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Abstract 

A single molten-salt thermocline tank is a low-cost alternative to conventional multiple-tank systems for concentrating solar 

power thermal energy storage.  Thermocline tanks are typically composed of molten salt and a filler material that provides 

sensible heat capacity at reduced cost; such tanks are referred to as a dual-media thermocline (DMT).  However, inclusion of 

quartzite rock filler introduces the potential for mechanical ratcheting of the tank wall during thermal cycling.  To avoid this 

potential thermomechanical mode of failure, the tank can be operated solely with molten salt, as a single-medium thermocline 

(SMT) tank.  In the absence of a filler material to suppress formation of tank-scale convection eddies, the SMT tank may exhibit 

undesirable internal fluid flows in the tank cross-section.  The performance of DMT and SMT tanks is compared under cyclic 

operation, assuming adiabatic external wall boundary conditions.  A computational fluid dynamics model is used to solve for the 

spatial temperature and velocity distributions within the tank.  For the DMT tank, a two-temperature model is used to account for 

the non-thermal equilibrium between the molten salt and the filler material, and Forchheimer’s extension of Darcy’s Law is 

added to the porous-medium formulation of the laminar momentum equation.  The governing equations are solved numerically 

using a finite volume approach.  For adiabatic external boundaries, the SMT tank yields a percentage point increase in the first 

and second law efficiencies relative to the DMT tank.  Future work is needed to compare the thermocline tank designs with 

respect to capital cost and storage performance under non-adiabatic wall boundaries. 

 
© 2013 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

Concentrating solar power (CSP) is a promising and commercially viable technology for large-scale conversion 

of solar energy into electricity.  In a CSP plant, focused sunlight is used to increase the thermal energy of a heat 

transfer fluid (HTF); the heated fluid is then utilized to produce steam that drives a Rankine cycle for electrical 

power generation.  Reliance on direct solar radiation subjects CSP to the inherent intermittence of the insolation 

based on weather and cloud conditions, and requires cost-effective energy storage technologies to maintain steady 

power output, a key issue in the development and expansion of sustainable energy technologies [1].  The inclusion of 

thermal energy storage increases the performance of CSP plants by decoupling energy demand (for electricity 

generation) from solar energy availability [2–5]. 

 

Nomenclature 

   specific heat, J/kg-K 

  diameter of the thermocline tank, m 
   diameter of filler granules, m 

  energy, J 

  unit vector 

  inertial coefficient 

  gravitational acceleration, m/s
2
 

  height of thermocline tank, m 

   volumetric interstitial convection coefficient, W/m
3
-K 

 ̃ identity tensor 

  permeability, m
2
 

 ̇ mass flow rate, kg/s 

  thermal conductivity, W/m-K 

    interstitial Nusselt number 

  pressure, Pa 

   Prandtl number 

  radial coordinate, m 

   Reynolds number 

 ̃ strain rate tensor, s
-1

 

  time, s 

   half-cycle period, s 

  temperature, K 

  velocity vector, m/s 

  traversal speed of the heat exchange region, m/s 

  velocity component, m/s 

  axial coordinate, m 

  exergy, J 

Greek 

  porosity 

  efficiency 

  viscosity, Pa-s 

  density, kg/m
3
 

 ̃ stress tensor, Pa 

  solid fraction 

  viscous dissipation function, s
-2

 

Subscript 

  low inlet discharge temperature 

    charge process 



 C. Mira et al./ Energy Procedia 00 (2013) 000–000  

    discharge process 

    effective 

  high inlet charge temperature 

   inlet 

  molten salt 

    outlet 

  r-direction 

  solid filler 

  x-direction 

  θ-direction 

  reference state 

  first law of thermodynamics 

   second law of thermodynamics 

 

Thermocline tanks are sensible-heat thermal energy storage devices that have been applied in industrial and 

domestic energy conversion processes [6].  In a thermocline tank, both the cold and hot reserves of heat transfer 

fluid (HTF) are stored in a single tank in a manner that exploits buoyancy forces to promote thermal stratification.  

Isothermal hot and cold fluid regions become separated by a narrow region of temperature gradient, which is called 

the thermocline or heat-exchange region [2].  Due to their potential low cost relative to more conventional two-tank 

storage methods, molten-salt thermocline tanks are an attractive option for thermal energy storage in CSP systems 

[7,8].  In a dual-media thermocline (DMT) tank, a granulated material is added to the tank to reduce the amount of 

molten salt required to charge the system.  In contrast, a single-medium thermocline (SMT) tank uses only molten 

salt. 

DMT tanks are favored because they have economical and technical advantages over SMT tanks.  The low-cost 

filler material replaces a large amount of the expensive molten salt, and requires only a marginal increase in total 

tank volume due to the slightly lower relative thermal capacity of the filler material.  The filler material also acts as 

a porous-medium flow distributor that dampens secondary velocities in the tank cross-section that may destratify the 

hot and cold HTF regions.  SMT tanks, in contrast, may be more vulnerable to non-uniform flow phenomena such as 

tank-scale mixing eddies.  The importance of fluid distribution at the inlet is discussed in [9,10].  The thermal 

behavior of molten-salt DMT tanks has been studied via numerical models [8,11,12]; a few experimental studies 

have also been reported [8].  Extensive thermomechanical simulations of DMT tanks have been performed in the 

authors’ group to quantify multi-dimensional thermal behavior inside the tank [13], performance under cyclic 

operation [14], structural stability of the tank wall [15], and system-level performance in conjunction with a CSP 

plant model [16]. 

One disadvantage of DMT tanks is possible mechanical failure by thermal ratcheting [15].  During cyclic 

operation, the tank wall and the internal filler material undergo differential thermal expansion and contraction.  If 

the tank wall expands further than the filler material when heated, an annular gap may be formed into which the 

granulated unconsolidated filler material can redistribute.  When the system is cycled and the wall is cooled, the 

settled filler granules would prevent complete contraction of the tank wall to its original dimensions, and generate a 

residual mechanical stress.  If this stress is sufficient for the tank wall to yield, repeated wall expansions (or 

‘ratchets’) may accumulate with each storage cycle until failure [15].  Thermal ratcheting does not occur in SMT 

tanks because of the absence of the filler material.  There is also no risk of pipe system clogging by entrainment of 

the filler material into the molten-salt flow, and the design is simpler. 

SMT tanks have been commonly used in power conversion technologies outside of CSP, such as industrial 

refrigeration systems [6] and domestic solar thermal devices [17].  In these low-temperature applications, water is 

used as the storage medium due to the high heat capacitance, availability, and low cost.  Water tanks with thermal 

stratification are a mature technology; analytical, numerical and experimental studies have been previously reported 

[18–21].  Molten-salt SMT tanks for CSP applications, however, remain unexplored.  

The present work assesses the comparative performance and thermal behavior of molten-salt DMT and SMT 

tanks under cyclic thermal operation and adiabatic external boundary conditions. 
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2. Numerical modeling 

2.1. Problem description 

The numerical analysis considers a thermocline tank with a discharge power of 25 MWt, and 12-hour 

charge/discharge processes from 600 °C and 300 °C hot and cold HTF sources, respectively.  The tank is sized to 

store 12 h of thermal energy with an overdesign capacity of 1.5 h.  A tank overdesign is necessary for simultaneous 

containment of the desired thermal energy (at high temperature) and the underlying heat-exchange region composed 

of HTF at cold and transitional temperatures.  The molten salt is a commercial eutectic mixture of sodium nitrate 

(60 wt.%) and potassium nitrate (40 wt.%) that solidifies at 221 °C.  The temperature-dependent molten salt 

physical properties are calculated using the following curve fits derived from experimental data (temperature in 

Celsius) [22]:  

Density (kg/m
3
) :   (1) 

Viscosity (mPa-s):   3724 10474.110281.2120.0714.22 lllll TTTT    (2) 

Thermal conductivity (W/m-K):   lll TTk 4109.1443.0   (3) 

The specific capacity of the molten salt is relatively constant in the operating temperature range; a mean value over 

this range of 1520 kJ/kg-K is used.  The required mass flow rate of molten salt is 54.8 kg/s at the prescribed 

discharge power.  The DMT and SMT tanks are sized based on the desired thermal capacity and discharge power.  

The height of the tank is set to 12 m for both cases, as a practicable value based on previous reports [23].  Fig 1 

schematically illustrates both units. 

The diameter of the SMT tank is 12.85 m with a molten salt volume of 1556 m
3
.  The diameter of the DMT tank 

is 14 m and the total volume of the filler bed is 1847 m
3
.  The filler inside of the DMT tank is quartzite rock with a 

mean particle diameter of 15 mm and porosity of 0.22 [8].  The amount of salt inside the DMT tank is therefore 

406 m
3
.  The properties of the quartzite rock are treated as constant, with a specific heat of 830 J/kg-K, a density of 

2500 kg/m
3
 and a thermal conductivity of 5 W/m-K [13,24]. 

 

(a) 

 

(b) 

 

Fig 1. Schematic illustrations of (a) a dual-media and (b) a single-medium thermocline tank. 
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The cyclical operation of both systems is identical.  During the charge process, hot molten salt (carrying energy 

from the solar field) enters at the top of the tank while cold fluid exits at the bottom to be routed for heating to the 

solar field.  During the discharge process, cold fluid from the power block enters at the bottom of the tank while hot 

fluid exits from the top (delivering energy for steam generation).  In an actual thermocline tank, distributors must be 

used to promote uniform, unidirectional flow and curtail mixing of hot and cold fluid.  For the present model, ideal 

distribution is assumed, and distributors are omitted from the model geometry; uniform flow conditions are imposed 

at the inlet and outlet of the main thermal energy storage region.  The charge and discharge processes each last 12 h.  

The total cycle has a duration of 24 h and does not include any dwell-time without flow. 

2.2. Governing equations and boundary conditions 

The thermal behavior of a thermocline tank is governed by mass, momentum, and energy conservation principles.  

Governing equations are formulated for both the DMT tank and the SMT tank.  These equations are described in 

detail here for the DMT tank, as equations for the SMT tank can be obtained from straightforward simplification of 

the DMT model. 

The motion of the molten salt inside the thermocline tank obeys the mass and momentum conservation principles 

as expressed in the following laminar flow equations.  Darcy’s and Forchheimer’s terms are included to account for 

viscous and inertial momentum dissipation in the porous bed.  The equations are stated in terms of the seepage 

velocity: 

   (4) 

 






















uuugτ

uuu
lll

l

K

F

K
p

t








 ~  (5) 

where the stress tensor is defined as  ̃     ̃-   ⁄ )    ̃) ̃) with the strain rate tensor  ̃    ⁄        ) ).  The spatial 

gradient in cylindrical coordinates is           ⁄ )       ⁄ )    ⁄ )        ⁄ ).  Fluid flow is assumed to be two-

dimensional axisymmetric, eliminating all angular functional dependencies.  Relations from the literature are used 

for the permeability, evaluated as     
      ( - )⁄

 
[25], and for the inertial coefficient, evaluated as       √    ⁄  

[26].  

In the DMT tank case, the molten salt exchanges thermal energy with the filler bed.  Hence, there is no thermal 

equilibrium between both phases and separate energy equations are required for each: 

  
      lsileffcllpl

cllpl
TThTkTTc

t

TTc








,

,
u  (6) 

    
 lsi

cssps
TTh

t

TTc




 ,1 
  (7) 

The energy equations are coupled by the volumetric heat transfer rate between the solid and liquid phases due to 

interstitial convection.  The interstitial heat transfer coefficient is calculated as [27]:  

  316.0 PrRe1.1216Nu  i   (8) 

The filler bed forms an unconsolidated porous medium with minimal contact area between particles.  Hence, heat 

conduction between the solid particles is assumed to be negligible.  However, an effective thermal conductivity is 

 
  0




ul

l

t



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included in the liquid-phase energy equation to account for the additional thermal diffusion in the porous medium.  

The effective thermal conductivity of the solid-liquid mixture is [28]:  

 
 



 






1

05.01.0221 5.4323 e
kk leff  (9) 

where    - , and   (  -  )        )⁄ . 

The simplified form of the governing equations used for the SMT tank model can be obtained from the 

expressions above setting the porosity to unity and considering an infinite permeability.  In this case, the mass and 

momentum conservation can be expressed as follows: 

   (10) 

 
  gτuu

u
ll

l p
t







 ~   (11) 

Only one energy equation is required for the SMT tank.  The effective thermal conductivity is equal to the thermal 

conductivity of the molten salt. 

 
 

    






llllpl

llpl
TkTc

t

Tc
,

,
u  (12) 

The boundary conditions applied depend on the phase in the cycle of operation.  The tank side wall is modeled as 

non-slip and adiabatic during all stages of the cycle.  During the charge process, when hot molten salt enters at the 

top of the tank, the top of the tank is specified to be an inlet with uniform velocity and temperature Th.  Cold molten 

salt exits the tank at the bottom where outflow conditions are imposed: 

hhx
TT 


              hhxx uu 


                  0

000
















 x

r

x

x

x x

u

x

u

x

T
 (13) 

During the discharge process the flow is reversed and cold molten salt enters at the bottom of the tank with uniform 

velocity and temperature Tc.  The top wall is modeled as an outlet:  

cx
TT 

0
              cxx uu 

0
                  0















 hx

r

hx

x

hx x

u

x

u

x

T

 (14)

 

2.3. Solution procedure 

The governing equations are numerically solved using the finite volume method using the commercial 

computational fluid dynamics software FLUENT [29].  The two-dimensional domain is discretized into a structured 

mesh composed of rectangular cells.  Each of these cells is treated as a control volume for which the balance 

equations of conserved quantities are written as algebraic expressions; in this way, the solution method assures 

global conservation of mass, energy and momentum.  Flow variables may be interpolated at the cell faces with 

different discretization schemes.  For the present study, a second-order upwind scheme is used for spatial 

discretization of convective fluxes and a body force-weighted scheme is used for spatial discretization of the 

  0



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l

t

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pressure.  Transient discretization is performed with a first-order implicit formulation.  Pressure-velocity coupling is 

accomplished with the pressure implicit with splitting of operators (PISO) algorithm [30].  Experimental validation 

of this model was demonstrated in [13] with a simulation of a 2.3 MWh DMT tank previously built by Sandia 

National Laboratories [8]. 

For both thermocline tank geometries the mesh size is Δr = 0.005 d in the radial direction and Δx = 0.01 h in the 

axial direction.  The time step for the simulation of the DMT tank is Δt = 6 s; mesh independence was previously 

verified by Yang and Garimella [13].  For the SMT tank, a smaller time step of Δt = 0.6 s is required to achieve 

converged solutions.  In the SMT tank, momentum dissipation mechanisms are reduced due to the lack of a porous 

filler, resulting in the development of a hydrodynamic boundary layer along the interior tank wall, in contrast to the 

DMT tank.  A grid check was performed for the SMT tank using constant fluid properties to verify that the applied 

mesh size successfully resolved the layer.  As an initial condition for both tanks, the temperature of the upper half of 

the tank is set to 600 °C and the lower half of the tank to 300 °C.  Convergence to periodicity is achieved after the 

simulation of seven cycles, each one consisting of a 12 h charge process and a 12 h discharge process.  The 

performance of the SMT tank is compared with that of the DMT tank under periodic response conditions. 

3. Results and discussion 

3.1. Temperature field 

Profiles of the molten-salt temperature along the tank axis during charge and discharge processes for the DMT 

and SMT tanks are plotted in Fig 2.  At each time, three zones can be identified: a zone of uniform low temperature, 

a zone with notable temperature gradient (heat-exchange region), and a zone of uniform high temperature.  The 

heat-exchange region moves downward during the charge (from right to left in the plot) and upward during the 

discharge process (from left to right in the plot).  The speed of the heat-exchange region is nearly equal in both 

thermocline units: 0.249 mm/s in the DMT tank and 0.248 mm/s in the SMT tank.  These results are in good 

agreement with the expression for heat-exchange region velocity proposed by Yang and Garimella [13]:  

  spslphl

lphl

h
cc

c
uv

,,,

,,

1 




   (15) 

The equation is evaluated using a porosity of 1 for the SMT tank, in which case the speed of the heat-exchange 

region equals the inlet velocity. 

In an ideal adiabatic thermocline tank, a heat-exchange zone should not occur, and all of the stored molten salt 

should be retrieved at the high temperature, without energy and exergy losses.  In practice, however, a region of 

temperature gradient develops due to thermal diffusion in the fluid.  The length of this zone is a measure of the 

thermal stratification inside the tank; as the length increases (poor stratification), the quality of the energy stored in 

the tank decreases.  In the present study, the length of the heat-exchange zone is defined as the region that contains 

98% of the overall temperature change, namely the region in which:           )       )      ⁄ .  As seen in 

Fig 2 from the slopes of the temperature curves, thermal diffusion occurs more readily in the DMT tank.  The length 

of the heat-exchange zone in the DMT tank is 3.29 m while in the SMT tank is 2.14 m.  This is due to the higher 

thermal conductivity of the filler material, which causes a higher effective thermal diffusivity (both the filler 

material and molten salt have similar heat capacity). 

It should also be noted that the “S”-shaped temperature profiles in Fig 2 are not symmetric about the median 

temperature of 450 °C.  The heat-exchange region tends to be stretched in a particular direction depending on the 

cycle direction.  For instance, at the middle of the discharge process, t = 18 h, the heat-exchange region is larger on 

the hot molten-salt side.  The situation is reversed halfway through the charge process, at t = 6 h, and the heat-

exchange region is larger on the cold molten-salt side.  This phenomenon is related to the changes in the flow 

conditions at the ports during the transitions between the discharge and charge processes.  At the end of the 

discharge process a portion of the salt in the heat-exchange region is delivered to the power system; when the charge 

process begins, fresh hot molten salt enters at the top of the tank.  In this way, the heat-exchange region becomes 
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shorter on one side due to the initial temperature discontinuity at the tank inlet.  The effect is more pronounced for 

the DMT tank in which thermal diffusion is higher. 

 

(a) 

 

(b) 

 

Fig 2.  Molten-salt temperature along the axis of the (a) dual-media thermocline tank and (b) single-medium thermocline tank. 

3.2. Outflow temperature history and discharge efficiency 

The temporal molten-salt outflow temperatures during the discharge process for the DMT and SMT tanks are 

plotted in Fig 3.  At the beginning of the discharge process the outflow temperature is equal to the inlet charge 

temperature of 600 °C, and it remains constant during most of the process.  At some point, the outflow temperature 

begins to decrease and reaches its lowest value at the end of the discharge process.  The outflow temperature drops 

by 77.0 K in the DMT tank and by 36.3 K in the SMT tank.  The smaller temperature drop exhibited by the SMT 

tank is preferable as more high-temperature molten salt is delivered to the power block steam generators.  As such, 

more electricity will then be delivered to the grid. 

 

 

Fig 3 Outflow temperature history for dual-media and single-medium thermocline tanks. 

The outflow temperature history during the discharge process is used to assess the performance of the 

thermocline tank as a thermal energy storage system.  In an ideal adiabatic thermocline tank, the molten salt is 

recovered at the same temperature at which it is stored; however, due to the heat exchange with the cold molten salt, 

a certain amount of molten salt is delivered at lower temperature, and it is not possible to completely recover the 

energy and exergy that are initially stored.  First and second law efficiencies compare the energy and exergy 
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delivered during the discharge process with the stored values during the charge process.  These efficiencies are 

defined as follows: 

 

  0,

0
,

,

,

0

tTTm

dtTTm
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The first law efficiency of the DMT tank is 98.89% while its second law efficiency is 98.75%.  For the SMT 

tank, these values are 99.81% and 99.78% respectively.  Given these high efficiencies, both thermocline tank types 

are suitable as a thermal energy storage device for CSP plants.  It should be noted, however, that the SMT tank 

could be more sensitive to flow disturbances.  For instance, the development of a hydrodynamic boundary layer 

along the SMT tank wall, illustrated in Fig 4, can induce flow non-uniformities.  This behavior, especially when 

exacerbated by the presence of external heat losses, is under investigation in ongoing work.  It should also be noted 

that the material cost of the quartzite rock is less than that of molten salt, and thus, an economic study is also needed 

to compare the DMT tank with the non-ratcheting SMT tank. 

 

(a) 

 

(b) 

 

Fig 4. Single-medium thermocline tank:  (a) velocity contours and (b) temperature contours halfway through the discharge process (t = 18 h). 

4. Conclusion 

Two types of molten-salt thermocline tanks for a thermal energy storage system are explored through numerical 

simulation, namely, a conventional DMT tank with quartzite rock as filler material, and a SMT tank.  The thermal 

performance under cyclic operation and adiabatic external boundary conditions is comparatively assessed using 

temperature distribution inside the thermocline tank, outflow temperature history, and first and second law 

efficiencies as metrics.  Greater thermal diffusion is observed in the DMT tank, which elongates the heat-exchange 

region along the height of the porous region.  This is expected due to the higher thermal diffusivity of the quartzite 

rock, and is the main cause of the differences (outflow temperature history and storage cycle efficiency) observed in 

the performance of the two kinds of thermocline tanks. Under the adiabatic conditions of operation considered in 

this study both units have high thermal performance, with slightly higher First- and Second-Law efficiencies for the 

SMT tank. 

Radius, m

H
e

ig
h

t,
m

0 2 4 6
0

2

4

6

8

10

12

Velocity magnitude, mm/s

0.28

0.26

0.24

0.22

0.20

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

Radius, m

H
e

ig
h

t,
m

0 2 4 6
0

2

4

6

8

10

12

Temperature, ° C

580

560

540

520

500

480

460

440

420

400

380

360

340

320



 C. Mira et al./ Energy Procedia 00 (2013) 000–000 

Acknowledgements 

This paper is based upon work supported in part under the US-India Partnership to Advance Clean Energy-Research (PACE-R) for the Solar 

Energy Research Institute for India and the United States (SERIIUS), funded jointly by the U.S. Department of Energy (Office of Science, Office 

of Basic Energy Sciences, and Energy Efficiency and Renewable Energy, Solar Energy Technology Program, under Subcontract DE-AC36-

08GO28308 to the National Renewable Energy Laboratory, Golden, Colorado) and the Government of India, through the Department of Science 

and Technology under Subcontract IUSSTF/JCERDC-SERIIUS/2012 dated 22nd Nov. 2012. 

References 

[1] Ibrahim H, Ilinca A, Perron J. Energy storage systems—Characteristics and comparisons. Renewable and Sustainable Energy Reviews 

2008;12:1221–50. 

[2] Gil A, Medrano M, Martorell I, Lázaro A, Dolado P, Zalba B, et al. State of the art on high temperature thermal energy storage for power 

generation. Part 1—Concepts, materials and modellization. Renewable and Sustainable Energy Reviews 2010;14:31–55. 

[3] Tamme R, Laing D, Steinmann W-D. Advanced thermal energy storage technology for parabolic trough. Journal of Solar Energy 

Engineering 2004;126:794–800. 

[4] Luzzi A, Lovegrove K, Filippi E, Fricker H, Schmitz-Goeb M, Chandapillai M, et al. Techno-economic analysis of a 10 MWe solar thermal 

power plant using ammonia-based thermochemical energy storage. Solar Energy 1999;66:91–101. 

[5] Herrmann U, Kelly B, Price H. Two-tank molten salt storage for parabolic trough solar power plants. Energy 2004;29:883–93. 

[6] Dincer I. On thermal energy storage systems and applications in buildings. Energy and Buildings 2002;34:377–88. 

[7] Kearney D, Herrmann U, Nava P, Kelly B, Mahoney R, Pacheco J, et al. Assessment of a Molten Salt Heat Transfer Fluid in a Parabolic 

Trough Solar Field. Journal of Solar Energy Engineering 2003;125:170. 

[8] Pacheco JE, Showalter SK, Kolb WJ. Development of a molten-salt thermocline thermal storage system for parabolic trough plants. Journal 

of Solar Energy Engineering 2002;124:153. 

[9] Zurigat Y, Liche P, Ghajar A. Influence of inlet geometry on mixing in thermocline thermal energy storage. International Journal of Heat 

and Mass Transfer 1991;34:115–25. 

[10] Chung JD, Cho SH, Tae CS, Yoo H. The effect of diffuser configuration on thermal stratification in a rectangular storage tank. Renewable 

Energy 2008;33:2236–45. 

[11] Li P, Van Lew J, Karaki W, Chan C, Stephens J, Wang Q. Generalized charts of energy storage effectiveness for thermocline heat storage 

tank design and calibration. Solar Energy 2011;85:2130–43. 

[12] Arahal MR, Cirre CM, Berenguel M. Serial grey-box model of a stratified thermal tank for hierarchical control of a solar plant. Solar Energy 

2008;82:441–51. 

[13] Yang Z, Garimella SV. Thermal analysis of solar thermal energy storage in a molten-salt thermocline. Solar Energy 2010;84:974–85. 

[14] Yang Z, Garimella SV. Cyclic operation of molten-salt thermal energy storage in thermoclines for solar power plants. Applied Energy 

2013;103:256–65. 

[15] Flueckiger SM, Yang Z, Garimella SV. Thermomechanical simulation of the Solar One thermocline storage tank. Journal of Solar Energy 

Engineering 2012;134:041014. 

[16] Flueckiger SM, Iverson BD, Garimella SV, Pacheco JE. System-level simulation of a solar power tower plant with thermocline thermal 

energy storage. Applied Energy 2014;113:86-96. 

[17] Abdoly M, Rapp D. Theoretical and experimental studies of stratified thermocline storage of hot water. Energy Conversion and Management 

1982;22:275–85. 

[18] Yoo H, Pak E. Theoretical model of the charging process for stratified thermal storage tanks. Solar Energy 1993;51:513–9. 

[19] Han YM, Wang RZ, Dai YJ. Thermal stratification within the water tank. Renewable and Sustainable Energy Reviews 2009;13:1014–26. 

[20] Bahnfleth WP, Song J. Constant flow rate charging characteristics of a full-scale stratified chilled water storage tank with double-ring slotted 

pipe diffusers. Applied Thermal Engineering 2005;25:3067–82. 

[21] Al-Najem N. Degradation of a stratified thermocline in a solar storage tank. International Journal of Energy Research 1993;17:183–91. 

[22] Pacheco JE, Ralph ME, Chavez JM, Dunkin SR, Rush EE, Ghanbari CM, et al. Results of molten salt panel and component experiments for 

solar central receivers: cold fill, freeze/thaw, thermal cycling and shock, and instrumentation. Sandia National Laboratories, Report No 

SAND94-2525 1995. 

[23] Solar thermocline storage systems. EPRI 1019581 2010. 

[24] Côté J, Konrad J. A generalized thermal conductivity model for soils and construction materials. Canadian Geotechnical Journal 

2005;458:443–58. 

[25] Beckermann C, Viskanta R. Natural convection solid/liquid phase change in porous media. Int. J. of Heat and Mass Transfer 1988;31:35–46. 

[26] Krishnan S, Murthy JY, Garimella SV. A two-temperature model for the analysis of passive thermal control systems. Journal of Heat 

Transfer 2004;126:628–37. 

[27] Wakao N, Kaguei S. Heat and mass transfer in packed beds. New York: Gordon and Breach Science Publishers; 1982. 

[28] Gonzo EE. Estimating correlations for the effective thermal conductivity of granular materials. Chemical Engineering J. 2002;90:299–302. 

[29] ANSYS. Fluent 14.5.0 2011. 

[30] Issa R. Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics 1986;65:40–65.  


	Purdue University
	Purdue e-Pubs
	2014

	Numerical Simulation of Single- and Dual-Media Thermocline Tanks for Energy Storage in Concentrating Solar Power Plants
	C. Mira
	S. M. Flueckiger
	S V. Garimella

	Article

