − ⋅ + −p T S T T(0.875 0.0095 ) ( )c C fv 0� � � (17)

2.3 E xperimental verification

The mortar specimens in the closed test (Sicat et al., 
2013) used ordinary Portland cement with density of 
3.14 g/cm3, fine aggregate which is 1.2mm or less in size 
with density of 2.67 g/cm3 at 1467.6 kg/m3 of concrete 
without air entraining agent to promote damage. Mix 
proportion for specimens is 1:2:6 (water:cement:fine 
aggregate). After curing, specimens were cut into size 
of 40 mm x 40 mm x 2 mm (see Figure 3(a)). Specimens 
were submerged under water until mass was constant 
to attain full saturation. Finally, the specimens were 
sealed with vinyl tape to prevent water uptake or 
loss. The preparation of the specimens is shown in 
Figure 3(a) and (b). The size distribution of entrapped 
air can be obtained from image anlysis (Figure 3(c)). 
Figure3(d) shows the temperature history of each 
cycle.

Adopting the parameters listed in Table 1 to the 
proposed model, the three kinds of pore pressure 
can be calculated (Figure 4). Crystallization and 
cryosuction pressures always coexist and the sum of 
the two is less than 0. Hydraulic pressure is closely 
related to the permeability (k0); for the first freeze–
thaw cycle, the permeability of undamaged material 
can be assumed. Thus, for closed test without water 
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uptake, the hydraulic pressure will reduce gradually. 
The total pressure in Figure 4 is still positive, which 
means expansion occurs at the beginning. However, 
as the damage is cumulated, the permeability will 
increase; this was also proved experimentally by 
Yang, Weiss, and Olek (2006). During this process, 
the crystallization pressure and cryoscution pressure 
is considered unchanged. Still using Equation (9), but 
with different magnitudes of permeability, the hydraulic 
pore pressure is shown in Figure 5.

Figure 3. Outline of the experiment (a) 40 mm x 40 mm x 2 mm 
specimens; (b) sealed specimens; (c) X-ray CT scanning 
(6.2 mm × 6.2mm); (d) temperature history of one cycle.

Table 1. Experimental and empirical parameters for mortar in 
closed test.

Type (w/c) Mortar (0.5)

Mix proportion by weight (w:c:a) 1:2:6
Water saturated (vacuum saturated) 0.228 (0.238) g/cc
Real water saturation 95.8%
Critical radius r0 (by X-ray CT scanning) 1.7 × 10-4 m
Lowest temperature -28°C
Elastic Modulus E (measured) 34 Gpa
Saturated permeability (undamaged) k0 10-21 m2

Poisson’s ratio of mortar ν 0.2
Bulk modulus of porous body Kp 18.9 GPa
Bulk modulus of ice crystal KC 8.8 GPa
Bulk modulus of liquid water KL 2.2 GPa
Critical radius r0 (Gong, Zhang, Sicat,  
& Ueda, 2013b)
(by X-ray CT scanning)

2 × 10-4m  
1.7 × 10-4 m

Equivalent rE [by Equation (5)] 3  × 10-4m
Equivalent RE [by Equation (6)] 0.0014 m

Since the internal pressure is rather difficult to measure 
directly, especially for cement-based materials, the 
comparison is between the calculated deformation 
based on a poroelastic assumption and the measured 

deformation. Therefore, the strain in one dimension 
caused by total internal pressure is:
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Figure 4. Calculated hydraulic, crystallization, and cryoscution 
pressures.

Figure 5. Calculated hydraulic pore pressure in one cycle with 
different permeability (due to damage).

After choosing the proper value of permeability, the 
deformation by total pressure can be calculated 
(Figure 6). In the experiment, the plastic deformation 
exists because the peak strain already exceeds the 
limited strain of the tensile strength. The effect of 
tension-softening behavior will be discussed in the 
next section, but here, our purpose is just to verify the 
reliability of pressure model. Therefore, the tensile 
strain of the first cycle is adjusted within the calculated 
range [Figure 6(b)]. Other typical cycles are chosen 
to compare the effect of hydraulic pressure release 
[Figure 6(b, c)]. Although the curves are not perfectly 
matched, the results are still convincing, considering 
the complexity of the measured data.

For the open test, the permeability change is no longer 
the main influence, but the saturation degree is. It is 
because the initial saturation degree of open test is 
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not very high that the hydraulic pressure is not big 
enough to cause quick damage. As the number of 
cycles increase, the saturation degree will gradually 
increase, resulting in higher hydraulic pressure and 
larger deformation (Fagerlund, 2002). And this will be 
simulated in the next section.

3.  MESOSCALE MECHANICAL MODEL

The Rigid Body Spring Model (RBSM) is a discrete 
numerical analysis method, which was first developed 
by Kawai (1977). Unlike the continuum methods, such 
as Finite Element Method or Finite Difference Method, 
RBSM is a more proper way to simulate splitting and 
cracking in cement-based materials like mortar and 
concrete. Also, compared to other discrete methods 
like Distinct Element Method, RBSM is more suitable 
for small deformation and tiny cracks that often occur 
in concrete structures. 

Figure 7. Elements, degree of freedom, and springs.

The analytical model is divided into polyhedron 
elements, and the mesh is arranged randomly using 
a Voronoi diagram. Each Voronoi cell represents a 
mortar or aggregate element in the model. For two 
adjacent elements, there are two springs connecting 
them: normal spring and shear spring, which 
are placed at the boundary of the elements (see 
Figure 7). Each element has two translational and one 
rotational degree of freedom at the center of gravity. 
The constitutive relation for the normal spring under 
the cyclic internal stress has been discussed in the 
authors’ previous paper (Gong, Sicat, Ueda, & Zhang, 
2013a) as:

Figure 8. Stress–strain relationship under multiple FTCs.

Figure 8 shows a tension–softening relation, which is 
more close to the real cases compared to the linear 
elastic assumption. And compared to the external 
loading, the internal stress during freeze–thaw itself 

Figure 6. Calculated and experimental strain (a) Experiment of 30 cycles (Sicat et al., 2013) (b) first cycle, c (c) fourth cycle, k0 = 10-20 m2  
(d) 28th cycle, k0 = 10-18

 m
2.

(a)

(b) (c) (d)
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is also dependent on the material’s deformation. For 
example, after exceeding the tensile strength (ft), the 
stress equilibrium can still be achieved at ta

(1)� ; this is 
because as the porous body continuously expand, the 
hydraulic pressure will decrease linearly as in Figure 9.  
If the stiffness of a porous body is infinitely large 
(or we just assume it does not deform), the internal 
stress should reach the upper bound (s0). For a fully 
saturated porous body:

	
= ⋅ = ⋅ +
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Then, if there is a volume strain of the porous body 
ep (= 3ex), the internal stress (sw) will decrease as:
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Figure 9. Internal stress regarding the deformation of porous body.

Then, the slope kw in Figure 9 can be determined as:
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Then, combining Figures 8 and 9, the equilibrium 
stress–strain for each normal spring can be 
determined. Till now, the constitutive relations are 
not easy to apply to the numerical program because 
there are two objects (porous body and ice–liquid 
system) that need to be considered at the same time. 
If we regard the ice–liquid system as another normal 
spring, Figures 8 and 9 can be shown as a spring 
system [see Figure10(a)], and the initial stress s0 is 
applied on the spring of ice and liquid, and finally, two 
springs will reach an equilibrium. Figure 10(b) shows 
another case, that is, s0 is applied outside and on 
the two springs, and it can be easily proved that the 
final stress and strain conditions of the porous body 
is the same between (a) and (b), but for the ice–liquid 
system, (a) and (b) are different. Since we are only 
interested in the degradation of porous body, Figure 10 
(a) can be replaced by Figure 10(b), and the stress–
strain relation of ice–liquid should also be changed to 
Figure 11. Then, if using Figure 10(b), the programing 

is much clearer, we just need to add another stiffness 
matrix:

	
[ ]� �p w+ { } = { }u F � (22)

Where [Kp] and [Kw] are the stiffness matrix of the 
porous body and ice–liquid system, respectively. And 
the load boundary {F} can be calculated using s0 :

	 { } { }=F B[ ]T 0� � (23)

Figure 10. Parallel spring system (a) input as internal stress 
(b) input as external stress.

Figure 11. Internal stress regarding the deformation of porous body 
[for spring in Figure10 (b)].

For the normal springs of porous body, a normal 
distribution was also assumed for the tensile 

(a)

(b)



28  Freeze-Thaw Deterioration

strength to increase the heterogeneous performance 
(Nagai et al., 2004):
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For the shear spring of porous body, the following 
criterion is adopted (Nagai et al., 2004):

( ) ( )= ± − + +
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
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And for the interface between mortar and aggregate:

	 ( )= ± − + ctanmax� � � � (26)

Since the internal stress is a volume stress, only 
the normal direction is considered for convenience. 
Therefore, finally the element stiffness matrix would be:
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4.  NUMERICAL ANALYSIS

4.1  Simulation model

The numerical model is conducted to simulate our 
previous experiments, that is, the saturated mortar 
(Sicat et al., 2013) and mortar with single aggregate 
(Sicat, Gong, Ueda, & Zhang, 2014) in closed test, as 
well as the concrete column (Hasan et al., 2004) in 
open test. The 2D models are developed with the size 
and boundary conditions shown in Figure 12.

Figure 12. Simulation models and boundary conditions (a) mortar 

40 mm × 40 mm, (b) mortar with single aggregate 40 mm × 40 mm, 
(c) concrete 200 mm × 100 mm.

Table 2. Parameters in experiments and simulation.

Parameters Mortar Aggregate Interface

ft (MPa) (a) 5.67 N.A. 1.83
ft (MPa) (b) 4.09 N.A. 1.83
E (GPa) (a) 34 50 –
E (GPa) (b) 25 50 –

ν 0.18 0.25 –
c (MPa) – – 3.05
φ(°) – – 35

wmax (mm) 0.03 N.A. 0.01
Note: (a) for closed test (Sicat et al., 2013, 2014); (b) for open test (Hasan 
et al., 2004). N.A. means the aggregate is assumed not fracture. wmax is the 
maximum crack width.

The input material properties are chosen according 
to those experiments and also some are from the 
empirical values (Table 2). Figure 12(a) and (b) are 
for the closed test under 30 freeze–thaw cycles, with 
the cooling rate of 15°C/h and lowest temperature of 
-28°C. Figure 12(c) is for the open test under 300 
cycles, and the cooling rate is around 7.5°C/h with 
lowest temperature of -20°C.

Here, the temperature and moisture distribution are 
assumed uniform because the size of specimens are 
small (40 mm x 40 mm x 2 mm in Sicat’s test). And even 
for bigger specimens, in Hasan’s test, the measured 
temperatures at different locations inside the concrete 
column still showed uniform distribution. Therefore, 
the moisture movement and temperature difference 
are ignored in the simulation model, and once the 
environmental conditions are given, the internal stress 
should be the same on all the normal springs, but only 
exists in the mortar and interfaces, because the ice 
formation in the aggregates is neglected.

The internal stresses are estimated according to the 
physical model discussed in Section 2. Once knowing 
the internal pore pressure (ph + pl + pc ), the equivalent 
internal stress can be calculated as:
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+
+ +p p p2

1 h l c�
�

�
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For the closed test of Sicat et al. (2013, 2014), 
the moisture condition is known and it is easier 
to calculate the time-dependent stress. But here, 
since the damage is mainly considered as the peak 
strain under peak stress and also the unrecoverable 
deformation (residual strain), then only the peak 
values of internal stresses are given to the program. 
Figure 13(a) shows the estimated input stresses in 
the closed test. The hydraulic pressure is the highest 
at the beginning but gradually reduced as damage 
cumulates. Finally there would only be the negative 
stress due to cryosuction. However, for the open test 
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of Hasan et al. (2004), the specimens are bigger and 
not saturated at the beginning. Due to the continuously 
moisture supply, the saturation degree would increase 
and result in increasing hydraulic pressure. The water 
uptake measured by Fagerlund (2002) is increasing 
with the number of cycles but with decreasing speed. 
Therefore, same increasing character of input stress 
is assumed for open test [Fig. 13 (b)]. Since the exact 
values of internal stress are difficult to measure, after 
knowing the tendency of Figure 13 qualitatively, the 
proper magnitudes are chosen to ensure a better 
match with experimental deformations.

Figure 13. Estimated input of total internal stresses (a) for closed 
test (b) for open test.

4.2  Results and discussions

Using the input stress from Figure13(a), the mortar 
deformation in 30 cycles are simulated; see Figure 14. 
Since the tension-softening behavior is considered 
here, the result fits better to the experiment than the 
linear poroelastic model [Figure 6(b)]. Figure 15 shows 
the deformation of mortar, aggregate, and interface 
separately. The interface deformation is compared with 
Sicat et al.’s data (2014), the cumulated shrinkage in 
the experiment is believed as creep, but here it is not 
included in the current model. However, if comparing 
the net deformation of each cycle, the calculated and 
experimental results are still similar.

The deformation of mortar part in Figure 15(b) is smaller 
than that of pure mortar (Figure 14). This is because 
the existence of aggregate can be regarded as an 
additional displacement boundary, then the mortar will 
deform less due to this new restriction. However, at the 
same time, the interface is usually thought as the weak 

point, so the incompatibility of deformation between 
mortar and aggregate will cause a big burden on the 
interface and results in much bigger cracking [Figure 
15(a)]. Finally, the aggregate deforms elastically due 
to the stress on the interface [Figure 15(c)].

The simulation results of concrete column are shown 
in Figure 16. It can be seen that the crack opening of 
interface is much larger than the mortar part; also see 
Figure 17, which shows the crack opening at the 100th 
cycle. From Figures 16 and 17, it can also be seen that 
bigger aggregates have larger crack width, and since 
the left half of the model contains a bigger aggregate, 
it will deform more, and finally the specimen will shift 
slightly to the right.

Figure 18 shows the comparison between the 
simulated and experimental axial strain. Still only the 
peak and residual strain are calculated of each cycle, 
and it can be seen that the residual strain matches 
the experiments well. In Hasan et al.’s paper (2004), 
other material property degradations such as elastic 
modulus, and compressive strength are related to 
the residual strain (or plastic tensile strain); therefore, 
once the simulation model can fit the residual strain 
well, it can also predict other property changes, which 
will be investigated in the future.

5.  CONCLUSIONS

In this paper, the deformational behavior of mortar 
and concrete suffering freeze–thaw cycles are 
theoretically investigated and numerically simulated. 
Both the physical model and the numerical analysis 
show satisfactory agreements with previous closed 
and open freeze–thaw tests. And some useful remarks 
are concluded:

(1)	 According to the moisture condition, the internal 
stress could be either positive or negative, and 
also, during large number of freeze–thaw cycles, 
the deformation could be either increasing 
to expansion or reversing to contraction, 
and therefore, the hydraulic pressure model 
presented in this paper, which combines Powers’ 
model and poromechanical theories has more 
flexibility to be applied to different cases.

(2)	 The hydraulic pressure itself varies with the 
material’s deformation, but it can be transformed 
into a constant value applied on the parallel 
spring system, which can become much easier 
for numerical analysis, such as FEM and RBSM. 
And also by doing so, the internal pressure can 
be applied together with external loadings, then 
the combined internal and external effect could be 
simulated, which will be conducted in the next step.

(3)	 The simulation results show that the mortar- 
aggregate interface is the most vulnerable part, 
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Figure 14. Comparison between simulated and experimental deformation [pure mortar, Figeur12 (a)].

Figure 16. Simulated and experiment data of concrete under 300 cycles in open test (every 50 cycles from 0 to 300, deformation is enlarged 
by 200 times).

Figure 15. Comparison between simulated and experimental deformation [mortar with single aggregate, Figure 12 (b)]; (a) mortar–aggregate 
interface, (b) surrounding mortar, (c) aggregate.

(a)

(b)

(c)
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and its deformation is mainly due to the deformation 
incompatibility between mortar and aggregate; 
bigger aggregate results in larger crack opening.

Figure 17. Crack width at 100th cycle (a) reaches 0.002  mm, 
(b) reaches 0.005 mm.

Figure 18. Simulated and experiment data of concrete under  
300 cycles in open test.
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