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1 INTRODUCTION
1.1 Problem Statement

W-beam guardrail is often used to protect motorists from steep roadside slopes adjacent to
high-speed roadways. A roadside slope placed immediately behind a guardrail system greatly
reduces the soil resistance associated with lateral deflection of the barrier. This reduction in the post-
soil forces greatly reduces a system’s energy-absorption capability and significantly increases
dynamic rail deflections and can produce rail rupture or vehicle override. Further, when the guardrail
extends over the embankment, the gap between the bottom of the rail and the ground will be greatly
magnified and thereby increase the risk of severe wheel snag.

Full-scale crash testing has shown that for standard W-beam guardrails, the back side of the
post must be placed approximately 610 mm (2 ft) from the slope break point in order to assure
acceptable safety performance (1). This same study also showed that lengthening the guardrail posts
to 2.1 m (7 ft) can allow the back of standard guardrail posts to be placed only 305 mm (1 ft) from
the slope break point. Unfortunately, many constricted roadsides have insufficient space to allow
the posts to be placed even 305 mm (1 ft) from the slope break point.

One stiffened W-beam guardrail has been developed that has been proven to be crashworthy
when installed with the center of the guardrail posts at the slope break point on slopes as steep as
2:1 (2-3). This system utilized half-post spacing and 2,134-mm (7-ft) long, W152x13.4 (W6x9)
guardrail posts. The dynamic deflection of this system was 821 mm (32.3 in.) when impacted with
the %-ton pickup truck. Although this system has demonstrated acceptable safety performance, the

long posts and half-post spacing have proven to be both costly and introduce maintenance
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challenges. However, utilizing longer posts is more economical to the users than having a system
with posts installed at half post spacing.

The Midwest Guardrail System (MGS) has proven to more than double the redirective
capacity of the standard W-beam guardrail (4-5). The MGS utilizes mid-span guardrail splices, an
increased top rail mounting height of 787 mm (31 in.), an increased blockout depth of 305 mm (12
in.), and a reduced post embedment of 1,016 mm (40 in.). The improved redirective capacity of the
MGS provides the opportunity to eliminate the need for half-post spacing and thereby greatly
reduces the cost of placing a barrier at the slope break point. In recognition of the potential for
reducing barrier costs for constricted sites with steep roadside slopes, the Midwest States Pooled
Fund Program elected to fund the research study described herein.

1.2 Objective

The objective of this research was to develop a MGS guardrail system that was capable of
being installed at the slope break point of a 2:1 foreslope by utilizing the benefits of the recently
developed MGS guardrail. The MGS on a 2:1 fill slope system was designed to meet the Test Level
3 (TL-3) safety performance criteria set forth in the Manual for Assessing Safety Hardware (MASH)
(6). This study was performed by the Midwest Roadside Safety Facility (MwRSF) in cooperation
with the Midwest States Regional Pooled Fund Program.

1.3 Scope

The research objective was achieved through the completion of several tasks. First a
literature review was undertaken to review previous evaluations of W-beam guardrail systems
placed adjacent to slopes. Next, dynamic bogie testing was performed on steel posts placed at the

slope break point of 2:1 foreslope in order to evaluate the post-soil behavior for various embedment
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depths. Following this phase, computer simulation modeling was undertaken to determine the
optimum design for the guardrail system. After the final design was completed, the guardrail system
was fabricated and constructed at the MwRSF’s outdoor test site. After fabrication of the test
installation, two full-scale vehicle crash tests were performed utilizing 1/2-ton Quad Cab pickup
trucks, weighing approximately 2,268 kg (5,000 1b). The targeted impact conditions for these tests
were an impact speed of 100 km/h (62 mph) and an impact angle of 25 degrees. Next, the test results
were analyzed, evaluated, and documented. Finally, conclusions and recommendations were made

that pertain to the safety performance of the MGS system installed adjacent to a 2:1 foreslope.
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2 LITERATURE REVIEW

2.1 NCHRP 230 Systems

Previous testing on W-beam guardrail systems installed adjacent to a slope was conducted
by ENSCO, Inc. and was met with mixed results (1). The research study consisted of several static
and dynamic pendulum tests on guardrail posts in soil as well as four full-scale vehicle crash tests
on W-beam barriers. The crash tests of the W-beam guardrail systems placed adjacent to a slope
were evaluated according to the criteria provided in National Cooperative Highway Research
Program (NCHRP) Report No. 230 (7).

The first impact consisted of a full-scale vehicle crash test on a standard G4(1S) guardrail
system with the back-side flanges of 2.1-m (7-ft) long steel posts installed at the break point of a 2:1
foreslope. The 2,044-kg (4,506-1b) passenger-size sedan, used in test no. 1717-1-88, impacted the
rail and penetrated behind the system due to the failure of the upstream end anchor cable system.

Following the failure of test no. 1717-1-88, the guardrail system was modified by changing
the upstream end anchor system to an eccentric loader BCT. The modified guardrail system was still
configured with the back-side flanges of 2.1-m (7-ft) long steel posts installed at the break point of
a 2:1 foreslope. The 1,973-kg (4,350-1b) passenger-size sedan, used in test no. 1717-2-88, impacted
the rail and began to redirect. Subsequently, the end anchor released slightly and allowed the rail
height to drop, thus causing the vehicle to vault over the rail. The vehicle then rolled onto its side
before coming to a rest.

After review of the second test, it was found the eccentric loader BCT had been installed
wrong, so a retest of test no. 1717-2-88 was then performed due to the upstream end anchor failure.

The 1,970-kg (4,343-1b) passenger-size sedan, used in test no. 1717-3-88, impacted the rail and was
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redirected safely. However, it is noted that the vehicle’s speed change was 11.2 m/s (36.7 ft/s),
which was greater than the 6.7 m/s (22.0 ft/s) velocity change allowed by NCHRP Report No. 230.

The final full-scale vehicle crash test was performed on a standard G4(1S) guardrail system
with the back-side flanges of 1.8-m (6-ft) long steel posts installed at the break point of a 2:1
foreslope. The 1,978-kg (4,361-1b) passenger-size sedan, used in test no. 1717-4-88, impacted the
rail and was redirected. During the test, significant vehicle penetration into the rail system was
observed. A high change in vehicle speed was also observed in this test, similar to that found in test
no. 1717-3-88. Finally, the vehicle showed no tendency to fall down the slope as it remained quite
stable with little vehicle roll.

Following the completion of the study, ENSCO researchers concluded that a standard G4(1S)
guardrail system with the back-side flanges of either 1,829-mm (6-ft) or 2,134-mm (7-ft) long steel
posts installed at the break point of a 2:1 fill slope will redirect a large sedan (NCHRP 230 — test
designation 10). However, it was noted that the dynamic rail deflection for the 1,829-mm (6-ft) long
post length was approximately 1,219 mm (48 in.). Therefore, the recommended post length for
guardrails placed on the break point of a 2:1 fill slope was 2,134 mm (7 ft).

2.2 NCHRP 350 Systems

In 2000, MwRSF conducted a full-scale vehicle crash test on a W-beam guardrail installed
adjacent to a 2:1 foreslope (2-3). This W-beam system was evaluated according to the criteria
provided in NCHRP Report 350 (8). The test installation consisted of W-beam guardrail supported
by 2,134-mm (7-ft) long, W152x13.4 (W6x9) steel guardrail posts spaced 953 mm (37 '2 in.) on
center and installed with the center of the posts at the slope break point. For the full-scale test, test

no. MOSW-1, a 2,024-kg (4,462-1b) 3/4-ton pickup truck impacted the system 238 mm (9 3/8 in.)
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downstream from the centerline of post no. 17, located within the half-post spacing region, at a
speed of 100.7 km/h (62.6 mph) and at an angle of 28.5 degrees. The vehicle was safely redirected,
and the test was determined to be acceptable according to the TL-3 safety performance criteria

presented in NCHRP Report 350 (8).
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3 DEVELOPMENTAL TESTING - DYNAMIC POST TESTING

3.1 Dynamic Component Testing

Dynamic impact testing of W152x13.4 (W6x9) steel posts placed at the break point of a 2:1
fill slope was performed to evaluate the post-soil behavior for various embedment depths as well as
to select a steel post alternative for use in the BARRIER VII (9) numerical analyses. Additional
details related to the dynamic post testing are provided in the referenced MwRSF research report
(10).

A total of seventeen bogie crash tests were performed with post lengths varying from 1,829
mm (6 ft) through 2,743 mm (9 ft) and with embedment depths ranging between 1,016 mm (40 in.)
and 1,930 mm (76 in.). For each bogie test, raw acceleration data was acquired and filtered, and then
force-displacement and energy-displacement graphs were plotted. From the energy-displacement
graphs, the average post-soil forces were calculated for a 38 1-mm (15-in.) displacement at the center
rail height. Average post-soil forces were then compared to the baseline average post capacity of 28
kN (6 kips), which is representative of steel posts found in the MGS placed on a level terrain (10-
14). From these comparisons, a recommended post length was selected for the 1,905-mm (75-in.)
standard post spacing. A 2,743-mm (9-ft) long post with a 1,930-mm (76-in.) embedment depth was
found to best meet the post requirements, while providing an average force of 28.43 kN (6.39 kips),
determined from the two tests shown in Figure 1. As such, this post configuration was recommended

for evaluation using computer simulation modeling.
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4 BARRIER VII COMPUTER SIMULATION MODELING
4.1 Background

The safety performance of longitudinal traffic barriers has traditionally been evaluated
through the use of full-scale vehicle crash testing. For these crash tests, vehicles are not propelled
into the barrier systems at arbitrary locations nor at randomly-selected impact conditions.
Historically, crash tests have been performed at an impact location that maximizes the potential for
test failure, thus representing the worst-case impact condition. This impact location is commonly
referred to as the Critical Impact Point (CIP). BARRIER VII (9), a two-dimensional, non-linear,
finite element computer program, has been widely used to analyze vehicle-to-barrier collisions and
to predict the dynamic performance of longitudinal barrier systems. In addition, BARRIER VII can
be used to determine the CIP for a given barrier system. Although other computer programs exist
to study vehicular impacts with longitudinal barriers, BARRIER VII is the most validated program
for the prediction of barrier deflections, wheel snag, and vehicle pocketing.

For this research project, multiple BARRIER VII computer simulations were performed in
order to evaluate barrier alternatives for the MGS installed on a 2:1 fill slope and to determine the
CIP for the proposed crash test planned for the final as-built barrier configuration.

4.2 Computer Model for MGS on a 2:1 Fill Slope

A calibrated and validated BARRIER VII computer model of the MGS system placed on a
2:1 fill slope was needed to evaluate the longitudinal barrier system. As such, the validated finite
element analysis (FEA) model from test no. NPG-4 was first used to obtain baseline input
parameters for the BARRIER VII simulations (10-14). Test no. NPG-4 consisted of a %-ton pickup

truck (2000P vehicle) impacting at the TL-3 impact conditions of NCHRP Report 350. MASH
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requires a heavier, /2-ton, four-door, Quad Cab pickup truck, weighing 2,268 kg (5,000 Ib), and
impacting at a speed of 100 km/h (62.1 mph) and at an angle of 25 degrees (6). Because the MGS
placed on a 2:1 fill slope was to be developed to meet impact conditions provided in MASH, another
validated FEA model was used to obtain additional BARRIER VII input parameters which consisted
of the vehicle properties which represent the new 2270P pickup truck. Following test no. 2214MG-2
conducted under NCHRP Project 22-14(2), which was performed on the MGS placed on level
terrain and according to the TL-3 impact conditions found in MASH (15-16), MwRSF researchers
constructed a BARRIER VII model for a CIP study undertaken during the NCHRP project. It should
be noted that the reader may refer to the project documentation of NCHRP 22-14(2) for further
information. The BARRIER VII model representing test no. 2214MG-2 used the same input
parameters, posts, and barrier elements as those found in the model for test no. NPG-4. However,
the vehicle parameters were modified to represent the mass, inertia, and crush stiffness of the 2270P
vehicle. Thus, the additional vehicle parameters for BARRIER VII were obtained.

The final barrier model had a total of 173 nodes, 201 members (172 beam members and 29
post members), 4 different beam types, and 3 different post types and a total length of 53.3 m (175
ft). The four different types of beam members correlated to four different lengths, dependent upon
their location along the rail. However, the other properties of the beam members remained the same.
Typical beam member length in the impact region was 238 mm (9.375 in.). The rail was attached
to the posts through a common node every 1,905 mm (75 in.).

For the MGS on a 2:1 fill slope, the modeled posts consisted of 2,743-mm (9-ft) long
sections as compared to the 1,829-mm (6-ft) long posts used in the simulations of test nos. NPG-4

and 2214MG-2. The yield moment for the 2,743-mm (9-ft) long posts was calculated based upon

10
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the force-deflection data obtained from the head-on collisions between the bogie and the embedded
posts.

However, the vehicle does not always impact the post in a central manner during an actual
vehicle crash test, thus resulting in an eccentric load condition imparted to the post. The rail element
is typically blocked out and away from the front face of the guardrail post in order to reduce wheel
snag on the posts and to help maintain adequate guardrail height. The rail offset, in combination with
axial loading imparted to the rail, produces an additional torsional load condition that can further
reduce the lateral post capacity observed in central bogie post tests. To account for the effect of this
combined loading in real world applications, the post moment capacity about the A-axis (strong-axis
bending) should be reduced in the BARRIER VII computer simulation modeling.

Based on experience from prior research studies involving the FEA analysis of longitudinal
barrier systems, the actual post moment capacity of 17,917 kN-mm (158.58 kip-in.) was reduced by
10 to 20 percent to account for combined loading on the post (2-3.12-13). BARRIER VII input
parameters for the 787-mm (31-in.) tall MGS with a 10 percent moment reduction and a 20 percent
moment reduction are given in Table 1. The BARRIER VII finite element model and sample input
deck for the MGS-2:1 fill slope system are provided in Appendices A and B, respectively.

After the implementation of these modifications, the FEA model was deemed an appropriate
barrier system for representing the actual MGS installed on a 2:1 fill slope. A graphical comparison
of the actual barrier displacements for test no. 2214MG-2 and the simulated barrier displacements
for the MGS on a 2:1 fill slope are provided in Figures 2 and 3. It should be noted that the MGS on

a 2:1 fill slope model was initially calibrated without taking into consideration the slope.

11
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Table 1. BARRIER VII Simulation Parameters for 2,743-mm (9-ft) Posts on a 2:1 Fill Slope

Input Values
BARRIER VII Parameters No Moment | 10Pereent |20 Percent
Reduction Moment Moment
Reduction Reduction
K — Strong Axis Post kN/mm 0.912 0.912 0.912
Stiftness (kip/in.) (5.21) (5.21) (5.21)
K, — Weak Axis Post kN/mm 0.701 0.701 0.701
Stiffness (kip/in.) (4.00) (4.00) (4.00)
M, — Strong Axis Bending kN-mm 17917 16125 14333
Moment (kip-in.) (158.58) (142.72) (126.86)
Mj — Weak Axis Bending kN-mm 10494 10494 10494
Moment (kip-in.) (92.88) (92.88) (92.88)
Opp — Strong Axis Failure mm 381 381 381
Displacement (in.) (15) (15) (15)
y — Kinetic Friction Vehicle to Barrier | 0.35 0.35 0.35
Coefficient
I, — 2270P Mass Moment N-m-sec’ 4971 4971 4971
of Inertia - Yaw (Ib-ft-sec?) (44000) (44000) (44000)

According to the guidelines provided in MASH, longitudinal barrier systems should be

evaluated using the minimum acceptable guardrail height when subjected to pickup truck impacts.

For the MGS installed on flat terrain, this minimum height has been understood to be 706 mm (27%

in.). As such, BARRIER VII computer modeling was used to analyze and evaluate the MGS placed

on a 2:1 fill slope when installed at both the 787-mm (31-in.) and 706-mm (27%:-in.) top mounting

heights. For the lower height tolerance, the moment arm would decrease by 83 mm (3% in.); thus,

the moment about the A-axis (strong-axis bending), M, for the 10 and 20 percent moment reduction

values was 17,533 kN-mm (155.19 kip-in.) and 15,598 kN-mm (138.06 kip-in.), respectively.

14
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As the vehicle impacts the barrier and travels down the slope, its velocity can actually
increase due to gravity. However, since BARRIER VII does not account for changes in elevation,
additional velocity must be added to the vehicle’s initial velocity in order to compensate for the
vehicle movement down the slope. For this study, this additional velocity was calculated using
conservation of energy based upon the maximum rail deflection and initial impact velocity. For each
rail height and moment reduction system, the maximum rail deflection was determined for an impact
at the nominal velocity of 100 km/h (62.1 mph). Using conservation of energy, Figure 4, and the
maximum rail deflections, a new impact velocity was calculated, for use in BARRIER VII, that

considered the change in potential energy for each rail height and moment reduction configuration.

E— D —

T

H

+

%MV,f = %MVSQ + MgH

where

D = maximum lateral rail deflection

H = c.g. height drop = D/2

M = vehicle mass

Vs = velocity on road surface

V, = velocity at a depth H below road surface

Figure 4. Determination of New Impact Velocity Considering Change in Potential Energy

15
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4.3 BARRIER VII Simulation Results

A total of eight sets of simulations were performed in order to determine the CIP. For each
set, ten simulations were performed at ten closely spaced impact nodes between two posts, post nos.
12 and 13. In addition, a splice was located at the midspan between these two posts. For the MGS,
a satisfactory safety performance had been shown for top mounting heights ranging between 706
mm (27% in.) and 813 mm (32 in.), with a nominal top mounting height of 787 mm (31 in.).
Therefore, simulations were performed at two heights, one at 706 mm (27% in.) and the other at 787
mm (31 in.). The first four simulations were performed at a 10 percent moment reduction, two at a
706-mm (27%-1n.) top mounting height and two at a 787-mm (31-in.) top mounting height. At each
height, simulations were performed at two vehicle speeds, the normal speed of 100 km/h (62.14
mph) and at an increased speed due to movement down the slope. The other four simulations were
performed in a similar manner, but with a 20 percent moment reduction. The summary of the
simulation results are shown in Tables 2 and 3.
4.4 Critical Impact Point (CIP) Determination

Determining the CIP of a system can be quite difficult since there are not set criteria for
BARRIER VIl that clearly defines failure of a system. Traditionally, the CIP determination has been
based upon the impact condition which produced a worst practical condition and potential guardrail
failure while considering: (1) wheel-assembly snagging on guardrail posts; (2) vehicle pocketing
into the guardrail system; (3) dynamic lateral deflection of the guardrail system; and (4) axial force
in the W—beam guardrail. Additional discussion on the determination of the CIP can be found in a

research paper by Reid, et al (17).
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The maximum deflections found during the CIP analysis of the MGS on a 2:1 fill slope were
similar to those observed during actual full-scale crash testing of the standard MGS on level terrain
(12-16). The range of maximum rail axial forces during the CIP analysis was small; and the MGS
has proven to more than double the redirective capacity of the standard W-beam guardrail(4-5).
Similarly, the range of pocketing angles for all CIP simulations was small and ranged from 12 to 14
degrees, which is about half of the critical pocketing angle of 23 degrees established during the
development of the MGS transition (18-19). Therefore, maximum dynamic deflection, maximum
axial force, and maximum pocketing angle were not deemed critical factors for the MGS on a 2:1
fill slope CIP determination. However, wheel snagging was deemed to be a significant contributing
factor for the CIP determination of the MGS on a 2:1 fill slope. The CIP analysis of the eight sets

of simulation results is shown in Table 4.

Table 4. CIP Analysis Results

Moment Top‘ . cIp
Reduction Mouptmg Velocity Node ‘ .
Height Number Location (from centerline of post no. 13)

Percent mm (in.) mm (in.)
10 787 (31) nominal 68 119 (4''/,,) upstream
10 787 (31) increased 66 476 (18%) upstream
10 706 (27%) nominal 65 714 (28/s) upstream
10 706 (27%) | increased 67 238 (9%s) upstream
20 787 (31) nominal 62 1,429 (56"4) upstream
20 787 (31) increased 63 1,141 (4678) upstream
20 706 (27%4) nominal 63 1,141 (467/8) upstream
20 706 (27%) | increased 63 1,141 (4678) upstream

*The highlighted simulation was the selected CIP for full-scale testing.
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From the eight design variations that were evaluated and shown in Tables 2 and 3, it was
determined that the most valid model was the MGS with the minimum 706-mm (27%-in.) top
mounting height on a 2:1 fill slope. This was based on the fact that the maximum wheel snag
occurred with the design variation utilizing a 10 percent reduction in the strong-axis bending
moment as discussed previously. This also verified that it was appropriate to include the slope
effects, i.e., the associated minor increase in impact velocity.

From the BARRIER VII simulations, the CIP was selected to occur at node 67 or 238 mm
(9% in.) upstream from the centerline of post no. 13 (node 69) or 595 mm (237/,, in.) downstream
from the centerline of the splice between post nos. 12 and 13. For the selected CIP, the simulation
revealed a maximum dynamic rail deflection of 909 mm (35.77 in.) at post no. 15 (node 87), while
the maximum wheel snag was observed at post no. 16 (node 96) in the amount of 173 mm (6.82 in.).
Finally, the maximum rail tension for this system was 325 kN (73.03 kips) at 476 mm (18% in.)
downstream from the centerline of post no. 14 (node 80) or 476 mm (18% in.) upstream from the

centerline of the splice between post nos. 14 and 15.
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5 TEST REQUIREMENTS AND EVALUATION CRITERIA
5.1 Test Requirements

Longitudinal barriers, such as W-Beam guardrail systems, must satisfy impact safety
standards in order to be accepted by the Federal Highway Administration (FHWA) for use on
National Highway System (NHS) new construction projects or as a replacement for existing designs
not meeting current safety standards. In recent years, these safety standards have consisted of the
guidelines and procedures published in NCHRP Report 350 (2). However, NCHRP Project 22-14(2)
generated revised testing procedures and guidelines for used in the evaluation of roadside safety
appurtenances and are provided in MASH (6). According to TL-3 of MASH, the longitudinal barrier
system must be subjected to two full-scale vehicle crash tests. The two full-scale crash tests are as
follows:

1. Test Designation 3-10. A 1,100-kg (2,425-Ib) small car impacting the W-

beam system at a nominal speed and angle of 100 km/h (62 mph) and 25
degrees, respectively.

2. Test Designation 3-11. A 2,268-kg (5,000-1b) pickup truck impacting the W-

beam system at a nominal speed and angle of 100 km/h (62 mph) and 25
degrees, respectively.

However, W-beam barriers struck by small cars have been shown to meet safety performance
standards with little lateral deflections (12-15.20-22) and with no significant potential for occupant
risk problems. In addition, the MGS with maximum height tolerance was successfully impacted by
a small car weighing 1,174 kg (2,588 1b) at 97.8 km/h (60.8 mph) and 25.4 degrees according to the

TL-3 safety performance criteria set forth in MASH (23). Thus, the 1,100-kg (2,425-1b) passenger

car crash test was deemed unnecessary for this project. The test conditions for TL-3 longitudinal
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barriers are summarized in Table 5. Test Designation 3-11 was conducted for the MGS system

described herein.

Table 5. MASH Test Level 3 Crash Test Conditions

Impact Conditions

Test Test Test Speed Evaluation
Article Designation | Vehicle P Angle Criteria '
(km/h) (mph) (degrees)
Longitudinal 3-10 1100C 100 62 25 A,D,F.H,I
Barriers 3-11 2270P 100 62 25 A,D,F,H,1

! Evaluation criteria explained in Table 6.

5.2 Evaluation Criteria

According to MASH, the evaluation criteria for full-scale vehicle crash testing are based on
three appraisal areas: (1) structural adequacy; (2) occupant risk; and (3) vehicle trajectory after
collision. Criteria for structural adequacy are intended to evaluate the ability of the barrier to
contain, redirect, or allow controlled vehicle penetration in a predictable manner. Occupant risk
evaluates the degree of hazard to occupants in the impacting vehicle. Vehicle trajectory after
collision is a measure of the potential for the post-impact trajectory of the vehicle to become
involved in secondary collisions with other vehicles or fixed objects, thereby increasing the risk of
injury to the occupant of the impacting vehicle and to other vehicles. This criterion also indicates
the potential safety hazard for the occupants of other vehicles or the occupants of the impacting
vehicle when subjected to secondary collisions with other fixed objects. These three evaluation
criteria are summarized in Table 6 and defined in greater detail in MASH (6). The full-scale vehicle

crash tests were conducted and reported in accordance with the procedures provided in MASH.
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Table 6. MASH Evaluation Criteria for Crash Tests

Evaluation

Evaluation Criteria
Factors

A. Test article should contain and redirect the vehicle or bring the
Structural vehicle to a controlled stop; the vehicle should not penetrate,
Adequacy underride, or override the installation although controlled lateral
deflection of the test article is acceptable

D. Detached elements, fragments or other debris from the test article
should not penetrate or show potential for penetrating the occupant
compartment, or present undue hazard to other traffic, pedestrians,
or personnel in a work zone. Deformations of, or intrusions into, the
occupant compartment should not exceed limits set forth in Section
5.3 and Appendix E of MASH.

F.  The vehicle should remain upright during and after collision. The
maximum roll and pitch angles are not to exceed 75 degrees.

H.  Occupant Impact Velocities (OIV) (see Appendix A, Section A5.3
for calculation procedure) should satisfy the following limits:

OCCUIE‘H'[ Occupant Impact Velocity Limits, ft/s (m/s)
Ris

Component Preferred Maximum

Longitudinal

and La‘[era] 30 ft/S (91 m/s) 40 ft/S (122 m/s)

I.  The Occupant Ridedown Acceleration (see Appendix A, Section
AS5.3 for calculation procedure) should satisfy the following limits:

Occupant Ridedown Acceleration Limits (g’s)

Component Preferred Maximum

Longitudinal

and Lateral 15.0¢g’s 20.49 g’s
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6 TEST CONDITIONS
6.1 Test Facility

The testing facility is located at the Lincoln Air Park on the northwest (NW) side of the
Lincoln Municipal Airport and is approximately 8.0 km (5 mi.) NW of the University of Nebraska-
Lincoln.

6.2 Vehicle Tow and Guidance System

A reverse cable tow system with a 1:2 mechanical advantage was used to propel the test
vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle.
The test vehicle was released from the tow cable before impact with the barrier system. A digital
speedometer on the tow vehicle increases the accuracy of the test vehicle impact speed.

A vehicle guidance system developed by Hinch (24) was used to steer the test vehicle. A
guide-flag, attached to the left-front wheel and the guide cable, was sheared off before impact with
the barrier system. The 9.5-mm (3/8-in.) diameter guide cable was tensioned to approximately 15.6
kN (3,500 Ib), and supported laterally and vertically every 30.5 m (100 ft) by hinged stanchions. The
hinged stanchions stood upright while holding up the guide cable, but as the v