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1 INTRODUCTION
1.1 Problem Statement

A research study funded by the Federal Highway Administration (FHWA) in the late 1970's
evaluated the performance of conventional guardrail systems when placed on a roadside slope (1-2).
This study indicated that conventional W-beam guardrails should not be placed on roadside slopes
of 6:1 or steeper. The American Association of State Highway and Transportation Officials’
(AASHTO) Roadside Design Guide recommended that W-beam guardrails also should not be placed
on roadside slopes steeper than 10:1. This restriction often controls barrier placement decisions (3).
These slope limitations often force designers to place guardrails near the edge of the shoulder where
roadside slopes are generally 10:1 or flatter. In this situation, guardrail installations must be much
longer in order to properly protect motorists from severe roadside hazards. These long lengths of
guardrail placed in close proximity to the edge of the shoulder greatly increases guardrail accident
frequencies.

With the development of the Midwest Guardrail System (MGS), the higher mounting height
and deeper blockout may provide sufficiently improved performance to relax the recommendations
for not placing guardrails on slopes steeper than 10:1, as recommended in the Roadside Design
Guide.

Furthermore, increasing the maximum slope where guardrail can be placed will allow many
installations to be placed farther from the travelway. Moving guardrails farther from the travelway
decreases the length of guardrail and greatly reduces impact frequency. Thus, allowing W-beam
guardrail to be placed on steeper slopes should greatly reduce installation, maintenance, and accident

costs.



1.2 Objective
The objective of this research project was to determine the critical slopes and associated
offset for the MGS and to evaluate a critical slope and offset according to the Test Level 3 (TL-3)
safety performance criteria set forth in the National Cooperative Highway Research Program
(NCHRP) Report No. 350, Recommended Procedures for the Safety Performance Evaluation of
Highway Features (4).
1.3 Scope
The research objective was achieved through the completion of several tasks. First, a
literature search was performed on guardrail systems placed on roadside slopes. Second, a
simulation study with LS-DYNA determined the critical slope and associated offset for placement
of the MGS. Following the simulation study, two full scale tests were performed. The first test
utilized a ¥4-ton pickup truck, weighing approximately 2,000 kg (4,409 lbs), with a target impact
speed and angle of 100.0 km/h (62.1 mph) and 25 degrees, respectively. The second test was
performed using a small car, weighing approximately 820 kg (1,808 Ibs), with a target impact speed
and angle of 100 km/h (62.1 mph) and 20 degrees, respectively. Next, the test results were analyzed,
evaluated, and documented. Finally, conclusions were made that pertain to the safety performance

of the MGS system on a slope.



2 LITERATURE REVIEW

Barriers have been designed and tested for flat terrain conditions, even though they are
generally placed on various terrains, such as slopes. The 1977 AASHTO Barrier Guide
recommended that a roadside barrier should not be placed on an embankment with a slope greater
than 10:1 (5). In the late 1970's, the Texas Transportation Institute (TTI) performed a study that
determined the non-level terrain conditions for longitudinal barriers, evaluated the impact behavior
of common barrier systems placed on non-level terrain, and developed guidelines for the selection
and placement of barriers on non-level terrain (1-2).

Seven tests were conducted in this study, with four tests being conducted on standard G4(1S)
W-beam guardrail with a top mounting height of 686 mm (27 in.) Above the ground at the front of
the post (1-2). The study found that the G4(1S) system, placed at an offset of 3.66 m (12 ft) on a 6:1
slope, did not satisfy the structural adequacy requirements when impacted with a 2,043-kg (4,500-1b)
vehicle at a speed of 101.2 km/h (62.9 mph) and an angle of 26.25 degrees as the rail ruptured and
the vehicle penetrated the system. The G4(1S) system, placed at an offset of 1.83 m (6 ft) on a 6:1
slope, did not satisfy the structural adequacy requirements due to the vehicle vaulting over the
system, when it was impacted with a 2,043-kg (4,500-1b) vehicle at a speed of 101.1 km/h (62.8
mph) and an angle of 25.0 degrees. The G4(1S) system, placed at a 1.83-m (6-ft) offset on a 6:1
slope, adequately contained and redirected a 2,043-kg (4,500-1b) vehicle impacting the system at a
speed of 101.9 km/h (63.3 mph) and an angle of 14.75 degrees. The G4(1S) system, placed at an
offset of 3.66 m (12 ft) on a 6:1 slope, also contained and redirected a 1,045-kg (2,300-1b) vehicle
impacting at 93.6 km/h (58.2 mph) and an angle of 14.75 degrees. However, the tests that were able

to redirect the vehicle had impact angles measuring 10 degrees less than that angle specified in the



safety performance criteria, and had trajectories that could pose a hazard to traffic in adjacent lanes
(1-2).

From 1988 to 1992, ENSCO, Inc., conducted a study that investigated various guardrail
applications (6). One of the tests, test no. 1862-15-92, involved a guardrail installation on sloped
terrain. From the shoulder, the terrain was sloped at a 6:1 grade for 5.5 m (18 ft), at which point the
guardrail was placed near the end of this grade. From this point, the terrain was sloped ata 2:1 grade
for another 3.66 m (12 ft) behind the guardrail. The test satisfied all required criteria as specified in
the AASHTO Guide Specifications for Bridge Railings (6). Following the crash tests, ENSCO
researchers recommended that the post length for guardrails placed at the slope break point of'a 2:1
slope should be 2,134 mm (7 ft) long and using a 1,905 mm (75 in.) post spacing.

In 2000, the Midwest Roadside Safety Facility (MwRSF) conducted a similar study (8-9).
However, the guardrail design for placement at the slope break point of a 2:1 slope had to meet the
criteria set forth in NCHRP Report No. 350. The posts used in this system were 2,134 mm (7 ft) long
and were spaced at half-post spacings. One full-scale crash test was conducted on this system with
a ¥a-ton pickup truck, impacting the system 238 mm (9.4 in.) downstream from the centerline of post
no. 17, at a speed of 100.7 km/h (62.6 mph) and an angle of 28.5 degrees, and was determined to be
acceptable according to the TL-3 safety performance criteria presented in NCHRP Report No. 350.

In 2006, MwRSF conducted another study with W-beam barriers placed at the slope break
point of a 2:1 slope (10-11). The new design incorporated a stiffened Midwest Guardrail System
(MGS) barrier with an increased post length of 2,743 mm (9 ft) with standard post spacing. Two
full-scale crash tests were performed on this system. For the first test, testno. MGS221-1,a2,268-kg

(5,000-1b) pickup truck impacted the MGS system, installed at the slope break point of a 2:1 slope



with a targeted top rail mounting height of 705 mm (27.75 in.). The actual top rail mounting height
in the impact region was 702 mm (27.625 in.). This test was unsuccessful as the truck overrode the
system and landed behind the system. The second test, test no. MGS221-2, involved a 2,274-kg
(5,013-1b) pickup truck. The updated design had increased the rail mounting height to 787 mm (31
in.). This test was determined to be acceptable since the vehicle was smoothly redirected. Both tests
were performed in accordance with the criteria set forth in the currently proposed Update to NCHRP

Report No. 350 (12).



3 TEST REQUIREMENTS AND EVALUATION CRITERIA
3.1 Test Requirements
Historically, longitudinal barriers, such as W-beam guardrail systems, must satisfy impact
safety standards provided in NCHRP Report No. 350 in order to be accepted by FHWA for use on
National Highway System (NHS) new construction projects or as a replacement for existing designs
not meeting current safety standards. According to TL-3 of NCHRP Report No. 350, longitudinal
barrier systems must be subjected to two full-scale vehicle crash tests. The two full-scale crash tests
are as follows:
1. Test Designation 3-10, consisting of an 820-kg (1,808-1b) small car
impacting the guardrail system at a nominal speed and angle of 100.0 km/h
(62.1 mph) and 20 degrees, respectively.
2. Test Designation 3-11, consisting of a 2,000-kg (4,409-1b) pickup truck
impacting the guardrail system at a nominal speed and angle of 100.0 km/hr
(62.1 mph) and 25 degrees, respectively.
The test conditions of TL-3 longitudinal barriers are summarized in Table 1.
3.2 Evaluation Criteria
According to NCHRP Report No. 350, the evaluation criteria for full-scale vehicle crash
testing are based on three appraisal areas: (1) structural adequacy; (2) occupant risk; and (3) vehicle
trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the
barrier to contain, redirect, or allow controlled vehicle penetration in a predictable manner. Occupant
risk evaluates the degree of hazard to occupants in the impacting vehicle. Vehicle trajectory after
collision is an indicator of the potential for the post-impact trajectory of the vehicle to cause

subsequent multi-vehicle accidents. This criterion also indicates the potential safety hazard for the

occupants of the other vehicles or the occupants of the impacting vehicle when subjected to



secondary collisions with other fixed objects. These three evaluation criteria are summarized in
Table 2 and described in greater detail in NCHRP Report No. 350. Finally, the full-scale vehicle
crash tests were conducted and reported in accordance with the procedures provided in NCHRP

Report No. 350.

Table 1. NCHRP Report No. 350 Test Level 3 Crash Test Conditions

Impact Conditions
. Test Speed Evaluation
Test Article Designation Test (kv Angle Criteria'
Vehicle \ (mph) (degrees)
Longitudina 3-10 820C 100 62.1 20 A,D,F,HILKM
I Barrier 3-11 2000P | 100 | 62.1 25 ADFKLM

'Evaluation criteria explained in Table 2.



Table 2. NCHRP Report No. 350 Evaluation Criteria for Crash Tests

Structural
Adequacy

A

Test article should contain and redirect the vehicle; the vehicle should
not penetrate, underride, or override the installation although controlled
lateral deflection of the test article is acceptable.

Occupant
Risk

Detached elements, fragments or other debris from the test article should
not penetrate or show potential for penetrating the occupant compartment,
or present an undue hazard to other traffic, pedestrians, or personnel in a
work zone. Deformations of, or intrusions into, the occupant
compartment that could cause serious injuries should not be permitted.

The vehicle should remain upright during and after collision although
moderate roll, pitching, and yawing are acceptable.

Longitudinal and lateral occupant impact velocities should fall below the
preferred value of 9 m/s (29.5 ft/s), or at least below the maximum
allowable value of 12 m/s (39.4 ft/s).

Longitudinal and lateral occupant ridedown accelerations should fall
below the preferred value of 15 g’s, or at least below the maximum
allowable value of 20 g’s.

Vehicle
Trajectory

After collision it is preferable that the vehicle’s trajectory not intrude
into adjacent traffic lanes.

The occupant impact velocity in the longitudinal direction should not
exceed 12 m/s (39.4 ft/s), and the occupant ridedown acceleration in the
longitudinal direction should not exceed 20 g’s.

The exit angle from the test article preferably should be less than 60
percent of the test impact angle measured at the time of vehicle loss of
contact with the test device.




4 TEST CONDITIONS
4.1 Test Facility

The testing facility is located at the Lincoln Air Park on the northwest side of the Lincoln
Municipal Airport and is approximately 8.0 km (5 mi.) northwest of the University of Nebraska-
Lincoln.

4.2 Vehicle Tow and Guidance System

A reverse cable tow system with a 1:2 mechanical advantage was used to propel the test
vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle.
The test vehicle was released from the tow cable before impact with the barrier system. A digital
speedometer on the tow vehicle increases the accuracy of the test vehicle impact speed.

A vehicle guidance system developed by Hinch (13) was used to steer the test vehicle. A
guide-flag, attached to the front-left wheel and the guide cable, was sheared off before impact with
the barrier system. The 9.5-mm (0.375-in.) diameter guide cable was tensioned to approximately
15.6 kN (3,500 Ibf), and supported laterally and vertically every 30.48 m (100 ft) by hinged
stanchions. The hinged stanchions stood upright while holding up the guide cable, but as the vehicle
was towed down the line, the guide-flag struck and knocked each stanchion to the ground. For tests
MGSAS-1 and MGSAS-2, the vehicle guidance systems were 333 m (1092 ft) and 239 m (783 ft),
respectively.

4.3 Test Vehicles

For test MGSAS-1, a 1999 Chevrolet 2500 3/4-ton pickup truck was used as the test vehicle.

The test inertial and gross static weights were 2,036 kg (4,489 lbs). The test vehicle is shown in

Figure 1, and vehicle dimensions are shown in Figure 2.



‘
y MwRSF. |

Figure 1. Test Vehicle, Test No. MGSAS-1
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Date: _ //26/2006 Test Number: MESAS—1 Medel: _2000P/ C2500
Make: Chev Vehicle 1LD.#: 1GCGC24R7xR715972
Tire Size: 245/75 R16 Year: 1999 Odometer: 189336

*(All Measurements Refer to Impacting Side)

Vehicle Geometry — mm (in.)

a_ 1918 (75.5) b_ 1867 (73.5)

— [E— c_ 5537 (218) o__ 1295 (51)

T e 3340 (131.53)  £_ 908 (35.75)
J a_ 660 (28) h_ 1410 (55.5)
184 (7.25) J__667 (26.05)
peceleransters k__ 584 (23) | 794 (31.25)
m_1597 (B82.875) n_ 1632 ($4.25)

— [ Emm—
— -~ Lo e d]

o_ 1022 (40.25) p 102 (4)
o
749 (29.5) 445 (17.5)
T @ ! i
bt s_416 (16.375) & 1854 (73)
h
Wheel Center Height Front 368 (14.5
‘ VWPEM : WWWW T Wheel Center Height Rear _378 (14.875)
& Wheel Well Clearance (FR) 902 (35.5)
Wheel Well Clearance (RR) _856 (37.625)
Frame Height (FRY__ 400 (15.75)
Weights
kg (Ibs) Curb Test Inertial Gross Static Frame Height (RR)__679 (26..75)
Wiront 1227 (2704) 1180 (26CG1) 1180 (2601) Engine Type 8 CYL. GAS
Wiegr 872 (1923 856 (1888) 856 (1888) Engine Size 5.7 | 350 CID

Viotgl 2099 (4B27) 2036 (4489) 2036 (4489)

Transmission Type:

GYWR Rating or Manual
4100
front ——— 1 FWD or or 4WD
rear 6000
total 8600

Note any damage prior to test: Right lower box side dented, left front bumper corner
pushed in

Figure 2. Vehicle Dimensions, Test No. MGSAS-1
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For test MGSAS-2, 22000 Geo Metro was used as the test vehicle. The test inertial and gross
static weights were 837 kg (1,845 lbs) and 912 kg (2,011 1bs), respectively. The test vehicle is
shown in Figure 3, and vehicle dimensions are shown in Figure 4.

The longitudinal component of the center of gravity was determined using the measured axle
weights. The location of the final center of gravity is shown in Figures 1 through 4.

Black and white checkered targets were placed on the vehicle to aid in the analysis of the
high-speed videos, as shown in Figures 5 and 6. Checkered targets were placed on the C.G. on the
driver’s side door, passenger’s side door, and roof of the vehicle. The remaining targets were located
for reference so that they could be viewed from the high-speed cameras for film analysis.

The front wheels of the test vehicle were aligned for camber, caster, and toe-in values of zero
so the vehicle would track properly along the guide cable. A 5B flash bulb was mounted on the right
side of the vehicle’s dash to pinpoint the time of impact with the test article on the high-speed video
footage. The flash bulb was fired by a pressure tape switch mounted at the right corner of the
bumper. A remote-controlled brake system was installed in the test vehicle so the vehicle could be
brought safely to a stop after the test.

4.4 Data Acquisition Systems

Three data acquisition systems, two accelerometers and one rate transducer, were used to
measure the motion of the vehicle. The results of all three were analyzed and plotted using
“DynaMax 1 (DM-1)” and “DADIiSP” computer software programs.

4.4.1 Accelerometers

One triaxial piezoresistive accelerometer system with a range of + 200 g’s was used to

measure the acceleration of the longitudinal, lateral, and vertical directions at a sample rate of

12



Figure 3. Test Vehicle, Test No. MGSAS-2
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Date: 9/6/20086 Test Number: MGSAS-2 Wodel: 820c/Melro
Make: Chevrolet Vehicle 1.D.#: 2C1MR224Y6726378
Tire Size: 1551’80 R13 Year: 2000 Cdometer: 100114
*(All Measurements Refer to Impacting Side)
__'_'f ”‘\ Vehicle Geometry — mm (in)
L] \E-?(;’ | l ¢ 15558 (51.25) b 14002  [55.125)
||
il ll ‘ c 38037  (148.75) d 503.25 (25.75)
afm| — L] | I - Iﬂ t
| N | vehicle e 23622  (93.0) f _BE3LS  (34.0)
r____a/ - _%& ] $ [ g 542.83  (21.375) h 8763 (345)
_J / 3 J) | 26035 (10.25) | 5334 (210
k 29845  (11.75) | B35 (25.0)
m_ 1378  (54.75) n 13857 (53.375)
o 5842  (23.0) p_101.8 (4.0)
q 581.03 (22.875) r 361.85  (14.25)
s 3175  (12.5) t 15621 (61.5)
b ‘Wheel Centar Height Front 286.7 10.5

Weights
kg f{lbs) Curb Test Inertial Gross Static
W—frent 540.68  {1182) 527.53  (1183) 56608  {1248)
W—rear 23529 (851) 309.38 (682) 346,08 (763)
W—total 835.97  {1843) 836.868  (1845) 91217 {2011)
Note any damage prior to test: None

Wheel Center Height Rear
Wheel Well Clearance {FR)

Wheel Well Clearance [RR)

Engire Type

Engina Size

Transmitian Type:

269.88 10.625,
654.05 (25.75
644.53 26.375

4 CYL. GAS

1.3L

Autormotic

FWD

Figure 4. Vehicle Dimensions, Test No. MGSAS-2
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TEST #:  MGSAS—1
TARGET GEOMETRY —— mm (in.)

g 1610 (63.375) ¢ 1613 (63.5) ¢ 908 (35.75) | 1022 (40.25)

b — e 2149 (84.625) h 1410 (55.5) k 660 (26)

c 2604 (102.5) f 2153 (84.75) i 1924 (75.75) | 1080 (42.5)

Figure 5. Target Geometry, Test No. MGSAS-1
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Side View

TN\
$ © G—?J I

f € i

TEST #: MGSAS-2
TARGET GEOMETRY——= mm (in.)

756  (29.75)

A 1184 (46.625) E 1486  (58.5)

432 (17.0) F 876  (34.5) J 778  (30.825)

uy)

C 927 (36.25) G 6870 (26.375)

D 625 (24.625) H 543 (21.375)

Figure 6. Target Geometry, Test No. MGSAS-2
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10,000 Hz. The environmental shock and vibration sensor/recorder system, Model EDR-4M6, was
developed by Instrumented Sensor Technology (IST) of Okemos, Michigan, and includes three
differential channels as well as three single-ended channels. The EDR-4 was configured with 6 MB
of RAM memory and a 1,500 Hz lowpass filter.

Another triaxial piezoresistive accelerometer system with a range of + 200 g’s was also used
to measure the acceleration in the longitudinal, lateral, and vertical directions at a sample rate of
3,200 Hz. The environmental shock and vibration sensor/recorder system, Model EDR-3, also
developed by Instrumented Sensor Technology (IST) of Okemos, Michigan. The EDR-3 was
configured with 256 kB of RAM memory and a 1,120 Hz lowpass filter.

4.4.2 Rate Transducers

An Analog Systems 3-axis rate transducer with a range of 1,200 degrees/sec in each of the
three directions (pitch, roll, and yaw) was used to measure the rates of motion of the test vehicle.
The rate transducer was mounted inside the body of the EDR-4M6 and recorded data at 10,000 Hz
to a second data acquisition board inside the EDR-4M6 housing. The raw data measurements were
then downloaded, converted to the appropriate Euler angles for analysis, and plotted.

4.4.3 High-Speed Photography

For test no. MGSAS-1, four high-speed AOS VITcam digital video cameras and one high-
speed RedLake E/cam video camera, all with operating speeds of 500 frames/sec, were used to film
the crash test. Five Canon digital video cameras and two JVC digital video cameras, all with
standard operating speeds of 29.97 frames/sec, were also used to film the crash test. Camera details
and a schematic of all twelve camera locations for test no. MGSAS-1 are shown in Figure 7.

For test MGSAS-2, five high-speed AOS VITcam video cameras, with operating speeds of

17



500 frames/sec, were used to film the crash test. Five Canon digital video cameras and two JVC
digital video cameras, all with standarad opearting speeds of 29.97 frames/sec, were also used to
film the crash test. Camera details and a schematic of all twelve camera locations for test no.
MGSAS-2 are shown in Figure 8.

The AOS and E/cam videos were analyzed using ImageExpress MotionPlus software and
Redlake Motion Scope software, respectively. Actual camera speed and camera divergence factors
were considered in the analysis of the high-speed videos.

4.4.4 Pressure Tape Switches

For test nos. MGSAS-1 and MGSAS-2, five pressure-activated tape switches, spaced at 2-m
(6.56-ft) intervals, were used to determine the speed of the vehicle before impact. Each tape switch
fired a strobe light which sent an electronic timing signal to the data acquisition system as the right-
front tire of the test vehicle passed over it. The test vehicle speed was then determined from the
electronic timing mark data recorded using TestPoint software. Strobe lights and high-speed video
analysis are used only as a backup in the event that vehicle speed cannot be determined from the

electronic data.
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5 CRITICAL SLOPE AND BARRIER PLACEMENT
LS-DYNA simulation was used to help determine the critical slope and associated offset for
placement of the MGS off of the roadway (14). The goal was to determine the steepest slope such
that the MGS could be placed anywhere on that slope. Although not always the worst-case offset,
a 1.5 m (5 ft) offset was determined to be the most comparable between various slopes. Thus, results
from simulating a 2,000-kg (4,409-1b) pickup truck at 100 km/h (62.1 mph) and 25 degrees into an

MGS placed with a 1.5 m (5 ft) offset from the break line were as reported in Table 3.

Table 3. Initial Simulation Results

Slope (H:V) Results
10:1 truck redirected
9:1 truck redirected
8:1 messy, needed more analysis

looked like roll-over, numerical instabilities occurred, would be very lucky
if it didn’t roll-over if run was able to continue
6:1 truck rides over rail

7:1

Next, a more thorough analysis into the 8:1 slope system was performed. Part of this study
included updating the MGS system model with more accurate details and investigating the truck
model with and without some tear-away suspension components. The main differences in the MGS
model was allowing the posts to rotate in the soil 127 mm (5 in.) higher than the previous model,
a little stronger soil, and more refined contacts.

Some results of the refined simulations are shown in Figure 9. The 1.5 m (5 ft) offset, once
again, proved to be the worst-case offset for the 8:1 slope system, using the pickup truck impact

condition. Results, as indicated in Figure 9, were inconclusive; which supports this slope and barrier

21



placement as being the critical condition and thus, the recommended set-up for full-scale crash

testing.
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6 MGS PLACED ON 8:1 SLOPE DESIGN DETAILS

The test installation consisted of 53.34 m (175 ft) of standard 2.66-mm (12-gauge) thick, W-
beam guardrail supported by steel posts, as shown in Figure 10. Anchorage systems similar to those
used on tangent guardrail terminals were utilized on both the upstream and downstream ends of the
guardrail system. Design details are shown in Figures 10 through 16. The corresponding English-
unit drawings are shown in Appendix A. Photographs of the test installation are shown in Figures
17 through 19.

The entire system was constructed with twenty-nine guardrail posts. Post nos. 3 through 27
were galvanized ASTM A36 steel W152x13.4 (W6x9) sections measuring 1,829 mm (6 ft) in length.
Post nos. 1, 2, 28, and 29 were timber posts measuring 140-mm wide x 190-mm deep x 1,080-mm
long (5.5-in. x 7.5-in. x 42.5-in.) and were placed in 1,829-mm (6-ft) long steel foundation tubes,
as shown in Figure 13. The timber posts and foundation tubes were part of anchor systems designed
to replicate the capacity of a tangent guardrail terminal.

Post nos. 1 through 29 were spaced 1,905 mm (75 in.) on center. A soil embedment depth
of 959 mm (37.75 in.) was located at the back of the posts on the embankment. The posts were
placed in a compacted, coarse, crushed limestone material that met Grading B of AASHTO M147-
65 (1990) as found in NCHRP Report No. 350. For post nos. 3 through 27, 152-mm wide x 305-mm
deep x 362-mm long (6-in. x 12-in. x 14.25-in.) wood spacer blockouts were used to block the rail
away from the front face of the steel posts.

Standard 2.66-mm (12-gauge) thick W-beam rails with additional post bolt slots at half post
spacing intervals were placed between post nos. 1 and 29, as shown in Figures 10 and 16. The W-

beam’s top rail height was 787 mm (31 in.) with a 632 mm (24.875 in.) center mounting height when

24



measured from the top of the rail to the ground directly below the rail. The rail splices were moved
to the center of the span location, as show in Figures 11 and 16. All lap-splice connections between
the rail sections were configured to reduce vehicle snag at the splices during the crash test.

An 8:1 foreslope was excavated in the pit, as shown in Figures 10 and 12. The maximum pit
dimensions were 6,096 mm (20 ft) wide and 762 mm (2.5 ft) deep. The length of the pit spanned the
entire length of the guardrail system. The standard MGS system was placed 1,524 mm (5 ft) down

the slope from the slope break point, as shown in Figure 10.
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Figure 17. Approach Slope for MGS System Detail
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Figure 18. Post Details
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Figure 19. Splice Details
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7 FULL-SCALE CRASH TEST NO. 1
7.1 Test MGSAS-1

The 2,036-kg (4,489-1b) pickup truck impacted the MGS, placed 1,524 mm (5 ft) down from
the slope break point at a speed of 100.4 km/h (62.4 mph) and at an angle of 25.9 degrees. A
summary of the test results and sequential photographs are shown in Figure 20. The summary of the
test results and sequential photographs in English units are shown in Appendix B. Additional
sequential photographs are shown in Figures 21 and 22. Documentary photographs of the crash test
are shown in Figures 23 and 24.

7.2 Test Description

Initial vehicle impact was to occur between post nos. 11 and 12, or 4.88 m (16 ft) upstream
from the centerline of the splice between post nos. 14 and 15, as shown in Figures 10 and 25. Actual
vehicle impact occurred 4.83 m (15 ft - 10 in.) upstream from the centerline of the splice between
post nos. 14 and 15. At 0.004 sec after impact, post no. 12 deflected backward, and the rail
deformed. At this same time, the right-front corner of the bumper deformed. At 0.012 sec, post nos.
11 and 13 deflected backward. At 0.030 sec, post no. 14 deflected backward, and a dent formed on
the right-front corner of the hood. At 0.040 sec, the left-front tire was located on the slope. At 0.070
sec, the rail deformed. At 0.086 sec, the right-front tire contacted the rail. At 0.092 sec, the rail
wrapped around the front of the vehicle. At 0.098 sec, post no. 16 deflected backward. At 0.124 sec,
the right-front corner of the bumper protruded over the rail, and the blockout at post no. 13
disengaged from the system. At 0.158 sec, the vehicle began to redirect. At 0.164 sec, the blockout
at post no. 14 disengaged from the system. At 0.192 sec, the entire front bumper protruded over the

rail. At 0.258 sec, the rail wrapped around post no. 16. At this same time, the left side of the vehicle
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began to rise off the ground. At 0.298 sec, the rail caught between the right-front tire and the vehicle.
At 0.324 sec, the left-rear tire became airborne. At 0.344 sec, the entire left side of the truck was
airborne. At 0.456 sec, the vehicle yawed toward the rail. At 0.480 sec, the rear of the vehicle
pitched upward. At 0.512 sec, the vehicle exhibited significant roll clockwise toward the rail. At
0.562 sec, the rear and left sides of the vehicle continue to rise upward with the right-front tire in
contact with the rail. At 0.676 sec, the left side of the vehicle descended toward the ground. At0.732
sec, the right-rear tire was positioned over the rail. At 0.752 sec, the right-front tire folded back
under the vehicle. At 0.948 sec, the rear of the truck reached its highest point in the air. At 1.256 sec,
the left-front tire contacted the ground. At 1.266 sec, the truck was parallel with the system, at a
speed of 33.1 km/h (20.55 mph). At 1.370 sec, the left-rear tire contacted the ground. At 1.388 sec,
the right side of the vehicle remained in contact with the rail. At 1.644 sec, the vehicle exhibited roll
toward the right. At 1.798 sec, post nos. 20 and 21 deflected. At 2.076 sec, all tires of the vehicle
were back in contact with the ground. The vehicle came to rest 21.6 m (70 ft - 10.5 in.) downstream
from impact and with the right side of the vehicle against the traffic-side face of the guardrail
system. The trajectory and final position of the pickup truck are shown in Figures 20 and 26.
7.3 Barrier Damage

Damage to the barrier was moderate, as shown in Figures 27 through 32. Barrier damage
consisted of deformed guardrail posts, disengaged and fractured wooden blockouts, contact marks
on a guardrail section, and deformed W-beam rail. The length of vehicle contact along the system
was approximately 24.7 m (81 ft - 1 in.), which spanned from 64 mm (2.5 in.) upstream from the

centerline of post no. 12 through the centerline of post no. 24.
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Moderate deformation and flattening of the impacted section of W-beam rail occurred
between post nos. 13 and 18. Contact marks were also found on the guardrail between post nos. 13
and 18. A minor buckle occurred in the rail near post no. 2. A major portion of the buckling occurred
between post nos. 13 and 17. Substantial buckling of the rail occurred at post no. 18 and minor
buckling occurred between post nos. 19 and 23. The W-beam pulled off of post nos. 2, 3, 6, 7, 14
through 16, 18, and 21. Tearing was found at the post bolt slots at post nos.13 through 18. A 114-
mm (4.5-in.) long tear occurred in the top corrugation at post no. 14. A 152-mm (6-in.) long tear was
found in the top corrugation of the W-beam at post no. 17. No significant guardrail damage occurred
downstream of post no. 23.

Steel post nos. 3 through 5, 8 through 12, and 19 were twisted slightly. Post nos. 10 through
13 rotated and bent backward. Post no. 14 rotated backward and bent downstream with the top of
the post only 280 mm (11 in.) from the ground. Post no. 15 rotated 90 degrees and bent
downstream. Post no. 16 remained undeformed, but was completely uprooted from the ground. Post
no. 17 rotated and bent downstream to a 45 degree angle. Post no. 18 deflected backward. No
damage occurred to post nos. 19 through 25. The upstream anchor moved longitudinally downstream
approximately 51 mm (2 in.). All four wood BCT posts remained undamaged.

The wooden blockouts at post nos. 3 through 12 rotated slightly downstream. The wooden
blockout at post nos. 13 and 22 were split, but remained attached to the posts. The wooden blockouts
at post nos. 14 through 16 and 18 were fractured and removed from the post. The wooden blockouts
at post nos. 17, 19, 20, 23, and 24 were rotated downstream.

The permanent set of the barrier system is shown in Figure 27. The maximum lateral

permanent set rail and post deflections were 870 mm (34.25 in.) at the midspan between post nos.
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16 and 17 and 806 mm (31.75 in.) at post no. 14, respectively, as measured in the field. The
maximum lateral dynamic rail and post deflections were 1,464 mm (57.6 in.) at the midspan between
post nos. 13 and 14 and 1,002 mm (39.5 in.) at post no. 13, respectively, as determined from high-
speed digital video analysis. It should be noted that the rail was removed from the posts. The
working width of the system was found to be 2,104 mm (82.8 in.).

7.4 Vehicle Damage

Exterior vehicle damage was minimal, as shown in Figures 33 through 35. Occupant
compartment deformations to the right side and center of the floorboard were judged insufficient to
cause serious injury to the vehicle occupants, as shown in Figure 35. Maximum longitudinal
deflections of 6 mm (0.25 in.) were located near the left side of the right side floorboard. Maximum
lateral deflections of 19 mm (0.75 in.) were located near the front of the right-side floorboard.
Maximum vertical deflections of 19 mm (0.75 in.) were located near the left side of the right-side
floorboard. Complete occupant compartment deformations and the corresponding locations are
provided in Appendix C.

Damage was concentrated on the right-front corner of the vehicle. The right-front tire
disengaged from the upper control arm and rotated to parallel with the ground. The right-front wheel
well was deformed. The right-front tire bead was broken and the steel rim was severely damaged.
The right-front corner of the bumper was deformed upward and inward toward the engine
compartment, and the left-front corner of the bumper deformed away from the truck. The right-front
quarter panel encountered buckling and was pushed upward and inward into the engine
compartment. The right-front frame was buckled. The right-side door encountered scratches along

the lower portion of the door. Deformation on the cab was found near the right-side door. The truck
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bed was deformed away from the cab of the truck. The roof, hood, left side, and rear of the vehicle,
and all window glass remained undamaged.
7.5 Occupant Risk Values

The longitudinal and lateral occupant impact velocities were determined to be -6.16 m/s
(-20.20 ft/s) and -3.43 m/s (-11.27 ft/s), respectively. The maximum 0.010-sec average occupant
ridedown decelerations in the longitudinal and lateral directions were -9.49 g’s and -6.43 g’s,
respectively. It is noted that the occupant impact velocities (OIVs) and occupant ridedown
decelerations (ORDs) were within the suggested limits provided in NCHRP Report No. 350. The
THIV and PHD values were determined to be 6.90 m/s (22.64 ft/s) and 11.00 g’s, respectively. The
results of the occupant risk, as determined from the accelerometer data, are summarized in Figure
20. Results are shown graphically in Appendix D. The results from the rate transducer are shown
graphically in Appendix D.

7.6 Discussion

The analysis of the test results for test no. MGSAS-1 showed that the MGS placed 1,524 mm
(5 ft) down from the slope break point of an 8:1 slope adequately contained and redirected the 2000P
vehicle with controlled lateral displacements of the barrier system. There were no detached elements
nor fragments which showed potential for penetrating the occupant compartment nor presented
undue hazard to other traffic. Deformations of, or intrusion into, the occupant compartment that
could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the
guardrail system and remained upright during and after the collision. Vehicle roll, pitch, and yaw
angular displacements were noted, but they were deemed acceptable because they did not adversely

influence occupant risk safety criteria nor cause rollover. After collision, the vehicle’s trajectory
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revealed no intrusion into adjacent traffic lanes, as it came to rest against the guardrail. In addition,
the vehicle’s exit angle was less than 60 percent of the impact angle. Therefore, test no. MGSAS-1
conducted on the MGS placed 1,524 mm (5 ft) down from the slope break point of an 8:1 slope was

determined to be acceptable according to the TL-3 safety performance criteria of test designation

no. 3-11 found in NCHRP Report No. 350.
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0.092 sec 0.092 sec

0.562 sec 0.666 sec

Figure 21. Additional Sequential Photographs, Test No. MGSAS-1
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0948 sec
Figure 22. Additional Sequential Photographs, Test No. MGSAS-1
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Figure 23. Documentary Photographs, Test No. MGSAS-1
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Figure 24. Documentary Photographs, Test No. MGSAS-1
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Figure 25. Impact Location, Test No. MGSAS-1
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Figure 27. System Damage, Test No. MGSAS-1
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Figure 28. System Damage, Test No. MGSAS-1

50



[-SVSD

N "ON 1S9, ‘@Sewe(] [ [ YSnoIy} g "'SON 1S0d

6 931

51



-1

MGSAS

Test No.

b

Figure 30. Post Nos. 12 through 15 Damage
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Figure 33. Vehicle Damage, Test No. MGSAS-1
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Figure 34. Vehicle Damage, Test No. MGSAS-1
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Figure 35. Occupant Compartment Damage, Test No. MGSAS-1
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8 FULL-SCALE CRASH TEST NO. 2
8.1 Test MGSAS-2

The 912-kg (2,011-1b) small car impacted the MGS, placed 1.5 m (5 ft) down from the slope
break point, at a speed of 99.6 km/h (61.9 mph) and at an angle of 21.6 degrees. A summary of the
test results and sequential photographs are shown in Figure 36. The summary of the test results and
sequential photographs in English units are shown in Appendix B. Additional sequential
photographs are shown in Figures 37 and 38. Documentary photographs are shown in Figures 39
and 40.

8.2 Test Description

Initial vehicle impact was to occur between post nos. 13 and 14, or 1.46 m (4 ft - 9.5 in.)
upstream from the centerline of the splice between post nos. 14 and 15, as shown in Figure 10 and
41. Actual vehicle impact occurred 1.5 m (4 ft - 11 in.) upstream from the centerline of the splice
between post nos. 14 and 15. At 0.014 sec, post no. 14 deflected. At 0.028 sec, postnos. 13 and 15
deflected. At 0.034 sec, the left-front corner of the bumper separated from the hood. At 0.056 sec,
post no. 16 deflected. At 0.080 sec, the right-front corner of the hood protruded over the rail. At
0.082 sec, the vehicle began to redirect. At 0.098 sec, post no. 17 deflected. At 0.104 sec, the right-
front tire snagged under the rail. At 0.132 sec, post no. 18 deflected. At 0.152 sec, the vehicle
became parallel to the system, with a velocity of 84.8 km/h (52.7 mph). At 0.184 sec, the blockout
at post no. 16 twisted as the right-front tire contacted it. At 0.248 sec, the front end of the vehicle
exited the system. At 0.300 sec, the rail reached its maximum deflection and began to rebound. At
0.378 sec, the right-front tire was severely bent. At 0.390 sec, the vehicle exited the system at an

angle of 8.2 degrees and a resultant velocity of 79.1 km/h (49.1 mph). At 0.504 sec, the vehicle
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traversed away from the system. The vehicle came to rest 64.99 m (213 ft - 2.5 in.) downstream of
impact and 8.56 m (28 ft - 1 in.) laterally away from the traffic-side face of the guardrail system. The
trajectory and final position of the small car are shown in Figures 36 and 42.

8.3 Barrier Damage

Damage to the barrier was moderate, as shown in Figures 43 through 46. Barrier damage
consisted of deformed guardrail posts, contact marks on a guardrail section and posts, and deformed
W-beam rail. The length of vehicle contact along the system was approximately 6.0 m (19 ft - 8 in.),
which spanned from 1,359 mm (53.5 in.) downstream from the centerline of post no. 13 through 267
mm (10.5 in.) upstream from the centerline of post no. 17.

Contact marks, along with moderate deformation and flattening, occurred between post nos.
13 and 17. Buckling of the guardrail occurred at post nos. 15 and 16 and at the midspan between
post nos. 15 and 16. The W-beam remained attached to all of the posts. No significant guardrail
damage occurred upstream of post no. 13 nor downstream of post no. 17.

Steel post nos. 13 through 17 rotated backward. Steel post nos. 3 through 13 encountered
minor twisting. Contact marks were found on the blockouts at post nos. 14 and 15. The blockout at
post no. 16 was twisted upstream to an angle of 45 degrees. The upstream anchor moved 12.7 mm
(0.5 in.) longitudinally. All four wood BCT posts remained undamaged.

The permanent set of the barrier system is shown in Figure 43. The maximum lateral
permanent set rail and post deflections were 372 mm (14.625 in.) at the centerline of post no. 15 and
349 mm (13.75 in.) at post no. 15, respectively, as measured in the field. The maximum lateral
dynamic rail and post deflections were 635 mm (25 in.) at the centerline of post no. 15 and 635 mm

(25 in.) at post no. 15, respectively, as determined from high-speed digital video analysis. The
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working width of the system was found to be 1,177 mm (46.3 in.).
8.4 Vehicle Damage

Exterior vehicle damage was minimal, as shown in Figures 47 and 48. Occupant
compartment deformations to the right side and center of the floorboard were judged insufficient to
cause serious injury to the vehicle occupants. Complete occupant compartment deformations and
the corresponding locations are provided in Appendix E.

Damage was concentrated on the front-right corner of the vehicle. The right-side door
separated from the right-front quarter panel. The top of the right-side door was ajar. The right-front
quarter panel crushed inward toward the engine compartment. The right-side headlight was intact,
but the glass and the turn signal were fractured. The bumper shifted toward the left and was
separated from the left mount. Scratches were found along the entire right side of the vehicle and
the right corner of the front and back bumpers. The right-front tire encountered contact marks. The
right-side control arm was deformed downward. The roof, hood, left side, and rear of the vehicle,
and all window glass remained undamaged.

8.5 Occupant Risk Values

The longitudinal and lateral occupant impact velocities were determined to be -3.75 m/s
(-12.30 ft/s) and -5.31 m/s (-17.41 m/s), respectively. The maximum 0.010-sec average occupant
ridedown decelerations in the longitudinal and lateral directions were -4.03 g’s and -9.65 g’s,
respectively. It is noted that the occupant impact velocities (OIVs) and occupant ridedown
decelerations (ORDs) were within the suggested limits provided in NCHRP Report No. 350. The
THIV and PHD values were determined to be 5.93 m/s (19.46 ft/s) and 9.68 g’s, respectively. The

results of the occupant risk, as determined from the accelerometer data, are summarized in Figure
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36. Results are shown graphically in Appendix F. The results from the rate transducer are shown
graphically in Appendix F.
8.6 Discussion

The analysis of the test results for test no. MGSAS-2 showed that the MGS placed 1,524
mm (5 ft) down from the slope break point of an 8:1 slope adequately contained and redirected 820C
the vehicle with controlled lateral displacements of the barrier system. There were no detached
elements nor fragments which showed potential for penetrating the occupant compartment nor
presented undue hazard to other traffic. Deformations of, or intrusion into, the occupant
compartment that could have caused serious injury did not occur. The test vehicle did not penetrate
nor ride over the guardrail system and remained upright during and after the collision. Vehicle roll,
pitch, and yaw angular displacements were noted, but they were deemed acceptable because they
did not adversely influence occupant risk safety criteria nor cause rollover. After collision, the
vehicle’s trajectory revealed minimal intrusion into adjacent traffic lanes. In addition, the vehicle’s
exit angle was less than 60 percent of the impact angle. Therefore, test no. MGSAS-2 conducted on
the MGS placed 1,524 mm (5 ft) down from the slope break point of an 8:1 slope was determined
to be acceptable according to the TL-3 safety performance criteria of test designation no. 3-10 found

in NCHRP Report No. 350.
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0.000 sec

0.052 sec

0.120 sec

0.300 sec

0.390 sec

Figure 37. Additional Sequential Photographs, Test No. MGSAS-2
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0.0 sec

0.6 sec

0.08 sec
Figure 38. Additional Sequential Photographs, Test No. MGSAS-2
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Figure 39. Documentary Photographs, Test No. MGSAS-2
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Figure 40. Documentary Photographs, Test No. MGSAS-2
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Figure 41. Impact Location, Test No. MGSAS-2
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Figure 42. Vehicle Trajectory and Final Position, Test No. MGSAS-2
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Figure 43. System Damage, Test No. MGSAS-2
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Figure 45. Post Nos. 13 and 17 Damage, Test No. MGSAS-2
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Test No. MGSAS

9

Figure 46. Upstream Anchorage Damage

72



7-SVSDIA 'ON 189, ‘93ewre( 9[OIY2A "L 2131

73



Figure 48. Vehicle Damage, Test No. MGSAS-2
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9 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

The MGS placed on an 8:1 slope, 1,524 mm (5 ft) down from the slope break point, was
subjected to full-scale vehicle crash testing. Two full-scale vehicle crash tests were performed
according to the TL-3 safety performance criteria presented in NCHRP Report No. 350. The test
results indicate that this design is suitable for use on Federal-aid highways. However, any significant
modifications made to the design would require additional analysis and can only be verified through
the use of full-scale crash testing. A summary of the safety performance evaluation for both tests is
provided in Table 4.

The first crash test, test no. MGSAS-1, was performed with a %-ton pickup truck. The truck
was safely contained and redirected with minimal barrier deflections and damage. The truck came
to rest against the guardrail and did not intrude into adjacent traffic lanes. There was minimal
damage to the vehicle, and it was determined to not pose any significant risk to the occupants of the
vehicle. Therefore, test no. MGSAS-1 was determined to be acceptable according to the test
designation 3-11 safety performance criteria presented in NCHRP Report No. 350.

The second crash test, test no. MGSAS-2, was performed with a small car. The vehicle was
safely contained and redirected with minimal barrier deflections and damage. The vehicle showed
minimal intrusion into adjacent traffic lanes, and it was determined to not pose any significant risk
to the occupants of the vehicle. Therefore, test no. MGSAS-2 was determined to be acceptable
according to the test designation 3-10 safety performance criteria presented in NCHRP Report No.
350.

Due to the fact that the suspension does not exist in the small car DYNA model, it was

difficult to determine the critical location of the MGS on an 8:1 slope. However, when following
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the bumper trajectory of the 820C vehicle, the bumper has been shown to be above the neutral
position within 2.4 m (8 ft) of the slope breakpoint of an 8:1 slope. Thus, the critical location of the
MGS on an 8:1 slope for the 2000P impact was thought to be a reasonable CIP location for the small
car test. Potential vehicle underride was not believed to be a concern since the MGS previously has
been successfully tested at the maximum top mounting height of 813 mm (32 in.). Therefore, the
MGS with a top mounting height of 787 mm (31 in.) may be placed on an 8:1 slope. However
standard W-beam guardrail with a top mounting height of 686 mm (27 in.) should not be placed on
an embankment with a slope greater than 10:1 due to the unsatisfactory performance of standard W-
beam guardrail when tested on a slope (2) as currently provided on page 5-31 of the Roadside
Design Guide. Finally, as stated in the Roadside Design Guide, “...Caution should be taken when

considering installations on slopes as steep as [V:6H...” (3, pp.5-31).
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Table 4. Summary of Safety Performance Evaluation Results

Evaluation
Factors

Evaluation Criteria

Test
MGSAS-1

Test
MGSAS-2

Structural
Adequacy

Test article should contain and redirect the vehicle;
the vehicle should not penetrate, underride, or
override the installation although controlled lateral
deflection of the test article is acceptable.

Occupant
Risk

Detached elements, fragments or other debris from
the test article should not penetrate or show potential
for penetrating the occupant compartment, or present
an undue hazard to other traffic, pedestrians, or
personnel in a work zone. Deformations of, or
intrusions into, the occupant compartment that could
cause serious injuries should not be permitted.

The vehicle should remain upright during and after
collision although moderate roll, pitching, and
yawing are acceptable.

Longitudinal and lateral occupant impact velocities
should fall below the preferred value of 9 m/s (29.53
ft/s), or at least below the maximum allowable value
of 12 m/s (39.37 ft/s).

NA

Longitudinal and lateral occupant ridedown
accelerations should fall below the preferred value of
15 g’s, or at least below the maximum allowable
value of 20 g’s.

NA

Vehicle
Trajectory

After collision it is preferable that the vehicle's
trajectory not intrude into adjacent traffic lanes.

The occupant impact velocity in the longitudinal
direction should not exceed 12 m/sec (39.37 ft/s),
and the occupant ridedown acceleration in the
longitudinal direction should not exceed 20 g’s.

NA

The exit angle from the test article preferably should
be less than 60 percent of the test impact angle
measured at the time of vehicle loss of contact with
the test device.

S - Satisfactory
U - Unsatisfactory
NA - Not Applicable
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Figure A-1.
Figure A-2.
Figure A-3.
Figure A-4.
Figure A-5.
Figure A-6.

Figure A-7.

APPENDIX A

MGS Approach Slope Design Details, English Units
System Layout (English)
End Rail and Splice Details (English)
Post Nos. 3 through 27 Details (English)
Anchor Post Details (English)
BCT Cable Anchor Details (English)
Ground Strut and Anchor Bracket Details (English)

Rail Section Details (English)
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APPENDIX B
Test Summary Sheet in English Units
Figure B-1. Summary of Test Results and Sequential Photographs (English), Test No. MGSAS-1

Figure B-2. Summary of Test Results and Sequential Photographs (English), Test No. MGSAS-2
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APPENDIX C
Occupant Compartment Deformation, Test No. MGSAS-1
Figure C-1. Occupant Compartment Deformation Data - Set 1, Test No. MGSAS-1
Figure C-2. Occupant Compartment Deformation Data - Set 2, Test No. MGSAS-1

Figure C-3. Occupant Compartment Deformation Index (OCDI), Test No. MGSAS-1
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VEHICLE PRE/POST CRUSH INFO

Set-1
TEST: MGSAS-1 Note: Ifimpact is on driver side need to
VEHICLE: 1989 Chevy C2500 enter negative number for Y
POINT X Y Z X Y Z' DEL X DELY DEL Z
1 58.25 16.5 -1.75 58.5 16 -1.75 0.25 -0.5 0
2 58.5 225 -2 58.5 21.75 -2.25 0 -0.75 -0.25
3 57.5 28.25 -1 57.5 27.5 -1 0 -0.75 0
4 52.5 1.5 0 52.5 1.5 0 0 0 0
5 52.25 6.5 -0.25 52.25 6.5 0 0 0 0.25
6 54.5 12.25 -4.75 54.75 12 -4.75 0.25 -0.25 0
7 54.5 17 -4.5 54.75 17 -4.75 0.25 0 -0.25
8 54.75 23.25 -4.75 54.75 23 -5 0 -0.25 -0.25
9 54.75 28.5 -4.25 54.75 28 -4.5 0 -0.5 -0.25
10 48.25 6.5 -2.25 48.5 8.5 -1.75 0 0 0.5
11 48 12 -8 48 12 -7.75 0 0 0.25
12 48.5 18.25 -8 48.5 18 -7.75 0 -0.25 0.25
13 475 24 -7.5 47.5 24 -7.75 0 0 -0.25
14 47.75 29.25 -7.5 48 29.25 -7.5 0.25 0 0
15 43.5 6.5 -3.25 43.5 6.5 -2.75 0 0 0.5
16 43.5 1.5 -8.25 43.5 11.25 -8 0 -0.25 0.25
17 44.5 18.5 -8.5 44.5 18.5 -8.25 0 0 0.25
18 43 24.25 -8.25 43 24 -8.25 0 -0.25 0
19 44 28.75 -8.5 44 28.75 -8.5 0 0 0
20 38.75 6.5 -4.25 38.75 6.5 -3.75 0 0 0.5
21 37.75 11.25 -9 37.75 11 -8.5 0 -0.25 0.5
22 37.75 16.25 -9 37.75 16 -8.75 0 -0.25 0.25
23 37 21.5 -8.75 37 215 -8.5 0 0 0.25
24 36.5 26.75 -9 36.75 26.75 -9 0.25 0 0
25 30.25 6.5 -6 305 6.5 -5.5 0.25 0 0.5
26 30.25 10.75 -10 30.25 11 -9.5 0 0.25 0.5
27 29.75 16.75 -10 29.5 17 -9.5 -0.25 0.25 0.5
28 30.75 24.75 -9 30.75 25 -8.75 0 0.25 0.25
\ DASHBOARD /

D[l]:lli‘—\ . /DDDF%

Figure C-1. Occupant Compartment Deformation Data - Set 1, Test No. MGSAS-1
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VEHICLE PRE/POET CRUSEH INFO
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Figure C-2. Occupant Compartment Deformation Data - Set 2, Test No. MGSAS-1
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Occupant Compartment Deformation Index {GCDI

Test No. MGSAS-1
Vehicle Type: 1999 Chevy C2500

0OCDI = XXABCDEFGHI

XX =location of occupant compartment deformation

A = distance between the dashboard and a reference point at the rear of the occupant compartment, such as the top of the rear seat or the rear of the cab on a pickup
B = distance between the roof and the floor panel

C = distance between a reference point at the rear of the occupant compartment and the motor panel
D = distance between the lower dashboard and the floor panel

E = interior width

F = distance between the lower edge of right window and the upper edge of left window

G = distance between the lower edge of left window and the upper edge of right window

H= distance between bottom front comer and top rear corner of the passenger side window

|= distance between bottom front corner and top rear corner of the driver side window

Severity Indices

0 - if the reduction is less than 3%

1 - if the reduction is greater than 3% and less than or equal to 10 %

2 - if the reduction is greater than 10% and less than or equal to 20 %

3 - if the reduction is greater than 20% and less than or equal to 30 %
4 - if the reduction is greater than 30% and less than or equal to 40 %

e [
=l
where,
1 =Passenger Side
2 =Middle
3 = Driver Side
Location:
Measurement | Pre-Test (in.) |Post-Test {in.)| Change (in.) | % Difference| Severity Index Note: Maximum sevrity index for each variable (A-l)
Al 39.00 39.00 0.00 0.00 0 is used for determination of final 0CDI value
A2 39.50 39.50 0.00 0.00 0
A3 39.25 39.25 0.00 0.00 0
B1 46.75 46.75 0.00 0.00 0
B2 41.75 4175 0.00 0.00 0
B3 46.75 47.00 0.25 053 0
C1 58.25 58.75 0.50 086 0
c2 54.75 55.00 0.25 046 0
c3 58.00 58.00 0.00 0.00 0
D1 16.50 16.00 -0.50 -3.03 1
D2 8.50 8.50 0.00 0.00 0
D3 15.00 15.25 0.25 1.67 0
E1 62.50 62.25 -0.25 -0.40 0
E3 64.25 64.25 0.00 0.00 0
F 57.75 57.75 0.00 0.00 0
G 57.25 57.25 0.00 0.00 0
H 40.25 4025 0.00 0.00 0
| 40.00 40.00 0.00 0.00 0
XABCDEFGHI
Final OCDI: RFOOO0100000

Figure C-3. Occupant Compartment Deformation Index (OCDI), Test No. MGSAS-1
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APPENDIX D

Accelerometer and Rate Transducer Data Analysis, Test No. MGSAS-1
Figure D-1. Graph of Longitudinal Deceleration, Test No. MGSAS-1
Figure D-2. Graph of Longitudinal Occupant Impact Velocity, Test No. MGSAS-1
Figure D-3. Graph of Longitudinal Occupant Displacement, Test No. MGSAS-1
Figure D-4. Graph of Lateral Deceleration, Test No. MGSAS-1
Figure D-5. Graph of Lateral Occupant Impact Velocity, Test No. MGSAS-1
Figure D-6. Graph of Lateral Occupant Displacement, Test No. MGSAS-1

Figure D-7. Graph of Roll, Pitch, and Yaw Angular Displacements, Test No. MGSAS-1
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APPENDIX E
Occupant Compartment Deformation Data, Test No. MGSAS-2

Figure E-1. Occupant Compartment Deformation Index (OCDI), Test No. MGSAS-2
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Occupant Compartment Deformation Index (OCDI

Test No. MGEAS2
Vehicle Type: 2000 geo metro 2dr

0CDI=XXABCDEFGHI

¥ = location of accupant cormpartment defarmation

A= distance between the dashboard and a reference paint at the rear of the occupant compartrnent, such asthe top of the rear seat or the rear of the cab on a pickup

B = distance between the roof and the floor panel

= distance between a reference point at the rear of the occupant compartment and the motor panel

[ = distance between the lower dashboard and the floor panel

E = interior width

F = distance between the lower edge of right window and the upper edge of left windaw

5 = distance between the lower edge of left window and the upper edge of right window

H=distance between bottom front comer and top rear corner of the passenger side window

|=distance between bottorm front corner and top rear cormer of the driver side window

Severity Indices

0 - if the reduction i less than3%

1 - if the reduction is greater than 3% and less than or equal to 10 %
2 - if the reduction is greater than 10% and less than or equalto 20 %
3 - if the reduction is greater than 20% and less than or equalto 30 %
4 - if the reduction is greater than 30% and less than or equalto 40 %

El B4 B7Y

B B3 BB

B3 Be B9
£1,2.3

2,3
,2,3

-

@) i)

T

Bl BZ B3

AT

jam)

where,
1 =Passenger Side
2 = hiddle
3 =Driver Side
Location:
Measurement| PreTest (in) |PostTest(in)] Change (in.}] % Difference]| Severity Index Note: Maximum sevrity index for each variable (A-)
45.25 46.25 0.00 0.00 i} is used for determination of final 0CDI value
A 44.50 44,25 -0.25 -0.56 1]
A3 45.00 45.00 0.00 0.00 1]
Bl 37.00 37.00 0.00 0.00 i
B2 37.50 37.75 0.25 0.67 i
[=5] 40.75 41.00 0.25 .61 i
C1 57.25 57.00 -0.25 -0.44 i
[ 60.50 B0.25 -0.25 -0.41 1]
C3 57.00 5675 -0.25 -0.44 0
D1 20.50 2025 -0.25 1.2 1]
02 23.50 23.50 0.00 0.00 i
[5K] 18.25 15.00 -0.25 -1.37 i
El 45.50 A45.75 -0.75 -1.52 i
EJ 459,50 A459.50 0.00 0.00 i
F 44.75 45.00 0.25 0.56 1]
G 44.25 44.00 -0.25 -0.56 i
H 39.50 30.75 0.25 0.63 0
| 35.25 35.50 0.25 0.54 i
HK{ABCDEFGHI
Final OCDI: RFOODOOODOODOD
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Figure E-1. Occupant Compartment Deformation Index (OCDI), Test No. MGSAS-2




APPENDIX F

Accelerometer and Rate Gyro Analysis, Test No. MGSAS-2
Figure F-1. Graph of Longitudinal Deceleration, Test No. MGSAS-2
Figure F-2. Graph of Longitudinal Occupant Impact Velocity, Test No. MGSAS-2
Figure F-3. Graph of Longitudinal Occupant Displacement, Test No. MGSAS-2
Figure F-4. Graph of Lateral Deceleration, Test No. MGSAS-2
Figure F-5. Graph of Lateral Occupant Impact Velocity, Test No. MGSAS-2
Figure F-6. Graph of Lateral Occupant Displacement, Test No. MGSAS-2

Figure F-7. Graph of Roll, Pitch, and Yaw Angular Displacements, Test No. MGSAS-2
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