
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

6-24-2014

Optimal Linear Network Coding When 3 Nodes
Communicate Over Broadcast Erasure Channels
with ACK
Jaemin Han
Purdue University - Main Campus, han83@purdue.edu

Chih-Chun Wang
Purdue University - Main Campus, chihw@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Han, Jaemin and Wang, Chih-Chun, "Optimal Linear Network Coding When 3 Nodes Communicate Over Broadcast Erasure
Channels with ACK" (2014). Department of Electrical and Computer Engineering Technical Reports. Paper 459.
http://docs.lib.purdue.edu/ecetr/459

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/77936251?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F459&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F459&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F459&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F459&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F459&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F459&utm_medium=PDF&utm_campaign=PDFCoverPages

Optimal Linear Network Coding When 3 Nodes Communicate
Over Broadcast Erasure Channels with ACK

Jaemin Han

Chih-Chun Wang

TR-ECE-14-06

June 24, 2014

Purdue University

School of Electrical and Computer Engineering

465 Northwestern Avenue

West Lafayette, IN 47907-1285

1

Optimal Linear Network Coding When 3 Nodes

Communicate Over Broadcast Erasure Channels

with ACK
Jaemin Han and Chih-Chun Wang

School of Electrical and Computer Engineering, Purdue University, USA

{han83,chihw}@purdue.edu

Abstract—This work considers the following scenario: Three
nodes {1, 2, 3} would like to communicate with each other by
sending packets through unreliable wireless medium. We consider
the most general unicast traffic demands. Namely, there are six
co-existing unicast flows with rates (R1→2, R1→3, R2→1, R2→3,

R3→1, R3→2). When a node broadcasts a packet, a random
subset of the other two nodes will receive the packet. After each
transmission, causal ACKnowledgment is sent so that all nodes
know whether the other nodes have received the packet or not.

Such a setting has many unique features. For example, each
node, say node 1, can assume many different roles: Being the
transmitter of the information R1→2 and R1→3; being the receiver
of the information R2→1 and R3→1; and being the relay for the
information R2→3 and R3→2. This fully captures the fundamental
behaviors of 3-node network communications. Allowing network
coding (NC) to capitalize the diversity gain (i.e., overhearing
packets transmitted by other nodes), this work characterizes
the 6-dimensional linear network coding (LNC) capacity of the
above erasure network. The results show that for any channel
parameters, the LNC capacity can be achieved by a simple
strategy that involves only a few LNC choices.

I. INTRODUCTION

Recently, linear network coding (LNC) has emerged as a

promising technique in modern communication networks. For

the single-multicast traffic over an error-free network, LNC

strictly outperforms non-coding solutions and can achieve the

multicast capacity. Even when considering random erasure

networks, [2] characterizes the single-multicast capacity and

shows that LNC is again capacity-achieving, regardless of

whether we allow for causal channel state information (CSI)

feedback or not.

Despite the above promising results, our understanding is

still nascent when there are multiple co-existing unicast flows

in the network. When there are only 2 nodes in the network,

Shannon [8] characterized the capacity of two-way commu-

nication when each node serves simultaneously as a source

and as a destination. Nonetheless, little is known when there

are no less than three nodes [1], [3]. Moreover, if there are

multiple co-existing flows in the network that go in different

directions, then each node sometimes has to assume different

roles (say, being a sender and/or being a relay) simultaneously,

which further complicates the analysis.

In this work, we study the 3-node network, Fig. 1(a), with

the most general traffic requirements. Namely, there are six co-

existing unicast flows with rates (R1→2, R1→3, R2→1, R2→3,

1

2

3

(a) 3 nearby nodes

1 BPEC1

2
BPEC2

3
BPEC3

(b) The BPEC

network model

1

2

3

R1→2

R1→3

(c) A simple 2-

receiver BPEC

1

2

3

R1→2

R1→3

(d) BPEC w. receiver

coordinations

1

R2→3

R3→2

2

3

(e) A Two-way

relay BPEC

1 [Z2→3] [W3→2]

2
[X1→2+Y1→3+Z2→3]

[Y1→3+Z2→3+W3→2]

3
[X1→2+Y1→3+W3→2]

[X1→2+Z2→3+W3→2]

(f) Overheard Packets

in the example of Sec. I.

Fig. 1. Various illustrations of broadcast packet erasure channel (BPEC)
networks: (a) Six (R1→2, R1→3, R2→1, R2→3, R3→1, R3→2) co-existing
unicast flows; (b) The corresponding BPEC network model; (c) A 2-receiver
BPEC scenario; (d) A 2-receiver BPEC with receiver coordinations scenario;
(e) A 2-flow relaying (butterfly-style) BPEC scenario; (f) A packets-overheard
scenario that node 1 can benefit 4 co-existing flows simultaneously by a single
transmission of the packet [X1→2 + Y1→3 + Z2→3 +W3→2].

R3→1, R3→2) in all possible directions. To simplify the analy-

sis, we consider the simplest non-trivial noisy channel model,

the random broadcast packet erasure channel (BPEC). That is,

each node is associated with a BPEC. When a node broadcasts

a packet, a random subset of the other nodes will receive the

packet, see Fig. 1(b). We further assume time-sharing among

all three nodes so that interference is fully avoided and thus

we can concentrate on the topological effects and the diversity

gain of BPECs. Also, time-sharing closely matches the Wi-Fi

protocols in practice [6]. Thus the theoretic understanding in

this work will also benefit development of practical protocols.

Motivated by the throughput benefit of CSI feedback for

erasure networks [4], [5], [7], [9]–[12], this work allows for

ACKnowledgment after each transmission so that all network

nodes know whether the other nodes have received a certain

packet or not. Using the above 3-node erasure network setting,

this work characterizes the 6-dimensional LNC capacity region

and finds the optimal LNC strategy.

This 3-node network contains many important practical and

theoretically interesting scenarios as sub-cases. For example,

if we project the 6-dimensional LNC capacity region along

the 2-dimensional marginal rates (R1→2, R1→3) and assume

that the BPECs of nodes 2 and 3 are always erasure (i.e., both

2

nodes cannot transmit anything), then Fig. 1(b) collapses to

Fig. 1(c), the 2-receiver BPEC scenario, which was studied in

[4], [12] and later received many attentions (on its variants) in

[4], [10]. If we further allow nodes 2 and 3 to transmit (i.e.,

their BPECs are not always erasure), then Fig. 1(c) evolves

to the BPEC with receiver coordinations as in Fig. 1(d), for

which the LNC capacity was characterized in [11]. One can

easily see that Fig. 1(b) also contains Fig. 1(e) as a special

example in which node 1 is a two-way relay for flows 2→3

and 3 → 2. On top of this 2-way relaying example, the 3-

node 6-flow setting even contains the scenario when we allow

nodes 2 and 3 to communicate directly with each other, which

was extensively studied in [7]. By studying the most general

6-dimensional LNC capacity, this work explores the most

fundamental behaviors of 3-node communications.

The landscape of the 3-node 6-flow problem is quite differ-

ent than the existing works that involve mostly 2 co-existing

flows. For example, it is known that we may sometimes

benefit two destinations (two co-existing flows) simultaneously

by transmitting one coded packet, see [4]. On the other

hand, a single transmission may benefit 4 co-existing flows

simultaneously for the 3-node 6-flow setting. For example,

consider four information packets X1→2, Y1→3, Z2→3, and

W3→2. Namely, X1→2 is a packet for the flow 1→2 (i.e., the

packet is available at node 1 and destined for node 2) and so on

so forth. Suppose node 1 has overheard Z2→3 and W3→2 from

the past transmissions; node 2 has overheard two linear com-

binations [X1→2+Y1→3+Z2→3] and [Y1→3+Z2→3+W3→2];
and node 3 has overheard [X1→2 + Y1→3 + W3→2] and

[X1→2 + Z2→3 +W3→2]. See Fig. 1(f) for illustration.

One can easily check that node 2 cannot decode any of its

desired packets W3→2 and X1→2; and node 3 cannot decode

any of its desired packets Z2→3 and Y1→3. Suppose node 1

now sends a linear combination [X1→2+Y1→3+Z2→3+W3→2]
and it is received by both nodes 2 and 3. Node 2 can now de-

code both its desired packets W3→2 and X1→2 by subtracting

known packets [X1→2 + Y1→3 + Z2→3] and [Y1→3 + Z2→3 +
W3→2] from [X1→2 + Y1→3 + Z2→3 + W3→2], respectively.

Similarly, node 3 can decode both Z2→3 and Y1→3 from

receiving a single packet [X1→2 + Y1→3 + Z2→3 + W3→2].
A single transmission now benefits 4 co-existing flows!

The above example shows that there are many new coding

choices that need to be considered for this 3-node 6-flow

setting. The main contribution of this work is to first derive

a 6-dimensional LNC capacity outer bound by exhaustively

enumerating all possible LNC choices with the help of a linear-

programming (LP) solver. We then derive an inner bound by

a simple strategy that involves only 4 coding choices. By

proving that the inner and outer bounds match, we have fully

characterized the 6-dimensional LNC capacity and proved that

the LNC capacity can be achieved by a surprisingly simple

LNC solution.

II. PROBLEM FORMULATION

We use node indices (i, j, k) to represent one of three cycli-

cally shifted tuples {(1, 2, 3), (2, 3, 1), (3, 1, 2)}. We consider

6-dimensional traffic rates ~R , (R1→2, R1→3, R2→1, R2→3,

R3→1, R3→2), where their total sum is denoted by RΣ. We

assume slotted transmissions, and within a total budget of n
time slots, node i would like to send nRi→h packets, denoted

by a row vector Wi→h, to node h 6= i (one of the other

two nodes). Each uncoded packet is chosen independently and

uniformly randomly from a finite field Fq with size q > 0.

For any time slot t ∈ {1, · · · , n}, define the channel output

vector Z(t) = (Z1→2(t), Z1→3(t), Z2→1(t), Z2→3(t), Z3→1(t)
, Z3→2(t)) ∈ {1, ∗}6, where Zi→h(t) = 1 and ∗ represents

whether node h can receive the transmission from node i or

not. We assume that only one node can transmit at each time

slot, and express the scheduling decision by σ(t) ∈ {1, 2, 3}. If

σ(t) = i, then node i transmits a packet Xi(t) ∈ Fq; and only

when Zi→h(t) = 1, node h will receive Yi→h(t) = Xi(t). In

all other cases, node h receives an erasure Yi→h(t) = ∗.

We further assume that Z(t) is memoryless and stationary,

i.e., Z(t) is independently and identically distributed over the

time axis t. We use pi→jk , Prob(Zi→j(t) = 1, Zi→k(t) = 1)
to denote the probability that Xi(t) is successfully received by

both nodes j and k; and use pi→jk to denote the probability

Prob(Zi→j(t) = 1, Zi→k(t) = ∗) that Xi(t) is successfully

received by node j but not by node k. Probability pi→jk is

defined symmetrically. We also use pi→j∨k = pi→jk+pi→jk+
pi→jk to denote the probability that at least one of nodes j
and k receives it, and use pi→j (resp. pi→k) for the marginal

reception probability from node i to node j (resp. node k).

Assuming that the 6-bit Z(t) vector is broadcast to all

nodes after each packet transmission through a separate control

channel, a network code is described by n scheduling functions

∀ t ∈ {1, · · · , n}, σ(t) = fσ,t([Z]
t−1
1), (1)

plus 3n encoding functions: ∀ t∈{1,· · ·, n} and ∀ i∈{1, 2, 3},

Xi(t) = fi,t(Wi→{j, k}, [Yj→i, Yk→i,Z]
t−1
1) ◦ 1{σ(t)=i}, (2)

plus 3 decoding functions: ∀ i ∈ {1, 2, 3},

(Ŵj→i,Ŵk→i) = gi([σ, Yj→i, Yk→i,Z]
n
1), (3)

where Wi→{j, k} ,Wi→j∪Wi→k and we use brackets [·]τ1 to

denote the collection from time 1 up to time τ . For example,

[σ, Yj→i, Yk→i,Z]
n
1 in (3) is a shorthand for the collection

{σ(t), Yj→i(t), Yk→i(t),Z(t) : ∀ t ∈ {1, · · · , n}}.

Namely, at every time t, scheduling is decided based on the

network-wide channel state information (CSI) up to (t − 1).
Each node encodes based on the current scheduling decision,

the information messages, what it has overheard from other

nodes in the past, and the past CSI. In the end of time n, each

node decodes its desired packets based on the past scheduling

decisions, what it has received, and the past network-wide CSI.

III. THE SPACE-BASED FORMULATION OF LINEAR NC

Let W be an nRΣ-dimensional row vector defined by

W , (W1→2,W1→3,W2→1,W2→3,W3→1,W3→2). (4)

That is, W is the collection of all the information packets

for the 6-dimensional traffic ~R. Define Ω , (Fq)
nRΣ as the

3

overall message/coding space. Then, a network code is called

linear if (2) can be rewritten as

If σ(t) = i, then Xi(t) = ctW
⊤ for some ct ∈ Ω, (5)

where ct is a row coding vector in Ω. We assume that ct is

known causally to the entire network.1

We now define two important concepts: The individual

message subspace and the reception subspace. To that end, we

first define el as an nRΣ-dimensional elementary row vector

with its l-th coordinate being one and all the other coordinates

being zero. Recall that the nRΣ coordinates of a vector in Ω
can be divided into 6 consecutive “intervals”, each of them

corresponds to the information packets Wi→h for the unicast

flow from node i to node h 6= i. For example, from (4),

the third interval corresponds to the packets W2→1. We then

define the individual message subspace Ωi→j :

Ωi→j , span{el : l ∈ “interval” associated to Wi→j}, (6)

That is, Ωi→j is a linear subspace corresponding to any linear

combination of Wi→j packets. By (6), each Ωi→j is a linear

subspace of Ω and rank(Ωi→j) = nRi→j .

For each node i ∈ {1, 2, 3}, the reception subspace in the

end of time t is defined by

RSi(t) , span{cτ : ∀τ≤ t s.t. σ(τ) 6= i, Zσ(τ)→i(τ)=1,

and Yσ(τ)→i(τ)=Xσ(τ)(τ)=cτW
⊤}.

(7)

That is, RSi(t) is the linear subspace spanned by the coding

vectors cτ corresponding to the packets that are sent by node

σ(τ) 6= i and have successfully arrived at node i by the end

of time t. We now define the knowledge space Si(t) by

Si(t) , Ωi→j ⊕ Ωi→k ⊕RSi(t), (8)

where A⊕B , span{v : v ∈ A∪B} is the sum space of any

A,B ⊆ Ω. Basically, Si(t) represents the “overall knowledge”

available at node i, which contains those that are originated

from node i, i.e., Ωi→j⊕Ωi→k, and those overheard by node i
until time t, i.e., RSi(t). By the above definitions, we quickly

have that node i can decode the desired packets Ŵh→i, h 6= i,
as long as Si(n) ⊇ Ωh→i. That is, when the knowledge space

in the end of time n contains the desired message space.

Note that each node can only send a linear mixture of the

packets that it currently “knows.” Therefore, we can further

strengthen the encoding part (5) by the following statement:

If σ(t)= i, then Xi(t)= ctW
⊤ for some ct∈ Si(t−1). (9)

We can now define the LNC capacity region.

Definition 1: Fix the distribution of Z(t) and finite field Fq.

A 6-dimensional rate vector ~R is achievable by LNC if for any

ǫ > 0 there exists a joint scheduling and LNC scheme with

sufficiently large n such that Prob(Ŵi→h 6= Wi→h) < ǫ for

all i ∈ {1, 2, 3} and h 6= i. The LNC capacity region is the

closure of all LNC-achievable ~R.

1Coding vector ct can either be appended in the header or be computed
by the network-wide causal CSI feedback Z(t).

IV. MAIN RESULTS

Since the coding vector ct has nRΣ number of coordinates,

there are exponentially many ways of jointly designing the

scheduling σ(t) and the coding vector choices ct over time

when sufficiently large n and Fq are used. We will first

simplify the aforementioned design choices by comparing ct

to the knowledge spaces Si(t− 1) described previously. Such

a simplification allows us to derive Proposition 1, which uses

a linear programming (LP) solver to exhaustively search over

the entire coding and scheduling choices and thus computes

an LNC capacity outer bound. An LNC capacity inner bound

will later be derived by proposing a simple LNC solution and

analyze its performance. Finally, we prove that the inner and

outer bounds match.

A. The LNC Capacity outer bound

Recall that (i, j, k)∈{(1, 2, 3), (2, 3, 1), (3, 1, 2)}, the cycli-

cally shifted node indices. For example, if i = 2, then j = 3

and k = 1. We also use Si as shorthand for Si(t−1), the node-

i knowledge space in the end of time t−1. For all i ∈ {1, 2, 3},

define the following seven linear subspaces of Ω:

A
(i)
1 (t) , Si, A

(i)
2 (t) , Si ⊕ Ωj→i, (10)

A
(i)
3 (t) , Si ⊕ Ωk→i, A

(i)
4 (t) , Si ⊕ Ωj→i ⊕ Ωk→i, (11)

A
(i,j)
1 (t) , Si ⊕ Sj , A

(i,j)
2 (t) , Si ⊕ Sj ⊕ Ωk→i, (12)

A
(i,j)
3 (t) , Si ⊕ Sj ⊕ Ωk→j . (13)

Since the knowledge spaces Si evolves over time, see (8),

the above “A-subspaces” also evolves over time.

There are in total 7 × 3 = 21 linear subspaces of Ω. We

often drop the input argument “(t)” when the time instant of

interest is clear in the context. We then partition the overall

message space Ω into 221 disjoint subsets by the Venn diagram

generated by these 21 subspaces. That is, for any given coding

vector ct, we can place it in exactly one of the 221 disjoint

subsets by testing whether it belongs to which A-subspaces.

We can further reduce the possible placement of ct in the

following way. By (9), we know that when σ(t) = i, node i
selects ct from its knowledge space Si(t − 1). Hence, such

ct must always lie in any A-subspace that Si appears in the

definition. There are 10 such A-subspaces: A
(i)
1 to A

(i)
4 ; A

(i,j)
1

to A
(i,j)
3 ; and A

(k,i)
1 to A

(k,i)
3 . As a result, for any coding

vector ct sent by node i, we only needs to check whether ct
belongs to which of the following 11 remaining A-subspaces:

Ä
(i)
1 , A

(j)
1 , Ä

(i)
2 , A

(j)
2 , Ä

(i)
3 , A

(j)
3 , Ä

(i)
4 , A

(j)
4 ,

Ä
(i)
5 , A

(k)
1 , Ä

(i)
6 , A

(k)
2 , Ä

(i)
7 , A

(k)
3 , Ä

(i)
8 , A

(k)
4 ,

Ä
(i)
9 , A

(j,k)
1 , Ä

(i)
10 , A

(j,k)
2 , Ä

(i)
11 , A

(j,k)
3 . (14)

In (14), we rename those 11 remaining A-subspace by Ä
(i)
1

to Ä
(i)
11 for easier future reference. For example when i = 3,

such 11 subspaces Ä
(3)
1 to Ä

(3)
11 are A

(1)
1 to A

(1)
4 ; A

(2)
1 to A

(2)
4 ;

and A
(1,2)
1 to A

(1,2)
3 , respectively. For any 11-bitstring b =

b1b2 · · · b11, we define “the coding type-b of node i” by

TYPE
(i)
b
, Si ∩

(

⋂

l:bl=1

Ä
(i)
l

)

\

(

⋃

l:bl=0

Ä
(i)
l

)

. (15)

4

Namely, the Si(t− 1) that node i can choose ct from at time

t is now further divided into 211 = 2048 disjoint subsets,

depending on whether ct belongs to Ä
(i)
l or not for l= 1 to

11. For example, TYPE
(1)
169 (i.e., type-00010101001 of node 1)

contains the ct in S1 that is in the intersection of {Ä
(1)
4 , Ä

(1)
6 ,

Ä
(1)
8 , Ä

(1)
11 } but not in the union of {Ä

(1)
1 , Ä

(1)
2 , Ä

(1)
3 , Ä

(1)
5 , Ä

(1)
7 ,

Ä
(1)
9 , Ä

(1)
10 }. By (14) and (15), we can write

TYPE
(1)
169 , S1 ∩

(

A
(2)
4 ∩ A

(3)
2 ∩ A

(3)
4 ∩ A

(2,3)
3

)

\
(

A
(2)
1 ∪ A

(2)
2 ∪ A

(2)
3 ∪ A

(3)
1 ∪ A

(3)
3 ∪ A

(2,3)
1 ∪ A

(2,3)
2

)

.

In sum, any ct chosen by node i must fall into one of the

211 = 2048 subsets TYPE
(i)
b

defined by (14) and (15).

We can further strengthen the above observation by proving

that 1996 (out of 2048) subsets are empty. For example,

TYPE
(i)
1024 (i.e., type-10000000000) is always empty since

there is no such vector that can be inside Ä
(i)
1 , A

(j)
1 but

not in Ä
(i)
2 , A

(j)
2 because we clearly have A

(j)
2 ⊃ A

(j)
1 by

definition (10). By eliminating all the empty subsets, ct chosen

by node i can only be in one of 52 (out of 2048) subsets. We

call those 52 subsets the Feasible Coding Types (FTs) and

they are enumerated as follows.

FTs ,{0, 1, 2, 3, 7, 9, 11, 15, 31, 41, 43, 47, 63, 127, 130,

131, 135, 139, 143, 159, 171, 175, 191, 255, 386,

387, 391, 395, 399, 415, 427, 431, 447, 511, 647,

655, 671, 687, 703, 767, 903, 911, 927, 943, 959,

1023, 1927, 1935, 1951, 1967, 1983, 2047}. (16)

Since the coding choices are finite (52 per node and totally

3 nodes), we can derive the following upper bound using those

52× 3=156 feasible types that fully cover Ω at any time t.
Proposition 1: A 6-dimensional rate vector ~R is in the

LNC capacity region only if there exists 52× 3 non-negative

variables x
(i)
b

for all b ∈ FTs and i ∈ {1, 2, 3} and 7 × 3

non-negative y-variables, y
(i)
1 to y

(i)
4 , y

(i,j)
1 to y

(i,j)
3 for all

i ∈ {1, 2, 3}, such that jointly they satisfy the following three

groups of linear conditions:

• Group 1, termed the time-sharing condition, has 1 inequality:
(

∑

∀b∈FTs

x
(1)
b

)

+

(

∑

∀b∈FTs

x
(2)
b

)

+

(

∑

∀b∈FTs

x
(3)
b

)

≤ 1. (17)

• Group 2, termed the rank-conversion conditions, has 21

equalities: For all i ∈ {1, 2, 3},

y
(i)
1 =

(

∑

∀b∈FTs w. b5=0

x
(j)
b

)

· pj→i +

(

∑

∀b∈FTs w. b1=0

x
(k)
b

)

· pk→i

+Ri→j +Ri→k, (18)

y
(i)
2 =

(

∑

∀b∈FTs w. b6=0

x
(j)
b

)

· pj→i +

(

∑

∀b∈FTs w. b2=0

x
(k)
b

)

· pk→i

+Ri→j +Ri→k +Rj→i, (19)

y
(i)
3 =

(

∑

∀b∈FTs w. b7=0

x
(j)
b

)

· pj→i +

(

∑

∀b∈FTs w. b3=0

x
(k)
b

)

· pk→i

+Ri→j +Ri→k +Rk→i, (20)

y
(i)
4 =

(

∑

∀b∈FTs w. b8=0

x
(j)
b

)

· pj→i +

(

∑

∀b∈FTs w. b4=0

x
(k)
b

)

· pk→i

+Ri→j +Ri→k +Rj→i +Rk→i, (21)

y
(i,j)
1 =

(

∑

∀b∈FTs w. b9=0

x
(k)
b

)

· pk→i∨j

+Ri→j +Ri→k +Rj→i +Rj→k,

(22)

y
(i,j)
2 =

(

∑

∀b∈FTs w. b10=0

x
(k)
b

)

· pk→i∨j

+Ri→j +Ri→k +Rj→i +Rj→k +Rk→i,

(23)

y
(i,j)
3 =

(

∑

∀b∈FTs w. b11=0

x
(k)
b

)

· pk→i∨j

+Ri→j +Ri→k +Rj→i +Rj→k +Rk→j .

(24)

• Group 3, termed the decodability conditions, has 6 equalities:

∀ i ∈ {1, 2, 3}, y
(i)
1 = y

(i)
2 = y

(i)
3 = y

(i)
4 , (25)

∀ i ∈ {1, 2, 3}, y
(i,j)
1 = y

(i,j)
2 = y

(i,j)
3 = RΣ. (26)

The intuition is as follows. Consider any achievable ~R and

the associated LNC scheme. For any time t, suppose the given

scheme chooses node i to transmit a coding vector ct. By the

previous discussions, we can examine this ct to see which

TYPE
(i)
b

it belongs to by looking at the corresponding A-

subspaces in the end of t − 1. Then after running the given

scheme from time 1 to n, we can compute the variable x
(i)
b
,

1
nE

[

∑n
t=1 1{ct∈TYPE

(i)
b

}

]

for each TYPE
(i)
b

as the frequency

of scheduling node i with the chosen ct happening to be in

TYPE
(i)
b

. Since each ct belongs to exactly one of the 52 ×
3=156 feasible coding types, the time-sharing condition (17)

holds naturally. We then compute the y-variables by

y
(i)
l ,

1

n
E

[

rank
(

A
(i)
l (n)

)

]

, ∀l ∈ {1, 2, 3, 4}, (27)

y
(i,j)
l ,

1

n
E

[

rank
(

A
(i,j)
l (n)

)

]

, ∀l ∈ {1, 2, 3},

as normalized expected ranks of A-subspaces in the end of

time n. We now claim that these variables satisfy (18) to (26).

This claim implies that for any LNC-achievable ~R, there exists

x
(i)
b

and y-variables satisfying Proposition 1, which means that

Proposition 1 constitutes an outer bound on the LNC capacity.

To prove that (18)–(24) are true,2 consider an A-subspace,

say A
(1)
3 (t) = S1(t − 1) ⊕ Ω3→1 = RS1(t − 1) ⊕ Ω1→2 ⊕

Ω1→3 ⊕ Ω3→1 as defined in (11) and (8) when (i, j, k) =
(1, 2, 3). In the beginning of time 1, node 1 has not received

any packet yet, i.e., RS1(0) = {0}. Thus the rank of A
(1)
3 (1)

is rank(Ω1→2⊕Ω1→3⊕Ω3→1) = nR1→2+nR1→3+nR3→1.

The fact that S1(t − 1) contributes to A
(1)
3 (t) implies that

rank(A
(1)
3 (t)) will increase by one whenever node 1 receives a

packet ctW
⊤ satisfying ct 6∈ A

(1)
3 (t). Since A

(1)
3 (t) is labeled

as Ä
(2)
7 , see (14) with (i, j, k) = (2, 3, 1), whenever node 2

sends a ct in TYPE
(2)
b

with b7=0, such ct is not in A
(1)
3 (t).

2For rigorous proofs, we need to invoke the law of large numbers and
take care of the ǫ-error probability. For ease of discussion, the corresponding
technical details are omitted when discussing the intuition of Proposition 1.

5

Whenever node 1 receives it, rank(A
(1)
3 (t)) increases by 1.

On the other hand, A
(1)
3 (t) is also labeled as Ä

(3)
3 , see (14)

with (i, j, k) = (3, 1, 2). Hence, whenever node 3 sends a ct

in TYPE
(3)
b

with b3=0 and node 1 receives it, rank(A
(1)
3 (t))

also increases by 1. Therefore, in the end of time n, we have

rank(A
(1)
3 (n)) =

n
∑

t=1

1{
node 2 sends ct∈TYPE

(2)
b

with b7=0,
and node 1 receives it

}

+

n
∑

t=1

1{
node 3 sends ct∈TYPE

(3)
b

with b3=0,
and node 1 receives it

}

+ rank(A
(1)
3 (0)).

(28)

Taking the normalized expectation of (28), we have proven

(20) for i = 1. By similar rank-conversion arguments, (18)–

(24) are true for all i ∈ {1, 2, 3}.

In the end of time n, since every node i ∈ {1, 2, 3} can

decode the desired packets Wj→i and Wk→i, we thus have

Si(n) ⊇ Ωj→i and Si(n) ⊇ Ωk→i, or equivalently Si(n) =

Si(n)⊕Ωj→i⊕Ωk→i. This implies that the ranks of A
(i)
1 (n) to

A
(i)
4 (n) in (10) and (11) are all equal. Together with (27), we

thus have (25). Similarly, one can prove that (26) is satisfied

as well. The claim is thus proven.

B. A LNC Capacity Achieving Scheme

Proposition 2: A 6-dimensional ~R is LNC-achievable if

there exist 15 non-negative variables t
[u]
i and {t

[c,l]
i }4l=1 for

all i ∈ {1, 2, 3} such that jointly they satisfy the following

three groups of linear conditions:

• Group 1, termed the time-sharing condition, has 1 inequality:
∑

∀ i∈{1,2,3}

t
[u]
i + t

[c,1]
i + t

[c,2]
i + t

[c,3]
i + t

[c,4]
i ≤ 1. (29)

• Group 2 has 3 inequalities: For all i ∈ {1, 2, 3},

Ri→j +Ri→k < t
[u]
i pi→j∨k. (30)

• Group 3 has 6 inequalities: For all i ∈ {1, 2, 3},

Ri→j

pi→jk

pi→j∨k
<
(

t
[c,1]
i + t

[c,3]
i

)

·pi→j+
(

t
[c,2]
k + t

[c,3]
k

)

·pk→j ,

(31)

Ri→k

pi→jk

pi→j∨k
<
(

t
[c,1]
i + t

[c,4]
i

)

·pi→k+
(

t
[c,2]
j + t

[c,4]
j

)

·pj→k.

(32)

Sketch of the proof: Any ~R-satisfying Proposition 2 can

be achieved by the following 2-phased scheme. Phase 1 : In

the beginning of time 1, node 1 has nR1→2 +nR1→3 packets

(i.e., W1→2 and W1→3) that need to be sent to nodes 2 and 3,

respectively. In this phase, node 1 picks one of these packets

and repeatedly sends it uncodedly until at least one of nodes

2 and 3 receives it. Then node 1 picks the next packet and

repeat the same process until each of these nR1→2 + nR1→3

packets is heard by at least one of nodes 2 and 3. By simple

analysis, see [4], node 1 can finish the transmission in n · t
[u]
i

slots since (30).3 We repeat this process for nodes 2 and 3,

respectively. Phase 1 can be finished in n(
∑

i t
[u]
i) slots.

3By the law of large numbers, we can ignore the randomness of the events
and treat them as deterministic when n is sufficiently large.

After Phase 1, the status of all packets is summarized as

follows. Each of Wi→j packets is heard by at least one of

nodes j and k. Those that have already been heard by node j,

the intended destination, is delivered successfully and thus will

not be considered for future operations (Phase 2). We denote

those Wi→j packets that are overheard by node k only (not by

node j) as W
(k)
i→j . In average, there are nRi→j

pi→jk

pi→j∨k
number

of W
(k)
i→j packets. Symmetrically, we also have nRi→k

pi→jk

pi→j∨k

number of W
(j)
i→k packets that was intended for node k but

was overheard only by node j in Phase 1.

Phase 2 is the LNC phase, in which each node i will send a

linear combination of packets. We claim that there are (at least)

4 possible ways of sending LNC packets. That is, for each time

t, node i send Xi(t) = [Wj +Wk] with one of 4 possibilities

of choosing Wj and Wk: (i) Wj ∈W
(k)
i→j and Wk ∈W

(j)
i→k;

(ii) Wj ∈ W
(i)
k→j and Wk ∈ W

(i)
j→k; (iii) Wj ∈ W

(k)
i→j and

Wk ∈W
(i)
j→k; and (iv) Wj ∈W

(i)
k→j and Wk ∈W

(j)
i→k. Note

that choice (i) is the standard LNC operation for the 2-receiver

broadcast channels [4] since node i sends a linear sum that

benefits both nodes j and k simultaneously. Choice (ii) is the

standard LNC operation for the 2-way relay channels, since

node i, as a relay for the 2-way traffic between nodes j and

k, mixes the packets from two opposite directions and sends

their linear sum. Choices (iii) and (iv) are the new “hybrid”

cases identified in this work, for which we can mix part of the

broadcast traffic and part of the 2-way traffic. One can easily

prove that transmitting such a linear mixture again benefits

both nodes simultaneously.

Since each node i has 4 possible coding choices, we perform

coding choice l for exactly n · t
[c,l]
i times for l=1 to 4. Since

W
(k)
i→j participates in coding choices (i) and (iii) of node i

and coding choices (ii) and (iii) of node k, (31) guarantees

that we can finish sending all W
(k)
i→j packets and they will all

successfully arrive at node j. Symmetrically, (32) guarantees

the delivery of all W
(j)
i→k packets in the end of Phase 2. Finally,

(29) guarantees that we can finish Phases 1 and 2 in the allotted

n time slots.

Proposition 3: The outer and inner bounds in Propositions 1

and 2 match for all channel parameters and they thus describe

the 6-dimensional LNC capacity region.

The proof is relegated to Appendix A. One important

implication is that for the 3-node 6-flow setting, we do not

need to resort to any “exotic” LNC operation as described

in Section I. Instead, 4 simple coding choices (i)–(iv) are

sufficient to achieve the optimal LNC capacity under any

channel parameters.

V. CONCLUSION

This work characterizes the 6-dimensional LNC capacity

and the optimal strategy when 3 nodes talk through erasure

networks with the channel state feedback.

REFERENCES

[1] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.
John Wiley & Sons Inc., 2006.

6

[2] A. Dana, R. Gowaikar, R. Palanki, B. Hassibi, and M. Effros, “Capacity
of wireless erasure networks,” IEEE Trans. Inform. Theory, vol. 52,
no. 3, pp. 789–804, March 2006.

[3] E. C. V. der Meulen, “Three-terminal communication channels,” in Adv.
Appl. Probab.,, vol. 3, 1971, pp. 120–154.

[4] M. Gatzianas, L. Georgiadis, and L. Tassiulas, “Multiuser broadcast
erasure channel with feedback - capacity and algorithms,” IEEE Trans.

Inform. Theory, vol. 59, no. 9, pp. 5779–5804, September 2013.

[5] L. Georgiadis and L. Tassiulas, “Broadcast erasure channel with feed-
back - capacity and algorithms,” in Proc. 5th Workshop on Network

Coding, Theory and Applications (NetCod), Lausanne, Switzerland, June
2009, pp. 54–61.

[6] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft,
“Xors in the air: Practical wireless network coding,” in Proc. ACM

SIGCOMM, Pisa, Italy, September 2006, pp. 243–254.

[7] W.-C. Kuo and C.-C. Wang, “Two-flow capacity region of the cope
principle for two-hop wireless erasure networks,” IEEE Trans. Inform.
Theory, submitted for publication.

[8] C. E. Shannon, “Two-way communication channels,” in Proc. 4th

Berkeley Symp. Math. Stat. Prob, vol. 1, 1961, pp. 611–644.

[9] C. C. Wang, “Capacity region of two symmetric nearby erasure chan-
nels with channel state feedback,” in Proc. IEEE Information Theory

Workshop., Lausanne, Switzerland, September 2012, pp. 352–356.

[10] C.-C. Wang, “On the capacity of 1-to-K broadcast packet erasure
channels with channel output feedback,” IEEE Trans. Inform. Theory,
vol. 58, no. 2, pp. 931–956, February 2012.

[11] ——, “Linear network coding capacity for broadcast erasure channels
with feedback, receiver coordination, and arbitrary security require-
ment,” in Proc. IEEE Int’l Symp. Inform. Theory., Istanbul, Turkey, July
2013, pp. 2900–2904.

[12] C.-C. Wang and D. J. Love, “Linear network coding capacity region of
2-receiver mimo broadcast packet erasure channels with feedback,” in
Proc. IEEE Int’l Symp. Inform. Theory., Boston, MA, USA, July 2012,
pp. 2062–2066.

APPENDIX A

PROOF OF PROPOSITION 3

For the readability, we rewrite the original 52 Feasible Types

(FTs) defined in (16) that each node i ∈ {1, 2, 3} can transmit:

FTs ,{000, 001, 002, 003, 007, 011, 013, 017, 037, 051,

053, 057, 077, 0F7, 102, 103, 107, 113, 117, 137,

153, 157, 177, 1F7, 302, 303, 307, 313, 317, 337,

353, 357, 377, 3F7, 507, 517, 537, 557, 577, 5F7,

707, 717, 737, 757, 777, 7F7, F07, F17, F37, F57,

F77, FF7}, (33)

where each 3-digit index b1b2b3 represent a 11-bitstring b

of which b1 is a hexadecimal of first four bits, b2 is a

hexadecimal of the next four bits, and b3 is octal of the last

three bits. It should be clear from the context whether we

are representing b as a decimal index, e.g., TYPE
(1)
169

, or as a

3-digit index based on hexadecimal/octal, e.g., TYPE
(1)
FF7

.

For the notational convenience, we often use FTs(·, ·, ·) to

denote some collection of coding types in FTs. For example,

FTs(F, ·, ·) , {b ∈ FTs with b1 = F }, corresponding to the

collection of coding types in FTs with b1 = b2 = b3 = b4 = 1.

Without loss of generality, we also assume that pi→j > 0
and pi→k > 0 for all (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}
since the case that any one of them is zero can be viewed

as a limiting scenario and the polytope of the LP problem in

Proposition 1 is continuous with respect to the channel success

probability parameters.

We now introduce the following three lemmas.

Lemma 1: Given any rate vector ~R and the associ-

ated {x
(i)
b
}-variables satisfying Proposition 1, the following

equalities, (E1) to (E10), always hold for all (i, j, k) ∈
{(1, 2, 3), (2, 3, 1), (3, 1, 2)}.

Rk→i +Rk→j =

(

∑

∀b∈FTs w. b9=0

x
(k)
b

)

· pk→i∨j , (E1)

Rk→j =

(

∑

∀b∈FTs w. b10=0

x
(k)
b

)

· pk→i∨j , (E2)

Rk→i =

(

∑

∀b∈FTs w. b11=0

x
(k)
b

)

· pk→i∨j , (E3)





∑

∀b∈FTs(·,·,0)

x
(k)
b



 =





∑

∀b∈FTs(·,·,3)

x
(k)
b



 . (E4)

Rj→i +Rk→i =





∑

∀b∈FTs w. b5=0,b8=1

x
(j)
b



 · pj→i

+





∑

∀b∈FTs w. b1=0,b4=1

x
(k)
b



 · pk→i,

(E5)

Rj→i =





∑

∀b∈FTs w. b5=0,b6=1

x
(j)
b



 · pj→i

+





∑

∀b∈FTs w. b1=0,b2=1

x
(k)
b



 · pk→i,

(E6)

Rk→i =





∑

∀b∈FTs w. b5=0,b7=1

x
(j)
b



 · pj→i

+





∑

∀b∈FTs w. b1=0,b3=1

x
(k)
b



 · pk→i,

(E7)





∑

b∈FTs(·,7,·)

x
(j)
b



 · pj→i +





∑

b∈FTs(7,·,·)

x
(k)
b



 · pk→i

=





∑

b∈FTs(·,1,·)

x
(j)
b



 · pj→i +





∑

b∈FTs(1,·,·)

x
(k)
b



 · pk→i.

(E8)

(

∑

∀b∈FTs w. b10=0

x
(k)
b

)

· pk→i∨j =





∑

∀b∈FTs w. b5=0,b6=1

x
(k)
b



 · pk→j

+





∑

∀b∈FTs w. b1=0,b2=1

x
(i)
b



 · pi→j , (E9)

(

∑

∀b∈FTs w. b11=0

x
(k)
b

)

· pk→i∨j =





∑

∀b∈FTs w. b5=0,b7=1

x
(j)
b



 · pj→i

+





∑

∀b∈FTs w. b1=0,b3=1

x
(k)
b



 · pk→i. (E10)

7

The proof is relegated to Appendix B.

The following Lemma 2 implies that we can impose special

structure on the {x
(i)
b
}-variables satisfying Proposition 1. For

that, let us denote

FTs , {051, 302, 337, 357, 3F7, 537, 557, 5F7, F37, F57},
(34)

of which contains only 10 types out of 52 feasible coding

types of the original FTs.

Lemma 2: Given any ~R and the associated 156 non-negative

values {x
(i)
b
} satisfying Proposition 1, we can always find

another set of 156 non-negative values {ẍ
(i)
b
} such that ~R

and {ẍ
(i)
b
} jointly also satisfy Proposition 1 and

ẍ
(i)
b

= 0 for all b ∈ FTs\FTs. (35)

That is, without loss of generality, we can assume only those

{x
(i)
b
} with b ∈ FTs may have non-zero values. The proof of

this lemma is relegated to Appendix C.

Lemma 3: Given any ~R and the associated 156 non-negative

values {ẍ
(i)
b
} that satisfy Proposition 1 and (35), we can

always find 15 non-negative values t
[u]
i and {t

[c,l]
i }4l=1 for all

i ∈ {1, 2, 3} such that jointly satisfy three groups of linear

conditions in Proposition 2 (when replacing all strict inequality

< by ≤).

The proof of this lemma is relegated to Appendix D.

One can clearly see that Lemmas 2 and 3 jointly imply that

the outer bound in Proposition 1 matches the closure of the

inner bound in Proposition 2. The proof of Proposition 3 is

thus complete.

APPENDIX B

PROOF OF LEMMA 1

We prove the equalities (E1) to (E4) as follows.

Proof. These equalities can be derived by using (22)–(24) and

(26) in Proposition 1. Since y
(i,j)
1 = y

(i,j)
2 = y

(i,j)
3 = RΣ

by (26), substituting RΣ to the left-hand side of (22)–(24),

respectively, we have

Rk→i +Rk→j =

(

∑

∀b∈FTs w. b9=0

x
(k)
b

)

· pk→i∨j ,

Rk→j =

(

∑

∀b∈FTs w. b10=0

x
(k)
b

)

· pk→i∨j ,

Rk→i =

(

∑

∀b∈FTs w. b11=0

x
(k)
b

)

· pk→i∨j ,

which are equivalent to (E1), (E2), and (E3), respectively.

We now prove the relationship (E4). Substituting (E2) and

(E3) to the left-hand side of (E1), we then have
(

∑

∀b∈FTs w. b10=0

x
(k)
b

+
∑

∀b∈FTs w. b11=0

x
(k)
b

)

· pk→i∨j

=

(

∑

∀b∈FTs w. b9=0

x
(k)
b

)

· pk→i∨j .

(36)

Note that for any type-b, whenever b10 = 0 (resp. b11 = 0),

b9 is also zero. This is because Ä
(i)
9 ⊂ Ä

(i)
10 (resp. Ä

(i)
9 ⊂ Ä

(i)
11)

regardless of node index i, see (14). Therefore, (36) can be

further reduced to





∑

∀b∈FTs w. b9=0,b10=0,b11=0

x
(k)
b



 · pk→i∨j

=





∑

∀b∈FTs w. b9=0,b10=1,b11=1

x
(k)
b



 · pk→i∨j .

(37)

Dividing pk→i∨j on both sides of (37), we finally have (E4).

The proof is thus complete.

We prove the equalities (E5) to (E8) as follows.

Proof. These equalities can be derived by using the decodabil-

ity equality (25) in Proposition 1, i.e., y
(i)
1 = y

(i)
2 = y

(i)
3 =

y
(i)
4 . First from y

(i)
1 = y

(i)
4 and by (18) and (21), one can

easily see that we have

Rj→i +Rk→i =





∑

∀b∈FTs w. b5=0,b8=1

x
(j)
b



 · pj→i

+





∑

∀b∈FTs w. b1=0,b4=1

x
(k)
b



 · pk→i,

which is equivalent to (E5). This is because for any type-b, if

b8 = 0 (resp. b4 = 0), then b5 (resp. b1) must be zero as well

due to the fact that Ä
(i)
5 ⊂ Ä

(i)
8 (resp. Ä

(i)
1 ⊂ Ä

(i)
4) regardless of

node index, see (14). Similarly from the facts that Ä
(i)
5 ⊂ Ä

(i)
6 ,

Ä
(i)
1 ⊂ Ä

(i)
2 , and by (18) and (19), y

(i)
1 = y

(i)
2 implies

Rj→i =





∑

∀b∈FTs w. b5=0,b6=1

x
(j)
b



 · pj→i

+





∑

∀b∈FTs w. b1=0,b2=1

x
(k)
b



 · pk→i,

which is equivalent to (E6).

Moreover, from the facts that Ä
(i)
5 ⊂ Ä

(i)
7 , Ä

(i)
1 ⊂ Ä

(i)
3), and

by (18) and (20), y
(i)
1 = y

(i)
3 implies

Rk→i =





∑

∀b∈FTs w. b5=0,b7=1

x
(j)
b



 · pj→i

+





∑

∀b∈FTs w. b1=0,b3=1

x
(k)
b



 · pk→i,

(38)

which is equivalent to (E7).

We now prove the relationship (E8). Substituting (E6) and

8

(E7) to the left-hand side of (E5), we thus have




∑

∀b∈FTs w. b5=0,b6=1

x
(j)
b

+
∑

∀b∈FTs w. b5=0,b7=1

x
(j)
b



 · pj→i

+





∑

∀b∈FTs w. b1=0,b2=1

x
(k)
b

+
∑

∀b∈FTs w. b1=0,b3=1

x
(k)
b



 · pk→i

=





∑

∀b∈FTs w. b5=0,b8=1

x
(j)
b



 · pj→i

+





∑

∀b∈FTs w. b1=0,b4=1

x
(k)
b



 · pk→i.

Note that for any type-b, whenever b6 = 1 (resp. b7 = 1), b8
must be one due to the fact that Ä

(i)
6 ⊂ Ä

(i)
8 (resp. Ä

(i)
7 ⊂ Ä

(i)
8).

The same argument holds such that for any type-b, whenever

b2 = 1 (resp. b3 = 1), we have b4 = 1. Then the above

equality further reduces to




∑

∀b∈FTs w. b5=0,b6=1,b7=1,b8=1

x
(j)
b



 · pj→i

+





∑

∀b∈FTs w. b1=0,b2=1,b3=1,b4=1

x
(k)
b



 · pk→i

=





∑

∀b∈FTs w. b5=0,b6=0,b7=0,b8=1

x
(j)
b



 · pj→i

+





∑

∀b∈FTs w. b1=0,b2=0,b3=0,b4=1

x
(k)
b



 · pk→i,

which is equivalent to (E8). The proof is thus compelte.

We prove the equalities (E9) and (E10) as follows.

Proof. By cyclic symmetry, we can rewrite (E6) as follows.

Rk→j =





∑

∀b∈FTs w. b5=0,b6=1

x
(k)
b



 · pk→j

+





∑

∀b∈FTs w. b1=0,b2=1

x
(i)
b



 · pi→j .

(39)

Then, (E9) is a direct result of (E2) and (39). Similarly,

(E10) is a direct result of (E3) and (E7). The proof is thus

complete.

APPENDIX C

PROOF OF LEMMA 2

Before proving this lemma, we introduce the following

“weight-movement” operator.

1) For any 2 non-negative values a and b, the operator a b
implies that we keep decreasing a and increasing b by

the same amount until a = 0. Namely, after the operator,

the new a and b values are

anew = 0, bnew = b+ a.

2) For any 3 non-negative values a, b, and c, the operator

{a, b} c implies that we keep decreasing a and

b simultaneously and keep increasing c by the same

amount until at least one of a and b being 0. Namely,

after the operator, the new a, b, and c values are

anew = a−min{a, b}, bnew = b−min{a, b},

cnew = c+min{a, b}.

3) For any 4 non-negative values a, b, c, and d, the

operator {a, b} {c, d} implies that we keep decreasing

a and b simultaneously and keep increasing c and d
simultaneously by the same amount until at least one of

a and b being 0. Namely, after the operator, we have

anew = a−min{a, b}, bnew = b−min{a, b},

cnew = c+min{a, b}, dnew = d+min{a, b}.

4) We can also concatenate the operators. For example, for

any three non-negative values a, b, and c, the operator

a b c implies that

anew = 0, bnew = 0, cnew = c+ (a+ b).

5) Sometimes, we do not want to “move the weight to the

largest possible degree” as was defined previously. To

that end, we define the operator a
∆
 b:

anew = a−∆, bnew = b+∆.

where ∆ (≤ a) is the amount of weight being moved

from a to b.
6) Finally, a ∅ means anew = 0 and a

∆
 ∅ means anew =

a−∆.

We now prove Lemma 2. Given ~R and {x
(i)
b
}-values sat-

isfying Proposition 1, let us denote the corresponding values

of y-variables in the rank-conversion conditions (18)–(24) as

{y}.

Recall that each coding type TYPE
(i)
b

of node i corresponds

to a specific subset of its knowledge space Si, governed by

11 A-subspaces Ä
(i)
1 to Ä

(i)
11 , see (14). As a result, by the

rank conversion equalities (18)–(24), the bitstring b of each

TYPE
(i)
b

will determine the contribution from the value x
(i)
b

to the associated 11 y-values: y
(j)
1 to y

(j)
4 ; y

(k)
1 to y

(k)
4 ; and

y
(j,k)
1 to y

(j,k)
3 . For example, any vector ct of TYPE

(i)
7F7

(i.e.,

type-01111111111 of node i), does not belong to Ä
(i)
1 . By

(14) and (10)–(13), we know that Ä
(i)
1 = A

(j)
1 (t) = Sj(t− 1).

As a result, whenever a TYPE
(i)
7F7

coding vector, sent by node

i at time t, is succesfully received by node j, the rank of

Sj(t − 1) will increase by 1. Therefore, the value x
(i)
7F7

(the

frequency of using type-7F7 of node i) contributes to y
(j)
1 (the

normalized expected rank of A
(j)
1 (n) in the end of time n) by

x
(i)
7F7

·pi→j . Any change of the value x
(i)
7F7

will thus change the

corresponding value y
(j)
1 accordingly as described in the rank

conversion equalities (18)–(24) in Proposition 1.

The above intuition/explanation turns out to be very helpful

when discussing the LP problem. Also, since all {y}-values

can always be calculated from the given {x
(i)
b
}-values by (18)–

(24), all our discussion can be focused on the given {x
(i)
b
}-

values, and all {y}-values can be automatically computed.

9

The proof of Lemma 2 is done by proving the following

intermediate claims.

Intermediate Claim 1: For any ~R and the corresponding

156 non-negative values {x
(i)
b
} satisfying Proposition 1, we

can always find another set of 156 non-negative values {ẍ
(i)
b
}

such that ~R and {ẍ
(i)
b
} jointly satisfy Proposition 1 and

ẍ
(i)
b

= 0, ∀ i ∈ {1, 2, 3} and

∀b ∈ {FF7, F07, 0F7, 007} .
(C1)

Proof of Intermediate Claim 1: The proof is done by explicit

construction. We sequentially perform the following weight

movement operations for all i ∈ {1, 2, 3}: x
(i)
FF7
 ∅; x

(i)
F07
 ∅;

x
(i)
0F7
 ∅; and x

(i)
007
 ∅. After the weight movement,

(C1) is obviously true for the new values of {x
(i)
b
}. What

remains to prove that the time-sharing condition (17) and the

decodability conditions (25)–(26) still hold (when computing

the new {y}-values using the new {x
(i)
b
}-values) after the

weight movement.

To that end, we prove that (17), (25), and (26) hold after

each of the weight movement operations. We first observe that

x
(i)
FF7
 ∅ does not change any y-value because the coding

type-11111111111 does not participate in the rank conversion

process. As a result, after x
(i)
FF7
 ∅, the decodability conditions

(25)–(26) still hold. Since x
(i)
FF7
 ∅ reduces the value of x

(i)
FF7

,

the time sharing condition (17) still holds.

We now consider x
(i)
F07
 ∅. Since F07 = 11110000111 in

11-bitstring, it means that x
(i)
F07

contributes to the ranks of Ä
(i)
5

to Ä
(i)
8 . By (14), x

(i)
F07

contributes4 to the values of y
(k)
1 to y

(k)
4 ,

the ranks of A
(k)
1 to A

(k)
4 in the end of time n, respectively.

By (18)–(21), the operation x
(i)
F07
 ∅ will decrease each of

y
(k)
1 to y

(k)
4 by the same amount (x

(i)
F07

· pi→k). Therefore,

after x
(i)
F07
 ∅, the new values of y

(k)
1 to y

(k)
4 still satisfy the

decodability equality (25). Note that x
(i)
F07

does not contribute

to any of y
(j,k)
1 to y

(j,k)
3 and therefore (26) still holds after

x
(i)
F07
 ∅.

By similar arguments, the operation x
(i)
0F7
 ∅ will decrease

y
(j)
1 to y

(j)
4 by the same amount (x

(i)
0F7

· pi→j) while keeping

all y
(k)
1 to y

(k)
4 and y

(j,k)
1 to y

(j,k)
3 unchanged. Therefore the

decodability condition (25) still holds. By similar arguments,

the operation x
(i)
007
 ∅ will decrease y

(j)
1 to y

(j)
4 by the

same amount of (x
(i)
007

· pi→j) and decrease y
(k)
1 to y

(k)
4 by

the same amount (x
(i)
007

· pi→k) while keeping all y
(j,k)
1 to

y
(j,k)
3 unchanged. Therefore the decodability conditions (25)

and (26) still hold. Intermediate Claim 1 is thus proven.

Intermediate Claim 2: For any ~R vector and the 156

corresponding non-negative {x
(i)
b
}-values satisfying Proposi-

tion 1 and (C1), we can always find another set of 156 non-

negative values {ẍ
(i)
b
} such that ~R and {ẍ

(i)
b
} jointly satisfy

4This argument can also be made by directly examining equalities (18)–
(24). In (18)–(24), we can see that only in (18)–(21) we use the b5 to b8

values to determine the contribution of {x
(i)
b

, x
(j)
b

, x
(k)
b

}. Since y
(i)
1 to y

(i)
4

are contributed by x
(j)
F07

, we thus know that only y
(k)
1 to y

(k)
4 are contributed

by x
(i)
F07

.

Proposition 1 and (C1), plus

ẍ
(i)
b

= 0, ∀ i ∈ {1, 2, 3} and

∀b ∈

{

000, 003, 013, 053, 103,

113, 153, 303, 313, 353

}

.
(C2)

Proof of Intermediate Claim 2: Consider any {x
(i)
b
}-values

satisfying Proposition 1 and (C1). Since Proposition 1 holds,

Lemma 1 implies that (E4) holds as well. When we count

the non-zero coding types in (E4) (those not in (C1)), we

immediately have

x
(i)
000

= x
(i)
003

+ x
(i)
013

+ x
(i)
053

+ x
(i)
103

+ x
(i)
113

+ x
(i)
153

+ x
(i)
303

+ x
(i)
313

+ x
(i)
353

.
(40)

Then, we sequentially perform the following operations:

{x
(i)
003

, x
(i)
000

} {x
(i)
001

, x
(i)
002

},

{x
(i)
013

, x
(i)
000

} {x
(i)
002

, x
(i)
011

},

{x
(i)
053

, x
(i)
000

} {x
(i)
002

, x
(i)
051

},

{x
(i)
103

, x
(i)
000

} {x
(i)
001

, x
(i)
102

},

{x
(i)
113

, x
(i)
000

} {x
(i)
011

, x
(i)
102

},

{x
(i)
153

, x
(i)
000

} {x
(i)
051

, x
(i)
102

},

{x
(i)
303

, x
(i)
000

} {x
(i)
001

, x
(i)
302

},

{x
(i)
313

, x
(i)
000

} {x
(i)
011

, x
(i)
302

},

{x
(i)
353

, x
(i)
000

} {x
(i)
051

, x
(i)
302

}.

By (40), one can easily verify that after the above op-

erations, we have (C2). Thus it is left to show that after

these operations the linear conditions of Proposition 1 are still

satisfied.

First notice that the time-sharing condition (17) is still

satisfied since weight-moving operation decreases weights of

two entries and increases the weights of another two entries

by the same amount. We now argue that after each of the

totally 9 weight-moving operations, the associated y-values

remain unchanged. Take the last weight-moving operation

{x
(i)
353

, x
(i)
000

} {x
(i)
051

, x
(i)
302

} for example. The corresponding

coding types are

TYPE
(i)
353

in 11-bitstring = 0011 0101 011,

TYPE
(i)
000

in 11-bitstring = 0000 0000 000,

TYPE
(i)
051

in 11-bitstring = 0000 0101 001,

TYPE
(i)
302

in 11-bitstring = 0011 0000 010.

Let bl(353) denote the l-th bit of the 11-bitstring 353 =
00110101011, and similarly bl(000), bl(051), and bl(302)
denote the l-th bit of 11-bitstrings 000, 051, and 302, respec-

tively. One can see that for any l, the set {bl(353), bl(000)} is

identical, as a set, to the set {bl(051), bl(302)} for all l = 1 to

11. Namely, when performing {x
(i)
353

, x
(i)
000

} {x
(i)
051

, x
(i)
302

}, for

all l = 1 to 11, the impact on the rank of Ä
(i)
l by decreasing si-

multaneously the two entries {x
(i)
353

, x
(i)
000

} is offset completely

by increasing simultaneously the two entries {x
(i)
051

, x
(i)
302

}. For

example, bit b1 (when l = 1) corresponds to Ä
(i)
1 = A

(j)
1

10

and we have b1(353) = 0 and b1(000) = 0. Therefore,

if we separate the weight-moving operation {x
(i)
353

, x
(i)
000

}

{x
(i)
051

, x
(i)
302

} into the decreasing half and the increasing half,

then during the decreasing half, the y
(j)
1 -value will decrease

by min{x
(i)
353

, x
(i)
000

} · pi→j due to the decrease of x
(i)
353

and

then decrease by another min{x
(i)
353

, x
(i)
000

} · pi→j due to the

decrease of x
(i)
000

. On the other hand, during the increasing

half, the y
(j)
1 value will increase by min{x

(i)
353

, x
(i)
000

} · pi→j

due to the increase of x
(i)
051

and then increase by another

min{x
(i)
353

, x
(i)
000

}·pi→j due to the increase of x
(i)
302

. The amounts

of increase and decrease perfectly offset each other since

{b1(353), b1(000)} = {0, 0} = {b1(051), b1(302)}.

In sum, by similar reasoning, all the y-values will remain

the same after each of the above 9 weight-moving operations.

The proof is thus complete.

Intermediate Claim 3: For any ~R vector and the 156 corre-

sponding non-negative {x
(i)
b
}-values satisfying Proposition 1

and (C1) to (C2), we can always find another set of 156 non-

negative values {ẍ
(i)
b
} such that ~R and {ẍ

(i)
b
} jointly satisfy

Proposition 1 and (C1) to (C2), plus for all i ∈ {1, 2, 3},




∑

b∈FTs(·,7,·)

x
(i)
b



 =





∑

b∈FTs(·,1,·)

x
(i)
b



 ,





∑

b∈FTs(7,·,·)

x
(i)
b



 =





∑

b∈FTs(1,·,·)

x
(i)
b



 .

(C3)

Proof of Intermediate Claim 3: Since the node indices are

cyclically decided, we will prove the following equivalent

forms:




∑

b∈FTs(·,7,·)

x
(j)
b



 =





∑

b∈FTs(·,1,·)

x
(j)
b



 , (41)





∑

b∈FTs(7,·,·)

x
(k)
b



 =





∑

b∈FTs(1,·,·)

x
(k)
b



 , (42)

based on the equality (E8) of Lemma 1. For shorthand, define

the following 4 non-negative terms of (E8) as follows:

term1 ,





∑

b∈FTs(·,7,·)

x
(j)
b



 · pj→i,

term2 ,





∑

b∈FTs(7,·,·)

x
(k)
b



 · pk→i,

term3 ,





∑

b∈FTs(·,1,·)

x
(j)
b



 · pj→i,

term4 ,





∑

b∈FTs(1,·,·)

x
(k)
b



 · pk→i.

Using the above 4 terms, (E8) can be rewritten by

term1 + term2 = term3 + term4. (43)

Recall that we assume both pj→i > 0 and pk→i > 0.

Consider the following three cases depending on the values

of term1 and term3.

Case 1: term1 = term3. By (43), we also have term2 =
term4. By the definitions of term1 to term4, both (41) and

(42) hold automatically.

Case 2: term1 < term3. Since each term is strictly non-

negative, we thus have term3 > 0. Also by (43), we must also

have term2 > term4 and thus term2 > 0. In the following, we

will describe a set of weight-moving operations such that after

moving the weights among {x
(j)
b

, x
(k)
b

}, the new {x
(j)
b

, x
(k)
b

}
satisfy Proposition 1, (C1), and (C2); and the gap term3 −
term1 computed using the new {x

(j)
b

} is strictly smaller than

the gap computed by the old {x
(j)
b

} while term3 ≥ term1.

We can thus iteratively perform the weight movements until

term1 = term3. The final {x
(j)
b

, x
(k)
b

} then satisfy (C3) now.

The desired weight-moving operations are described as

follows. Since term3 > 0, we can find an 11-bitstring

b
term3 ∈ FTs(·, 1, ·) such that x

(j)
bterm3

> 0. Similarly, since

term2 > 0, we can find a b
term2 ∈ FTs(7, ·, ·) such that

x
(k)
bterm2

> 0. We then define

∆ = min
{

x
(j)
bterm3

· pj→i, x
(k)
bterm2

· pk→i, term3 − term1

}

.

Obviously, we have ∆ > 0 since we assume pj→i > 0 and

pk→i > 0 for all (i, j, k). We then compute ∆term3 = ∆/pj→i

and ∆term2 = ∆/pk→i. By the definition of ∆, we have 0 <

∆term3 ≤ x
(j)
bterm3

and 0 < ∆term2 ≤ x
(k)
bterm2

.

Then, we perform the following weight-moving operations:

x
(j)
bterm3

∆term3
///o/o/o x

(j)
bterm3⊕ 040

, (OP1)

x
(k)
bterm2

∆term2
///o/o/o x

(k)
bterm2⊕ 400

, (OP2)

where ⊕ is bit-wise exclusive or. For example, if bterm3 = 117

which belongs to FTs(·, 1, ·), then b
term3 ⊕ 040 = 157 which

now belongs to FTs(·, 5, ·) instead. Similarly, if bterm2 = 737,

then b
term2 ⊕ 400 = 337, which now belongs to FTs(3, ·, ·).

We now argue that after moving the weights among

{x
(j)
b

, x
(k)
b

}, the new {x
(j)
b

, x
(k)
b

} satisfy Proposition 1, (C1),

and (C2); and the gap term3 − term1 computed using the

new {x
(j)
b

} is strictly smaller than the gap computed by the

old {x
(j)
b

} while term3 ≥ term1. To that end, we first argue

that after the above weight movements, both (C1) and (C2)

still hold. The reason is that since b
term2 ⊕ 400 ∈ FTs(3, ·, ·)

and b
term3 ⊕ 040 ∈ FTs(·, 5, ·), we never move any weight

to the frequencies {x
(j)
b

, x
(k)
b

} satisfying (C1). As a result,

(C1) still holds after the above weight movements. Since

b
term2⊕400 ∈ FTs(3, ·, ·), it may look possible that we can in-

crease the weight of x
(k)
303

, x
(k)
313

, and x
(k)
353

in (C2) by the weight-

moving operation (OP2). However, to increase the weight of

x
(k)
303

, x
(k)
313

, and x
(k)
353

, it means that we must have b
term2 ∈

{703, 713, 753} to begin with. However, they are not in the

feasible coding types FTs, see (33). As a result, after (OP2)

movement, (C2) still holds. Since x
(j)
bterm3

⊕ 040 ∈ FTs(·, 5, ·),

it may look possible that we can increase the weight of x
(j)
053

,

x
(j)
153

, and x
(j)
353

in (C2) by the weight-moving operation (OP1).

However, to increase the weight of x
(j)
053

, x
(j)
153

, and x
(j)
353

, it

11

means that we must have b
term3 ∈ {013, 113, 313} to begin

with. However, since we choose b
term3 such that x

(j)
bterm3

> 0,

and the original {x
(j)
b

}-values satisfy (C2), it is impossible

to have b
term3 ∈ {013, 113, 313}. As a result, after (OP1)

movement, (C2) still holds.

We now consider the conditions in Proposition 1. We first

notice that it is clear that after moving the weights, the time-

sharing condition of Proposition 1 still holds because at every

iteration we only “move” the weights on the frequencies

{x
(j)
b

, x
(k)
b

} without changing the overall sum. We now exam-

ine whether other conditions of Proposition 1 are still satisfied

after the above modification process. For that, we argue that

the above process keeps all the y-values unchanged. To see

that, suppose (i, j, k) = (1, 2, 3) without loss of generality.

Since the 11-bitstring 040 has only 6-th bit being 1 and

all the other bits being 0, the (OP1) operation will change

only the rank of Ä
(j)
6 , i.e., Ä

(2)
6 when (i, j, k) = (1, 2, 3). By

(14), Ä
(2)
6 = A

(1)
2 and thus only y

(1)
2 will be affected by this

operation. Since we are moving the weight of ∆term3 from

x
(2)
bterm3

(the 6-th bit of b
term3 is 0 since b

term3 ∈ FTs(·, 1, ·))

to x
(2)
bterm3⊕ 040

(the 6-th bit of b
term3 ⊕ 040 is 1), y

(1)
2

will be decreased by (∆term3 · p2→1), which is equal to ∆.

On the other hand since the 11-bitstring 400 has only the

2nd bit being 1 and all the other bits being 0, the (OP2)

operation will change only the rank of Ä
(k)
2 , i.e., Ä

(3)
2 when

(i, j, k) = (1, 2, 3). By (14), Ä
(3)
2 = A

(1)
2 and thus again only

y
(1)
2 will be affected by this operation. Since we are moving

the weight of ∆term2 from x
(3)
bterm2

(the 2nd bit of b
term2 is

1 since b
term2 ∈ FTs(7, ·, ·)) to x

(3)
bterm2⊕ 400

(the 2nd bit of

b
term2 ⊕ 400 is 0), y

(1)
2 will be increased by (∆term2 · p3→1),

which is equal to ∆. The impacts of the two weight-moving

operations (OP1) and (OP2) on y
(1)
2 perfectly offset each other.

As a result, any of y-values are unchanged.

In the following, we will prove that (OP1) will decrease the

value of term3 by ∆ while keeping the values of term1, term2,

and term4 unchanged; and (OP2) will decrease the value of

term2 by ∆ while keeping the values of term1, term3, and

term4 unchanged. Thus after performing (OP1) and (OP2),

the gap term3 − term1 computed by the new {x
(j)
b

}-values

decreases by ∆ and we still have term3 ≥ term1 by the

definition of ∆ while satisfying (43). We first observe that

(OP1) manipulates only {x
(j)
b

}, thus term2 and term4 will

not be affected since both are based on {x
(k)
b

} of another

node index. Also notice that bterm3 ∈ FTs(·, 1, ·) if and only

if bterm3 ⊕040 ∈ FTs(·, 5, ·). Therefore, the weight movement

(OP1) does not change the value of term1 since term1 involves

only those frequencies with b ∈ FTs(·, 7, ·). Finally, since

b
term3 ∈ FTs(·, 1, ·) and b

term3 ⊕040 ∈ FTs(·, 5, ·), the (OP1)

movement will decrease the value of term3 and the decrease

amount will be ∆term3 · pj→i = ∆. The statement that (OP2)

decreases the value of term2 by ∆ while keeping the values of

term1, term3, and term4 unchanged can be proved similarly.

The proof of Case 2 is thus complete.

Case 3: term1 > term3. Since each term is strictly non-

negative, we thus have term1 > 0 and by (43), we must also

have term4 > 0. Again, we will describe a set of weight-

moving operations such that after moving the weights among

{x
(j)
b

, x
(k)
b

}, the new {x
(j)
b

, x
(k)
b

} satisfy Proposition 1, (C1),

and (C2); and the gap term1 − term3 computed using the

new {x
(j)
b

} is strictly smaller than the gap computed by the

old {x
(j)
b

} while satisfying (43) and term1 ≥ term3. We can

thus iteratively perform the weight movements until term1 =

term3. The final {x
(j)
b

, x
(k)
b

} thus satisfy (C3).

The desired weight-moving operations are described as

follows. Since term1 > 0, we can find an 11-bitstring

b
term1 ∈ FTs(·, 7, ·) such that x

(j)
bterm1

> 0. Similarly, since

term4 > 0, we can find a b
term4 ∈ FTs(1, ·, ·) such that

x
(k)
bterm4

> 0. We then define

∆ = min
{

x
(j)
bterm1

· pj→i, x
(k)
bterm4

· pk→i, term1 − term3

}

.

We then compute ∆term1 = ∆/pj→i and ∆term4 = ∆/pk→i.

Then, we perform the following weight-moving operations:

x
(j)
bterm1

∆term1
///o/o/o x

(j)
bterm1⊕ 040

, x
(k)
bterm4

∆term4
///o/o/o x

(k)
bterm4⊕ 400

.

By almost identical reasonings as in the discussion of

Case 2, we can prove that after the above modification process,

we have that the new {x
(j)
b

, x
(k)
b

} satisfy Proposition 1, (C1),

and (C2); and the gap term1− term3 computed using the new

{x
(j)
b

} is strictly smaller than the gap computed by the old

{x
(j)
b

} while satisfying (43) and term1 ≥ term3. The proof of

Case 3 is thus complete.

Intermediate Claim 4: For any ~R vector and the 156 corre-

sponding non-negative {x
(i)
b
}-values satisfying Proposition 1

and (C1) to (C3), we can always find another set of 156 non-

negative values {ẍ
(i)
b
} such that ~R and {ẍ

(i)
b
} jointly satisfy

Proposition 1 and (C1) to (C3), plus

ẍ
(i)
b

= 0, ∀ i ∈ {1, 2, 3} and

∀b ∈



















011, 017, 037, 057, 077, 102, 107,

117, 137, 157, 177, 1F7, 307, 317,

377, 507, 517, 577, 707, 717, 737,

757, 777, 7F7, F17, F77



















.
(C4)

Proof of Intermediate Claim 4: We simultaneously perform

the weight-moving operations in the first column of Table I

for all nodes i ∈ {1, 2, 3}. For each operation, we also present

how the associated y-values are affected after each operation.

As described in the proof of Intermediate Claim 1, one can

verify the variations of y-values by each operation in Table I.

For example, the first operation x
(i)
011
 x

(i)
051

moves all the

weight from x
(i)
011

to x
(i)
051

. Since

TYPE
(i)
011

in 11-bitstring = 0000 0001 001,

TYPE
(i)
051

in 11-bitstring = 0000 0101 001,

one can easily see that only the rank of Ä
(i)
6 will be affected

since the only different bit between 011 and 051 is the 6-

th bit. By (14), Ä
(i)
6 = A

(k)
2 and thus only y

(k)
2 will be

affected by x
(i)
011
 x

(i)
051

operation. We observe that TYPE
(i)
011

participates in the increase of y
(k)
2 (the 6-th bit of 011 being 0)

but TYPE
(i)
051

(the 6-th bit of 051 being 1) does not. Thus after

12

The underlying y-values are associated to 11-bitstring of node i’s coding type-b ∈ FTs. See (14) for conversion.

For shorthand, we define p , pi→j and q , pi→k.

y
(j)
1 y

(j)
2 y

(j)
3 y

(j)
4 y

(k)
1 y

(k)
2 y

(k)
3 y

(k)
4 y

(j,k)
1 y

(j,k)
2 y

(j,k)
3

x
(i)
011
 x

(i)
051

−x
(i)
011

· q

x
(i)
102
 x

(i)
302

−x
(i)
102

· p

x
(i)
137
 x

(i)
177
 x

(i)
377
 x

(i)
337

−x
(i)
137

· p +x
(i)
177

· q

−x
(i)
177

· p +x
(i)
377

· q

x
(i)
117
 x

(i)
157
 x

(i)
317
 x

(i)
357

−x
(i)
117

· p −x
(i)
117

· q

−x
(i)
157

· p −x
(i)
317

· q

x
(i)
107
 x

(i)
307
 x

(i)
1F7
 x

(i)
3F7

−x
(i)
107

· p −x
(i)
107

· q −x
(i)
107

· q −x
(i)
107

· q −x
(i)
107

· q

−x
(i)
1F7

· p −x
(i)
307

· q −x
(i)
307

· q −x
(i)
307

· q −x
(i)
307

· q

x
(i)
577
 x

(i)
737
 x

(i)
777
 x

(i)
537

+x
(i)
737

· p +x
(i)
577

· q

+x
(i)
777

· p +x
(i)
777

· q

x
(i)
517
 x

(i)
717
 x

(i)
757
 x

(i)
557

+x
(i)
717

· p −x
(i)
517

· q

+x
(i)
757

· p −x
(i)
717

· q

x
(i)
507
 x

(i)
707
 x

(i)
7F7
 x

(i)
5F7

+x
(i)
707

· p −x
(i)
507

· q −x
(i)
507

· q −x
(i)
507

· q −x
(i)
507

· q

+x
(i)
7F7

· p −x
(i)
707

· q −x
(i)
707

· q −x
(i)
707

· q −x
(i)
707

· q

x
(i)
037
 x

(i)
077
 x

(i)
F77
 x

(i)
F37

−x
(i)
037

· p −x
(i)
037

· p −x
(i)
037

· p −x
(i)
037

· p +x
(i)
077

· q

−x
(i)
077

· p −x
(i)
077

· p −x
(i)
077

· p −x
(i)
077

· p +x
(i)
F77

· q

x
(i)
017
 x

(i)
057
 x

(i)
F17
 x

(i)
F57

−x
(i)
017

· p −x
(i)
017

· p −x
(i)
017

· p −x
(i)
017

· p −x
(i)
017

· q

−x
(i)
057

· p −x
(i)
057

· p −x
(i)
057

· p −x
(i)
057

· p −x
(i)
F17

· q

TABLE I
THE WEIGHT-MOVING OPERATIONS AND THE CORRESPONDING VARIATIONS OF THE ASSOCIATED y-VALUES FOR Intermediate Claim 4.

the weight movement, y
(k)
2 will be decreased by the amount

of (x
(i)
011

· pi→k) as indicated in Table I. The rest of Table I is

populated by examining all 10 weight-moving operations (the

10 rows) and their corresponding impact on the y-values.

One can easily see from Table I that after completing all 10
weight-moving operations, for each node i, 26 coding types

(enumerated in (C4)) of the new values {x
(i)
b
} will be set to

zeros.

We now argue that after completing all 10 operations, the

linear conditions of Proposition 1 plus (C1) to (C3) are still

satisfied. To that end, we first notice that only those {x
(i)
b
}

with b ∈ {051, 302, 337, 357, 3F7, 537, 557, 5F7, F37, F57}
will increase after the weight movements. Since those coding

types do not participate in any of the terms in (C1) to (C3), the

conditions (C1) to (C3) still hold after the weight movements.

We now observe that the time-sharing conditions (17) are

still satisfied since we only “move” the weights. We now argue

that after completing all 10 operations, all y
(j)
1 to y

(j)
4 will

decrease by the same amount (x
(i)
037

+x
(i)
077

+x
(i)
017

+x
(i)
057

)·pi→j .

The fact that y
(j)
1 , y

(j)
2 and y

(j)
4 all decrease by the same

amount (x
(i)
037

+x
(i)
077

+x
(i)
017

+x
(i)
057

) ·pi→j can be easily verified

by summing up the “impact” of the 10 weight movement

operations over each column of Table I, for columns 1, 2,

and 4, respectively. To prove that y
(j)
3 also decreases by the

same amount, we need to prove that

(

x
(i)
737

+ x
(i)
777

+ x
(i)
717

+ x
(i)
757

+ x
(i)
707

+ x
(i)
7F7

)

· pi→j

=
(

x
(i)
102

+ x
(i)
137

+ x
(i)
177

+ x
(i)
117

+ x
(i)
157

+ x
(i)
107

+ x
(i)
1F7

)

· pi→j .

(44)

We can prove that (44) holds by noticing that (44) is

equivalent to the second equality in (C3) when removing the

zero terms specified in (C1) and (C2).

We now argue that after completing all 10 operations, all

y
(k)
1 to y

(k)
4 will decrease by the same amount (x

(i)
107

+ x
(i)
307

+

x
(i)
507

+x
(i)
707

)·pi→k . The fact that y
(k)
1 , y

(k)
3 and y

(k)
4 all increase

by the same amount (x
(i)
107

+x
(i)
307

+x
(i)
507

+x
(i)
707

) · pi→k can be

easily verified by summing up the “impact” of the 10 weight

movement operations over each column, for columns 5, 7, and

8, respectively. To prove that y
(k)
2 also increases by the same

amount, we need to prove that

(

x
(i)
177

+ x
(i)
377

+ x
(i)
577

+ x
(i)
777

+ x
(i)
077

+ x
(i)
F77

)

· pi→k

=
(

x
(i)
011

+ x
(i)
117

+ x
(i)
317

+ x
(i)
517

+ x
(i)
717

+ x
(i)
017

+ x
(i)
F17

)

· pi→k.

(45)

We can prove that (45) holds by noticing that (45) is

equivalent to the first equality in (C3) when removing the zero

terms specified in (C1) and (C2).

13

From Table I, one can also prove that y
(j,k)
1 to y

(j,k)
3 remain

unchanged since the 10 weight movement operations have no

impact on these three y-values. Since y
(j)
1 to y

(j)
4 all decrease

by the same amount; y
(k)
1 to y

(k)
4 all decrease by the same

amount; and y
(j,k)
1 to y

(j,k)
3 all remain the same, then the

decodability conditions (25) and (26) must hold after the

10 weight movement operations. The proof of Intermediate

Case 4 is thus complete.

Intermediate Claim 5: For any ~R vector and the 156 corre-

sponding non-negative {x
(i)
b
}-values satisfying Proposition 1

and (C1) to (C4), we can always find another set of 156 non-

negative values {ẍ
(i)
b
} such that ~R and {ẍ

(i)
b
} jointly satisfy

Proposition 1 and (C1) to (C4), plus for all i ∈ {1, 2, 3},

ẍ
(i)
b

= 0, ∀b ∈ {001, 002} . (C5)

Proof of Intermediate Claim 5: We now provide an explicit

weight movement such that after the weight-moving process,

Proposition 1 and (C1) to (C4) hold, and additionally (C5)

holds for the case when i = 1, i.e., (i, j, k) = (1, 2, 3). Then

by applying the cyclically symmetric weight-moving process

to the cases of (i, j, k) = (2, 3, 1) and (i, j, k) = (3, 1, 2), we

can construct the new values {ẍ
(i)
b
} that satisfy Proposition 1,

(C1) to (C4), and (C5) for all i.
The weight movements for the case of (i, j, k) = (1, 2, 3)

consist of two steps: Firstly, we make x
(1)
001

= 0, and then

secondly, we make x
(1)
002

= 0. For the first step, we assume

x
(1)
001

> 0. Otherwise, we can skip to the second step directly.

We now perform the following six operations:

{x
(1)
001

, x
(1)
357

} {x
(1)
051

, x
(1)
3F7

}, (OP3)

{x
(1)
001

, x
(1)
557

} {x
(1)
051

, x
(1)
5F7

}, (OP4)

{x
(1)
001

, x
(1)
F57

} x
(1)
051

, (OP5)

x
(1)
001

∆/p1→3
///o/o/o x

(1)
051

and x
(2)
537

∆/p2→3
///o/o/o x

(2)
F37

where ∆ = min{x
(1)
001

· p1→3, x
(2)
537

· p2→3},
(OP6)

x
(1)
001

∆/p1→3
///o/o/o x

(1)
051

and x
(2)
557

∆/p2→3
///o/o/o x

(2)
F57

where ∆ = min{x
(1)
001

· p1→3, x
(2)
557

· p2→3}, (OP7)

x
(1)
001

∆/p1→3
///o/o/o x

(1)
051

and x
(2)
5F7

∆/p2→3
///o/o/o ∅

where ∆ = min{x
(1)
001

· p1→3, x
(2)
5F7

· p2→3}. (OP8)

We now argue that after these operations, (i) Proposition 1

and (C1) to (C4) still hold; and (ii) the new value of x
(1)
001

is zero. To prove (i), we note that after the above weight

movements, the time-sharing condition (17) of Proposition 1

still holds because except for the operations (OP5) and (OP8),

we only “move” the weight between different frequencies

while keeping the overall sum. And both (OP5) and (OP8)

decrease the total sum. As a result, the time-sharing condition

still holds. Moreover, since none of the coding types involved

in (OP3) to (OP8) participate in any of the terms in (C1)

to (C4), the conditions (C1) to (C4) still hold after these

operations.

In the following, we prove that the decodability conditions

(25) and (26) of Proposition 1 still hold after performing any

one of the above 6 weight-moving operations. For example,

we claim that the decodability conditions still hold after (OP3).

For that, we first notice that

TYPE
(1)
001

in 11-bitstring = 0000 0000 001,

TYPE
(1)
357

in 11-bitstring = 0011 0101 111,

TYPE
(1)
051

in 11-bitstring = 0000 0101 001,

TYPE
(1)
3F7

in 11-bitstring = 0011 1111 111,

where each bit is associated to one y-value and the associated

11 y-values are y
(2)
1 to y

(2)
4 , y

(3)
1 to y

(3)
4 , and y

(2,3)
1 to y

(2,3)
3 in

the order of 11-bitstring, see (14). For shorthand, we denote

the collection of these y-values corresponding to the first four

bits, the second four bits, and the last three bits as ~y
(2)
1−4, ~y

(3)
1−4,

and ~y
(2,3)
1−3 , respectively. Then by the same arguments as used

in the proof of Intermediate Claim 2, one can easily prove that

the 7 different y-values: ~y
(2)
1−4 and ~y

(2,3)
1−3 , remain unchanged

after (OP3). If we apply the same arguments as used in the

proof of Intermediate Claim 2, we can also prove that all y-

values in the collection ~y
(3)
1−4 (the second four) decrease by

the same amount of
(

min{x
(1)
001

, x
(1)
357

} · p1→3

)

. Since other y-

values were intact, the decodability equalities (25) and (26)

are still satisfied after (OP3).

For the weight movement (OP4), we can prove by sim-

ilar arguments that after (OP4), all ~y
(2)
1−4 and ~y

(2,3)
1−3 remain

the same and all ~y
(3)
1−4 decrease by the same amount of

(

min{x
(1)
001

, x
(1)
557

} · p1→3

)

. Similarly, after the weight move-

ment (OP5), all ~y
(2)
1−4 and ~y

(2,3)
1−3 remain the same and all ~y

(3)
1−4

decrease by the same amount of
(

min{x
(1)
001

, x
(1)
F57

} · p1→3

)

.

Since other y-values were intact, the decodability equalities

(25) and (26) still hold after these operations.

We now prove that after (OP6), the decodability conditions

in Proposition 1 still hold. Since (OP6) involves the frequen-

cies of different node indices {x
(1)
001

, x
(1)
051

, x
(2)
537

, x
(2)
F37

}, we first

provide the following table that summarizes the contributions

of these frequencies to the y-values:

~y
(1)
1−4 ~y

(2)
1−4 ~y

(3)
1−4 ~y

(1,2)
1−3 ~y

(2,3)
1−3 ~y

(3,1)
1−3

x
(1)
001

0000 0000 001

x
(2)
537

0011 0101 111

x
(1)
051

0000 0101 001

x
(2)
F37

0011 1111 111

TABLE II

THE CONTRIBUTIONS OF x
(1)
001

, x
(2)
537

, x
(1)
051

, AND x
(2)
F37

TO THE y-VALUES.

For example, since 537 = 01010011111 in 11-bitstring and

x
(2)
537

contributes to {~y
(3)
1−4, ~y

(1)
1−4, ~y

(3,1)
1−3 }, we can thus list the

contribution of x
(2)
537

to all the y-values as in the second row

of Table II. The first, third, and fourth rows of Table II can be

populated similarly. If we compare the first and the third rows

of Table II, we can see that the operation of x
(1)
001

∆/p1→3
///o/o/o x

(1)
051

in

(OP6) will decrease both y
(3)
2 and y

(3)
4 by the same amount ∆

14

while all the other 19 y-values remain the same. If we compare

the second and the fourth rows of Table II, we can see that

the operation of x
(2)
537

∆/p2→3
///o/o/o x

(2)
F37

will decrease both y
(3)
1 and

y
(3)
3 by the same amount ∆ while all the other 19 y-values

remain the same. Since (OP6) performs both x
(1)
001

∆/p1→3
///o/o/o x

(1)
051

and x
(2)
537

∆/p2→3
///o/o/o x

(2)
F37

simultaneously, in the end we will

have all four values of ~y
(3)
1−4 decrease by the same amount

of ∆ while the rest 17 y-values remain the same. As a result,

the decodability equalities (25) and (26) of Proposition 1 are

still satisfied after (OP6). Similar arguments can be used to

prove that after (OP7) and (OP8), the decodability equalities

of Proposition 1 still hold.

To prove (ii), we notice that after the above 6 weight

movements (OP3) to (OP8), the final {x
(i)
b
}-values satisfy

Proposition 1. Then Lemma 1 implies that (E1) to (E10) must

hold. Since (C1), (C2), and (C4) are true, if we only count the

coding types that may have non-zero value, then (E9) can be

written as follows.
(

x
(i)
001

+ x
(i)
051

)

·pi→j∨k =
(

x
(i)
051

+ x
(i)
357

+ x
(i)
557

+ x
(i)
F57

)

· pi→k

+
(

x
(j)
537

+ x
(j)
557

+ x
(j)
5F7

)

· pj→k, (46)

Eq. (46) further implies the following inequality:

x
(i)
001

· pi→j∨k ≤
(

x
(i)
357

+ x
(i)
557

+ x
(i)
F57

)

· pi→k

+
(

x
(j)
537

+ x
(j)
557

+ x
(j)
5F7

)

· pj→k,
(47)

because we always have x
(i)
051

· pi→j∨k ≥ x
(i)
051

· pi→k .

Then notice that after performing (OP3) to (OP8), we will

have either x
(1)
001

= 0 or the total sum x
(1)
357

+ x
(1)
557

+ x
(1)
F57

+

x
(2)
537

+ x
(2)
557

+ x
(2)
5F7

= 0. Note that whenever the latter sum is

zero, by (47) when (i, j, k) = (1, 2, 3), we also have x
(1)
001

= 0.

As a result, we must have x
(1)
001

= 0 after the above 6 weight

movements.

We now present the second step, which makes x
(1)
002

= 0.

To that end, we perform the following six operations:

{x
(1)
002

, x
(1)
337

} {x
(1)
302

, x
(1)
F37

}, (OP9)

{x
(1)
002

, x
(1)
357

} {x
(1)
302

, x
(1)
F57

}, (OP10)

{x
(1)
002

, x
(1)
3F7

} x
(1)
302

, (OP11)

x
(1)
002

∆/p1→2
///o/o/o x

(1)
302

and x
(3)
337

∆/p3→2
///o/o/o x

(3)
3F7

where ∆ = min{x
(1)
002

· p1→2, x
(3)
337

· p3→2},
(OP12)

x
(1)
002

∆/p1→2
///o/o/o x

(1)
302

and x
(3)
537

∆/p3→2
///o/o/o x

(3)
5F7

where ∆ = min{x
(1)
002

· p1→2, x
(3)
537

· p3→2},
(OP13)

x
(1)
002

∆/p1→2
///o/o/o x

(1)
302

and x
(3)
F37

∆/p3→2
///o/o/o ∅

where ∆ = min{x
(1)
002

· p1→2, x
(3)
F37

· p3→2}.
(OP14)

Again, we will prove that after these 6 weight movements,

(i) Proposition 1 and (C1) to (C4) hold; and (ii) the new value

of x
(1)
002

is zero. The proof of (i) is almost identical to that of the

first step and we thus omit the detailed derivations. To prove

(ii), we notice that after these weight-moving operations, the

final {x
(i)
b
}-values still satisfy Proposition 1. Then Lemma 1

implies that (E1) to (E10) must hold. Since (C1), (C2), and

(C4) are true, if we only count the coding types that may have

non-zero value, then (E10) can be written as follows.

(

x
(i)
002

+ x
(i)
302

)

·pi→j∨k =
(

x
(i)
302

+ x
(i)
337

+ x
(i)
357

+ x
(i)
3F7

)

· pi→j

+
(

x
(k)
337

+ x
(k)
537

+ x
(k)
F37

)

· pk→j ,

which in turn implies when (i, j, k) = (1, 2, 3),

x
(1)
002

· p1→2∨3 ≤
(

x
(1)
337

+ x
(1)
357

+ x
(1)
3F7

)

· p1→2

+
(

x
(3)
337

+ x
(3)
537

+ x
(3)
F37

)

· p3→2.
(48)

We then observe that after the above 6 operations (OP9) to

(OP14), we will have either x
(1)
002

= 0 or x
(1)
337

+ x
(1)
357

+ x
(1)
3F7

+

x
(3)
337

+ x
(3)
537

+ x
(3)
F37

= 0. The by (48), we must have x
(1)
002

= 0
after the above 6 weight-moving process.

Thus far, we have proven (C5) for the case of i = 1 while

satisfying the linear conditions of Proposition 1 and (C1) to

(C4). Note that in our weight movements (OP3)–(OP8) and

(OP9)–(OP14), we never increase x
(2)
001

, x
(2)
002

, x
(3)
001

, and x
(3)
002

.

Therefore, we can simply apply the above 2-step procedure

to the cases of (i, j, k) = (2, 3, 1) and (i, j, k) = (3, 1, 2),

sequentially. In the end, the final {x
(i)
b
}-values satisfy Propo-

sition 1 and the conditions (C1) to (C5). The proof is thus

complete.

APPENDIX D

PROOF OF LEMMA 3

Given ~R and the reception probabilities, consider 156 non-

negative values {ẍ
(i)
b
} such that jointly they satisfy Propo-

sition 1 and (35). Since by (35) all the {ẍ
(i)
b
}-values with

b ∈ FTs\FTs are zeros, we only consider the 30 non-negative

values {ẍ
(i)
b
} with b ∈ FTs for the ongoing discussions.

For the proof of Lemma 3, we first prove the following

claim.

Claim: The above 30 non-negative values {ẍ
(i)
b
} for all b ∈

FTs jointly satisfy the following equalities: for all (i, j, k) ∈
{(1, 2, 3), (2, 3, 1), (3, 1, 2)},

Ri→j +Ri→k =
(

ẍ
(i)
051

+ ẍ
(i)
302

)

pi→j∨k, (49)

Ri→j

pi→jk

pi→j∨k
=
(

ẍ
(i)
337

+ ẍ
(i)
357

+ ẍ
(i)
3F7

)

· pi→j

+
(

ẍ
(k)
337

+ ẍ
(k)
537

+ ẍ
(k)
F37

)

· pk→j ,

(50)

Ri→k

pi→jk

pi→j∨k
=
(

ẍ
(i)
357

+ ẍ
(i)
557

+ ẍ
(i)
F57

)

· pi→k

+
(

ẍ
(j)
537

+ ẍ
(j)
557

+ ẍ
(j)
5F7

)

· pj→k.

(51)

Proof of Claim. Since node indices are cyclically decided, we

prove (49)–(51) only for the case when (i, j, k) = (1, 2, 3).

15

That is,

R1→2 +R1→3 =
(

ẍ
(1)
051

+ ẍ
(1)
302

)

· p1→2∨3, (52)

R1→2

p
1→23

p1→2∨3

=
(

ẍ
(1)
337

+ ẍ
(1)
357

+ ẍ
(1)
3F7

)

· p1→2

+
(

ẍ
(3)
337

+ ẍ
(3)
537

+ ẍ
(3)
F37

)

· p3→2,
(53)

R1→3

p
1→23

p1→2∨3

=
(

ẍ
(1)
357

+ ẍ
(1)
557

+ ẍ
(1)
F57

)

· p1→3

+
(

ẍ
(2)
537

+ ẍ
(2)
557

+ ẍ
(2)
5F7

)

· p2→3.
(54)

We now make the following observations. Since the above

{ẍ
(i)
b

: ∀ i ∈ {1, 2, 3} and b ∈ FTs} satisfy Proposition 1,

Lemma 1 implies that they satisfies (E1) as well. We then note

that (52) is a direct result of the equality (E1) of Lemma 1

when (i, j, k) = (2, 3, 1).
We now use the equalities (E2) and (E3) when (i, j, k) =

(2, 3, 1). Since type-051 (resp. type-302) is the only coding

type in FTs with b10 = 0 (resp. b11 = 0), we thus have,

respectively,

R1→3 = ẍ
(1)
051

· p1→2∨3, (55)

R1→2 = ẍ
(1)
302

· p1→2∨3. (56)

Then, (53) can be derived as follows. From the equality

(E9) when (i, j, k) = (2, 3, 1), we have

ẍ
(1)
302

· p1→2∨3 =
(

ẍ
(3)
337

+ ẍ
(3)
537

+ ẍ
(3)
F37

)

· p3→2

+
(

ẍ
(1)
302

+ ẍ
(1)
337

+ ẍ
(1)
357

+ ẍ
(1)
3F7

)

· p1→2.

By simple probability manipulation, the above equality is

equivalent to

ẍ
(1)
302

· p
1→23

=
(

ẍ
(1)
337

+ ẍ
(1)
357

+ ẍ
(1)
3F7

)

· p1→2

+
(

ẍ
(3)
337

+ ẍ
(3)
537

+ ẍ
(3)
F37

)

· p3→2.
(57)

Then (53) is derived by substituting ẍ
(1)
302

= R1→2/p1→2∨3

(see (56) again) on the LHS of (57).

Similarly, one can derive (54) by using (55) and the equality

(E10) when (i, j, k) = (2, 3, 1). The claim is thus proven..

Using the above claim, we will prove Lemma 3 by explicitly

constructing t
[u]
i and t

[c,1]
i to t

[c,4]
i values as follows.

t
[u]
i = ẍ

(i)
051

+ ẍ
(i)
302

, (58)

t
[c,1]
i = ẍ

(i)
357

+ ẍ
(i)
3F7

, (59)

t
[c,2]
i = ẍ

(i)
537

+ ẍ
(i)
5F7

, (60)

t
[c,3]
i = ẍ

(i)
337

+ ẍ
(i)
F37

, (61)

t
[c,4]
i = ẍ

(i)
557

+ ẍ
(i)
F57

. (62)

In the following, we prove that the above {ti}-values satisfy

the linear conditions of Proposition 2 (when < being replaced

by ≤).

Since the {ẍ
(i)
b
}-values satisfy the time-sharing condition

(17) of Proposition 1, the {ti}-values in the above construction

also satisfy the time-sharing condition (29).

By (49) and (58), we have

Ri→j +Ri→k = t
[u]
i · pi→j∨k,

which implies (30).

We now show that our construction also satisfies (31) and

(32). By our construction (59)–(62), the followings are always

true: for all i ∈ {1, 2, 3},
(

ẍ
(i)
337

+ ẍ
(i)
357

+ ẍ
(i)
3F7

)

≤
(

t
[c,1]
i + t

[c,3]
i

)

,
(

ẍ
(i)
337

+ ẍ
(i)
537

+ ẍ
(i)
F37

)

≤
(

t
[c,2]
i + t

[c,3]
i

)

,
(

ẍ
(i)
357

+ ẍ
(i)
557

+ ẍ
(i)
F57

)

≤
(

t
[c,1]
i + t

[c,4]
i

)

,
(

ẍ
(j)
537

+ ẍ
(j)
557

+ ẍ
(j)
5F7

)

≤
(

t
[c,2]
i + t

[c,4]
i

)

.

Since we have already shown that (50) and (51) are true,

one can easily verify by direct substitutions that (31) and (32)

are satisfied as well. The proof of Lemma 3 is thus complete.

	Purdue University
	Purdue e-Pubs
	6-24-2014

	Optimal Linear Network Coding When 3 Nodes Communicate Over Broadcast Erasure Channels with ACK
	Jaemin Han
	Chih-Chun Wang

