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ABSTRACT 

 

 

1. INTRODUCTION 

 

Within statistics education, there is a growing interest in understanding students' 

application of understanding about variability and sampling given the relative lack of 

research in either area (Shaughnessy, 2007). The task examined in this paper elicited 

students' knowledge of these concepts within a small-group problem solving task 

completed by teams of first-year engineering students. In the Nanoroughness task, teams 

of students designed a procedure for quantifying the roughness of a material surface using 

digital images generated by atomic force microscopy. The procedure required students to 

apply statistical methods in order to aggregate the data. The focus of this article is the 

subsequent analysis of the responses to the task and the questions raised by that analysis.  

The Nanoroughness task is unique but critical as a statistical modeling task for two 

reasons. First, the students needed to use statistical measures to develop a measure that 

would describe a qualitative characteristic (roughness) without any prompting as to what 

statistical procedures were relevant. There are different ways to conceptualize roughness 

of a surface. Sandpaper’s roughness depends on the grain size of the sand. A road may be 

rough if it has randomly occurring large holes but smoother if the bumps are evenly 

distributed. The challenge in developing quantitative measures to define qualitative 

characteristics is that different quantitative analyses emphasize different variables and the 

students needed to both analyze and apply statistical procedures relevant to the context. 

For instance, determining which member of a set is the "most rough" or the "least rough" 

will depend on what measurements were selected, and how those measures were 

analyzed. The second unique characteristic of the task is that the students also needed to 

define a sampling procedure for an image that would facilitate quantifying the variability 

in the surface portrayed in the digital image. Usually when students need to take 

measurements of a population, the population is a discrete set of objects. In this case, the 

data set was a continuous surface. From the data set, the students need to determine the 

relevant population (e.g., every point on the surface, every peak on the surface, peaks and 

valleys). Such continuous populations are not unique within engineering and the sciences 

and occur in a variety of contexts where characteristics need to be measured and 

operationally defined.  



The task was implemented in a first-year engineering course that served as an 

introduction to basic tools of engineering with an emphasis on MatLab
®
 and Excel

®
 as 

technological tools. The Nanoroughness task was used in the course to introduce students 

to the real work of engineers who must not only calculate statistics but also analyze and 

interpret the results. Our research asked a two-part question. First, what is the quality of 

student responses to the Nanoroughness task? To answer this we looked at the viability of 

the model they had created and how well they had explained their procedure for 

comparing the roughness of images. Second, what statistical models were elicited by the 

task? We specifically looked at the sampling methods students used and then how the 

students analyzed the data set they had created. In this paper, we describe the quantitative 

and qualitative analyses we completed of a sample of student responses. 

 

2. LITERATURE REVIEW 
 

The relevant literature related to students’ understanding of data analysis falls into 

two broad categories: measures of variance or distribution and data sampling. Watson, 

Kelly, Callingham, and Shaughnessy (2003) defined variation as “the underlying change 

from expectation that occurs when measurements are made or events occur” (p. 1). 

"Roughness", almost by definition, is physical variation in a surface. For measures of 

central tendency and distribution, students need to apply statistics to describe 

characteristics of a population. In this case, the population is an image representing a 

surface. They need to determine which statistics to select in order to describe 

characteristics of the surface and compare different surfaces to each other.  

Some studies have looked at how students use the mean as a statistical measure. 

Pollatsek and colleagues (Konold, Pollatsek, Well, & Gagnon, 1997; Pollatsek, Lima, & 

Well, 1981; Well, Pollatsek, & Boyce, 1990) have examined students’ understanding of 

the mean as a measure of central tendency. Their studies confirm that undergraduate 

students can compute the mean, but they don’t necessarily know how to interpret what it 

indicates about a data set. In a study of pre-service elementary teachers' understanding of 

the mean, median and mode, Groth and Bergner (2005) found the students often had 

algorithmic conceptions of the terms and limited understanding about when to apply the 

statistical measures (i.e., how to select appropriate measures of central tendency). In the 

case of Nanoroughness, the mean was one option among many from which students could 

choose to describe the data set, and other measures of central tendency (e.g., median, 

mode) could be computed with different results. The students also could incorporate a 

measure of variability into their procedure (e.g., standard deviation, range) as a measure 

of roughness. 

An additional layer of complexity beyond determining what statistical measure to use 

was that the population was not well-defined. One interpretation of the population could 

be all the peaks and valleys on the surface so the students needed to select a subset of 

peaks and valleys as a sample. The population could also be defined as every point on the 

image so the students needed a method for either sampling from the points on the image 

or analyzing the pixel color value of every point on the image. Students' first decision was 

to determine what points they would use for their population and then what (if any) subset 

of those points to use. For instance, just the peak points? The entire image? If using the 

peak values, how many peak values? 

Often statistics tasks presented to students require them to analyze numerical data sets 

where the values are given or where they can take physical measurements. In this case, 

the students needed to determine what to measure given an image that represented the 

universe of the data set. Konold and Pollatsek (2002) have described this as a process of 



separating signal from noise where students need to determine what to attend to in a data 

set and then determine critical variables. In other studies of students completing similar 

modeling tasks, the sample set was clearly defined and students needed only to determine 

if possible values needed to be eliminated (Hjalmarson, 2007). In order to define a sample 

set in the case of a continuous surface, students need to determine what and where to 

measure.  

Very little research had been conducted on students’ understanding of variability prior 

to 1999 (Reading & Shaughnessy, 2004; Shaughnessy, 1997), despite the central role the 

concept plays in statistics (Hoerl & Snee, 2001; Moore, 1990; Snee, 1990) and an 

apparent conceptual gap in students’ understanding of variability (Reading & 

Shaughnessy, 2004; Shaughnessy, 1997). A few investigations have been conducted into 

students’ understanding of sampling variability and instructional approaches that affect 

this understanding. Reading and Shaughnessy (2004) presented evidence of different 

levels of sophistication in elementary and secondary students’ reasoning about sample 

variation. Meletiou-Mavrotheris and Lee (2002) found that an instructional design that 

emphasized statistical variation and statistical process produced a better understanding of 

the standard deviation, among other concepts, in a group of undergraduates. Students in 

the study saw the standard deviation as a measure of spread that represented a type of 

average deviation from the mean. They were also better at taking both center and spread 

into account when reasoning about sampling variation in comparison to findings from 

earlier studies (e.g., Shaughnessy, Watson, Moritz, & Reading, 1999). 

Shaughnessy (1997; Reading & Shaughnessy, 2004) noted that the standard deviation 

is both computationally complex and difficult to motivate as a measure of variability. Part 

of this difficulty may stem from a lack of accessible models and metaphors for students’ 

conceptions of the standard deviation (Reading & Shaughnessy, 2004). Most instruction 

on the standard deviation tends to emphasize teaching a formula, practice with performing 

calculations, and tying the standard deviation to the empirical rule of the normal 

distribution. This emphasis on calculations and procedures does not necessarily promote a 

conceptual understanding of standard deviation. Part of the difficulty may also stem from 

students’ misunderstanding of how variability can be represented graphically. For 

example, when presented with a histogram, some students judged the variability of the 

distribution on the basis of variation in the heights of bars, or the perceived “bumpiness” 

of the graph, rather than the relative density of the data around the mean (Garfield, 

delMas, & Chance, 1999). DelMas and Liu (2005) provided evidence that experience 

with a computer environment designed to promote students’ ability to coordinate 

characteristics of variation of values about the mean moved from simple, one-dimensional 

understandings of the standard deviation toward more mean-centered conceptualizations 

that coordinated the effects of frequency (density) and deviation from the mean.  

Shaughnessy (2007) identified three types of reasoning about variability that can be 

addressed by statistics instruction: variability within data; variability between samples; 

and variability within sampling distributions. The current study highlights a problem 

context where students need to consider variability within data to produce a solution. A 

factor that may impede students understanding of variability in data is the lack of 

problems that naturally motivate the need to measure variability. Some examples are 

provided in the literature (e.g., Konold & Kazak, 2008; Lehrer & Schauble, 2003),  but 

there are few. Many studies have focused on students understanding of sampling 

variability and sampling distributions (e.g., Chance, delMas, & Garfield, 2004; delMas, 

Garfield, & Chance, 1999; Kelly & Watson, 2002; Reading & Shaughnessy, 2004; Rubin, 

Bruce, & Tenney, 1991; Shaughnessy et al., 1999; Torok & Watson, 2000) but not on 

variability within data, per se, and the contexts often do not depict real world problems. 



The study reported here illustrates a situation that naturally elicits the use of measures of 

variability within data and the design of a sampling method to solve a real world problem 

in an undergraduate engineering course. 

 

2.1 MODEL- ELICITING ACTIVITIES INCLUDING STATISTICAL ANALYSIS  
 

The Nanoroughness task is an example of a model-eliciting activity. The design 

process used for the task has been described elsewhere (Hjalmarson, Diefes-Dux, & 

Moore, 2008; Moore & Diefes-Dux, 2004) and for the purposes of this paper, we focus on 

the types of statistical models revealed in the students' work. Model-eliciting activities for 

students require the development of models or procedures rather in addition the 

production of answers (Lesh, Hoover, Hole, Kelly, & Post, 2000; Zawojewski, 

Hjalmarson, Bowman, & Lesh, 2008). For instance, in Nanoroughness, the students 

needed to define a procedure for defining roughness of a surface and then select the 

roughest sample by implementing the procedure. The central product for the task is the 

procedure and not just the computed values and subsequent ranking of samples by 

roughness. Requiring students to describe their procedure as the product of their problem 

solving process naturally elicits students' thinking about the statistical concepts and makes 

misconceptions more evident. Hjalmarson (2008) and Doerr and English (2003) have 

described students' thinking in other model-eliciting activities requiring data analysis. 

Moore (2008) examined teachers' solutions to the Nanoroughness task. A common feature 

of all of these tasks is that the task statement doesn't specifically ask students to use 

statistical analysis. However, common types of statistical measures are elicited by each 

task (e.g., mean is often selected when students need to analyze a table of data).   

Because model-eliciting tasks require students to describe a procedure as a central 

activity in the problem-solving process, the tasks can serve as a launching point for 

discussions about the meaning of central concepts inherent in the problem and it’s 

context. For instance, in the Nanoroughness task, the students have to find a way to 

quantify variation in the surface. By making their assumptions explicit via the procedure 

they design, the possibility for discussion of the constraints and affordances of their 

procedures is possible. The same design questions occur in any context where qualitative 

characteristics are quantified. Every statistical measure provides different information 

about the data set. For example, the mean can be used to describe the central tendency of 

a data set, but it can obscure the range of the values. Standard deviation is a measure of 

variation but only relative to the mean of the data set.  

Another salient feature of model-eliciting activities is that students worked in groups. 

The procedures needed to be explicit both to the client for the product and to their team 

members. Making the procedures explicit opened them to questioning by the team 

members, prompting students needed to consider other operational definitions of 

roughness. The combination of group work and the requirement to design a procedure 

that was tested on a given data set can cause students to go through cycles of refinement 

of their solutions. For instance, many groups may start by computing the mean for their 

data set because it is a familiar statistic. Some groups may move on to other measures 

after seeing the results of their analysis using the mean (particularly if the mean didn't 

differentiate images).  

Assessment of students’ responses to model-eliciting activities has often first focused 

on describing the characteristics of students’ models (Carmona-Dominguez, 2004; 

Hjalmarson, 2007). Since the models are a procedure including multiple considerations, 

the assessment of these models typically includes finding patterns or common themes in 

the models that can be sorted into types or categories (e.g., there are common methods 



students used for finding a sample from the image). In addition, students’ models emerge 

at different degrees of quality typically because a model is incomplete. For instance, 

students may leave out critical information necessary for someone else to successfully 

implement their model. In the Nanoroughness task, for example, students may have 

described the need for generating a sample data set, but not described how to generate a 

sample (e.g., by finding random points on the surface, drawing random lines). The quality 

assurance guide described by Lesh and Clarke (2000) is one example of an assessment 

tool used to categorize students’ models by how well they meet the needs of the client and 

how well the procedure can be generalized to similar situations.  

 

3. METHOD AND MATERIALS 

 

3.1 COURSE INFORMATION  
 

The student work analyzed for this study was drawn from a first-year engineering 

course in fall 2003. 1478 students were enrolled in a first-year engineering problem 

solving and computer tools course at a large, public Midwestern university. The students 

included 1203 males and 275 females. The students were divided into laboratory sections 

of approximately 25 students per section in order to complete the nanoroughness model-

eliciting activity in class. The activity was their fourth and final model-eliciting activity 

during the semester. Within the laboratory sections, the students were divided by the 

graduate teaching assistant into long-term teams of three to four. The students were in two 

different teams for the course, one in the first half of the semester and one in the second. 

Since they were working with their second team for the semester, the teaching assistants 

could use information gathered about students’ prior experiences to generate teams. The 

only fixed rules (set by the department) were that a team should have 3 or 4 students total 

and no fewer than two females or fewer than two international students. We selected 35 

responses from 35 teams in different sections of the course for this analysis.  

 

3.2 NANOROUGHNESS LABORATORY ACTIVITY  
 

The Nanoroughness Laboratory Activity is broken into two distinct parts: an 

individual task and a team modeling task.  The individual task consisted of the students 

reading a short description of the company that supposedly hired the team, and then 

answering questions designed to elicit their initial interpretations of roughness (Figure 1).  

The students posted their individual responses online using a format generated by the 

department. Once they had completed the individual responses, the teaching assistant 

released the responses to the rest of the team members.  The team then compared and 

contrasted the individual responses in order to negotiate team definitions for roughness. 

Once they came to common definitions, the teaching assistant provided the team with the 

modeling task. Prior to working on the modeling task, the students were provided with a 

description of Atomic Force Microscopes (AFM) and procedures for taking digital images 

of materials at the molecular level and a sample of images generated with an AFM. The 

teams had about an hour and a half to develop their procedure and write the memo to the 

client. Since this was the students' first draft of a procedure in the context, we expected 

some level of incompleteness in their procedure descriptions and that there were aspects 

of the situation they might miss. However, the task did elicit students' initial thinking 

about sampling and the application of statistical measures.   

The second part of the activity required student teams to create a procedure for 

measuring roughness at the nanoscale level given AFM images of gold. Here, the AFM 



images were like topographical maps with a height bar that represents the third 

dimension. Sample A (see Figure 2) represents one of the three different samples of gold 

with different scales that were provided to the teams to create their procedure for 

measuring roughness. The teams were asked to respond to the client in a memo that 

would allow the client to measure the roughness of any surface using an AFM image. The 

questions the teams responded to in their memos are in Figure 2. See Moore (2008) or 

Moore and Diefes-Dux (2004) for more information on the Nanoroughness Task.  

 
1) How do you define roughness?  

2) What procedure might you use to measure the roughness of the pavement on a 

road?  

3) Give an example of something for which degree of roughness matters.  

4) For your example, why does the degree of roughness matter?  

5) How might you measure the roughness (or lack of roughness) of this object? 
Figure 1. Individual thinking questions on concepts of roughness.  

 

 

Please reply in a memo with your answers to the following: 

1. The series of steps that can be used to measure roughness of the nanoscale 

material using the AFM images. 

2. A description of how the procedure would work by applying it to gold samples A, 

B, and C that are attached to this memo. 

3. A description of what information your team would need in order to imporve 

your procedure to quantify the roughness of the gold. 
 

 
 

 
Figure 2. Nanoroughness task problem statement with an example of an AFM image 

of gold.  



 

4. DATA ANALYSIS 
 

Data analysis focused on the students' responses to the task shown in Figure 2. The 

team responses were coded in two stages: the assessment of team responses and the 

description of typical response characteristics. The coding for the assessment of team 

responses used the Quality Assurance Guide (Lesh & Clarke, 2000) described in the next 

subsection to assign a numeric score to each response. The Quality Assurance Guide has 

also been used in other studies including the analysis of student work (Carmona-

Dominguez, 2004; Chamberlin, 2002; Moore, 2006). In order to describe the 

characteristics of different solutions, a qualitative analysis was used to first develop 

descriptors based on the coders' reading of the student work and then assigning those 

descriptors to student work. The qualitative analysis resulted in descriptions of the types 

of student responses in terms of the types of statistical measures the students used and 

how those measures were implemented in the roughness procedure.  

A team of three researchers assessed and categorized the student responses to the 

model-eliciting task. All three had worked with designing modeling tasks for this course. 

One was an interdisciplinary mathematics/engineering educator who had been the 

principal designer for the Nanoroughness sequence. One was a mathematics educator who 

led the task design group of engineering and education graduate students and faculty. She 

also had experience scoring tasks using the quality assurance guide. The third was a 

materials engineering graduate student who had worked with the task design team. The 

research team was intentionally combined with a blend of experience from engineering, 

engineering education, and mathematics education in order to provide a variety of 

perspectives on the student responses. 

 

4.1 QUANTITATIVE ANALYSIS WITH THE QUALITY ASSURANCE GUIDE  
 

The Quality Assurance Guide (see Table 1) described in Lesh and Clarke (2000) was 

selected to quantitatively assess the tasks. The levels are designed to categorize how well 

the students' procedure fulfilled the needs of the client and how well they explained their 

procedure in a generalizable fashion. The range of responses goes from level 5, where the 

response met the needs of the client for the present situation and for other similar 

situations as well, to level 1, where the response was going in the wrong direction and the 

team would need to rethink the procedure completely. The levels in between include 

varying levels of detail and description. The number of responses in each level is also 

shown in Table 1. Few of the responses were expected to receive a score of 5 on the 

quality assurance guide due to the fact that it was the first iteration of the teams' solutions 

and was turned in after 1.5 hours of working on the problem in a laboratory setting. 

However, the teams continued to work on this problem through follow-up activities that 

lead to a project. The research team coded the responses by first reading and scoring a 

team's procedure individually and then coming to consensus on a final rating. A student 

team sample (Figure 3) is provided to illustrate the use of the Quality Assurance Guide.  

 

Table 1. The Quality Assurance Guide and Total Number of Responses in the Team 

Samples for each category.  
 

Score  Performance Level  How useful is the product?  
Total Number 

of Responses  

1  Requires redirection  The product is on the wrong track. 6  



Working longer or harder won’t 

work. The students may require some 

additional feedback from the teacher  

2  
Requires major extensions or 

revisions  

The product is a good start toward 

meeting the client’s needs, but a lot 

more work is needed to respond to all 

of the issues.  

16  

3  
Requires editing and 

revisions  

The product is on a good track to be 

used. It still needs modifications, 

additions or refinements.  
9  

4  

Useful for this specific data 

given, but not shareable and 

reusable OR Almost 

shareable and reusable but 

requires minor revisions  

No changes will be needed to meet 

the immediate needs of the client for 

this set of data, but not generalized 

OR Small changes needed to meet the 

generalized needs of the client.  

2  

5  Sharable and reusable  

The tool not only works for the 

immediate situation, but it also would 

be easy for others to modify and use 

it in similar situations.  

2  



 
 

Figure 3. Sample student response (Team Alpha) to the Nanoroughness task. 
 

On the Quality Assurance Guide, Team Alpha (the response shown in Figure 3) 

received a score of four indicating that the solution was almost shareable and reusable but 

required minor revisions. The team's description of graphing the peaks and valleys was 

not clear to the reader. It was not clear how the data would be plotted on a graph (e.g., Is 

each line plotted on a different graph or is all the data plotted on one graph?) They also 

didn't explain how they would aggregate the information from the graphs. Depending on 

the values, the area under the curve for a plot with more difference between peaks and 

valleys could have the same area as a curve with fewer, more uniform peaks. It is not 

clear how the standard deviation would be used to differentiate these two scenarios. Team 

Alpha used typical statistical measures (mean and standard deviation) as will be described 

in the qualitative analysis section which follows. They also employed a random line 

method for generating their sample set of data points which other teams used as well.  

 

4.2 QUALITATIVE ANALYSIS 
 

The qualitative analysis focused on describing the students' models for measuring 

roughness. Model-eliciting activities such as the Nanoroughness task ask students to 

develop a model for quantifying a qualitative characteristic. A model includes objects, 

To determine the roughness of each sample, we would first draw a number of lines 

across the sample. Obviously, the more lines drawn would result in a more accurate 

approximation, but also take more time. The lines should be in a ratio to the scale 

of each sample. For example, if we draw a 1 micrometer line on a 2 micrometer by 

2 micrometer sample, we would then draw lines of 3 micrometers on a 6 

micrometer by 6 micrometer sample. After we had drawn a number of random 

lines, we would take 10 evenly spaced readings of the height from each. From this 

recorded data, we could then calculate the mean height across the line. Having 

taken the measurements for several different lines, we could assume that to be the 

mean height of the entire sample. Once we calculated the mean, we could then 

figure the standard deviation using the data points we had recorded. The smoother 

substance would have a lower standard deviation. Furthermore, if the peaks and 

valleys that the lines intercept are graphed using straight lines to connect the peaks 

and valleys, we could then calculate the area. This allows for correction of samples 

that have fewer peaks but the peaks cover a larger area thereby making the sample 

rougher. To apply this to the samples we are given, we suggest that five lines be 

drawn across each sample. In sample A, we would draw lines of 3 micrometers. In 

sample B, we would draw lines of .5 micrometers, and finally in sample C, we 

would draw lines of 1 micrometer. We would then take approximate height 

measurements at 10 evenly spaced points on each line, and record the data. We 

would then calculate the mean height of each sample, and then the standard 

deviation using the data we recorded. The data could then be plotted using the 

distance along the line as the x-axis and the height as the y-axis. If the points are 

connected, we could then calculate the area under the graph. By comparing these 

two values we could come up with the smoother substance. To better obtain the 

values, samples with the same scale would have been more useful, along with a 

more scientific way to determine the height than judging against a color scale. 



operations on the objects and relationships between the operations (Lesh & Clarke, 2000). 

From a statistical perspective, the objects are the data points and the operations are 

measures such as the mean and standard deviation. In the present task, the students 

needed to carry out two statistical processes: defining a sample and quantifying 

variability. As discussed previously, roughness in and of itself is a way of describing 

variability in a surface. The challenge was to create a data set and measures that could be 

used to compare the variability of different surfaces. For instance, the task requires 

students to develop a method for sampling. In order to develop codes for the teams' 

sampling methods, several questions were considered. How do students think about 

random samples in this context? How do they go about generating a random sample from 

the population as they have defined it? For variability, what measures do students 

calculate to quantify variability? What do they see as the relationships between those 

measures (e.g., what do students infer from the mean or the standard deviation?). 

Two groups of codes emerged for classifying the responses to the Nanoroughness 

MEA: sampling method and statistical measures. Descriptors were generated after the 

responses had been assigned scores and the descriptors were categorized by type. The 

sampling method codes describe the teams’ methods for selecting data from the images 

(i.e., selecting points to include in their data set or subsets of the data). The teams were 

given just the images without numerical information about individual pixels. They had a 

scale that showed the height in relation to the pixel color, but they did not receive data 

about individual pixels. The images intentionally were provided with different scales so 

that the teams would have to quantify the information in order to determine a ranking of 

the images by roughness rather than just selecting an image visually. Not all of the teams 

noted or accounted for the difference in scale of the images in their method. The 

differences in sampling method are also important because they reflect differences in how 

the teams defined the sample set (e.g., the whole image or the peaks in the image) they 

needed to measure. The following sections will discuss each group of qualitative codes: 

sampling, procedures, and statistical measures.  

 

4.2.1 SAMPLING  
 

Sampling is an important aspect of defining a quantitative measure of roughness into 

a usable measure for this problem. As in any statistics problem, how the sample is 

generated can impact the resulting analysis. Since the data for this problem are images 

with infinitely many quantifiable points, the teams needed to design a method for 

generating a data sample. At this point, they did not have specific quantitative data about 

the pixel values on the images nor did they have a statistical procedure for analyzing the 

sample. They had a scale showing the correspondence between the gray scale shade of the 

point and the height at that point (see Figure 2). In a later follow-up task, they were 

provided with a data file containing the pixel values and the corresponding height of the 

surface at each pixel. For the task analyzed in this paper, they had to estimate the shade of 

each pixel from the color bar. Table 2 provides an overview and description of the codes 

used to describe the teams' sampling methods, as well as the number of teams whose 

response to the task received each code.  Most teams recognized the need for randomness 

in the sample in order to avoid skewed data. However, there are multiple methods for 

randomly generating a sample. Many teams used randomly selected points or lines to 

generate a structure on the image. The sampling context used in this task is unique in the 

sense that students are not usually asked to generate a sampling method before defining 

measures to compute based on the sample. Additionally, the data points in statistics tasks 



are often obviously discrete objects (e.g., people, trials, measurements) rather than 

continuous surfaces.  

 

Table 2. Sampling codes describing students' method for sampling data and number of 

teams (N=35) whose response to the task received each code.  
 

Code  Description  Number of 

Responses  

Adjust the scale  Making an adjustment in the data set (e.g., by 

only using a portion of the image) for the 

difference in scale between images or convert the 

scale.  

12  

Random points  Selecting some number of points on the image 

randomly as data points  

10  

Drawing a grid over the 

image  

Draw a grid on the image either to create subsets 

of data within the cells or along the gridlines  

8  

Random lines  Drawing random line(s) on the image  7  

Eyeball method  Just “looking” at the picture (e.g., finding the 

peaks that look the biggest) to pick data points  

7  

Whole picture  Using every point of data on the image  4  

Note the scale  Noting that the scale is different, but no 

adjustments within the procedure to account for 

the difference  

4  

Cross-section  Taking a slice of the image and using height data 

only from the particular slice.  

3  

Random area  Drawing a random area  1  

 
Adjust the scale 

 

Adjust the scale represented the teams’ recognition that the images provided were not 

the same size, and therefore, represented different size populations.  Students tended to 

deal with this in one of two ways: taking subsets of the data in equivalent pieces (e.g., 

Team B below) or asking the company to only give them samples taken on the same 

scale.  For the method of taking subsets, many teams did not give explicit directions on 

how to do this, only stating that it needed to be done, while others told the company how 

to do it (e.g., Team A below).  Relevent excerpts from team responses are as follows: 

 

Team A: “Since the different graphs are in different units, we must convert the 

scales to the same units before commencing calculations…In order to improve the 

procedure, we need all of the pictures to have the same scale so we can get rid of 

the conversion process.” 

 



Team B: “Put the heights of a certain area into data points. This area should be 

one that could be universally used. For the sake of simplicity, we are using the 

area of 1 [square] micrometer.” 

 

Random Points 

 

Many teams indicated the need for selecting points from the image.  If teams had a 

method for selecting points, they were coded in a manner that indicated the method.  

Teams that received the random points code either did not indicate how to select the 

points or indicated that a computer would select the points.   

 

Team C: “Use a computer imaging program and the AFM images to determine the 

height of the surface using a randomly selected statistical sampling of no fewer 

than 100 data points.” 

 

Team D: “We would approximate the height of 30 different random points on 

each graph.” 

 

Draw a Grid over the Image 

 

Some teams chose to draw grid lines on the images as a method to either sample data 

points at the intersections of the grid lines or to subdivide the images into cells.  If a team 

used the grid lines to divide the image into cells, they often employed another method of 

sampling within each cell. As will be discussed in the statistical measures section, teams 

often aggregated results from individual cells. 

 

Team E: “You would start by breaking the AFM image into a grid. Then find the 

height at each of the grid intersection points and store them in a data file.”  

 

Team F: “The first step is to divide each of the samples into tiny, individual 

sections that measure 0.25 micrometers by 0.25 micrometers.” (Note – this team 

went on to perform calculations on a sample of points inside each square of the 

grid.) 

 

Random Lines 

 

The random line code was given to teams who chose to lay lines on the image as a 

method to collect a sample. Several teams indicated that this was a way to account for 

different size images. It is also a method used by engineers when calculating similar kinds 

of measures. As with the random points code, the students attended to the need for 

randomness in a sample.  

 

Team G: “To determine the roughness of a sample, we would first draw a number 

of lines across the sample. Obviously, the more lines drawn would result in a 

more accurate approximation, but also take more time. The lines should be drawn 

in a ratio to the scale for each sample. For example, if we draw 1 micrometer lines 

on a 2 micrometer by 2 micrometer sample, we would then draw lines  of 3 

micrometers on a 6 micrometer by 6 micrometer sample.”  

 



Team H: “Randomly drawn lines of random lengths are placed on the sample. The 

length of each line is measured. An interval for how often a measurement of 

height [is taken] is determined by the scale of the axis divided by 10.” 

 

Eyeball Method 

 

The eyeball method was a code assigned to procedures that required “looking at the 

graph” to determine how to proceed. This was in ineffective method since it wasn't clear 

what to look at on the graph and there was no quantifiable procedure to provide a clear 

method for differentiation between samples (i.e., teams who employed it scored a 1 or a 2 

on the Quality Assurance Guide). For instance, Team I used the idea of consistent colors 

in the image but did not provide a definition of consistency that could be used repeatedly 

by different users.  

 

Team I: “Our team looked at the contrast and consistency of the color in each 

image. The roughness of the gold was found by using the contrast of each sample. 

The higher colors were whiter and the darker colors were lower. We decided to 

use this method because if the colors were consistent in the image then the sample 

was generally smooth. If there were drastic color differences in the sample, it 

showed that the sample is rough.” 

 

Less Common Codes 

 

There are four other codes for sampling that emerged from our data, but were not as 

common as the codes listed above.  The code whole picture was given when a team 

provided a method for using what they perceived as all of the data in the image. Some 

teams indicated that they would use the grayscale pixel information (even though they 

were not told that this was an option) as the data points for the image. This was an 

effective strategy. Whereas, others just noted that it was necessary to collect all of the 

heights. This was significantly less effective. The code note the scale was given to teams 

whose procedure recognized the fact that the scales were different, but did not make 

adjustments for these differences. Cross-section was a code given to teams whose 

procedure took a “slice” of the image and used the height data just from that particular 

slice. The code random area represented a procedure that found a random area size within 

the image and then used the data within that area to continue with their measure of 

roughness. 

 

4.2.2 MEASURES OF CENTRAL TENDENCY 

 

In defining roughness, the teams tended to provide a single numerical representation 

of the height of their samples of gold. The teams were seeking to represent the typical 

height of the surface and explain how the typical height related to the roughness of the 

surface. This resulted in the use of measures of central tendency. As with other measures, 

the task did not indicate what measures the students needed to compute and any measures 

students found were elicited by the task. As noted in Table 3, a large majority of teams 

computed the mean.  

 

Table 3. Measures computed as part of the procedure for data analysis and the number of 

teams (N=35) whose response to the task received each code. 

 



Code Number of Responses 

Mean 22 

Standard Deviation 23 

Maximum/minimum/range 9 

Histograms 6 

Median  3 

Informal measures for spread (e.g., modified 

standard deviation) 

2 

Mode 2 

 

That students were drawn to the mean is not surprising. The same phenomenon 

occurred in other statistical model-eliciting tasks in engineering (Hjalmarson, 2007). This 

is consistent with the literature indicating students do know how to compute the mean, 

(e.g., Pollatsek, Lima, & Well, 1981) even if they don't understand the meaning or, in this 

case, haven’t defined roughness in a way that calculating the mean would make sense. 

Computing the mean for this task is a complex endeavor that starts with asking: the mean 

of what (e.g., peaks, valleys)? Students may also compute means of multiple subsets of 

the data and then need to aggregate the values in some fashion. They would then need to 

decide if having a high or low mean is an indicator of greater roughness. This, of course, 

depends on the answer to the first question.  

The complexity in the task is not in the computation but in determining what to 

compute and how to interpret the results particularly in light of other measures (e.g., 

standard deviation). Samples with the same mean could have very different appearance 

(e.g., a sample with consistent heights would have the same mean as a surface with an 

approximately equal number of high and low heights). As shown in the first coding 

schema, the students used various sampling schemes to create a data set. Interpreting the 

results usually meant they looked for low values of the mean of the heights in their 

sample. The student work in Table 4 shows a variety of ways that teams employed the 

mean in their procedures, starting with effective solutions and moving toward ineffective 

solutions as measured by the Quality Assurance Guide (QAG). None of the teams that 

scored a one on the QAG used any measure of central tendency of heights in their 

solutions. There were five teams that used median or mode to represent the central 

tendency of the heights of the gold samples.  All three teams that used the median also 

used the mean in their solutions.  

 

Table 4. Examples of teams' sampling methods and how they employed the mean. 

 
Team Sampling Method Use of the Mean 

Team H 

(QAG Score 

= 5) 

This team laid random lines and 

devised a method for how often to 

measure height along each line 

“The average (mean) height of the 

[sampled] points for each line is 

determined and the average height of the 

lines for each sample is determined. ” 

Team G 

(QAG Score 

= 4) 

This team laid random lines and 

devised a method for how often to 

measure height along each line. 

From this recorded data, we could then 

calculate the mean height across the line. 

Having taken the measures for several 

different lines, we could assume that to be 

the mean height of the entire sample.” 

 

Team J 

(QAG Score 

= 3) 

 

This team laid a grid and collected 

their sample data from the 

intersections of the grid lines. 

“Calculate the mean of the samples.” 

 



Team K 

(QAG Score 

= 2) 

 

This team laid a grid and then used 

the eyeball method within each grid 

to measure “bumps.” 

“Then [we] estimated the average height 

of the bumps on the surface per square 

nanometer, by using the height scale 

provided. Then we used our data to figure 

out the average height of the bumps on the 

picture.” 

 
It is worth stating that use of the mean in and of itself did not indicate whether or not 

a procedure for measuring roughness was effective or not.  The manner in which the 

teams sampled and how they interpreted the mean were better indicators of the quality of 

their solution. In order to generate a measure of roughness, the students needed to move 

beyond central tendency (since in isolation the results are ambiguous) and toward other 

measures. All but two of the teams that used the mean also had some measure of 

variability. The two teams that did not use a traditional measure of variability in their 

solutions were Team H (QAG Score: 5) and Team K (QAG Score: 2).  

 

4.2.3 MEASURES OF VARIABILITY  
 

Shaughnessy (2007) distinguishes between variability (likelihood of change) and 

variation (measurement of change). For instance, students could be analyzing variability 

between samples or the variation in a data set. The task served as an introduction to 

thinking about variation and variability of a data set as well considerations for 

determining a quantitative measure of the variation or variability. “Roughness” is, in and 

of itself, variation in a surface. Engineers have multiple, context-dependent methods for 

quantifying that variation or roughness. The task also required students to analyze 

variability between images. Most of the groups calculated a standard deviation as part of 

their data analysis. However, finding maximum and minimum values was another method 

students used to describe the variation in the surface. For example, one student team 

wrote, “Know the maximum and minimum heights of each image. Measure the height of 

each peak and valley of each line and find the average of those heights.” What is 

important to note is that the task elicited these constructs from the students. Nowhere in 

the problem statement was it prescribed that students calculate any particular measure or 

that they should use statistical methods at all.  

Most groups moved beyond measures of central tendency to measures of variability in 

the surface. Eighteen of the groups computed both the standard deviation and the mean. 

Their use of the statistics varied. It was not necessarily the case that a team created a 

sample, computed the mean for the values in the sample and then computed the standard 

deviation (though many groups did). As discussed previously, they had different methods 

for determining the sample data to use, and there were subtle but important distinctions in 

how the groups first determined a sample and then calculated statistics. Their ways of 

thinking about how to quantify variability interacted with their sampling methods.  For 

example, some groups used a local-global approach to the data. They first found the 

standard deviation for a subset of the image and then aggregated across subsets to 

determine a value that represented the whole image. This may have been accomplished 

with an area model (i.e., subdividing the image into regions) or with a line model (i.e., 

drawing random lines on the image) in order to find subsets of the data as discussed 

previously. For example, one group wrote, “The standard deviation of the height of the 

material of each line would then be determined. Using these standard deviations of 

heights, the average of all the standard deviations of heights could be used to determine a 

total average standard deviation of the whole surface given.”  



Variability in a data set is a measure of how different values in the data are from each 

other. Some groups interpreted this variability by finding the range, maximum, or 

minimum values. This interpretation focuses on the extreme values in the data set. Some 

groups calculated the standard deviation for the sample. They interpreted a larger standard 

deviation to mean that the surface was rougher. As an example of this, one team wrote, 

“Once we have all our data points we would take the standard deviation of the heights. So 

that gives us how far the data points are away from the mean, therefore if a surface has a 

high standard deviation then it has a high roughness because there is a greater change in 

surface height.” It was not always clear if the students understood what the standard 

deviation indicated about a data set or whether they were calculating it because it was a 

natural choice after the mean was computed.  However, knowing that the standard 

deviation should be larger for rougher samples is one indication that the students 

understood that the standard deviation measures the spread of the data set relative to the 

mean. A higher mean would indicate taller bumps in the surface. A higher standard 

deviation would indicate greater variation in the bumps.  

When considering variability in the nanoroughness context, it is important to ask 

“variability of what?” There are at least two interpretations of variability in the context. 

The first looks at how tall the peaks are or how low the valleys are and attempts to 

quantify the spread between them. The second interpretation examines variation in peak 

height. One requires quantifying a range from maximum and minimum values. The other 

requires quantifying the consistency in peak height. For example, one group wrote 

“…look at how many ‘bumps’ there are and their size. We can compare the colors of the 

pictures obtained with the color bars, if the images have surfaces that are of mostly 

similar colors, then we can conclude that they are mostly of similar heights (since similar 

colors represents similar heights) and when all of the particles are of similar heights, they 

should make up a nice even surface.”  

 

5. DISCUSSION 

 

Without prompting, the task elicited students' conceptions of sampling and variability 

within a context where these two concepts were naturally intertwined. Students needed to 

consider how to measure variability by first considering what population was varying, 

how to generate a sample of that population and then how to quantify the variability. The 

students generated different statistics (e.g., mean, standard deviation) and then created 

procedures for aggregating and interpreting the outcomes. "Variability of what?" was a 

foundational question. The students had to both generate a procedure and interpret the 

results of their model. The two components of the procedure were sampling and 

quantifying the variability in the surface. Both of these tasks are somewhat unique in that 

statistics typically emphasizes discrete populations (e.g., people, objects) rather than 

measuring the characteristics or properties of a material (a fairly common engineering 

task). We have divided our discussion of these results into implications for teaching and 

research to describe how the task could be used in the classroom and areas for further 

investigation into students' understanding of sampling and variability. 

 

5.1 IMPLICATIONS FOR TEACHING  
 

Part of the Guidelines for Assessment and Instruction in Statistics Education (GAISE) 

project, funded by the American Statistical Association (ASA), was the development of 

six recommendations for the teaching of introductory college statistics courses (see 

Franklin & Garfield, 2006). The six GAISE recommendations are: (1) Emphasize 



statistical literacy and develop statistical thinking; (2) Use real data; (3) Stress conceptual 

understanding rather than mere knowledge of procedures; (4) Foster active learning in the 

classroom; (5) Use technology for developing conceptual understanding and analyzing 

data; and (6) Integrate assessments that are aligned with course goals to improve as well 

as evaluate student learning. The Nanoroughness task provides statistics instructors with 

an activity that meets all of these guidelines. The entire Nanoroughness Task can be 

found at http://modelsandmodeling.net. In this task, students are immersed in a 

meaningful, real-world problem based on actual images of gold surfaces. Students are 

engaged in a task that is similar to problems confronted by professional statisticians (Wild 

& Pfannkuch, 1999). The task requires students to use or construct appropriate measures 

of center and variability, and to build a model from these measures to address a problem. 

Sampling schemes need to be devised in order to deal with the large amount of 

information in each image. The task assesses students' understanding of statistical 

concepts such as center and variability in that correct conceptions are needed to produce 

viable models. And the task, itself, provides a window into students' understanding of 

these statistical concepts, as well as information that can be used to remedy 

misunderstandings and misconceptions.  

Another instructional feature of the Nanoroughness task is that it naturally elicits the 

use of statistical measures and the need for taking a sample. The samples of gold do not 

differ with respect to the average height of the pixels. Yet, the three samples can be 

distinguished visually. This requires students to come up with a measure to estimate 

roughness, and a measure of variability appears to be a natural choice. The 

Nanoroughness task could follow instructional sessions on the standard deviation, 

providing a natural extension of the concept and measure to a natural setting.  

The results indicate that this activity can be used to identify misunderstandings that 

students have about measures of center and variability. About half of the teams did not 

identify appropriate units of analysis, measures of center, or measures of variability, and 

their interpretation of what the standard deviation represents and how it related to the 

concept of smoothness was not well-reasoned.  These students' methods could provide 

starting points for helping them to develop a better understanding through activities that 

require them to operationalize their methods and to test if their methods actually identify 

the smoothness of each sample in a reasonable way.  For example, one team proposed 

calculating the mean deviation of each point in the sample, and summing the mean 

deviations as a measure or roughness. The sample with the lowest sum would be the 

smoothest. However, the sum of mean deviations is always zero, so this measure would 

not distinguish the three samples. Testing the method could provide a springboard for 

exploring what a mean deviation represents and guided discussion could be used to 

develop a deeper understanding of the mean and the standard deviation. 

The task also provides students with an opportunity to apply sampling schemes if they 

are covered prior to the task. The teams came up with different methods for sampling 

from the populations. An extension to the activity would be to have students discuss and 

compare the different sampling methods. This can be used to develop students' 

understanding of bias in sampling, the issue of representativeness, and how large a sample 

needs to be to provide an accurate assessment of a model. Students could analyze the 

results from different sampling methods under the same operational definition of 

nanoroughness. Questions that could be addressed are: Do the different sampling methods 

produce similar results? Are some sampling methods better than others (and under what 

criteria)? If so, what makes them better? Addressing these questions could lead to 

discussions of randomness, when a method uses randomness and when it does not, and 

whether random sampling produces a more representative sample than other methods. 



Issues of sample size could also be explored (e.g., How many points do you need to 

provide an accurate estimate of the nanoroughness for a piece of material? Is there a 

minimum size? Is there a sample size above which accuracy does not improve 

appreciably?)  

Another set of activities that can follow naturally after the Nanoroughness task are 

sessions that explore sampling distributions, or distributions of measures of 

nanoroughness from different samples. These follow-up activities could be designed to 

help students explore whether different samples from the same population produce the 

same or similar estimates of nanoroughness and if sample size is related to the variability 

in estimates of nanoroughness from different samples. In the same spirit as an MEA, 

students could be asked to design methods for answering these questions and to evaluate 

the effectiveness of the various methods. These tasks would provide additional practice 

with applying concepts such as sampling, random selection, and the distribution of a 

variable, extending this concepts from a single sample to multiple samples.  

 

5.2 IMPLICATIONS FOR RESEARCH  

 

This study provides evidence that the Nanoroughness MEA naturally elicits 

application of concepts such as measures of center, variability, and sampling to a 

modeling task. The evidence indicates that students take several different approaches in 

applying these statistical concepts, and that the task produces artifacts that provide a 

window into students' conceptual understanding. These findings raise several questions 

that should be addressed in future research.  

Most teams used some type of measure of variability, and many used the standard 

deviation. The activity asks teams to evaluate their own models and the models of other 

teams. This could lead to a better understanding and appreciation of variability in data. 

What we do not know is the nature of students' understanding of variability, and more 

specifically of the standard deviation, both before and after completing the 

Nanoroughness task. Similarly, students who participate in the Nanoroughness task can 

be expected to develop a better understanding and appreciation for sampling and 

sampling methods as a result of critiquing the sampling methods used by different teams. 

Items and tasks from research studies on students' understanding of variability and the 

standard deviation (e.g., Chance et al., 2004; delMas & Liu, 2005; C Reading & 

Shaughnessy, 2004; Shaughnessy et al., 1999) and of sampling methods (Watson &  

Kelly, 2005, 2006) could be administered prior to and after students participate in the 

MEA to determine if changes in their understanding and thinking do occur.   

It would also be informative to conduct a comparative study where all students 

receive the same initial instruction on measures of center of variability, but are then 

randomly assigned to either receive additional instruction on these topics or to participate 

in the Nanoroughness MEA. The additional instruction could cover the same number of 

class sessions as the MEA, and engage the students conceptually (e.g., applications of the 

concepts in a variety of contexts to promote a deeper understanding and transfer). 

Comparison of assessment results would address the question of whether or not the MEA 

is more effective in developing students conceptual understanding of these topics.  

The design principles used to develop an MEA imply that participation in an MEA 

should increase the likelihood of transfer. MEAs include many of the conditions that have 

been shown to increase retention and transfer of knowledge and problem-solving to new 

contexts: solve carefully designed problems; develop familiarity with each context; 

confront students’ misconceptions and intuitions; help students see similarities and 

differences; guide students to find the general principle behind the example; emphasize 



deep (relational or structural) features over surface features; promote the development of 

mental frameworks for connecting information (Schwartz, 2004; Schwartz, Varma, & 

Martin, 2008). Questions of whether or not students who participate in the 

Nanoroughness MEA have better retention and are more likely to develop effective 

solutions to analogous problems need to be addressed.  
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