
Purdue University
Purdue e-Pubs

CTRC Research Publications Cooling Technologies Research Center

2014

A Free-Particles-Based Technique for Boiling Heat
Transfer Enhancement in a Wetting Liquid
T. Y. Kim
Purdue University

J. A. Weibel
Purdue University, jaweibel@purdue.edu

S V. Garimella
Purdue University, sureshg@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/coolingpubs

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Kim, T. Y.; Weibel, J. A.; and Garimella, S V., "A Free-Particles-Based Technique for Boiling Heat Transfer Enhancement in a Wetting
Liquid" (2014). CTRC Research Publications. Paper 224.
http://dx.doi.org/http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.12.070

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/77936258?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fcoolingpubs%2F224&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/coolingpubs?utm_source=docs.lib.purdue.edu%2Fcoolingpubs%2F224&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/cooling?utm_source=docs.lib.purdue.edu%2Fcoolingpubs%2F224&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/coolingpubs?utm_source=docs.lib.purdue.edu%2Fcoolingpubs%2F224&utm_medium=PDF&utm_campaign=PDFCoverPages


1 
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Abstract 

An easy-to-implement technique for pool boiling heat transfer enhancement is proposed and 

evaluated through an experimental investigation. This free-particle technique brings about nucleate 

boiling at a low degree of superheat by means of metal particles that are not fixed to the heated surface, 

but rather are free to move with respect to the surface. The effects of copper particles with sizes ranging 

from tens of nanometers to 9 mm on nucleate boiling heat transfer and critical heat flux (CHF) of the 

wetting dielectric fluid FC-72 are investigated. Visualizations of the bubble nucleation characteristics due 

to the free particles are presented. Experimental results show that the introduction of microscale free 

particles onto a superheated surface effectively facilitates bubble nucleation and thus increases the 

nucleate boiling heat transfer coefficients. Millimeter-sized as well as nanoscale free particles do not have 

a strong effect on the boiling heat transfer performance of this wetting fluid. Introduction of a large 

quantity of microscale free particles reduces CHF by increasing the resistance to liquid replenishment and 

vapor departure; however, by properly selecting particle size and quantity, an improvement in both 

nucleate boiling heat transfer and CHF is observed. For the case where 0.2 g of 10 μm-diameter free 

particles are placed on a polished copper surface, corresponding to a particle layer thickness of 

approximately 67 μm, the average nucleate boiling heat transfer coefficient is enhanced by 76.3% over 

the heat flux range of 10 to 159 kW/m
2
, while CHF is increased by 10%. 

 

Keywords: Phase change, free particles, wetting fluid, FC-72, nucleation, pool boiling, heat transfer 

enhancement 
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Nomenclature 

cp specific heat 

h Planck’s constant, heat transfer coefficient 

hfg heat of vaporization 

J bubble nucleation density 

k Boltzmann constant, thermal conductivity 

N0 number of molecules per unit volume 

P pressure 

  ʹ heat flux 

RRMS root mean squared surface roughness 

s thermocouple rake spacing 

T temperature 

Tnl nucleation temperature in liquid 

Greek 

β half-angle of the corner of a microchannel or cavity 

μ dynamic viscosity 

ρ density 

σ surface tension 

ω geometric correction factor 

ψ surface area available for heterogeneous nucleation per unit bulk volume of liquid phase 

Subscripts 

b bubble 

c copper 

j thermocouple junction 

p polished surface 

sat saturation 

w wall 
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1. Introduction 

It is well known that surface treatments may provide effective boiling heat transfer enhancement, and 

many variants of treated surfaces have been developed.  Most surface treatments may be categorized as 

attached promoters, roughened surfaces, or fluid additives.  The typical mechanisms by which surface 

treatment techniques enhance boiling heat transfer include provision of preferential nucleation sites on the 

heated surface, or alteration of the physical properties of the working fluid. 

Attached promoters have been among the most widely used surface treatment methods since Milton 

improved nucleate boiling heat transfer by sintering a porous layer of thermally conductive particles onto 

tube surfaces in the 1960s [1].  There are numerous recent studies on such structures.  Liter and Kaviany 

[2] proposed a modulated porous layer coating, with periodically non-uniform feature thicknesses and 

shapes, designed to reduce the liquid-vapor counterflow resistance and improve critical heat flux (CHF).  

You et al. [3] and O’Connor and You [4] reduced the incipient superheat, improved nucleate boiling, and 

increased CHF by depositing a microstructured layer consisting of particles, a carrier, and a binder on a 

heated surface through spraying and painting methods, respectively.  Parker and El-Genk [5,6] studied 

nucleate boiling of the dielectric liquids HFE-7100 and FC-72 from porous graphite layers containing 

randomly interconnected microscale pores; their measurements showed improved heat transfer 

performance compared to a flat copper surface.  In addition to these studies, boiling heat transfer in 

various porous structures has been characterized through experimental, numerical, and theoretical 

investigations [7-11]. 

Besides particulate layers, wire mesh and pin-fin type attached promoters have also been evaluated.  

Li and Peterson [12] investigated sintered copper wire screens of varying thickness, volumetric porosity, 

and mesh size to determine the dependence of boiling performance on these geometric parameters.  Wei 

and Honda [13] fabricated microscale square pin-fin structures through a dry etching process to improve 

the boiling behavior of FC-72 from silicon chips.  Rainey and You [14]demonstrated significantly higher 

FC-72 boiling heat transfer coefficients compared to smooth pin fins by coating the pin-fin array with a 

second-tier microporous layer.  The primary role of attached promoters is to decrease the incipient and 

nucleate boiling superheats by providing an increased number of readily-activated nucleation sites on the 

heated surface.  However, only a limited number of previous studies, including those cited above, have 

investigated attached promoter performance for a range of porous topologies (e.g., feature size and 

porosity), which could be used as a basis for boiling performance optimization.  Rather, many of the 

studies have focused on development of fabrication methods for the attached promoters. 

Surface roughening has also garnered attention as a relatively simple, cheap, and effective method 

for boiling heat transfer enhancement.  Jakob [15], who first studied the effect of surface roughness on the 
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boiling of water, found that a surface with a square grid of machined grooves improved boiling heat 

transfer by approximately 300% compared to a smooth surface.  Similar conclusions were reached by 

other researchers who used emery paper [16] and electrical discharge machining (EDM) [17] as surface 

roughening methods.  A wide variety of fluids have been investigated for surfaces with various degrees of 

roughness, all showing that the cavities generated during roughening processes serve as nucleation sites 

[18,19].  Since the shape of cavities on roughened surfaces is the primary determinant of their role as 

nucleation sites, reentrant cavities were proposed and shown to serve as more stable nucleation sites due 

to the reversed curvature of the liquid-vapor interface within the cavity [20].  While roughened surfaces 

have been shown to enhance boiling, the increased performance has often been seen to decrease with time 

due to surface aging.  Jakob [15] and Corty and Foust [21] observed this performance degradation, and 

reported that surface corrosion and oxidation hinder the long-term reliability of surface roughening. 

Another boiling heat transfer enhancement approach uses fluid additives, such as by seeding with a 

small concentration of nanoscale particles to produce a nanofluid.  The heat transfer behavior of 

nanofluids has been intensively studied by many researchers since the late 1990s.  Most studies have 

focused on the change in heat transfer characteristics using different types of nanoscale particles, e.g., 

metal oxides [22-24] and carbon nanotubes [25,26].  While nanofluids are simple to implement from an 

application and fabrication perspective, their influence on the nucleate boiling heat transfer coefficient is 

insignificant compared to the other surface enhancement techniques discussed above.  The only 

improvement typically realized is an increase in CHF due to alteration of the surface wettability by 

roughening [22-24].  While an increase in nucleate boiling heat transfer due to nanofluids was observed in 

a few studies [26,27], other researchers reported deterioration of nucleate boiling heat transfer due to 

nanoparticles in solution [22] or no change at all [28].  Nanoparticle-coated surfaces [29] have been 

shown to improve CHF, but without improvement in nucleate boiling heat transfer. 

In this paper, a novel free-particle boiling heat transfer enhancement technique is proposed and its 

effect is evaluated using the wetting dielectric fluid FC-72 as the working fluid. An important practical 

advantage of this technique is that it is comparatively easier to implement than particle sintering, brazing, 

or other exotic fabrication methods.  This makes it possible to readily study the quantitative effects of the 

size and number of particles as experimental variables on the nucleate boiling heat transfer performance.  

In this study, copper particles ranging from tens of nm to 9 mm were used as the free particles.  This 

represents a wider range of boiling enhancement feature sizes than previously investigated in a single 

study. 

 

2. Free-particle boiling enhancement 
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Using the free-particle technique, boiling heat transfer is improved through placement of particles 

that are free to move onto the heated surface.  The key mechanism for boiling heat transfer enhancement 

by free particles is to provide active nucleation sites on the surface, similar to conventional surface 

enhancement methods.  Li and Cheng [30] described the heterogeneous bubble nucleation density using 

classical kinetics of nucleation [31,32] as 
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where ω is the geometric correction factor for the minimum work required to form a critical nucleus.  

This correction factor depends on the contact angle for the solid-liquid interface, θ, and the half-angle of 

the corner of a cavity, β, and can be expressed as 

    



 cos2cos1

2

2
 . (2) 

For microchannels with triangular, rectangular, and trapezoidal cross-sectional areas, the values of 2β at 

the channel corners are 60
o
, 90

o
, and 120

o
, respectively.  Due to the presence of the corner geometry, the 

incipient superheat is decreased compared to a flat surface.  As reported in the literature [2,5,7,11,33-35], 

a decrease in the incipient boiling superheat for surfaces coated with sintered particle layers is attributed 

to corner cavities formed where the particles attach to the heated surface. 

The concept of the free-particle technique comes from the idea that boiling heat transfer is primarily 

affected by local geometric features of the surface, and less so by the actual attachment of particles.  In 

this study, copper particles are chosen because they can be obtained in a range of sizes, and the density of 

copper makes them resistant to removal from the surface (due to buoyant forces exerted by the departing 

vapor) even at the higher heat fluxes.  Free particles that remain settled on the heated surface thus form 

narrow corner cavities which serve to increase the active nucleation sites by decreasing the geometric 

correction factor in Eq. (1), and enhance boiling heat transfer. 

A preliminary experiment was performed to demonstrate the basic concept of the free-particle 

technique by showing the influence of free particles on boiling of FC-72.  In Fig. 1, free particles of 

copper of diameter 149-440 μm are placed on the left half of a uniformly heated copper surface, while the 

right side is maintained clean of particles.  At the heat flux of 10 kW/m
2
 shown, the free particles bring 

about nucleate boiling on the left half of the surface, while natural convective heat transfer is dominant on 

the right half.  As viewable in the associated movie made available as Supplementary Data, several 

microscale particles intermittently depart from the left half of the surface due to the rising vapor bubbles, 

but a majority of the particles remain on the surface, and continue to provide nucleation sites. 
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The boiling heat transfer performance improvement due to the presence of free particles can be 

optimized by varying the number and size of the particles.  Increasing the number of particles placed on 

the heated surface would be expected to increase the probability of formation of cavities between the free 

particles and the surface, resulting in a larger number of nucleation sites, and therefore a higher heat 

transfer coefficient.  However, a larger number of particles may restrict replenishment of the bulk 

working liquid to the nucleation sites, and thus decrease CHF.  Based on Eq. (1) and the classical kinetics 

of nucleation, increasing the size of the free particles reduces the superheat required for bubble 

nucleation, but fewer particles can be used over the same projected surface area, decreasing the overall 

nucleation site density.  Due to this clear trade-off, an optimum particle size that maximizes the boiling 

heat transfer performance is expected to exist.  In the present work, the boiling heat transfer is 

characterized as a function of the number and size of free particles used, and optimal values are identified. 

 

3. Experimental setup and procedures 

A schematic diagram of the pool boiling test setup is shown in Fig. 2.  The top 25.4 mm × 25.4 mm 

test surface of a copper heater block is in contact with the liquid bath.  The polished mirror-finish surface 

has roughness, RRMS, of 25 nm as measured by a non-contact, 3D, scanning white light interferometer 

(NewView 6200, Zygo Corp.).  Each copper heater block has 12 holes on its underside for insertion of 

25.4 mm long cartridge heaters, and 8 holes tapped into the sides of the block for centerline thermocouple 

temperature measurements.  The copper heating block is inserted into a housing made of PEEK (k = 0.28 

W/m·K).  An alumina silicate ceramic (k = 1.6 W/m·K) is inserted between the copper and PEEK to 

insulate the four sides of the heating block, and is chosen because it can withstand higher temperatures 

than PEEK.  Another block made of the same ceramic is positioned beneath the copper heating block with 

12 holes to allow feed-through of the cartridge heaters.  A bottom PEEK housing is attached to the heater 

assembly with screws, and shrouds the ceramic blocks to further reduce heat loss to the ambient. 

A 6.35 mm high polycarbonate square annulus, with a 27.4 mm × 27.4 mm pocket at its center, is 

sealed by compression to the top of the heater assembly.  A chamfer in the PEEK around the perimeter of 

the test surface forms a shallow gap for sealing the heater assembly seam exposed to the test fluid.  As 

shown in the magnified view in Fig. 2, a layer of RTV sealant is placed in the gap and allowed to cure for 

90 minutes in an oven at 75 °C, followed by application of an epoxy (3M DP-190) to fill the remaining 

gap.  Four 92.7 mm high polycarbonate walls are aligned on top of the shorter polycarbonate square 

annulus and sealed by compressing a PTFE gasket.  A cover plate is sealed to the top of the polycarbonate 

walls by another gasket, and forms a 27.4 mm × 27.4 mm × 99.1 mm chamber that confines working fluid 

and the free particles on the heated surface.  The polycarbonate is transparent to allow for visualization at 



7 

 

30 fps with a digital camera (Lumix DMC-LX5, Panasonic).  The assembled test setup is placed in an 

oven at 75 °C for 2 hours to cure the epoxy layer around the sample edge.  The curvature on the short 

polycarbonate wall forms a smooth meniscus in the epoxy layer around the edge of the test surface, and 

prevents premature, unintended activation of nucleation sites at the edge prior to incipience of boiling on 

the surface itself.  

Prior to testing, an additional cartridge heater is positioned at the center of the chamber cover plate to 

be used as a liquid pool heater for the degassing process.  A 3.175 mm diameter stainless steel condenser 

tube is wound in a coil in the vapor space (not shown in Fig. 2).  During testing, a chilled water-glycol 

(50%-50%) mixture flows through the stainless steel tube to condense the working fluid vapor.  A chiller 

(Neslab ULT-80) cycles the water-glycol mixture at a flow rate of 0.5 l/min and maintains the mixture at 

a temperature of 16°C throughout the degassing process and the experiment.  A 6.35 mm polyurethane 

tube connects the liquid pool to a vapor trap.  The flow rate and temperature of the condenser liquid are 

selected to ensure that no working fluid is observed to collect in the vapor trap during the experiment (to 

prevent fluid loss from the chamber over time).  The vapor trap is open to ambient; therefore, the pressure 

of the liquid pool is maintained at atmospheric pressure during testing. At saturation under these 

conditions, FC-72 has the following thermophysical properties: Tsat = 56 °C, ρ = 1594 kg/m
3
, μ = 4.3×10

-

4
 kg/m s, k = 0.054 W/m K, hfg = 88 kJ/kg, cp = 1101 J/kg K, and σ = 0.010 N/m [36]. 

The 12 imbedded cartridge heaters in the copper block are powered to provide the desired heat input.  

Eight thermocouples are embedded along the centerline of the copper block to measure the temperature 

profile.  The inset in Fig. 2 shows the location of thermocouples in the copper heating block.  An 

additional thermocouple is placed 15 mm above the heated surface to measure the pool reference 

temperature.  The temperature measurements are logged to a data acquisition system (Agilent 34970A) 

and are processed in LabVIEW to calculate the heat flux,   ʹ, imposed at the surface, and the 

corresponding wall temperature, Tw.  The T-type thermocouples are referenced to a dry block ice-point 

(Omega TCR-III) with a junction temperature measured by a resistance temperature detector (RTD).  

Since all thermocouples are referenced to a single ice-point junction, and were simultaneously calibrated 

against the same stable temperature source (Omega CL122-4), uncertainty in temperature differences is 

±0.1 °C.  The absolute uncertainty in the temperature measurements is ±0.3 °C.  Based on the uniform 

thermocouple spacing, the local wall temperatures are calculated as follows: 
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In an analogous manner, Tw1 is calculated based on the temperature gradient calculated through linear 

regression of temperature measurements at j1, j2, j3, and j4.  Assuming heat transfer occurs from the top 

surface of the heater block uniformly, the average wall temperature, Tw, is calculated on an area-averaged 

basis as 

 2 3
1

9 16

25 25 2

w w
w w

T T
T T

 
   

 
. (5) 

The local and average heat fluxes are also calculated based on the thermocouple rakes as follows: 
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While local deviations in the boiling heat transfer mechanisms are occasionally observed on the test 

surface, the copper block does not propagate temperature non-uniformities to the thermocouple rake 

locations, which record near-uniform heat flux and extrapolated surface temperatures for all test cases.  

Based on the quoted temperature measurement uncertainties, and using standard propagation of error 

analysis, the area-averaged wall temperature and heat flux uncertainties are approximately ±0.2 °C and ±4 

kW/m
2
 over the range of heat fluxes investigated. 

To perform a test, the pool is initially filled with 45 ml of FC-72.  A degassing procedure is 

conducted by boiling the working fluid using the pool heater for at least 2 hours prior to every 

experiment.  To reduce the liquid level beneath the condenser coil following degassing so that the liquid 

pool temperature does not become stratified during testing, the working fluid is drained using a syringe 

until 25 ml remains in the pool.  For free particle test cases, the chamber cover is briefly removed and the 

desired copper particles are gently introduced into the test chamber to avoid scratching the surface.  After 

degassing, the heat flux supplied by the cartridge heaters is increased in steps to obtain the boiling curve.  

The thermocouple temperature data is collected when steady-state conditions are satisfied at each discrete 

heat flux increment.  Steady-state operation is assumed to have been reached when the time-averaged 

variation of the wall superheat temperature, acquired every 3 seconds, is less than 0.0003 °C/s for 150 

seconds.  Despite the chaotic movement of the free particles that occurs within the fluid during boiling, 

the area-averaged surface temperature and heat flux still reach repeatable steady-state conditions per this 
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definition.  Once steady-state conditions are satisfied, time-averaged temperature data are obtained from 

30 measurements collected over 90 seconds, and are used to calculate the actual surface heat flux and the 

corresponding wall superheat as described above.  This procedure is repeated until critical heat flux is 

identified based on a sharp increase in the wall superheat for a small increment of heat flux.  To better 

resolve this transition, the heat flux is increased in small increments (~ 2-3 kW/cm
2
) as CHF is 

approached for each test case. 

Copper particles of 3, 6, and 9 mm in diameter were obtained from Salem Specialty Ball Company.  

Each of these millimeter-sized particles is polished prior to the experiment in the same manner as the test 

surface.  Nano- and microscale copper particles packed in an argon atmosphere were obtained from Alfa 

Aesar.  A high-accuracy electronic scale (Ohaus Voyager) is used to control the weight of the particles 

placed on the heated surface.  Table 1 shows the sizes, quantity, and estimated layer thickness of copper 

particles used in the experiments.  The layer thickness is calculated by assuming that particles at the 

average diameter form an evenly distributed layer of close-packed  spheres.  If the quantity of particles 

used does not cover the entire surface, a percentage surface coverage area is provided in the table, and the 

layer thickness is reported to be equal to the average diameter. 

 

4. Results and discussion 

4.1 Effect of the size of free particles 

In order to determine the effects of free-particle size on boiling of FC-72, experiments were 

conducted with different sets of copper particle sizes ranging from 20 nm to 3 mm; boiling curves for 

these cases are presented in Fig. 3.  As a baseline, results are also obtained for a polished surface without 

free particles.  The heat transfer coefficients for all test cases are plotted as a function of heat flux in Fig. 

4.  The boiling curves are discussed in the following in order of decreasing particle size with the help of 

visualizations of the boiling process below. 

For the polished surface, natural convection heat transfer occurs at low heat fluxes (below 20 kW/m
2
), 

as visualized in Fig. 5 (a).  The boiling curve for the polished surface in Fig. 3 does not indicate a 

noticeable temperature overshoot at the transition from the natural convection to the boiling regime.  

Following transition, the boiling curve is smooth, and the wall superheat consistently increases with 

increasing heat flux.  The coverage area for nucleate boiling spreads as the heat flux increases, until 

boiling is observed over the entire heated surface area at a heat flux of ~70 kW/m
2
, as in the case shown 

in Fig. 5 (c).  When the heat flux increases to 146 kW/m
2
, a sharp increase in the wall superheat is 

measured, and a change in the heat transfer regime from nucleate boiling to film boiling is observed:  The 

polished surface is shown blanketed by vapor at CHF in Fig. 5 (d). 
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For experiments with the 3 mm particles, the polished copper surface is covered by a monolayer of 

100 particles.  The particles increase the heat transfer performance primarily by activating bubble 

nucleation from the narrow gap corners formed between the particles and the surface.  The number of 

active nucleation sites increases as the heat flux increases, as clearly demonstrated in Fig. 6 (a, b).  The 

addition of these 3 mm particles, and the resulting increase in active nucleation sites, lowers the wall 

superheat by 2.5-5 K compared to the polished surface at heat fluxes in the range of 8-38 kW/m
2
, as 

shown in Fig. 3.  However, the nucleate boiling heat transfer performance deteriorates as the heat flux 

reaches ~40 kW/m
2
, and underperforms the polished surface above this heat flux.  At 51 kW/m

2
, film 

boiling begins in the 3 mm particulate later, as identified in Fig. 3 by a sharp increase in the wall 

superheat.  The reduction in CHF for millimeter-sized particles is attributed to inefficient vapor escape 

and liquid replenishment counterflow caused by the dense packing of particles on the surface.  Compared 

to the polished surface, the flow resistance to vapor escaping from the surface and to liquid returning to 

the cavities where it is vaporized is greater. 

Introduction of smaller free particles having sizes of several hundreds of micrometers onto the heated 

surface facilitates bubble nucleation at a low wall superheat and improves nucleate boiling heat transfer 

more significantly than the millimeter-sized particles.  The three different test cases using 3 g each of 0.8-

2 mm, 0.6-0.8 mm, and 149-440 μm particle size ranges demonstrate similar boiling curve trends in Fig. 3.  

Fig. 6 (c, e, and g) show that these three particle size ranges lead to uniform nucleate boiling over the 

heated surface at low heat fluxes.  Each of these cases shows a higher heat transfer coefficient than the 

polished surface in Fig. 4 up to heat fluxes of around 80, 95, and 70 kW/m
2
, respectively. 

Since the particles are not fixed to the heated surface, they migrate along the surface and the particle-

layer thickness varies dynamically due to the surrounding fluid flow patterns.  The particle motion causes 

slight differences in boiling curve trends for each size range with increasing heat flux.  The 0.8-2 mm 

particles, being the heaviest, remain on the surface even at high heat fluxes; however, the particles do 

aggregate at some parts of the heated surface, exposing portions of the polished surface to the working 

fluid, as shown in Fig. 6 (d).  This behavior is expected because 3 g of 0.8-2 mm particles covers only 

approximately 75% of the surface when initially placed on the surface.  Over the areas where the 

underlying polished surface is exposed, nucleation is suppressed, and the mechanism of heat transfer 

changes to free convection.  This less-effective heat transfer mechanism causes the boiling curve and the 

h-q curve for the 0.8-2 mm particles to deviate from the 0.6-0.8 mm and 149-440 μm particle size cases.  

For the intermediate particle size range, 3 g of 0.6-0.8 mm particles cover the entire surface, and boiling is 

maintained over the entire surface without noticeable particle redistribution, as shown in Fig. 6 (f).  

Despite covering the entire surface when settled, Fig. 6 (h) shows that the lightest 149-440 μm particles 
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are easily moved around on the surface by bulk fluid motion and agglomerate near the center of the 

heated surface.  As a result, two corners of the polished heated surface are exposed directly to the working 

fluid, and boiling is suppressed over these areas.  For this reason, among these particle size groups with 

the same total weight of 3 g, the 0.6-0.8 mm particles show the greatest average improvement in boiling 

heat transfer up to a heat flux ~100 kW/m
2
.  The measured CHF values for the 0.8-2 mm, 0.6-0.8 mm, 

and 149-440 μm particle groupings are 87, 115, and 102 kW/m
2
, respectively.  This corresponds to 60, 79, 

and 70% of the CHF for the polished surface, with the reduction being attributed to the liquid 

replenishment counterflow resistance at the nucleation sites as described for the millimeter-size particles. 

When the size of free particles is further decreased to 10 μm, the particle size falls significantly 

below the observed bubble departure diameter, and each particle does not provide a unique nucleation site.  

Thus, nucleate boiling does not occur over the entire surface with 0.6 g of 10 μm particles at low heat 

fluxes; instead, several nucleation sites activate over the surface.  Rising vapor locally displaces the 10 

μm particulate layer, and the bubble departure diameter at each of these nucleation sites is qualitatively 

larger than for any other particle size tests, as shown in Fig. 7 (a).  As the heat flux is increased to 10.5 

kW/m
2
, the nucleation sites extend over a larger area, and pull particles neighboring the nucleation site 

away from the surface along with the rising vapor, resulting in improved nucleate boiling by means of 

large, stable vapor columns, as illustrated in the visualization in Fig. 7 (b).  This nucleate boiling behavior 

that occurs at each enlarged nucleation site enhances boiling heat transfer compared to all previous test 

cases, and a steep slope in the boiling curve is observed for the heat fluxes above 10.5 kW/m
2
 (Fig. 3).  At 

the particle loading of 0.6 g for this particle size, the wall superheat is maintained below 20 K until CHF 

is reached.  Critical heat flux occurs at a heat flux of 123 kW/m
2
, corresponding to 84% of the polished 

surface value.  This is in contrast to fixed porous coatings, which have been shown to increase CHF 

compared to a polished surface [3,14]; for such fixed coatings, this improvement is attributed to capillary-

assisted liquid replenishment in a thin layer that does not impede vapor escape [2].  The decreased CHF 

compared to a smooth surface may then be due to a lack of capillary resupply in the free-particle layer or 

the result of the large quantity of particles that are observed to stay in contact with the surface up to CHF, 

hindering liquid replenishment to the surface. 

At the extreme in the particle size range, when nanoscale particles are used, little effect is observed 

on the nucleate boiling heat transfer performance of FC-72.  The polished surface, when covered with 0.2 

g of 20-40 nm free particles, maintains marginally lower wall superheats compared to the polished surface 

without free particles across the entire range of heat fluxes.  Several nucleation sites are formed that 

displace particles in a similar manner as with the 10 μm sized particles.  At a heat flux of 5.0 kW/m
2
, 

nucleation sites are active at the upper right and lower right corners in the image of the heated surface 
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viewed in Fig. 7 (c).  Particles near the lower left corner in this image have moved toward the center of 

the heated surface due to bulk fluid flow, and do not provide active nucleation sites, as was the case with 

the 149-440 μm particles (Fig. 6 (h)).  As the heat flux increases to 9.4 kW/m
2
, the fluid becomes 

translucent due to the increased quantity of suspended nanoscale particles, as shown in Fig. 7 (d).  In 

contrast to the 10 μm and larger particles that remain on the surface up to CHF, the nanoscale particles are 

completely suspended in the fluid, and increase CHF to 153 kW/m
2
.  This represents a 5% improvement 

compared to the polished surface.  Several explanations for CHF enhancement due to nanoparticles are 

offered in the literature.  One proposed phenomenon is a deposition of nanoparticles onto the heated 

surface to form a thin porous layer during boiling that increases CHF [23,28].  However, such a buildup 

of a porous structure was not observed in the present study.  Instead, the slight improvement in CHF in 

this work is likely caused by the change in the wettability of the working fluid due to the nanoscale 

particles as discussed in [23,37]. 

 

4.2 Effect of the number of free particles 

Results presented in the previous section generally indicate that the introduction of free particles on a 

heated surface can improve nucleate boiling heat transfer coefficient of a wetting fluid like FC-72, while 

CHF typically decreases in the cases where the free particles remain on the surface even at high heat 

fluxes, restricting vapor release and liquid replenishment.  The effect of the number of free particles on 

the heated surface on nucleate boiling heat transfer coefficients and CHF using FC-72 is now investigated.  

Fig. 8 and Fig. 9 present the boiling curves and the corresponding heat transfer coefficients for different 

quantities of a given free particle size (10 μm, 149-440 μm, and 0.6-0.8 mm). 

As a general trend for all particle sizes tested, the nucleate boiling heat transfer coefficient increases 

with an increasing number of particles at low heat fluxes after the onset of nucleate boiling.  For example, 

3 g of the 0.6-0.8 mm and 149-440 μm free particle groupings, representing the largest loading for both 

size ranges, exhibit lower wall superheats for heat fluxes below 87 kW/m
2 

and 54 kW/m
2
, respectively.  

For the lowest quantity considered of the 149-440 μm particles, introduction of 0.6 g of particles yields 

the lowest heat transfer coefficient up to a heat flux of 67 kW/m
2
.  This implies that increasing the 

number of free particles on the heated surface increases the number of contact points and thus activates a 

greater number of nucleation sites for boiling.  The increased nucleation site density improves the 

nucleate boiling heat transfer performance. 

A second reason for the increase in performance with particle loading is due to the number of free 

particles that remain in contact with the surface.  For the sub-millimeter particle sizes described in Fig. 8, 

unlike the larger millimeter-sized particles that stay on the surface, it is observed that the particles are 
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pulled away from the surface by buoyant vapor that departs from the surface.  When a smaller number of 

particles is used, the surface may locally be stripped of particles and the boiling suppressed, whereas a 

comparatively higher particle loading may allow such areas to be immediately fed by other loose particles. 

While increasing the number of particles increases the heat transfer coefficient at intermediate heat 

fluxes, reducing the number of free particles mitigates the CHF reduction compared to a polished surface.  

When 3 g of 149-440 μm particles are introduced as free particles, the heated surface is covered by a 1 

mm-thick layer of particles.  This layer hinders vapor escape form the surface, and a transition to film 

boiling occurs at a heat flux of 102 kW/m
2
, a value that is 70% of the polished-surface critical heat flux.  

The particles fall to the heated surface in the vapor space at CHF, as shown in Fig. 6 (i).  For this 

particular case, an even distribution of particles at CHF indicates that the vapor film covers the entire 

surface.  Vapor escape from this vapor-particle layer is observed intermittently in the videos acquired.  In 

comparison, reduced 149-440 μm particle quantities of 0.6 g and 1 g yield CHF values that are identical 

to that of the polished surface (146 kW/m
2
) at a similar wall superheat of approximately 35 K.  For these 

cases, most particles stay near the surface; however, their positions continuously move about the surface 

due to the bulk liquid/vapor motion, and some fraction of the particles are entrained in the fluid at CHF.  

It is hypothesized that this spontaneous movement of particles prevents clogging of vapor at the surface, 

and yields a similar CHF to that of the polished surface. 

These trends for the 149-440 μm particles in regard to the effect of the number of particles are also 

preserved for the 0.6-0.8 mm particles.  When the quantity of particles is decreased from 3 g to 1 g, the 

measured heat transfer coefficients decreases below heat fluxes of 86 kW/m
2
; yet, CHF increases from 

115 kW/m
2
 to 141 kW/m

2
. 

Among all the experiments conducted with free particles in this work, 0.2 g of the 10 μm particles 

showed the greatest improvement in boiling of FC-72 over a wide range of heat fluxes, from 20 to 160 

kW/m
2
.  The boiling phenomena observed for this case are very similar to the observations described 

earlier with 0.6 g of these particles.  As described in section 4.1, the mechanism of nucleation-site 

formation is unique at this particle size, and larger vapor columns are formed over the surface at locations 

where particles are pulled away from the surface by the rising vapor, as shown in Fig. 7 (a, b).  Therefore, 

in contrast to the preceding conclusions drawn about the larger particle sizes, the smaller particle loading 

of 0.2 g of the 10 μm particles is observed to generate vapor columns over a larger portion of the surface 

than for the higher loading of 0.6 g.  This results in higher heat transfer coefficients.  Likewise, 0.2 g of 

the 10 μm particles increases CHF compared to the polished surface by 10%, the largest improvement 

observed in the present study (Table 1).  This increase in CHF for the lower particle loading of 0.2 g 

compared to 0.6 g for the 10 μm particles is similar to the trend described for 149-440 μm and 0.6-0.8 mm 
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particles described above.  The improvement in CHF by addition of microscale free particles has not been 

studied previously, and further investigation of the boiling process under these conditions is required to 

identify the enhancement mechanism, such as changes in the liquid properties. 

In order to make generalized comparisons across a range of heat fluxes versus the baseline polished 

surface without free particles, the average percentage enhancement in nucleate boiling heat transfer 

coefficient is quantified using 

 

 
 

,

1

1 ,

1

100
n

i p i

i i

i p i

n i

h h
q q

h

q q








  

 


, (10) 

where hi and hp,i are the heat transfer coefficients of the experimental case and the polished surface 

baseline case at each heat flux, for n data points.  In order to compare over a continuous range of heat 

fluxes, hp,i is obtained from a polynomial fit of the polished h-q˝ curve, given as 

 
2 2

, 0.018 0.044 0.0098 10p i i ih q q     . (11) 

The improvement in nucleate boiling due to 0.2 g of the 10 μm free particles is evaluated using this 

parameter to be 76.3% compared to the case of polished surface over the heat flux range of 10 to 159 

kW/m
2
.  This is in contrast to the least effective test case, in which one-hundred 3 mm free particles are 

introduced, which shows only a 7.2% improvement over the heat flux range of 10-50 kW/m
2
.  The 

nucleate boiling heat transfer enhancement calculated for all free particle sizes and quantities is presented 

in Table 1.  The percentage enhancement is calculated for a range of 10 kW/m
2
 to the maximum heat flux 

tested in each experimental case. 

 

4.3 Effect of working fluid properties 

The results obtained in the present study for the wetting fluid FC-72 differ from the behavior 

observed with water in a companion paper [38].  While the trend of variation with particle size is similar, 

the optimum particle size at which the nucleate boiling heat transfer coefficient is maximized is 

significantly smaller for FC-72, on the order tens of microns.  In contrast, a particle size of 3 mm is 

shown to be optimal for water at low heat fluxes near the onset of nucleate boiling, while 6 mm particles 

show the best heat transfer performance at high heat fluxes.  Millimeter-size particles show little effect on 

the nucleate boiling heat transfer coefficient for FC-72 (Fig. 10), and result in a decrease in CHF (Table 

1).  This difference in the optimum particle size is attributable to the differences in surface tension; FC-72 

is a highly wetting fluid, with a low surface tension of 0.010 N/m at 25 °C [Error! Bookmark not 

defined.], versus 0.072 N/m for water [39].  Thus, smaller cavities would be expected to be preferred for 

nucleation in FC-72.  Based on the results of the present study and those in [38], it is found that the effect 
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of wetting holds true for the free particle technique, for which narrow corner cavities formed between the 

free particles and the heated surface serve as nucleation sites. 

 

Conclusions 

In the present study, the concept of a free-particle boiling heat transfer enhancement technique is 

proposed and experimentally investigated using FC-72 as the working fluid.  A series of experiments 

were conducted to investigate the effect of copper particle size and number on boiling heat transfer 

coefficient and critical heat flux (CHF).  The experimental results show that microscale free particles 

placed on a heated surface effectively facilitate bubble nucleation and thus enhance nucleate boiling heat 

transfer.  However, placement of a large quantity of such particles on the heated surface significantly 

deteriorates CHF by increasing the resistance to vapor release and liquid replenishment under vigorous 

boiling conditions.  An optimum particle size and quantity exists that improves nucleate boiling and 

increases CHF, identified to be 0.2 g of 10 μm free particles for FC-72 in the current study.  Due to the 

difference in working fluid properties, millimeter-size free particles which were identified as the optimum 

particle size for boiling of water in [38] show little improvement of nucleate boiling heat transfer in FC-

72, and significantly reduce CHF. 
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Table 1. Characteristics of the copper free-particle surface coatings used in the experiments. 

 

Particle size Quantity 
Estimated layer 

thickness 

Surface 

coverage (%) 

CHF 

(kW/m
2
) 

Nucleate boiling 

enhancement (%) 

20-40 nm 0.2 g ~57 μm 100 153 7.6 

10 μm 
0.2 g ~67 μm 100 160 76.3 

0.6 g ~181 μm 100 123 61.1 

149-440 μm 

0.6 g ~295 μm 71 146 7.7 

1 g ~535 μm 100 146 12.9 

3 g ~1020 μm 100 102 23.3 

600-800 μm 
1 g ~700 μm 50 141 13.0 

3 g ~1270 μm 100 115 30.6 

0.8-2 mm 3 g ~1.4 mm 75 87 23.7 

3 mm 100 EA 3 mm 100 51 7.2 

6 mm 25 EA 6 mm 100 119 3.5 

9 mm 9 EA 9 mm 100 85 4.4 

Polished 

surface 
N/A N/A N/A 146 N/A 
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Fig. 1. Nucleate boiling characteristics of FC-72 from a heated surface covered by 149-440 μm copper 

free particles on the left, and polished on the right, at a heat flux of 10 kW/m
2
.  The related movie is 

available online as Supplementary Data. 
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Fig. 2. Schematic diagram of the experimental facility and locations of the thermocouples in the copper 

heating block. 
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Fig. 3. Boiling curves for a range of free particle sizes.  The point of critical heat flux is indicated by an 

“X” on the plot. 
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Fig. 4. Heat transfer coefficients as a function of heat flux for the same experimental cases as presented in 

Fig. 3.  The dash-dotted line indicates a third-order polynomial fit to the polished surface data. 
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Fig. 5. Visualization of the boiling characteristics of FC-72 from the polished surface without free 

particles at (a) 2.2 kW/m
2
, (b) 33 kW/m

2
, (c) 71 kW/m

2
, and (d) 146 kW/m

2
. 
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Fig. 6. Visualization of the boiling characteristics of FC-72 from the heated surface with different free-

particle loading conditions: one hundred 3 mm particles at (a) 3.4 kW/m
2
 and (b) 15 kW/m

2
; 3 g of 0.8-2 

mm particles at (c) 4.6 kW/m
2
 and (d) 24 kW/m

2
; 3 g of 0.6-0.8 mm particles at (e) 5.7 kW/m

2
 and (f) 24 

kW/m
2
; and 3 g of 149-440 μm particles at (g) 6.5 kW/m

2
, (h) 26 kW/m

2
, and (i) 102 kW/m

2
 (CHF).  A 

light source is turned on for acquisition of the images in (c), (e) and (g) to better visualize the tiny vapor 

bubbles.  Arrows in (d) and (h) indicate exposed areas of the substrate from which free particles have 

been swept away; boiling is suppressed on the polished copper surface over these areas at the heat fluxes 

shown.  
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Fig. 7. Visualization of the boiling characteristics of FC-72 from the heated surface with 0.6 g of 10 μm 

particles at (a) 5.0 kW/m
2
 and (b) 10.5 kW/m

2
, and with 0.2 g of 20-40 nm particles at (c) 5.0 kW/m

2
 and 

(b) 9.4 kW/m
2
.  A light source is turned on for acquisition of the image in (d) due to the working fluid 

translucency imparted by the suspended nanoscale particles. 
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Fig. 8. Boiling curves for variable quantities of free particles of a given size.  The point of critical heat 

flux is indicated by an “X” on the plot. 
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Fig. 9. Heat transfer coefficient as a function of heat flux for the same experimental cases presented in 

Fig. 8. 
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Fig. 10. Boiling curves for the experiments performed with the millimeter-sized free particles. 
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