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Abstract

Connected component decomposition of space induced by a pair of intersecting half-
spaces can result in several disjoint components having identical classifieation with respect
to both halfspaces. Therefore, additional hallspaces separating these components are
required to classify a given point with respect to components in space decomposition.
We consider this problem for general quadrics and give a method to construct separating
halfspaces for plane/quadric and quadric/quadric intersection.

1 TIntroduction

Classification of a point as inside, outside or on the boundary of a solid is a fundamental op-
eration for many applications which repeatedly reason about solids such as collision detection
in dynamic simulation systems and discretization of 3D domains for solving partial differep-
tial equations. For a solid defined as union of semialgebraic space components, point/solid
classification can be done by classifying the given point with respect to components delining
the solid.

Binary Space Partition (BSP) tree is a binary tree data structure used to represent volume
of a solid. Its interior nodes correspond to oriented halfplanes and leaf nodes represent the
regions which are either inside or outside the solid. For details refer to [Vanétek]. BSP
tree can also be used to represent exhaustive connected component decomposition of space
induced by a set of intersecting halfspaces. If planes are used to construct BSP tree then each
leaf node represents a single connected region. If halfspaces of higher degree such as.quadrics
are used to construct a BSP tree, a leaf node may represent several disjoint components in
space which have identical classification with respect to all the halfspaces. If a BSP tree is
constructed from the set of halfspaces induced from the faces of the given solid and not all
the regions at a leaf node are inside or outside the solid, additional halfspaces separating
space components with identical classification are needed such that all the space components
corresponding to a leaf node are either inside or outside the solid. Since the space components
corresponding to a leaf node can be represented by a semialgebraic expression in terms of
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the halfspaces used at each node in the path from root node to the leaf node, the solid can
be represented as union of semialgebraic space components.

This work is motivated by the problem of constructing a sufficient set of separating half-
spaces for solids bounded by quadric faces so as to be able to represent them as union
of semialgebraic space components. It can also be viewed as a method to convert bound-
ary representation of a solid to volumetric representation as discussed in [ShapiroVosslerl,
ShapiroVossler2, ShapiroVossler3]. These authors consider this problem for solids bounded
by quadric faces with planar edges and give a practical methiod to construct a set of lincar
halfspaces separating each Tace from the rest of halfspace. They prove that it is a sufficient set
of separating halfspaces for the solids bounded by planar edges. We approach this problem
by constructing separating halfspaces for components with identical classification in space
decomposition by halfspaces induced from the faces of the given solid. We consider general
solids bounded by planar and quadric faces. In this paper we give a method for construc-
tion of separating halfspaces for space components with identical classification resulting from
plane/quadric and quadric/quadric intersection.” This can be used to construct separating
halfspaces for space components resulting from every pair of halfspaces in the set of halfs-
paces induced from faces of the solid. In our future work, we consider separation of space
components resulting from intersection of more than two halfspaces. Subsequently, the min-
imization techniques described in [ShapiroVossler2] can be used for constructing an efficient
CSG representation using the separating halfspaces constructed by our method.

This problem is also of interest from view of decomposing a given solid into simpler
components where each component can be described as intersection of halfspaces which define
regular semialgebraic subsets of space.

2 Prior Work

Shapiro and Vossler [ShapiroVosslerl, ShapiroVossler2, ShapiroVossler3] have considered the
problem of constructing separating halfspaces for solids bounded by quadric faces where the
edges of solids are planar. They prove the following constraint on the degree of the curve
along which two space components with identical classification can touch.

Theorem 1 (Shapiro and Vossler) Two space components with identical classification re-
sulting from intersection of degree k halfspaces can touch along a curve of degree k*]2
[Shapiro Vossler3].

Hence two space components with identical classification resulting from intersection of a pair
of quadrics can touch along a curve of degree at most two. If the components touch along a
conic, then a plane through the conic separates the two components. If the conic degenerates
into a pair of lines, a plane containing the pair of lines separates the two components. When
the conic degenerates into a double line such as the case of two parabolic cylinders touching
along aline, a pair of planes through double line aud parallel to principal planes of the quadrics
separate the components with identical classification. When tlhe two components touch along
a set of points then a piecewise linear separating surface passing through these points can
be constructed. Hence it is always possible to construct a set of linear separators for solids
bounded by quadric faces irrespective of WhQLher the the edges are planar or nonplanar.

We use the following result from [Levin] for construction of separating halfspaces for solids
bounded by quadric faces.



Theorem 2 (Levin) The intersection of two quadric surfaces lies’in a plane, pair of planes,
hyperbolic or parabolic eylinder, or hypcrbolic paraboloid [Levin].

Note that the nonplanar intersection curve of two quadric surfaces always lies in a  nonelliptic
quadric.

3 Preliminaries

From [ShapiroVossler3], we note the following observations.

1. The number of transversal intersections of a path ab with the boundary o of a halfspace
h modulo 2 is called 1mod 2 intersection number and is denoted as Jo(ab, 9h).

2. Points a, b are strictly separated by a halfspace h if and only if Ig(ab; dh) = 1, whenever
ab and Oh intersect transversally.

3. All paths ab are equivalent in the sense of having the same intersection number I(ab, Oh).

For formal definitions of thése concepts and related discussion, the reader is referred to
[GuilleminPollack]. In the rest of paper, we refer to quadric/quadric intersection curve as
Quadric Surface Intersection Curve (QSIC). ' '
The sell-intersection points of a QSIC divide it into connectéd components such that any
two points in a component are connected by a path lying entirely in the component. Fach
such component is either delimited by self-intersection points (which may coincide) or it is
untbounded (Figure 1).

Similarly adjacent connected components in QSIC can be used as delimiters to define
connected components of corresponding quadric surfaces (Figure 1).

4 Development of Method

We make the following observations:

1. Disjoiut multiple components and self-intersections in the intersection curve of two hall-
spaces result in disjoint components in space with identical classification with respect
to both intersecting halfspaces.

2. A halfspace separating two components in space also separates the edges of two com-
ponents, although the reverse is not true in general.

From [ShapiroVossler3], we note that a halfspace h strictly separates points ¢,b ¢ Ol if and
only if I(ab,0h) = 1, where ab is a path joining points a and b. Also, all paths are equivalent
in the sense of having same intersection number I»(ab, dh).

These observations suggest a method for constructing a set H, of separating halfspaces
for a given pair of intersecting halfspaces. We begin by constructing halfspaces separating
connected components in the intersection curve of two given halfspaces. Then we consider the
intersection of these separating halfspaces with the given halfspaces and add more halfspaces
to the set until any two points a,b in different components in the space decomposition by
given halfspaces aré separated i.e, there'is-a path ab-such that 75(ud,&f) =1 for some
halfspace f in H,. We give a constructive method to solve this problem for general quadrics
and exploit the geometry of given quadrics to find separating halfspaces which terminate the
above construction process.



5 Construction of Separating Halfspaces

Cone, hyperbolic eylinder and hyperboloid of two slicets are the only quadrics which bound
disjoint components of space on the same side of the quadric. These components are easily
separated by adding principal planes for these quadrics by computing the roots of a charac-
teristic cubic equation [SnyderSisam]. In the first step, we add principal planes separating
disjoint space components on same side of given quadrics. Then we construct separating
halfspaces for components resulting from plane/quadric and quadric/quadric intersection.

5.1 Plane/Quadric Intersection

The intersection of a plane and a quadric is a conic. There is a need for separating halfspaces
only when the intersection conic is a hyperbola or it degenerates into a pair of lines.

5.1.1 Plane/Quadric Intersection is Hyperbola

Plane/Quadric intersection can be a hyperbola only when the quadric is cone, hyperbolic
cylinder, hyperbolic paraboleid or hyperboloid of one/two sheet.

In case of cone, hyperbolic cylinder and hyperboloid of two sheets, the principal planes added
in first step constitute a sufficient set of separators.

Plane/Hyperbolic Paraboloid Intersection  Let the hyperbolic paraboloid in canonical
position be given by 22/a? — y?/b? = 2¢2. T'hen a plane parallel to = axis given by ¢y +
cay + ¢3 = 0 intersects the hyperbolic paraboloid in a parabola.

Claim 1 If a plane P interscets a hyperbolic paraboloid Q : z%/a® = y?JU? = 2¢z in a hy-
perbola, the two space components having identical classification with respect to plane as well

as quadric are separated by a plane Py through the conjugate principal azis of hyperbola and
parallel to z axis.

Proof: If a plane P intersects the hyperbolic paraboloid Q : z%/a? — y?/b? = 2¢z in a
hyperbola, the two branches of hyperbola divide the surface of hyperbolic paraboloid into
three conmected sheets, two of which bound the components to be separated (Figure 2).
The separating plane Ps, being parallel to z axis intersects the hyperbolic paraboloid in
parabola. It also separates the two branches of hyperbola because it passes through the
conjugate principal axis of the hyperbola. Ience a path joining two points on different
branches of hyperbola, and lying on the sheet which does not contribute to the boundary
of two components to be separated, also intersects Pg in an odd number of points. Since
these points must also lie on the parabola, and the parabola does not intersect any branch of
hyperbola, therefore the parabola lies completely in the sheet which does not contribute to
the boundary of two components to be separated. Ilence the separating plane P, does not
intersect the boundary of two components to be separated.

Now for arbitrary points a € A, b € B, the line segment ab intersects the boundary of
two components in points ¢’ and ' respectively (Figure 2). Since P, does not intersect the
boundary of two components to be separated, it does not intersect the line segments aa’ and
U'b. Therefore, I(ad’, Py) = I(b'b, Py) = 0. Let a’l’ be a path lying on hyperbolic paraboloid.
Since a path joining two points on diflerent branches of hyperbola intersects the separating
plane P, an odd number of times, therefore I;(a't', P,) = 1. Consider the path ab formed
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Figure 2: Plane P, separates the two components-A and B resulting from Plane
(P)/Hyperbolic paraboloid (Q) Intersection.



by line segment aa’, path «’b’ on the surface of hyperbolic paraboloid and line segment 0.
Since all paths joining two given points are equivalent in the sense of same mod 2 intersection
aiumber, hence Iy(ab, Pg) = 1. 0

Plane/Hyperboloid of Single Sheet Intersection The hyperboloid of single sheet di-
vides the space into two connected components. In the following discussion we call the

component containing centre, inside the quadric and other outside the quadric. We make the
following observations:

1. A plane intersecting hyperbolold of single sheet in a hyperbola with its conjugate prin-
cipal axis inside the quadric divides its surface into two connected components.

2. A plane through the origin divides the surface of hyperbolic paraboloid of single sheet
into two connected components although the intersection curve in this case may be
ellipse, hyperbola or a pair of parallel lines.

In above cases, no two space components have identical classification with respect to both
plane and quadric. Hence no separating halfspaces are needed. Note that a plane through
origin cannot intersect the hyperboloid of single sheet in a parabola or a pair of intersecting
lines. Now we consider the case which results in disjoint space components with identical
classification,

Claim 2 If a plane P inlersects hyperboloid of single sheet Q in a hyperbola with ils conjugate
azis outside the quadric, the two space components having identical clussification with respect
to plane as well as quadric are separated by a plune Py through origin and the conjugalc aris
of hyperbola.

Proof: If a plane P intersects the hyperboloid of single sheet Q in a hyperbola with its
conjugate axis outside the quadric, it divides the surface of quadric into thiree connected
sheets. The components bounded by two sheets of quadric on the same side of plane P
need to be separated (Figure 3). The two branches of hyperbola form the edges of the
two components to be separated. Therefore, the plane separating two componeuts must
separate the two branches of hyperbola. In addition, it must not intersect the boundary of
two components to be separated. _

Since the separating plane P, passes through the conjugate principal axis of the hyperbola
and passes through origin, it separates the two branches of hyperbola. Now we show that
the plane does not intersect the boundary of two components to be separated. Since a plane
through origin cannot intersect the hyperboloid of single sheet in a parabola or a pair of
intersecting lines, we have only the following cases to be discussed:

1. The conic section of Q and the separating plane P, cannot be hyperbola because in
that case, the conjugate axis of the hyperbola resulting from intersection -of .P and Q
must either intersect this hyperbola and therefore intersect @, which is not possible or

it must lie inside the quadric which is again in contradiction to the assumption made
in the claim.

2. When the conic section of the separating plane P, with the quadric is ellipse, the
ellipse lies completely in the sheet which does not contribute to the boundary of two
components to be separated. This can be shown to be true by a similar argument as used
to prove that the parabola resulting from intersection of separating plane and hyperbolic
paraboloid lies in the sheet which does not form the boundary of two componcuts to
be separated in proof of Claim 1.



Figure 3:Plane P, separates the two components A and B resulting from Plane
(P)/Myperboloid of single sheet (Q) Intersection.
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Figure 4a: Plane P and parabolic cylinder () intersect in a pair of parallel lines Ly and L.
Plane Py passing through bisector of Ly and Ly and parallel to principal plane of @
separates two space components A and 12 with identical classification. When P and Q
intersect in a double line, it is handled as a imiting case similar to Ly coinciding with L.

3. When the conic section of Py with the quadric is a pair of parallel lines, both lines lie
on the same side of the given plane P for otherwise the conjugate axis of the hyperbola
resulting from intersection of P and @ would have to be inside the quadric which is
contrary to the assumption made in the claim. Since P, separates two branches of
hyperbola, at least one point on these lines lies on the sheet which does not contribute
to the boundary of two components to be separated. Since both lines are on same
side of P, therefore both lie on the sheet which does not contribute to the boundary
of two components to be separated. Hence Py does not intersect the boundary of two
components to be separated.

In cases (2) and (3), for any two points @ € A and b € B, a path ab similar to the one in
proof of Claim 1 can be constructed to show that f(ab, Iy) = 1. a

5.1.2 Plane Quadric Intersection is Degenerate

The given plane and quadric may intersect in a double line or a pair of parallel/intersecting
lines. A plane can intersect only a singular quadric in double line. There is no need for sepa-
ration when the plane intersects an elliptic singular quadric in a double line. When the plane
intersects a parabolic/hyperbolic cylinder in a double line then a plane through the double
line and parallel to principal/transverse principal plane of the respective cylinder separates
the two components in space with identical classification. Construction of separating planes
when a quadric intersects the given plane in a pair of parallel/intersecting lines is illustrated



Figure 4b: Plane P and hyperboloid of single sheet Q intersect in a pair of parallel lines
Ly and Ly dividing the surface of Q in two connected sheets. As a result (here are no two
components with identical classification.

v

space components with identical classilication resulting from intersection of P and Q are
separated by the principal plane P;.

Figure 4c: Plane P aund cone Q intersect in a pair of intersecting lines Ly and L,. The
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Figure 4d: Plane P and hyperboloid of single sheet Q intersect in a pair of intersecting
lines Ly and L,. The two space components A and B with identical classification with

respect to P and Q are separated by the pair of separating planes P, passing through the
bisectors of Ly and Lg and perpendicular to P.
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Figure 4e: Plane P and hyperbolic paraboloid Q intersect in a pair of intersecting lines L,
and Ls. The two space components A and B with identical classification with respect to P
and Q are separated by the pair of separating planes P, passing through the bisectors of L,
and L, and perpendicular to P.

y
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in Figures 4a-de. Note that although the separating plane Py parallel to 2 axis in Figure
Ad is redundant whereas both planes marked as Py in Figure de are necessary, this approach
allows both cases to be treated similarly as the QSIC is similar in both the cases,

5.2 Quadric/Quadric Intersection

Let a quadric ¢p2% + q)g‘y? + qgaz? +2q1220y + 2232 4 2¢31 22 + 2qn 2+ 2442y + 2q432 + qqq = 0
be represented by symmetric matrix

N1 iz Q13 (4
21 422 23 (24
a1 a2 a3 (uy
a1 a2 a3 Q44

We consider the pencil R(a) = F — aG of two given quadrics with discriminants F and G.
Every point lying on both F and G lies on every quadric of the pencil. Through any point
in space not lying on the intersection of F' and G, passes one and only one quadric of the
pencil. Any two distinct quadrics in the pencil have the same intersection curve. If for some
real @, R(a) has rank 1 or 2, then R(a) represents either a plane or a pair of planes and we
classify this pencil as planar pencil. A planar pencil satisfies following properties:

1. |R(a)| =0

2. Sum of 3 x 3 principal minors of R(a) vanishes i.e.,

2 3 4 qii Qi Qi
2000 2 |G G gk [ =0

i=1g=i+1k=3+1| qri Qkj Qkk

Failing above, if for some real a, R(a) has rank 3 then pencil is nonplanar singular. If
|R(a)| = 0 has all four roots complex, i.e., R(«) has rank 4 for every real a then the pencil
is classified as nonplanar nonsingular.

Given quadrics F and G, we classify the pencil ' — a(' as planar, singular or nonsingular.
The steps for computing the set H; of separating halfspaces in each case are described in the
following sections.

5.2.1 Planar Pencil

Step 1: Compute the pair of planes in pencil. Add these planes to H,. Note that in case
the two quadrics intersect in a double conic, the two planes coincide.

Step 2: If any of the planes added in the previous step intersect any of given quadrics in
a hyperbola or a degenerate conic then for each plane in the pencil and each quadric,
add separating planes to H, as computed in plane/quadric intersection case.

As discussed below, it is easy to prove that the planes constructed in above steps indeed

constitute a sufficient set of separating halfspaces when two quadrics intersect in a planar
pencil.
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Consider the line segment ab joining two points a € A and b € B, where A and B are two
disjoint components with identical classification as shown in Figure 5. The line segment ab
intersects some face of each component an odd number of times even though the components
mnay be unbounded since we are considering the problem in real affine space. Let ab intersect
the boundary of A in a’ and that of B in &'. Now consider the path a’cdl’ where path a’c lies
on face containing @’ ,path ed lies on surface of any of the given quadrics and path db' lies
on face containing b’. In Figure 5, this path a’cdd’ is shown dotted. It intersects some edge
e, of component A in point ¢ and some edge e, of component B in point d and hence the
planes passing thirough these edges an odd number of times. If the two planes are different
then either of them separates points @ and b as in the example shown in Figure 5.

When the two edges e, and e, are segments of same conic, same plane passes through
them and separates points a and b unless they are on the same side of the plane. If two
disjoint components lie on the same side of the plane in a plane quadric intersection then
the conic must be either hyperbola or degenerate into a pair of lines. In that case, the two
points are separated by the planes constructed in the second step since tliese planes separate
components on the same side of the plane and the quadric when the intersection is hyperbola
or it degenerates into a pair of lines as proved in the previous section. Ience Ir(a't',p) = 1
for some plane p in I, constructed above. Also, line segments ada’ and b do not intersect n
since by construction,none of the planes in Jf intersect the boundary of the components to be
separated. When &’ or ¥’ lie on an an edge, the proof is trivial since in this case the line seg-
ment ab intersects the plane through the edge and hence a and b are separated by this plane.
Since the path from a to b formed by line segment ad/, path a’cdb’ and line segment b'b is
equivalent to the path ab in terms of mod 2 intersection number, I;(ab, p) = 1 for some p € P,.

Example 1 (Planar Pencil)

Consider two cylinders p : 22 + y? = 1 and ¢ : y? + 22 = 1 represented by the following
matrics: '

100 0)
010 0
P=L0 00 o0
00 0 —1)
000 0)
010 0
Q=106 01 o0
000 -1)

1 0 0 0
0 1-a 0 0
Re)=14 o _—a o0

0 0 0 a-1

For a = 1, R(a) has rank 2. lence, the pencil of above two cylinders is planar. The two
planes in pencil passing through this planar QSIC are given by the degenerate quadric

10 0 0
00 0 0
BU=1¢0 -1 0
00 0 0

14



Figure 5: The two cylinders P and @ intersect in a pair of intersecting conics. The planes
P, in the pencil through the conics separate the components with identical classification.
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Le,riat—-22=0

or equivalently

2~z =0 and z + z = 0 as shown in Figure 5.
Note that the set of planes so constructed constitutes a sufficient set of separators although
only one of the planes in the pencil is necessary.

5.2.2 Singular Pencil

Step

Step

Step

Step

1: Compute a, such that R(a) is a parabolic/hyperbolic cylinder in the pencil of
given quadrics. In the following steps we give a metliod for construction of separating
halfspaces when R(a) is a parabolic cylinder. The construction of separating halfspaces
when R(a) is hyperbolic cylinder is similar except that the conjugate principal plane
of the hyperbolic cylinder is added to I/,.

2: Apply coordinate transformation to I, G and R(a) such that ruled quadric R(a)
is in canonical position.

3: Let the ruled quadric be parabolic cylinder y = ¢ — 2?/2p in canonical position,
given parametrically by z = s, y = ¢ — {*/2p, z = . A fixed value of t specifies
a generator parallel to z axis. Intersection of this generator with one of the given
quadrics say F has two roots. We compute the values of t corresponding to repeated
roots. They represent double points on QSIC as well as turning points (Figure 6). The
planes through double/turning points parallel to principal plane of parabolic cylinder
separate the multiple components in QS1C, It is casy to classify these repeated roots into
turning points and double points. We first sort the double/turning points with respect
to t coordinate. Let the sorted sequence of points be (sy,11), (s2,12), (s3,13), (s4,14)
as there can be at the most four repeated roots. IFirst we consider a generator on
the parabolic cylinder corresponding to a t value smaller than t;. If this generator
does not have any real intersections with F then the point on QSIC corresponding t;
is a turning point otherwise it is a double point. Similarly we consider a generator
corresponding to ¢ value larger than t4 and classify the point on QSIC corresponding
to t4 as as turning or double=point. If generator corresponding to (2 + 13)/2 has real
intersections with Fjthen t; and i3 are classified as double points otherwise they are
classified as turmng points. For each double point we add to H, the plane through
the generator passing through double point and parallel to the principal plane of the
parabolic cylinder. For two consequtive turning points say t; and 13, we add to Hy a
plane through generator corresponding to (12 +t3)/2 and parallel to the principal plane
of the parabolic cylinder. 1f a QSIC degenerates into a cubic and a generator, then in
addition to separating halfspaces constructed in previous steps, add a plane through
this generator and parallel to the principal plane of the parabolic cylinder in the pencil.

4: Add to H, the diametrical plane through the midpoints of the two points on QSIC
corresponding to each geunerator. If F'is given by

az? + by® + c2® + 2hzy + 2fzz + 29y= + 2z + 2my+2nz+d=0,
then the mid point curve is given by

—(h(c=12/2p)+ ft+ D/a
= c—t*/2p
= 1.

T
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The equation of diametrical plane through the midpoint curve is given by az + hy +
fz+1=0.

Step 5: Complete the set H,of scparating halfspaces by considering intersection of planes
added in previous steps with the given quadries and adding the separating planes as
constructed in Plane/Quadric intersection case.

The planes added in steps 3 and 4 separate the connected components in the QSIC of two
given quadrics. In step 5 we consider the intersection of these planes with the given quadrics.
If a plane intersects with the quadric in a nondegenerate conic other than hyperbola then the
conic completely lies on the connected component of the the quadric surface which does not
contribute to the the boundary of two components to be separated. If a plane intersects the
quadric in a hyperbola then one branch of the hyperbola lies on the connected component of
quadric which does not contribute to the boundary of components to be separated whercas
the other branch intersects the boundary of one of the components and hence it does not
separate the components with identical classification completely. Therefore, we need to add
separating plane as constructed in the case when Plane/Quadric intersection is hyperbola.
As discussed below, the separating planes added in step 5 separate these components not
separated by planes constructed in steps 3 and .

Let a and b be two points in components A and B respectively with identical classification
resulting from intersection of two given quadrics. Let B be the component whose boundary
is intersected by a branch of hyperbola resulting from intersection of a separating plane
constructed in Step 4 with one of the quadrics, thus dividing it into two subcomponents say
By and B,. Let By be the one bounded by a component of QSIC on one side and a branch
of the hyperbola on the other side and let ;3 be the other component. If & € By, then a path
ab similar to the one constructed in proof of separation for planar pencil can be constructed
such that it intersects one of the planes separating the connected components in QSIC an
odd number of times. Otherwise a path ab can be constructed such that it intersects the
plane constructed in step 5 which separates the two branches of hyperbola, an odd number
of times. Therefore in either case, I>(ab, p) = 1 for some p € I,.

Similarly, when a plane conStructed in steps 3 and 4 intersects any of the quadrics in a
degenerate conic, the planes constructed in step 5 separate the components not separated by
planes constructed in steps 3 and 4.

The construction process terminates after step 5 because the separating planes constructed
in Plane/Quadric intersection cases as described in section 5.1 do not further result in com-
pouents which need to be separated.

Example 2 (Singular Pencil)

Consider a sphere p : 22 + 4% + 22 = 16 and and a cylinder g : 22 4+ (2 — 2)% = 4 represented
by the following matrics:

100 0

010 O
P= 001 0

0 0 0 -16



Double Point ’
on QSIC 4

PN, S,
<

Turning
Points
on QSIC

_________ J/J(__ R(1)

Figure 6: Quadrics P and Q intersect in a singular QSIC resulting in components A and
B with identical classification with respect to both the quadrics. The plane Py parallel to
the principal plane of the ruled quadric in the pencil P — aQ and passing through the
generator on ruled quadric corresponding to double point on QSIC, separates the .
components A and B.
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1.0 0 0
00 0 0
@= 00 1 -2
00 -2 0

l—a 0 0 0
0 1 0 0
0 0 1—-a 2«
0 0 2a =106

For & = 1, R(a) has rank 3. For any other value of @, R(a) has rank 4. lence the pencil
of these quadrics is nonplanar singular. The ruled singular quadric in the pencil, a parabolic
cylinder is given by

000 O
010 0
BD=146 00 2
0 0 2 -16
or equivalently r(1) : y* = —4(z — 4) as shown in Figure 6.

The parametric equation of the parabolic cylinder is given by
r=sy=1 2=4-1*/4
Now QSIC can be represented parameterically by two values of s corresponding to each value
of t satisfying the following equation
S+ +A-12/4) =16
The double/turning points of QSIC are given for values of ¢ satisfying
t*—1*/16=0

Lo, = —4, 0, 4.

L = 0 corresponds to double point whercas ¢t = —4 and t = 4 correspond to turning points.
Hence the plane through generator on parabolic cylinder corresponding to ¢ = 0 and parallel
to principal plane of the cylinder is the desired separating plane which in this case is given
by y = 0.

Since the intersection of given quadrics p and ¢ with the separating plane y = 0 is a circle in
each case, the construction process terminates with H, = {y = 0}.

5.2.3 NonSingular Pencil _
Step 1: Compute a, such that R(a) is hyperbolic paraboloid in the pencil of given quadrics.

Step 2: Apply coordinate transformation to F, G and R(a) such that ruled quadric R(a)
is in canonical position.
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Cubic Midpoint

Curve -,

Figure 7: The separating halfspaces needed to separate components resulting from QSIC
of quadrics Q and R shown in the Figure are constructed using the generators on the
Hyperbolic Paraboloid R.

Step 3: Let the ruled quadric, hyperbolic paraboloid in canonical position be given by
22/a? — y?/b? = 2¢2.
Hyperbolic paraboloid is a doubly ruled surface. Each family of generators completely
defines the surface [Hilbert]. The generators belonging to same family are parallel to
a given plane but are mutually skew and each generator of one family intersects every
generator of the other family. The surface can be parametrically represented as

T = al+as

y = bt—1bs

z = 2s/c
where t varies along a generator through origin given by s = 0. Dach value of ¢
corresponds to a generator of the other family intersecting this generator as shown in

Figure 7.

Different values of t correspond to generators whicl are mutually skew but are parallel
to the plane given by bz + ay = 0. Substituting above expressions for 2,y and z in

20



implicit equation of one of the quadrics say F, gives two roots for s corresponding
to each value of t. Just as in the case of Singular pencil, we compute the values of
t corresponding to repeated roots. They represent double points on QSIC as well as
turning points. The planes through double/turning points parallel to to the plane ba +
ay = 0 separate the multiple components in QSIC. The classification of double/turning
points and subsequent construction of separating planes is similar to the case of Singular
pencil.

Step 4: Consider intersection of planes added in previous steps with the given quadrics and
add the separating planes as constructed in Plane/Quadric intersection case to the set
.

Step 5: The intersection of a family of parallel planes given by bz + ay = 2abt through gen-
erators parallel to s coordinate on surface of hyperbolic paraboloid (Figure 7), with the
given quadrics results in similar and similarly placed conics. If conic sections resulting
from intersection of above family of planes with either of the quadric are ellipses, then
this step should be skipped. Otherwise we need to add the cubic separating halfspaces

constructed below to separate the two components resulting from QSIC shown in Figure
7.

The midpoint curve is given by

T = al+as,i(t)
y = bt— bsmgd(i)
= (2smia(l))/c

where s,,;a(1) = (s1(8) + s2(1))/2 = N(t)/ D(1),

-81 and sz being two points of QSIC on a generator specified by a value of ¢ and

N and D being polynomials in t of degree atmost 2. _

Since the midpoint curve in this case is a nonplanar cubic curve, we cannot separate

these components by a linear halfspace through the curve. To separate these compo-
nents, we add the following halfspaces

Step 5.1: The diametrical planes through principal axes of similar and similarly placed
conics resulting from intersection of family of parallel planes b + ay = 2ab! with
the given quadrics ' and G. The expressions for these diametrical planes can be
computed from the principal axes of the conic sections resulting from intersection
with any two planes in the above finily of plancs.

Step 5.2: The ruled cubic through midpoint curve with generators parallel to z axis

given by
z = al+ aspig(t)
vy = bt — bsmid(t)
z {ree.

The implicit equation of the cubic can be obtained by substituting

t=(bz + ay)/2ab
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section with Q

i Conic section of quadric Q

Figure 8a: The principal axes of the conic sections of quadrics P and Q@ with the plane
bz + ay = 2abty and the generator of cubic surface perpendicular to z axis shown as Zy
separate the points lying in the plane with identical classification with respect to both the
quadrics.

in the pa,ramsg:tricfexpression for z.
. 6~ " . . p
In Figure 27 we denote the generators of this cubic surface by 2.

Step 5.3: The ruled cubic through midpoint curve with generators orthogonal to z
axis given by

al + as,,;4(1) + ar
bt — bsyiq(t) — br

(2131r1idu))/c
The implicit equation of this cubic can a be obtained by substituting ¢ = (bz +

ay)/2ab in the parametric expression for z. In Figure 7, we denote the generators
of this cubic surface by Z;. K. &

@ B
I

n
11

Figure 8a shows intersection of a plane bz + ay = 2abt; for a fixed t = #, with the given
quadrics P and @, and the two cubics added in Step 5.2 and Step 5.3. The diametrical
planes added in Step 5.1 intersect the given plane bz + ay = 2abt,, in the principal axes
Pp and py of the conic sections of the two quadrics £2.and Q.

22



Principal axis
of conic
section with Q

s .
mid

Principal axis N \

of conic
© o7 ~Conic¢ séction of quadric Q

section with P A G
‘..-""Ctin_',lc";‘;__eciiqn"o_f-'till_xaf!_rié__l"__‘_.-‘

) B
Figure 8b: The principal axes of the conic sections of quadrics P and Q with the plane
br + ay = 2abty separate the points lying in the plane with identical classification with

respect to both the quadrics when the vertex of one conic section lies inside the other conic
section.
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Figure 8c: The principal axes of the conic sectious of quadrics P and Q with the plane

bz + ay = 2abt;. The generator of cubic surface perpendicular to z axis shown as Z, and
the generator of cubic surface parallel to z axis shown as Z)| separate the points lying in the
plane with identical classification with respect to both the quadrics.
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The conic sections of the quadrics in Iigures 8a-8c are shown as parabolas. As men-
tioned before, if the conic sections of cither of the quadric with the famnily of planes
given by bx + ay = 2abt are clliptic then there is no need for separating halfspaces
for the space components resulting from QSIC. If the conic section of either of the
quadric is hyperbola, then the conjugate principal axis of the hyperbola separates the
two branches and the discussion of this case is similar to the one when the conic sec-
tions with both the quadrics are parabolas. The line segment 3753 shown in Figure 8a
is the the generator of the hyperbolic paraboloid lying in the plane ba + ay = 2abty and
Smid = (81 + $2)/2 is the interscction of the cubic midpoint curve with this plane. By
convexity of conics, normal at any poiut of the conic cither intersects its principal axis
inside the conic or coiucides with it. Note that we define the side containing the focus
of the conic as inside the conic. The generators of two cubics shown as Z, and Zj in the
Figure 8a intersect orthogonally in the point s,,;4(%0). Since not both the generators
can be parallel to the principal axis of the conic, one of them necessarily intersects
the principal axis inside the conic. IHence the points of two components with identical
classification with respect to both the quadrics, lying in the plane bz + ay = 2abty, are
separated either by the generators of the cubics or by the principal axis.

We observe that the two cubics are mutually orthogonal along the midpoint curve and
Lience divide the space into four quadrants. To prove the separation of components in
space, we consider various possible configurations of conic sections and cubic sections
by the family of planes bz + ay = 2abt which span the space as the quadrant formed by
the generators of cubics moves in space along the midpoint curve. In Figure 8a, the two
sets of points A and B having identical classiflication with respect to both conics and
not separated by the principal axes p, and p, of the conicsyare in different quadrants
formed by the generators of two cubics. Points of component A are in quadrants marked
@ and @ whereas the points of component B are in quadrants marked @) and @). Hence
the two components are scparated by the generators of two cubics. The other possible
configurations of the conic sections and the generators of the cubics, as the family
of planes mentjoned above spans the space, are shown in Figures 8b and 8c. Since
the principal axes of conic sections of given quadrics by the family of parallel planes
bz + ay = 2abt are parallel, only other possible configurations are when the vertex of
either of the couics lies inside other conic and when both the points on QSIC are on
the opposite side of the principal axis as compared to configuration shown in Figure
8a. Note that the case:when both the poiuts on QSIC corresponding to s; and s»
coincide are limiting cases of the above configurations. Also as mentioned before, the
side containing the focus of the conic is being considered inside and the other outside
the conic.

If vertex of either of the conics lies inside the the other conic, then the principal axes
of the conics are sufficient to separate the points with identical classification. In Figure
8b, vertex of each of the conics lies inside the other conic and the principal axes of the
conics are sufficient to separate points in component A from those in component B.

In Figure 8c, the points on QSIC corresponding to s; and sy are on different side of
principal axis p, as compared to Figure 8a. Therefore, even though the space component
A in Figure 8c as well as space component B in Figure 8a have points in the same
quadrant ) of the four quadrant space partition by the cubics, the points in A in
Figure 8c are separated from points in B in Figure 8a by the diametrical plane through
the principal axes of conic sections of quadric P. Therefore, as the family of parallel
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planes bz + ay = 2abt spans the space, as long as the relative position of points on
QSIC with respect to the principal axes of the conic sections of given quadrics by these
planes remains unchanged, the cubics separate the points in components with identical
classification, otherwise the diimetrical planes added in step 5.1 separate the points in
components with identical clussification.

Hence the points of two components with identical classification are cither separated by
two cubics or the diametrical planes through the the principal axes of the conic sections
of the the quadrics by a family of parallel planes

b + ay = 2ubt

through the generators of hyperbolic paraboloid.

6 Conclusions

In this paper, we have given a method to construct separating halfspaces for plane/quadric
and quadric/quadric intersection. The advantage of our method is that it is a geometric
approach based on classification of QSIC of given quadrics and is independent of the position
and type of the quadrics involved. We also eliminate square roots in construction of separating
halfspaces by taking summation of the two roots of the quadratic equation. The ruled cubics
constructed in the method can easily be divided into convex and concave parts by a plane
parallel to z axis and passing through the generator of Lyperbolic paraboloid through the
inflection point of cubic midpoint curve.

As illustrated in Figure 9, scparating the components with identical classification resulting
from a pair of halfspaces for every pair of halfspaces induced from the faces of the solid need
not be sufficient for describing the solid semialgebraically. Figure 9 shows a solid composed
of a single component A which has identical classification as B with respect to sphere §, the
parabolic cylinders Cy, Cy, C3 and Cy4 and the plane P. Every pair of halfspaces intersect in
a single component QSIC, hence no separating halfspaces are added when plane/quadric and
quadric/quadric intersection is considered. But the solid A cannot be described semialge-
braically using the halfspaces induced from the faces of the component A because component
B has same description as A. In our future work, we give a method to separate components
resulting from intersection of more than two quadrics. We compute the boundary of the
components in exhaustive space decomposition by constructing BSP tree using halfspaces in-
duced from the faces of solid. We classify the components at each leaf node as inside/outside
solid by classifying a point inside a component with respect to solid. Then we construct linear
halfspaces to separate components inside solid at a leaf node from those outside solid at that
leaf node. This set S; constitutes a sufficient set of separating planes for describing the solid,
but the size of the set may be huge as the boundaries of two components may be arbitrarily
close to each other. We also construct the set S; of separating halfspaces for plane/quadric
and quadric/quadric intersection for every pair of halfspaces induced by the faces of given
solid as described in this paper. Set S; may not be a sufficient set of separating halfspaces
to describe the given solid as discussed above, but the set S = §;, U S, is a sufficient set of
separating halfspaces. Now we use the method described in [ShapiroVossler2], to compute a
necessary set of separating halfspaces by eliminating redundant halfspaces from S. We expect
that the linear and cubic separating lalfspaces added by the method described in this paper
will make a large number of planes in §; redundant. The remaining steps of construction and
minimization of canonical CSG expression for the solid obtained from the set of necessary
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Figure 9: The components A and B have identical classification with respect to sphere §,
parabolic cylinders Cy, Cz, C3 and ('y and the plane P, even though no separating
halfspaces are needed when space components resulting from plane/quadric and
quadric/quadric intersection for every pair of halfspaces are considered.
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halfspaces-and the halfspaces induced from tlie faces of solid are identical to those described
in [ShapiroVossler2, ShapiroVossler3]. Using the separating halfspaces constructed by the
method outlined in this paper, the domain of B-Rep—CSG conversion system of Shapiro
and Vossler can be extended to solids bounded by quadric faces with nonplanar edges, which
currently is restricted to solids with planar edges.
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