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Optimization Under Uncertainty
Applied to Heat Sink Design
Optimization under uncertainty (OUU) is a powerful methodology used in design and
optimization to produce robust, reliable designs. Such an optimization methodology,
employed when the input quantities of interest are uncertain, yields output uncertainties
that help the designer choose appropriate values for input parameters to produce safe
designs. Apart from providing basic statistical information, such as mean and standard
deviation in the output quantities, uncertainty-based optimization produces auxiliary in-
formation, such as local and global sensitivities. The designer may thus decide the input
parameter(s) to which the output quantity of interest is most sensitive, and thereby design
better experiments based on just the most sensitive input parameter(s). Another critical
output of such a methodology is the solution to the inverse problem, i.e., finding the
allowable uncertainty (range) in the input parameter(s), given an acceptable uncertainty
(range) in the output quantities of interest. We apply optimization under uncertainty to
the problem of heat transfer in fin heat sinks with uncertainties in geometry and operating
conditions. The analysis methodology is implemented using DAKOTA, an open-source
design and analysis kit. A response surface is first generated which captures the depend-
ence of the quantity of interest on inputs. This response surface is then used to perform
both deterministic and probabilistic optimization of the heat sink, and the results of the
two approaches are compared. [DOI: 10.1115/1.4007669]

Keywords: uncertainty quantification, optimization under uncertainty, heat transfer,
electronics cooling, DAKOTA, generalized polynomial chaos, sensitivity analysis, design
of experiments

1 Introduction

Uncertainties in engineering design are common and unavoid-
able. These uncertainties may result from an inherent variability
in inputs (aleatory/irreducible uncertainty), such as uncertain geo-
metric parameters and operating conditions, or from a lack of
knowledge (epistemic/reducible uncertainty), such as those due to
unknown physical phenomena [1]. The challenge then is to effi-
ciently quantify these uncertainties and include them in optimiza-
tion procedures to produce designs meeting the prescribed
reliability and robustness levels.

A conventional (deterministic) optimization approach to an en-
gineering problem in the presence of such uncertainties is to treat
the uncertain variables as certain, i.e., assuming them to be fixed
at their means or bounds (if the extent/nature of uncertainty is
known) and proceeding with the optimization. Once the optimal
design parameters are arrived at, a factor of safety may be then
included, based on prior experience, to take the inherent variabili-
ty and other uncertainties into consideration. This approach is
simple, easy to implement and computationally inexpensive, and
remains the most widely used method. However, in the presence
of large uncertainties, or when there are strict constraints (such as
expensive design parts, or designs where overall mass is critical),
the method fails to produce a truly optimal design that is robust
and reliable in addition to being optimal. The conventional
approach does not quantify uncertainties and fold them into the
optimization procedure; it accounts for them heuristically through
a factor of safety.

To perform OUU, optimization techniques must be combined
with uncertainty quantification (UQ) procedures. The OUU
approach may be used for both “design for robustness” and/or
“design for reliability” [2]. The goal of the former design problem

is to produce a design that is less sensitive to variable inputs, such
as a design with a low standard deviation in the output quantities.
In contrast, in the latter problem, the objective is to produce
designs with a lower probability of failure; for this problem, per-
formance statistics at the tails of the distributions are of interest.
An example of the latter problem is arriving at designs such that
the probability of the output parameter falling below a threshold
value is reduced. The former design problem is often the simpler
one to address of the two and does not always require UQ [2]. Ro-
bust design approaches neglecting UQ rely on local derivatives to
assess robustness and are hence not recommended. In the latter
problem, UQ is performed and design parameters are estimated
based on the tail (end) statistics of the output probability density
function (PDF). This problem places a greater demand on UQ and
is often computationally more expensive compared to the former
problem.

Optimization of electronics cooling equipment has been widely
studied [3]. With the advent of high heat-dissipating and densely
packed electronics, there is increasing need to optimize the exist-
ing cooling solutions and to design newer and more efficient ones.
To date, air cooling remains the most widely used approach,
owing to its inherent simplicity, low cost, and low maintenance
[4]. Extended surfaces, such as pin-fins and parallel-plate fins, aid
the heat transfer from a hot surface to the surroundings and are of-
ten employed in conjunction with air cooling [5]. Optimizing
dimensional parameters, such as fin-to-fin spacing and number of
fins for a given set of input parameters is a commonly studied
optimization problem in heat transfer. Bar-Cohen and Rohsenow
[6] and Bejan [7] developed correlations for optimal spacing
between parallel plates for natural convection heat transfer. Simi-
lar studies for forced convection were performed by Nakayama
et al. [8] and Bejan and Sciubba [9]. Ledezma et al. [10] demon-
strated the existence of an optimal spacing between pin fins in
crossflow and impinging flow. Based on theoretical arguments
relating to similarity of flow and heat transfer, the form of the cor-
relation was borrowed from previous studies on cross-flow over
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staggered cylinders [7] and flow between parallel plates [9]. Some
of the recent studies on optimization of pin-fin heat sinks include
those by Kang [11] and Khan et al. [12].

These optimization studies neglect the uncertainties in the prob-
lem being investigated, such as uncertain fin dimensions and the
variability in applied heat flux. The objective of the present study
is to assess the importance of considering these uncertainties.
Optimization under uncertainty is performed for the representative
case of impinging flow on pin fins considered by Ledezma et al.
[10]. Problem parameters, such as base and fin dimensions and
flow speeds, are matched with Ref. [10]. The OUU framework
developed here is verified against simple analytical and 2D prob-
lems, such as flow in a channel with uncertain viscosity [13,14].
The deterministic computational model is first verified for the
flow speeds and dimensions considered by Ledezma et al. [10].
The pin-fin geometry is then optimized by considering uncertain-
ties in the geometric and operating conditions. The cost of multi-
ple flow and heat transfer simulations is alleviated by using
response functions derived from generalized polynomial chaos
(gPC) [15]. Optimization under uncertainty is performed, and ro-
bust designs restricting the standard deviation in the Nusselt num-
ber are obtained.

2 Methodology

In this section, the UQ methodology and the subsequent nested
approach to OUU are briefly described. Readers are referred to

comprehensive literature on the subject (e.g., Refs. [15] and [1])
for a detailed discussion.

2.1 Uncertainty Quantification. UQ refers to the process of
determining the effect of input uncertainties on the output quanti-
ties of interest. These uncertainties, as previously mentioned, are
generally categorized as either aleatory (i.e., resulting from irre-
ducible, inherent variability) or epistemic (resulting from a lack of
knowledge, and thus potentially reducible) [1]. Aleatory uncer-
tainties are typically addressed using probabilistic methods.
Approaches to epistemic uncertainty vary. Both probabilistic
(Bayesian) methods as well as nonprobabilistic methods have
been used to quantify these uncertainties. In the present work, the
analysis is restricted to aleatoric uncertainty, to which probabilis-
tic methods, such as polynomial chaos expansions (PCE), may be
successfully applied.

Random sampling techniques are the most common UQ meth-
ods. Based on the input PDF, samples are drawn randomly based
on algorithms, such as Monte Carlo (MC) and Latin hypercube
sampling (LHS). For each sample drawn, the function evaluation
(simulation/analytical) is performed and when the entire variation
of the input variable is covered, the PDF of outputs may be com-
puted along with various other response statistics [1]. Thousands
of evaluations must be performed to cover the entire range of the
input PDF; the number of evaluations becomes exceptionally
large as the number of uncertain variables increases. Other

Fig. 1 Nested approach to optimization under uncertainty employed in this work

Fig. 2 (a) Isometric view with boundary conditions and (b) top view of pin-fin geometry
considered
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methods, such as the sensitivity method based on moments of
samples, exist but are less robust and depend on the model
assumptions [1].

A more computationally tractable UQ method is the PCE
method. In this work, we employ the gPC approach, using the
Wiener–Askey scheme originally proposed by Xiu and Karniada-
kis [15]. In the gPC approach, Hermite, Legendre, Laguerre,
Jacobi, and generalized Laguerre orthogonal polynomials are used
to model the effect of uncertain variables described by normal,
uniform, exponential, beta, and gamma PDFs, respectively, for
the input variables. These orthogonal polynomial selections are
shown to be optimal for these distribution types since the inner
product weighting function and its corresponding support range
correspond to the PDF for these continuous distributions [15]. In
theory, this selection of the optimal basis allows for exponential
convergence rates, which is far better compared to the random
sampling techniques mentioned previously [1]. Both intrusive and
nonintrusive variants have been proposed [15].

The stochastic collocation method is a nonintrusive method
based on gPC [15]. In this approach, the set of polynomials previ-
ously mentioned are used as an orthogonal basis to approximate
the functional form between the stochastic response output and
each of its random inputs. Deterministic simulations are per-
formed at the collocation points in random space and exploitation
of the orthogonality properties of the polynomial basis functions
allows the determination of the coefficients in the polynomial
expansion. Details may be found in Ref. [15] and in the compre-
hensive review by Eldred [1].

The chaos expansion for a response R takes the form

R ¼
X1
j¼0

ajwj nð Þ (1)

Each of the terms wj nð Þ consists of multivariate polynomials
which involve products of the corresponding one-dimensional pol-
ynomials in the random variable, n. In practice, the number of
terms in Eq. (1) is truncated, and hence only a finite number of
evaluations are needed to calculate the polynomial representation
of the response function R. A number of options exist for choosing
the specific evaluation points j, such as quadrature grids for each
random variable (which translates to a tensor product grid in mul-
tiple dimensions, i.e., when there is more than one random vari-
able) and sparse gridding techniques [1]. One such sparse grid
technique called the Smolyak sparse grid has proven to be highly
efficient, requiring fewer computations than a tensor product grid
when there is a large number of uncertain parameters. We employ
a Smolyak sparse grid in this work.

Once the response function is constructed based on determinis-
tic runs at the collocation points determined by the Smolyak algo-
rithm, it is then used as a surrogate model. PDFs of the response R
may be computed by sampling the space of input random varia-
bles using random sampling algorithms, such as MC and LHS.
The output response statistics, for example, the mean, standard

deviation, or indeed, the entire output PDF, may then be eval-
uated. Some of the other auxiliary information that may be
obtained from such UQ analysis is the sensitivity information.
Based on the reported Sobol’ and Kucherenko’s indices [16], in-
formation such as the sensitivity of a particular output metric to a
particular uncertain input parameter may be obtained, which aids
in the design of future experiments (DOE). For example, based on
this type of UQ analysis and the sensitivity information thus
obtained, the not-so-sensitive parameters may be considered as
deterministic (certain). Subsequent (refined) UQ may then be per-
formed by resolving the more sensitive parameters more accu-
rately, thereby reducing the computational effort significantly. In
this work, we use the open-source UQ and optimization toolkit,
DAKOTA [17], for performing the uncertainty quantification and
the subsequent optimization.

2.2 Optimization Under Uncertainty. OUU refers to the
optimization of a design by taking into consideration the uncertain
input parameters and the corresponding output response statistics.
Eldred et al. [2] provided an overview of the various OUU formu-
lations available in DAKOTA. Of these, we use the most direct
approach called the nested approach to OUU in the present work.
The UQ loop is nested within the optimization loop. Starting with
initial guess values for the design variables (i.e., initial conditions
for the optimization loop), a complete uncertainty quantification is
performed using the gPC UQ methodology described in Sec. 2.1.
Based on the output response metrics from the UQ loop, the opti-
mizer evaluates the objective function and the corresponding con-
straints (if it is a constrained optimization problem, such as a
design to restrict the standard deviation in the outputs) and checks
for convergence. If the convergence criterion is not met, new val-
ues for the design variables are selected and the optimization pro-
ceeds. The nested OUU approach used in this work is shown
schematically in Fig. 1.

At convergence, the set of design variables satisfying a given
set of constraints and also simultaneously minimizing (or maxi-
mizing) an objective function of interest is obtained. DAKOTA is
equipped with a number of gradient and nongradient-based opti-
mization algorithms. We choose the gradient-based optimization
algorithm known as the Fletcher–Reeves conjugate gradient
method for unconstrained optimization and the method of feasible
directions for constrained optimization, based on the CONMIN
library [18]. Also, it may be noted that the method is not just lim-
ited to global optimization; DAKOTA is equipped with optimizers
to deal with multiple, local optima, in addition to the global ones.

Fig. 3 Schematic diagram of the heater block design problem

Table 1 Optimization results for heater block design problem

Parameter
Analytical solution

(Eq. (6))
Deterministic
optimization Probabilistic optimization

q 17.0 17.0 Mean¼ 17.0 and standard deviation¼ 7.0
k 100.0 100.0 Mean¼ 100.0 and standard deviation¼ 30.0
Tc 325.0 325.0 Mean¼ 325.0 and standard deviation¼ 25.0
Initial value of A (mm2) — 20.0 20.0
Initial value of L (mm) — 10.0 10.0
Final value of A (mm2) 42.50 42.48 47.44
Final value of L (mm) 5.0 5.0 5.0
Volume (A� L) (mm3) 212.5 212.4 237.2
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3 Numerical Modeling

This section describes the governing equations and boundary
conditions and details of the numerical model.

3.1 Governing Equations and Boundary Conditions. The
continuity, momentum, and energy equations for the steady,
constant-property flow of an incompressible Newtonian fluid are
given by

@

@xi
quið Þ ¼ 0 (2)

@

@xj
qujui

� �
¼ � @P

@xi
þ l

@2ui

@xjxj

� �
(3)

@

@xi
qCuiTð Þ ¼ @

@xi
k
@T

@xi

� �
(4)

The computational domain is shown in Fig. 2. Exploiting sym-
metry, only a 1/4th section need be considered. The flow enters
the computational domain at the top, impinges on the fin surfaces,
cools the fins, and leaves the domain at the two outlets along the
sides on which the pressure is prescribed. The computational do-
main is suitably extended in the wake of the pin fins to account
for flow reversal. Following Ledezma et al. [10], the fins are
assumed to be isothermal, and hence only the fluid domain is con-
sidered for analysis. Based on their prior study [19] and other
studies on air-cooled heat sinks used in the industry (for example,

Fig. 4 Two-dimensional channel flow with uncertain viscosity for the case of Re 5 81.24: (a)
current results and (b) results from Le Maitre et al. [14]
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see Refs. [8] and [20]), Ledezma et al. [10] assert that for an opti-
mization analysis, the isothermal assumption yields results similar
to those with a nonisothermal fins assumption. This is an approxi-
mation for modeling convenience, and for a more thorough analy-
sis, the solid domain must also be considered in the framework
developed as part of the present work. A no-slip boundary condi-
tion is prescribed for all the solid–fluid interfaces. Figure 2 shows
the various boundary conditions employed in the pin-fin heat
transfer problem considered in this study.

3.2 Solution Procedure. For performing the optimization
under uncertainty effectively, the computational sequence shown
in Fig. 1 must be automated. We use the in-built preprocessor in
DAKOTA called DPREPRO [17] for the purpose. Once the com-
putational model (meshing and subsequent analysis) is parameter-
ized, actual values for the parameters may be obtained directly
using DPREPRO, with little or no human intervention. The whole
process is automated using a simple script written in Python.
Also, for efficient computations, the inner-loop UQ evaluations at
the Smolyak collocation points are conducted in parallel, thereby
speeding up the overall procedure. Furthermore, for the determin-
istic simulations at the Smolyak collocation points, we use the
parallelized computational fluid dynamics (CFD) capabilities of
FLUENT [21]. User-defined functions are written for generating the
outputs in the format required by DAKOTA. After the first outer-
loop iteration (which requires many inner-loop UQ evaluations),
the results are passed back to the optimizer, which then decides
the next set of design variables. The process is repeated until the
convergence criterion and the constraints are satisfied.

The geometry is parameterized for meshing, and the journaling
features of the meshing package CUBIT [22] employed for gener-
ating the meshes at the Smolyak collocation points. The actual
values for the parameters in the parameterized journal file are
updated using DPREPRO for individual function evaluations. The
governing equations are solved using the commercial CFD pack-
age FLUENT [21] as described earlier. The equations are first solved
with a first-order upwind scheme for a few iterations. Using the
flow and temperature fields so obtained as initial conditions, the
equations are solved with a second-order upwind scheme until
convergence. Pressure–velocity coupling is addressed via the
SIMPLE algorithm, along with an algebraic multigrid algorithm
for solving the linearized system of governing equations. The gov-
erning equations are suitably under-relaxed to ensure proper con-
vergence. Also, the default convergence criteria in FLUENT, based
on the scaled residuals, are reduced by two orders for all the gov-
erning equations to enforce a stricter convergence criterion. Fur-
ther details of the numerical method may be found in Ref. [23].

A mesh-independence study is performed by considering three
levels of mesh refinement and analyzing the percentage error in
the overall Nusselt number with respect to the finest mesh size.
This study is conducted at the nominal design point. The number
of elements for the three levels for the case of 5� 5 fins is approx-
imately 238,000, 514,000, and 1,455,000, respectively. It is
observed that the relative percentage difference in Nusselt number
between the coarse mesh and the finest mesh is approximately
0.75%, while that between the intermediate and the finest mesh is
0.44%. The results from the intermediate mesh are assumed suffi-
ciently accurate for the purposes of this paper, and unless other-
wise stated, the results reported in this work are based on this
mesh.

A critical parameter of interest in optimization studies is the
computational time. With parallelized CFD solvers and mesh
sizes of about 0.5 million, each inner-loop evaluation required
approximately 1.5 h of real time employing 3 Intel E5410 CPUs.
The computational time also depends on the level of Smolyak
grid, which determines the number of inner-loop evaluations per
outer-loop evaluation. With 32 available CPUs, we could perform
10 simulations in parallel at any time, leading to a total time of
approximately 10–12 h per optimization run, corresponding to
70–80 total evaluations (inner loop� outer loop). A good way to
reduce the computational time is to first optimize using the deter-
ministic approach, locate the optimum input parameters, and
then begin the probabilistic optimization with these optimal
inputs as the initial guessed values. Further reduction in compu-
tational time may be realized by assessing the required Smolyak
grid level a priori, such as by just performing the uncertainty
quantification analysis, and measuring the mean and standard
deviation values of the outputs, predicted employing various
sparse grid levels. A little change in the response function values
with increase in sparse grid level would then mean that lower
sparse grid levels would suffice. Following this, in the present
work, a sparse grid level of 1 was found to be sufficient, as will
be discussed.

Fig. 5 Nusselt number versus nondimensional fin spacing.
The results from Ledezma et al. [10] are shown for comparison.

Table 2 Uncertainty quantification for pin-fin heat sinks

Parameter Deterministic approach Probabilistic approach

Inputs
L (mm) 45.0 Uniform random, minimum¼ 40.0 and maximum¼ 50.0
t (mm) 3.5 Uniform random, minimum¼ 2.0 and maximum¼ 5.0
W (mm) 3.5 Uniform random, minimum¼ 2.0 and maximum¼ 5.0
H (mm) 20.0 Uniform random, minimum¼ 10.0 and maximum¼ 30.0
c (mm) 10.0 Uniform random, minimum¼ 8.0 and maximum¼ 12.0
n 5 5

Outputs
Nu 15.70 Mean¼ 16.124 and standard deviation¼ 6.99
DP (Pa) 1.79 Mean¼ 2.04 and standard deviation¼ 0.92
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4 Results and Discussion

We now present results for the uncertainty quantification and
optimization under uncertainty for three test cases.

4.1 Heater Block Design. The first problem considered in
this study corresponds to a simple heater block design, for which
an analytical solution exists. This example problem was consid-
ered as a verification case for the OUU framework.

The basic setup of the problem is shown in Fig. 3. The uncer-
tain parameters considered in this problem are the heat input q,
the thermal conductivity of the heater block k, and the temperature
at the cold end Tc. The block is assumed to be insulated at the
sides and the objective is to design the block with minimum vol-
ume, A� L. Here, A is the area of cross section and L is the length.
Additional constraints in the problem are posed by restricting the
mean value of the temperature at the hot end to a design tempera-
ture value of 345 K. The uncertain variables are considered to be
Gaussian random variables, i.e., normally distributed with mean
and standard deviation values as shown in Table 1. The con-
strained minimization problem may be formally stated as follows:

Minimize A� L

suchthat Th � Tdesign

10:0 � A � 100:0

5:0 � L � 20:0

(5)

For fixed values of the uncertain variables, the temperature
value at the hot end, Th, may be calculated as follows [5]:

Th ¼ Tc þ
qL

kA
(6)

4.1.1 Deterministic Optimization. As a first step, the optimi-
zation is performed for the case of deterministic values for the
uncertain variables. For this, the uncertain parameters, q, k, and
Tc, are all fixed at their mean values. The initial values for the
optimization loop are chosen to be 10 and 20 for L and A, respec-
tively. The final optimized values for the design variables A and L
are shown in Table 1. It may be noted that the values correspond
very well with the analytical solution, obtained by setting
Th¼ Tdesign and choosing A by fixing L or vice versa. Also, the
optimization process is assumed converged if the value of the
objective function changes by less than 0.1% for three or more
successive iterations.

4.1.2 Probabilistic Optimization. For probabilistic optimiza-
tion, uncertainties are considered as part of the optimization pro-
cedure, as explained earlier. Beginning with the same initial guess
values as for the case of the deterministic optimization, function
evaluations for the inner UQ loop are performed. A Smolyak
sparse grid of level 2 as described in Ref. [17] is used for this pur-
pose and based on evaluations at the collocation points, the poly-
nomial response surface is obtained. This response surface is then
used as a surrogate model and samples based on the LHS algo-
rithm are drawn to cover the input variable range. The correspond-
ing output values are estimated for each drawn sample and once a
sufficient number of samples are drawn, output response metrics,
such as the mean output value may be obtained. The mean Th

value thus calculated is used by the optimizer to evaluate the in-
equality constraint in Eq. (5). The process is repeated until con-
vergence; the convergence criterion used here is the same as in
the case of the deterministic optimization. The corresponding
optimized values for the design variables are shown in Table 1. It
may be observed that, for the probabilistic case, design variables
assume more conservative values. In particular, for the present
problem, an approximately 12% larger volume is recommended
from the probabilistic case as compared to the deterministic one.
The OUU approach thus allows the user to obtain a quantitative

estimate of how conservative the design should be to account for
uncertainties in the problem and is more robust compared to a
heuristic factor-of-safety approach.

4.2 Channel Flow With Uncertain Viscosity. A 2D channel
flow with uncertain viscosity was considered by Le Maitre et al.
[14]. This was one of the first studies which investigated the use
of polynomial chaos UQ methods for incompressible laminar flow
at moderate Reynolds numbers, as noted by Najm [13]. Le Maitre
et al. [14] used an intrusive PCE method to modify the governing
equations, Eqs. (2)–(4) to account for uncertain viscosity. Also,
they employed a finite difference-based projection method for
solving the governing equations. In the present work, we use the
same problem (problem P1 from Ref. [14]) to verify our modeling
framework. The problem statement is briefly summarized here
and additional details may be found in Ref. [14]. We note that the
stochastic projection method of Le Maitre et al. is an intrusive
PCE method, for which the governing equations must be modified
as must the corresponding solver for performing the UQ [13].
However, we use a nonintrusive PCE method and use the original

Fig. 6 PDFs of (a) Nusselt number and (b) pressure drop for
the uniformly distributed input parameters in Table 2
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governing equations (Eqs. (2)–(4)) and the standard commercial
solver, FLUENT.

The viscosity is assumed to be spatially uniform. At each loca-
tion in the domain, it is considered to be a Gaussian random vari-
able with a predefined mean and standard deviation. The
boundary conditions however are deterministic, i.e., a constant,
uniform flow boundary condition is imposed at the inlet, while a
no-slip condition is imposed on the two bounding walls. The flow
is developing initially but attains fully developed flow conditions
some distance downstream of the inlet. Figure 4 shows the con-
tours of the mean and variance of stream function and streamwise
velocity for a Reynolds number of 81.24 and a ratio of standard
deviation to mean of the kinematic viscosity of 0.2, as used in
Ref. [14]. It may be observed that the results match qualitatively
with those of Le Maitre et al. and this loosely verifies our frame-
work. The development length, as inferred from the velocity data,
is found to be about four times the channel width, which is in
close agreement with theory (xfd/l� 0.05 Re, [5]) and the results
of Le Maitre et al., which further verifies our results.

In the preceding two examples, we have demonstrated that UQ
can be performed nonintrusively and in a computationally inex-
pensive manner. The approach adopted here requires fewer func-
tion evaluations than other UQ methods. The process is
nonintrusive in that new stochastic solvers, such as those used by
Le Maitre et al. [14] are not needed. Instead, uncertainties are
quantified through the output–input response function approach
described.

4.3 Pin-Fin Optimization. The final problem we consider in
this work pertains to the optimization of the width of the pin-fins
cooled by impinging flow in the presence of uncertainties.

At a constant input velocity of impingement, a optimum pin
spacing exists [10]. As the spacing between the fins tends to zero
(infinite fin limit), there is little penetration of flow between the
fins, and the fins are underutilized. Similarly, for a very large fin
spacing (zero fin limit), the reduction in surface area leads to a
reduced amount of heat transfer. This leads to the existence of an
optimum spacing (see, for example, Refs. [9] and [19]). Ledezma
et al. [10] performed a numerical optimization of the fin spacing
for an impinging flow configuration. Their results were first vali-
dated against their experiments. The number of fins was then opti-
mized as the design parameter, for different input parameters,
such as fin height, width, and Reynolds number. The optimal pin
spacing was found to decrease as the Reynolds number increased,
and the peak of the Nusselt number versus fin spacing curve flat-
tened as the Reynolds number was decreased. For the range of
Reynolds numbers considered, a fin count value of 4 or 5 along
the side of the heat sink base was found to be optimal. However,
their methodology did not employ a formal optimization proce-
dure. Also, a discrete parameter, the number of fins, was chosen
as the design variable, and simulations with different values of the
fin count were conducted to arrive at an optimum.

In the present work, the number of fins is fixed at n¼ 5� 5 fins
spanning the entire base area for the optimization problem and the
continuous parameter, the fin width W, is optimized using a more
formal optimization approach based on the Fletcher–Reeves con-
jugate gradient method [17]. Simulations are first performed for
the set of conditions considered by Ledezma et al. [10], viz., a
nondimensional fin width W/L of 0.06, a nondimensional fin
height H/L of 0.56, and a Prandtl number of 0.72. The simulations
are performed for two different Reynolds numbers and the results,
along with those from Ledezma et al., are shown in Fig. 5. Length

Fig. 7 Response surface plots of Nusselt number as a function of various input parameters
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parameters are nondimensionalized by the length of the heat sink
base, L, consistent with Ledezma et al. So also, the Reynolds
number and the Nusselt number are defined based on the fin
width, W, as follows:

Re ¼ qUinW

l
; Nu ¼ qW

L2 Ts � T1ð Þ � kf
(7)

In Eq. (7), Uin, Ts and T1 are the inlet velocity, specified fin
surface temperature and ambient air stream temperature,
respectively.

The small differences between the present results and those
from Ledezma et al. as observed in Fig. 5 may be attributed to the
coarser meshes considered by Ledezma et al., as well as the uni-
form, structured nature of the meshes, with very few cells in
between the fins. In the present work, we have employed a
boundary-layer mesh for resolving the fin surfaces and ensured

that there are at least 5–10 computational cells between successive
fins in the cross-flow direction.

4.3.1 Uncertainty Quantification. The input parameters con-
sidered for UQ are as follows: length of the base, L; thickness of
the base, t; width of the fin, W; height of the fin, H; and clearance
between the top of the fin and the inlet plane, c. These variables
are all assumed to be uniformly distributed random variables. The
corresponding variation in the input parameters is shown in Table 2.
Again the number of fins is fixed at n¼ 5� 5.

A level 2 Smolyak sparse grid is used for uncertainty quantifi-
cation which, for 5 uniformly distributed uncertain variables,
translates to 71 evaluations for constructing the response surface.
The inlet velocity for these runs was fixed at a value of 0.5 m/s.
Following the procedure previously described, once the response
surface is obtained, 10,000 samples are drawn randomly and out-
put response statistics are calculated. The PDFs of Nusselt number
and pressure drop are plotted in Fig. 6, corresponding to the range

Fig. 8 Response surface plots of pressure drop as a function of various input parameters

Table 3 Sensitivity analysis for pin-fin heat sinks

Variable input parameter Range of variation in the input parameter Standard deviation in Nu

L Uniform random, minimum¼ 40.0 and maximum¼ 50.0 1.41
t Uniform random, minimum¼ 2.0 and maximum¼ 5.0 0.21
c Uniform random, minimum¼ 8.0 and maximum¼ 12.0 0.35
W Uniform random, minimum¼ 2.0 and maximum¼ 5.0 6.13
H Uniform random, minimum¼ 10.0 and maximum¼ 30.0 2.69
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of the uncertain inputs considered. Representative response sur-
face plots for the outputs, Nusselt number and pressure drop, are
shown in Figs. 7 and 8, respectively, as a function of the various
input variables. Also, the corresponding mean and standard devia-
tion in the output quantities are reported in Table 2. As a compari-
son, simulations are also performed by fixing the uncertain
variables at their means and the corresponding results are included
in Table 2. It may be observed that the mean values of the output
variables, as obtained from the UQ simulations, are different from
the values obtained by assuming the uncertain variables to be
deterministic and assigning them their respective mean values.
Also, in order to assess the sensitivity of outputs to the various
uncertain inputs, simulations are performed by fixing all input var-
iables at their respective mean values except the input parameter
relative to which the sensitivity is being assessed. By doing so,
the input variables relative to which the outputs show the highest
standard deviation are identified as the most sensitive variables.

Table 3 lists the standard deviation in Nu as the various input
parameters, viz., L, t, c, W, and H are varied. Variations in the
input variables similar to those in Table 2 are considered. Of all
the variables, it is clear that the Nusselt number is most sensitive
to variations in the width W and height H of the fins. Sensitivity
information such as this is useful in helping the designer decide
which input parameters are most important. Such information also
aids in the DOE, as noted by Eldred et al. [2]. For further assess-
ing the dependence of outputs on these sensitive input variables,
the response surfaces are plotted in Fig. 9. The shape of the
response functions from Fig. 9, suggests that a lower-order Smo-
lyak grid is sufficient for this problem, and hence a Smolyak
sparse grid of level 1 is employed in this work for the remainder
of the results. However, simulations were also performed with a
level 2 sparse grid to verify this choice, and similar results, with

less than 0.1% difference, were obtained. The corresponding
PDFs of the Nusselt number for the case of single parameter vari-
ation are shown in Fig. 10.

We may thus perform an initial approximate UQ analysis using,
for example, low-accuracy polynomial expansions, and based on
the sensitivity information, the most sensitive parameters may be
identified. The uncertainty in only the most sensitive parameters
may then be resolved better.

The UQ loop is then nested within an outer optimization loop
for probabilistic optimization. To demonstrate the idea, we use an
OUU approach for “design for robustness.” That is, the optimiza-
tion is performed to choose the design variables that not only
maximize (minimize) the cost function but also restrict the stand-
ard deviation in the output quantities, which is posed as an addi-
tional constraint in the optimization procedure. Two sets of
simulations are performed. In the first case, uncertainties in
dimensional parameters are considered, which may arise due to
manufacturing limitations. An example for such a case is micro-
channels, where large deviations in the channel dimensions are
observed [24]. In the second case, uncertainties in thermal and
flow conditions are considered.

4.3.2 OUU With Uncertain Dimensions. As a first demonstra-
tion case, uncertainties in the thickness of the base t and the fin-
top clearance c are considered for different inlet velocities. The
length of the base L and height H are fixed at 47.6 mm and
26.66 mm, respectively, to match the values from Ref. [10].
Again, uniform uncertain variables, with minimum and maximum
values as reported in Table 4, are considered for this analysis. For
these sets of simulations, a sparse grid of level 1 is considered for
the UQ and optimization is performed, starting with an initial
guess value for the width, W.

Fig. 9 Plots of Nusselt number shown for three most sensitive input parameters: (a) fin width, (b) fin height,
and (c) length of the base, for OUU of pin-fin heat sinks
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For comparison, conventional (deterministic) optimization is
also performed for fixed values of the uncertain variables, i.e.,
with uncertain variables assuming their respective mean values. It
may be observed from Table 5 that for the deterministic runs, as
the velocity is increased, the optimum width of the fins shifts to
higher values, consistent with the observation of Ledezma et al.
[10]. This is because at lower velocities, the flow does not pene-
trate the pins adequately and the increase in fin width is detrimen-
tal to the overall heat transfer. On the contrary, at higher
velocities, flow penetration is significant even at the larger fin
widths and an increase in fin width enhances overall heat transfer
by effectively increasing the surface area. For the probabilistic
runs, a constraint bounding the standard deviation of the Nusselt

number is also applied, and the optimization problem may be
defined as follows:

Maximize Nu

such that Std:Dev:ðNuÞ � 0:5

0:48 mm � W � 8:75 mm

(8)

The limits on the design variable W are chosen so as to cover
the entire range from very thin fins (infinite spacing limit) to very
thick fins (zero spacing limit), with 8.75 mm being just under
the theoretical maximum width (theoretical maximum¼L/
5¼ 9.52 mm).

The convergence history of the optimization procedure is
plotted in Fig. 11 along with results for the deterministic runs.
The corresponding converged values for the width are shown in
Table 5. It may be noted that the values of Nusselt number shown

Fig. 10 Nusselt number PDFs shown for the three most sensitive input parameters: (a) fin width, (b) fin height, and (c) length
of the base, for OUU of pin-fin heat sinks

Table 4 Input parameters for optimization in the case of
uncertain dimensions

Parameter
Deterministic
optimization

Probabilistic
optimization

L (mm) 47.6 47.6
t (mm) 3.5 Uniformly distributed with

minimum¼ 2.0 and maximum¼ 5.0
H (mm) 26.66 26.66
c (mm) 10.0 Uniformly distributed with

minimum¼ 8.0 and maximum¼ 12.0
n 5 5
Ts�T1 (K) 20.0 20.0

Table 5 Optimized width and corresponding Nusselt number
in the case of uncertain dimensions. The presented values of
Nusselt number for the probabilistic case are mean values and
the bold values correspond to the inputs.

Deterministic optimization Probabilistic optimization

Uin (m/s) 0.05 0.2 0.4 0.05 0.2 0.4

W (mm) 6.26 7.20 7.75 6.21 5.12 4.51
Nu 8.19 27.91 51.84 8.23 18.34 22.57
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for the probabilistic case are mean values. By restricting the stand-
ard deviation in the output parameter, more conservative values
result for the design variables. More importantly, the extent to
which a design is conservative to account for uncertainties is
quantified with this approach. Also, there is a significant reduction

in the overall Nusselt number compared to the deterministic case,
which again demonstrates the conservative nature of the design.
The information from the convergence history in Fig. 11 may also
be used for obtaining a first estimate of the output values for a
value of the design variable that is different from the final con-
verged value.

4.3.3 OUU With Uncertain Operating Conditions. As a sec-
ond demonstration case, uncertainties in the inlet velocity (Reyn-
olds number) and input heat fluxes are considered as in a real
application. A desktop computer heat sink, for instance, sees dif-
ferent heat generation levels depending on processor load even if
designs are generally based on a thermal design power [25] which
is a manufacturer-quoted maximum possible heat dissipation.
Similarly, the flow speed from the fan can be uncertain and
variable.

As before, we seek to perform uncertainty propagation first and
then perform OUU to obtain the optimum fin width. The uncertain
parameters are the Reynolds numbers and the pin-fin surface tem-
perature, which are assumed to be Gaussian random variables for
this purpose, with mean and standard deviation values as listed in
Table 6. As in the previous case of uncertain dimensions, L and H

Fig. 11 Convergence history for OUU with uncertain dimen-
sions using (a) deterministic optimization for maximizing Nus-
selt number and (b) probabilistic optimization for maximizing
mean value of Nusselt number

Table 6 Input parameters for optimization for the case of
uncertain operating conditions

Parameter
Deterministic

approach
Probabilistic

approach

L (mm) 47.6 47.6
t (mm) 3.5 3.5
H (mm) 26.66 26.66
c (mm) 10.0 10.0
n 5 5
Ts (K) 320.0 Normally distributed, with

mean¼ 320.0 and standard
deviation¼ 10.0

Mean Re 50.0, 100.0, 300.0 Normally distributed, with
mean ¼ 50.0, 100.0, 300.0

Standard deviation in Re — 2.5, 5.0, 15.0

Fig. 12 Convergence history for OUU with uncertain operating
conditions using (a) deterministic optimization for maximizing
Nusselt number and (b) probabilistic optimization for maximizing
mean of Nusselt number
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values are fixed at 47.6 mm and 26.66 mm, respectively. In addi-
tion, t and c are also held fixed at 2.0 mm and 10.0 mm, respec-
tively. The standard deviation in the Reynolds number values
considered is loosely based on the uncertainty analysis of
Ledezma et al. [10], who noted a 5% uncertainty in Reynolds
number in their experiments. A 3% standard deviation to mean ra-
tio in the solid–fluid interface (fin and base) temperature is
considered.

An additional constraint is imposed to restrict the standard devi-
ation of the Nusselt number, as in the previous case. The corre-
sponding optimization problem may be defined as below

Maximize Nu

such that Std:Dev:ðNuÞ � 1:0

0:48 mm � W � 8:75 mm

(9)

The converged results for mean Nusselt number, along with
Nusselt number values from the deterministic equivalent, obtained
by assuming the mean values for the interface temperature and
Reynolds number are shown in Fig. 12 and Table 7. Again, the
conservative nature of the probabilistic optimization is clearly
observed. For the deterministic case, the value of the optimal fin
width is observed to increase with Re as for the OUU with uncer-
tain dimensions. Physical reasons for this behavior were previ-
ously explained. However, for the case of probabilistic
optimization, due to the additional constraint restricting the stand-
ard deviation in Nu, no such clear trends are observed. From Ta-
ble 7, it may be noted that as long as the constraint is not limiting,
such as for Re¼ 50 and Re¼ 100, similar results are obtained
with both deterministic and probabilistic approaches. At
Re¼ 300, however, a very different optimum value for the width
is returned compared to the deterministic case, as otherwise, the
constraint would not be satisfied.

5 Conclusions

A framework for performing optimization in the presence of
uncertain inputs is developed using the UQ and optimization tool-
kit, DAKOTA. The OUU framework developed here is verified
against a test case for which an exact solution exists. The frame-
work is also tested by performing uncertainty quantification for a
simple 2D channel flow with uncertain but spatially uniform vis-
cosity. The results are verified against the results from Le Maitre
et al. [14].

Optimization of fin spacing in heat sinks is of broad interest in
electronics cooling. Traditionally, the input variables are assumed
to be deterministic for such an optimization, while in reality there
could be uncertainties in both dimensions and operating condi-
tions. In this work, a pin-fin heat sink under an impinging flow,
similar to that considered by Ledezma et al. [10], is considered for
optimization. Two sets of uncertainties commonly encountered in
engineering design problems, viz., uncertainties in dimensions
and uncertainties in operating conditions, are explored. The corre-
sponding results are compared with their deterministic counter-
parts and the conservative nature of the probabilistic designs is
quantified. Based on sensitivity information, the critical input

parameters to which the output quantities are most sensitive are
also identified.
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Nomenclature

A ¼ area, mm2

c ¼ fin-top clearance, mm
C ¼ specific heat, J/kg K
H ¼ fin height, mm
k ¼ thermal conductivity, W/mK
L ¼ length of the heat sink base, mm
n ¼ number of fins on a side

Nu ¼ Nusselt number
DP ¼ pressure drop, Pa

q ¼ heat input, W
R ¼ response function

Re ¼ Reynolds number
s ¼ fin-to-fin spacing, mm
t ¼ thickness of the heat sink base, mm

T ¼ temperature, K
u ¼ velocity, m/s

W ¼ width of the fin, mm

Greek Symbols

ai ¼ coefficients in the response function
ni ¼ random variable
l ¼ fluid dynamic viscosity, N s/m2

q ¼ density, kg/m3

wi ¼ polynomials in the gPC response function

Subscripts

f ¼ fluid
h,c ¼ hot, cold ends
in ¼ inlet
s ¼ solid
1¼ ambient
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