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Abstract 
Nonsense suppressors derived from Saccharomyces cerevisiae tRNATrp genes have not been identified 
by classical genetic screens, although one can construct efficient amber (am) suppressors from them 
by making the appropriate anticodon mutation in vitro. Herein, a series of in vitro constructed pu-
tative suppressor genes was produced to test if pre-tRNATrp processing difficulties could help to 
explain the lack of classical tRNATrp-based suppressors. It is clear that inefficient processing of in-
trons from precursor tRNATrp, or inaccurate overall processing, may explain why some of these con-
structs fail to promote nonsense suppression in vivo. However, deficient processing must be only 
one of the reasons why classical tRNATrp-based suppressors have not been characterized, as suppres-
sion may still be extremely weak or absent in instances where the in vitro construct can lead to an 
accumulation of mature tRNATrp. Furthermore, suppression is also very weak in strains transformed 
with an intronless derivative of a putative tRNATrp ochre (oc) suppressor gene, wherein intron re-
moval cannot pose a problem. 
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Keywords: processing, intron; Ψ+, recombinant DNA, mutagenesis, ochre, in vivo 
 
Abbreviations: am, amber; bp, base pair(s); IVS, intron or intervening sequence of tRNA gene; kb, 
kilobase(s) or 1000 bp; nt, nucleotide(s); oc, ochre; oligo, oligodeoxyribonucleotide; op, opal; PAGE, 
Polyacrylamide-gel electrophoresis; Ψ (psi), extrachromosomal allosuppressor (see section e); S., Sac-
charomyces; tRNA, transfer RNA; tRNATrp, gene encoding tRNATrp; wt, wild type 
 
Introduction 
 
In theory, many tRNA genes should be able to be mutated to encode a product capable of 
recognizing termination codons. However, all of the spontaneous nonsense suppressors in 
S. cerevisiae that have been identified by genetic means and characterized to date are alleles 
of tRNATyr, tRNASer, tRNALeu, or tRNAGln genes (reviewed in Sherman, 1982; Edelman and 
Culbertson, 1991). In contrast, for Caenorhabditis elegans all presently characterized non-
sense suppressors are derived from tRNATrp genes (Hodgkin et al., 1987), so the in vivo 
conditions influencing the tolerance for various suppressors may vary between species. 
There are many extant S. cerevisiae suppressors which have not yet been fully character-
ized, and among these it is possible that some may be derived from tRNA genes other than 
the four known classes (Liebman et al., 1976). There are many possible reasons for the fail-
ure to isolate suppressors derived from all of the candidate genes. The copy number of a 
specific tRNA gene may be too low to tolerate mutational loss of one copy (Brandriss et al., 
1975). In other cases, it is possible to invoke deficiencies in the processing of pre-tRNA 
transcripts from putative suppressor genes (reviewed in Culbertson and Winey, 1989). In 
addition, anticodon mutations may affect the identity of tRNAs (reviewed in Normanly 
and Abelson, 1989) and this could lower suppressor efficiency below the detection thresh-
old for most genetic screens, due to a possible impact on aminoacylation. 

A single base pair substitution involving the first or second nucleotide in the anticodon 
of a tRNATrp gene should be sufficient to produce a tRNA capable of reading an op or am 
codon, respectively. Kim and Johnson (1988) were the first to demonstrate that it is possible 
to make a specific and efficient am suppressor by in vitro mutagenesis of a yeast tRNATrp 
gene. They have recently demonstrated that the identity of the yeast suppressor tRNA is 
not changed by the anticodon mutation that permits recognition of the am codon (Yesland 
et al., 1993), unlike similar mutations in E. coli tRNATrp genes (Soll and Berg, 1969). Further-
more, it has been demonstrated that a reduction in the functional copy number of tRNATrp 
genes in haploid S. cerevisiae from six to five does not impair viability (Atkin et al., 1992). 
These reports tend to discount some of the possible reasons why spontaneous tRNATrp 
suppressors have not been found and, by elimination, tend to strengthen the notion that 
processing of precursor tRNAs may play an important role in suppressor efficiency, and 
thus the ability to detect these suppressors. 

In S. cerevisiae, ten tRNA gene families have been identified which contain intrans (Og-
den et al., 1984; Stucka and Feldman, 1988). The enzymology of intron removal from pre-
cursor transcripts is established and a recent description is given in Miao and Abelson ( 
1993 ). For S. cerevisiae tRNA genes, the majority of the mutations which affect transcript 
maturation are located within the mature coding sequences (reviewed by Culbertson and 
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Winey, 1989). Overall, it appears that there is a structural requirement for a single-stranded 
region at the 3′ splice junction and a base pair between the antipenultimate base in the 
intron and a base in the anticodon loop for recognition and cleavage by tRNA endonucle-
ase (Szekely et al., 1988; Baldi et al., 1991). Evidence that mutational changes to the antico-
don of a yeast tRNATrp gene may influence the accuracy or the rate of intron removal was 
provided by Atkin et al. (1990) for in vitro constructed op suppressors of a tRNATrp gene. 
The accumulation of tRNA precursors in strains transformed with tRNATrp genes which 
encode only the altered anticodon versus no such accumulation in strains transformed 
with an engineered gene carrying a second compensatory change in the intron correlated 
well with the respective suppressor activity of these constructs. In the present paper we 
have examined the ability of a series of in vitro engineered tRNATrp suppressor constructs 
to be properly spliced, and concomitantly to see if they can act as effective nonsense sup-
pressors. 
 
Results and Discussion 
 
(a) Construction of putative op, oc, and am suppressors of a S. cerevisiae tRNATrp gene 
In vitro constructed am suppressor alleles of a yeast tRNATrp gene have been reported 
(Kim and Johnson, 1988; Atkin et al., 1990) which contained only the requisite anticodon 
change, and they exhibited efficient and codon-specific suppression. In contrast, in vitro 
constructed op suppressors (Kim et al., 1990), while codon specific, were very inefficient. 
However, an op suppressor which has a second change at position 37.11 (tRNATrp) in the 
intron of the gene (fig. 1) produced a more efficient suppressor (Atkin et al., 1990). These 
results support suggestion (Ogden et al., 1984) that the conformation of pre-tRNAs may 
have an impact on intron splicing in vivo. Specifically, the formation of an aberrant struc-
ture in which the altered anticodon and the 3′ splice site are base-paired might result in a 
splicing defect. In this work, a series of templates was produced (see fig. 1) which together 
should recognize all of the termination codons. Furthermore, the putative suppressors for 
each termination codon were made in two or more ways. Some constructs contained only 
the required changes to anticodon. Others contained additional changes designed to com-
pensate for the respective anticodon change either by recreating potential intron-anticodon 
pairing or changing the 3′ splice site so as to reduce its complementarity to the anticodon 
region. An additional derivative, oc1ΔIVS, included an oc anticodon and a precise deletion 
of the intron. This construct provides an independent test of the importance of intron re-
moval in the overall level of suppression since splicing is not required to produce the ma-
ture sequence product from this template. 
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Figure 1. S. cerevisiae tRNATrp suppressors. (A) Primary sequence and secondary structure 
of S. cerevisiae tRNATrp and intron. The sites in the tRNATrp gene which were altered by 
site-directed mutagenesis are shown on this tRNA diagram. Numbering of the mature 
domain is by the convention established for tRNAPhe (Schimmel et al., 1979). The bold 
arrowheads indicate the positions of the splice sites. The anticodon is indicated by larger 
open letters and the intron sequence (between the arrowheads) is in italics. (B) The com-
binations of changes which were made in the tRNATrp gene to create the putative op, am, 
and oc suppressor alleles are shown along with the designation for each mutant allele. 
For the site-specific oligo-directed mutagenesis, a 0.41-kb HincII-HaeIII fragment of yeast 
DNA, containing a cloned tRNATrp gene, from plasmid 2BTrp (obtained from Dr. G. 
Knapp and described in Kang et al., 1980) was subcloned into the EcoRI site in M13mp19 
using EcoRI linkers. The corresponding single-stranded DNA was used as the template 
for mutagenesis using the double primer method (Stewart et al., 1985). The preparation 
and storage of plasmid and M13 DNAs, restriction analyses, subclonings, and sequencing 
were performed according to standard methodology (Sambrook et al., 1989). The oligos 
used for probes or in vitro mutagenesis were synthesized by the regional DNA synthesis 
laboratory, University of Calgary or by K.L.R. 
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(b) In vitro cleavage of pre-tRNATrp transcripts by tRNA endonuclease 
To examine the effects of the engineered changes on cleavage at 5′ and 3′ splice sites by 
tRNA endonuclease, the tRNATrp genes described in figure 1 were transcribed in vitro by a 
yeast nuclear extract, under conditions which allow 5′ and 3′ end processing but prevent 
splicing (Engelke et al., 1985). These precursors were then purified by gel electrophoresis 
and used as substrates in assays with a partially purified tRNA endonuclease fraction (fig. 
2). SUP53, an am suppressor derivative of yeast tRNALeu3 gene, served as a positive control, 
since the pattern of tRNA endonuclease cleavage products for this substrate has been well 
characterized (Gegenheimer et al., 1983). 
 

 
 

Figure 2. The pattern of cleavage products produced by tRNA splicing endonuclease di-
gestion of gel-purified precursors transcribed from the wt and engineered tRNATrp genes 
and the SUP53 control gene. The S. cerevisiae tRNA endonuclease used was equivalent to 
fraction VI of Peebles et al. ( 1983 ). The preparation of labeled, end-matured, intron-con-
taining precursor transcripts and the subsequent endonuclease reactions were carried out 
as previously described (Szekely et al., 1988), and the products were resolved on 12% pol-
yacrylamide/8 M urea gels. Labeled samples were prepared and loaded onto the gel as 
follows: (A) SUP53 (lane 1), tRNATrpwt (lane 2), op1 (lane 3), op2 (lane 4), op2′ (lane 5), 
am1 (lane 6), am2 (lane 7), oc1 (lane 8), oc2′ (lane 9), and oc2 (lane 10). (B) An autoradio-
graph from another gel showing the pattern of products resulting from tRNA splicing 
endonuclease cleavage of tRNATrpwt (lane 2), op1 (lane 3), and op2 (lane 4) precursors. 

 
With one exception, precursors obtained by transcription of the various derivatives 

comigrated with those observed for the wt template (fig. 2A). However, the relative yield 
among the various precursor forms, observed at the top of the denaturing gel, differed, 
suggesting some heterogeneity in the efficiency of end processing. The exception to this 
common pattern of precursors was the oc2 construct for which a faster migrating band was 
the primary product. This band continued to migrate ahead of the wt forms even under 
highly denaturing conditions (40% formamide/7 M urea, 65°C; Myers et al., 1985) suggest-
ing the observed difference in migration is not due to a difference in secondary or tertiary 
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structure. Instead this band may represent a shortened form arising from aberrant end 
processing or, potentially, premature transcription termination. 

Splicing endonuclease cleavage of pre-SUP53 (fig. 2A) yielded the pattern of 5′ and 3′ 
halves plus the IVS expected for this pre-tRNA. Pre-tRNATrpwt (lane 2) also yielded major 
bands of the sizes expected for the halves and the IVS from this precursor (Kang et al., 
1980). There was considerable degradation of the pre-tRNATrpop1 and op2 transcripts in 
the experiment shown (fig. 2A, lanes 3 and 4 ); however, in other experiments, bands of 
the expected sizes were observed for op2 transcripts (fig. 2B, lane 4) even though degrada-
tion bands were also prevalent in each of the lanes. Both of these precursors were poor 
substrates for the tRNA endonuclease in comparison to tRNATrpwt (fig. 2B). However, pre-
tRNATrpop2, with compensating intron/anticodon changes appeared to be cleaved slightly 
more efficiently than pre-tRNATrpop1 containing the anticodon change alone. Pre-
tRNATrpop2′, with a change at the 3′ splice site to reduce complementarity to the op anti-
codon, was an excellent substrate for the tRNA endonuclease (lane 5). Among the am de-
rivatives (am1 with the anticodon change alone and am2 with compensating 
intron/anticodon changes), cleavage by tRNA endonuclease remained efficient (lanes 6 
and 7). Among the oc derivatives, pre-tRNATrpoc1 (lane 8) with the anticodon changes 
alone was not a substrate for tRNA endonuclease. The oc2 precursor (lane 10), recovered 
in an apparently shortened form due to altered processing or transcription termination, 
was also not a substrate for tRNA endonuclease. However, the oc2′ precursor (lane 9) with 
both the oc anticodon and a noncomplementary 3′ splice site replacement, was an efficient 
tRNA endonuclease substrate. 
 
(c) Northern analysis of precursor and mature tRNATrp isolated from yeast strains trans-
formed with the putative suppressor constructs 
RNA was isolated from yeasts transformed with individual putative suppressor constructs 
and was subjected to a Northern hybridization analysis to see if any constructs caused an 
accumulation of precursor and/or mature tRNATrp in vivo. The oligo used as a probe to 
identify the precursors (fig. 3A) is complementary to 10 nt of intronic sequence and 10 nt 
of exonic sequence surrounding the 3′ splice junction, and thus will hybridize to the pre-
cursors transcribed from the six endogenous tRNATrp genes as well. Quantitation (data not 
shown) of the levels of pre-tRNATrp in yeasts transformed with the various constructs con-
sistently showed that a higher level of precursor accumulated in strains transformed with 
pYRtRNATrpop1 than those transformed with the pYRtRNATrpwt control construct. None 
of the other constructs reproducibly caused any significant accumulation of precursors 
above the control levels. In addition, yeasts transformed with pYRtRNATrpoc2 reproduci-
bly showed precursor accumulations lower than those transformed with pYRtRNATrpwt. 
This is the same construct which produced the aberrantly short pre-tRNATrp for the in vitro 
splicing assay. This fragment may be labile in vivo and the precursors detected (fig. 3A, 
lane 9) are likely contributed entirely by the endogenous tRNATrp genes. 
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Figure 3. Northern hybridization analysis of the tRNATrp transcripts isolated from trans-
formants expressing the putative suppressor constructs. The RNA used to load the gels 
was isolated by the hot phenol method (Leeds et al., 1991). Samples of RNA (10 mg) and 
0.1 mg of denatured MspI-digested pBR322 DNA (as marker) were resolved on 10% pol-
yacrylamide/8.3 M urea gels and transferred onto GeneScreen Plus membranes using the 
electroblot protocol recommended by the manufacturer (duPont Co.). The samples were 
loaded as follows: RNA isolated from cells transformed with YRp17 (lane 1); or trans-
formed with pYRtRNATrpwt (lane 2); pYRtRNATrpop1 (lane 3); pYRtRNATrpop2 (lane 4); 
pYRtRNATrpop2′ (lane 5); pYRtRNATrpam1 (lane 6); pYRtRNATrpam2 (lane 7); pYRt-
RNATrpoc1 (lane 8); pYRtRNATrpoc2 (lane 9); pYRtRNATrpoc2′ (lane 10), and pYRt-
RNATrpoc1ΔIVS (lane 11). (A) The tRNATrp precursors shown were probed with an end-
labeled oligo complementary to 10 nt of intronic sequence and 10 nt of exonic sequence 
surrounding the 3′ splice side. U5 snRNA was used as an internal control (detected by an 
end-labeled oligo probe based on known sequence, O’Connor and Peebles, 1991) and the 
MspI-digested DNA served as a size marker in lane M. (B) The same Northern blots were 
stripped and reprobed with 20-nt oligos complementary to the op (left panel), am (center 
panel), or oc (right panel) mature tRNA transcripts under stringent conditions which min-
imize mismatches between RNA/DNA hybrids, by including excess cold competitor oligo 
complementary to the wt tRNATrp. The blots were quantitated on a Betascope Blot Ana-
lyzer and cpm for pre-tRNATrp relative to the cpm of the pre-tRNATrp in lane 1 (trans-
formed with YRpl7) were determined, all standardized to the amount of U5 snRNA in 
each lane. The Northern blots were hybridized as previously described (Atkin et al., 1990), 
with some modifications for the competitive hybridizations. Varying amounts of wild 
type competitor oligo were used; only 5 × cold competitor was used in hybridizations to 
detect mature op tRNATrp while 100 × cold competitor was necessary in the hybridizations 
to detect am and oc tRNATrp. Blots were prehybridized and hybridized at 50°C and then 
washed six times for 5 min each at room temperature. Marker DNA was detected using 
end-labeled MspI-digested pBR322 as probe. 
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The ability of the constructs to promote the production of mature-sequence tRNATrp is 
shown in figure 3B. For these experiments, a radioactive probe complementary to nt 25-45 
(spanning the splice junction) was used for each of the respective putative mature tRNATrp 
molecules. Competitive hybridizations, using the relevant labeled oligo as probe and an 
excess of cold competitor oligo complementary to the wild type tRNATrp sequence, were 
done using the same Northern blots as in figure 3A. Autoradiographs of these blots show 
that a RNA similar in size to mature tRNATrp can easily be detected in strains transformed 
with plasmids pYRtRNATrpop2 and pYRtRNATrpop2′ (fig. 3B, lanes 4 and 5). Mature-sized 
tRNATrpop1 was not detected in these experiments (lane 3). This is consistent with the ina-
bility of tRNA endonuclease to cleave in vitro the pre-tRNATrp derived from tRNATrpop1, 
as well as the accumulation in vivo of tRNATrp precursors derived from this construct. 
RNAs similar in size to tRNATrp were also detected in strains transformed with pYRtR-
NATrpam1 or pYRtRNATrpam2 (fig. 3B, lanes 6 and 7), in agreement with the in vitro cleav-
age results (fig. 2A, lanes 6 and 7). Three of the four putative oc suppressor constructs (fig. 
3B, lanes 8, 10, and 11) can also direct the accumulation of spliced tRNATrp. The failure of 
the pYRtRNATrpoc2 construct (fig. 3B, lane 9) to do so is consistent with the production of 
the aberrant shorter precursor from this construct in vitro (fig. 2A, lane 10). In other gels 
(results not shown) where a radioactive oligo complementary to the wt sequence of 
tRNATrp was used as a probe, and no competitor oligo was added, a tRNA product identi-
cal in size that detected in figure 3B lanes 4–8, 10, and 11 was detected in all lanes. This is 
expected, since the wt product from the six wt tRNATrp genes would always be present. 

The results from the in vitro cleavage assay (fig. 2) generally are consistent with the in 
vivo accumulation of RNA resembling mature-sized tRNATrp (fig. 3), but there are two 
constructs which exhibit differences. The pYRtRNATrpop2 transcript was not cleaved very 
efficiently in vitro (fig. 2B, lane 4) yet in vivo this construct directed the accumulation of 
an RNA resembling mature-sized tRNATrp (see fig. 3B, lane 4) as well as pYRtRNATrpop2′ 
did. The other discrepancy is that the pYRtRNATrpoc1 transcript was not cleaved by the 
tRNA endonuclease in vitro (fig. 2A, lane 8), but yeast transformed with this transcript did 
accumulate mature tRNATrp in vivo. The differences between the in vitro and in vivo treat-
ment of transcripts suggest that there are auxiliary factors important for the overall effi-
ciency of processing tRNA precursors in vivo which are missing or seriously depleted in 
the partially purified tRNA endonuclease preparation used in the in vitro experiments. 
Further, it is possible that these factors might distinguish between precursors with subtle 
conformational differences, as might be expected from the various experimental constructs 
herein. This is consistent with the overall increase in processing in vivo (fig. 3 vs. fig. 2). 
Several candidate factors exist, which include the products of the STP1, SEN1, LOS1, TPD1, 
and PTA1 genes (Hurt et al., 1987; Wang and Hopper, 1988; Van Zyl et al., 1989; DeMarini 
et al., 1992; O’Connor and Peebles, 1992). 
 
(d) Suppressor phenotype of yeasts transformed with the in vitro engineered tRNATrp 
genes 
Both strains utilized as transformation hosts, when transformed with either pYRtRNATrp-
op2 or pYRtRNATrpop2′ exhibited inefficient op-specific suppression, whereas pYRt-
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RNATrpop1 did not produce any detectable suppression in our hands (see table I). The sup-
pression seen with the op2 and op2′ constructs was weak, as it was only observed when 
strains were transformed with pYRtRNATrpop2 or pYRtRNATrpop2′ (high copy number 
plasmids) but not with pYCtRNATrpop2 or pYCtRNATrpop2′ (single copy plasmids). Thus, 
even though pre-tRNATrpop2′ was cleaved more efficiently by tRNA endonuclease in vitro, 
suppressor activity was not increased relative to tRNATrpop2, suggesting that in vivo splic-
ing levels of the two pre-tRNAs are similar. Alternatively, it may imply that accurate splic-
ing is necessary but not sufficient to allow efficient suppression by these tRNAs. The failure 
of pYRtRNATrpop1 to promote even low levels of suppression correlates with the inability 
of its transcript to be spliced in vitro as well as the failure to accumulate RNA resembling 
mature tRNATrp in vivo. The anticodon change in pYRtRNATrpam1 does not predict any 
obvious difficulty in anticodon/intron interactions that would influence the important pa-
rameters of intron splicing, and the additional change in pYRtRNATrpam2 does not predict 
an improvement in this process. Consistent with this notion, both of these constructs direct 
the production of a tRNATrp which can act as an efficient and codon-specific suppressor 
(table I). The putative oc suppressor allele of tRNATrp (pYRtRNATrpoc1) containing the req-
uisite anticodon changes does not promote suppression of oc nonsense alleles in replica 
plate experiments (table I), consistent with previous reports (Kim and Johnson, 1990). Ad-
ditional changes in the intron sequence, intended to restore complementarity between the 
anticodon loop and the intron (pYRtRNATrpoc2) or to decrease complementarity at the 3′ 
splice junction (pYRtRNATrpoc2′), were predicted to result in efficient processing, and thus 
able to direct nonsense suppression. However, strains transformed with these constructs 
were also unable to suppress the oc alleles in either tester strain. The fail of pYRtRNATrpoc2 
to do so is understandable on the basis of the processing deficiency in the in vitro assay as 
well as the failure to produce a mature-sized tRNA in vivo. However, the product of the 
pYRtRNATrpoc2′ construct is cleaved very efficiently in vitro and RNA resembling tRNATrp 
does accumulate in vivo. Thus, the absence of suppression in this case is not easy to un-
derstand, and we must seek explanations that do not involve splicing or end-processing 
deficiencies. Furthermore, we also assayed the ability of an oc1ΔIVS construct to direct 
suppression. Cells transformed with single or multiple copy plasmids carrying this intron-
less gene were tested. Suppression was observed but only with a 2μ-based multiple copy 
plasmid (table I), and this suppression was very weak. Again splicing difficulties cannot 
be invoked, and this emphasizes the need to seek other explanations for the nonexistent or 
very low levels of suppression observed for putative oc suppressors based on tRNATrp. 
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Table I. Suppressor phenotype of yeast strains when transformed with wt and engineered 
tRNATrp genes as assayed by the replica plate technique 

Putative suppressor alleles of a tRNATrp genea 
Suppressor phenotypeb 

am oc op 
wt – – – 
op1 – – – 
op2 – – + 
op2′ – – + 
am1 + + – – 
am2 + + – – 
oc1 – – – 
oc2 – – – 
oc2′ – – – 
oc1ΔIVS – + / – – 
oc1ΔIVSc – + – 

a. The suppressor phenotypes of strains JG369-3B and JG113-5R transformed with the putative suppressor 
alleles of the tRNATrp gene were determined as described in Atkin et al. (1990). The genotypes of these two 
strains are as follows: JG369-3B; MATα, ade2-1 (UAA); can1-100 (UAA), lys2-1 (UAA), met8-1 (UAG); trpl-1 
(UAG), leu2-2 (UGA); his4-260 (UGA), ura3-52. JG113-5-R; MATα; ade2-1 (UAA); can1-100 (UAA); met8-1 
(UAG); trpl-1 (UAG); leu2-2 (UGA); his4-260 (UGA). These strains were both provided by Dr. J.-Paul Gelugne. 
The letters in brackets following the mutant genotypes identify the nonsense alleles. 
b. For the suppression data a plus (+) symbol indicates that suppression was observed only when strains were 
transformed utilizing a high-copy number plasmid vector (Yrp17 or YEp352). The + + symbol indicates that 
suppression was observed when strains were transformed with either a high-copy number plasmid or a sin-
gle-copy plasmid (YCp50). A minus (–) symbol indicates that suppression was not observed. A + / – indicates 
very weak suppression and observed only when strains were transformed with a YEp352-based vector. The 
results with each yeast strain were identical so the results are combined. 
c. In the case of the oc1ΔIVS, strain RVB-45C (Ψ+) was also transformed with pYEtRNATrpoc1ΔIVS. The geno-
type of this strain is MATα; ade2-1 (UAA); lys1-1 (UAA); trpl-1 (UAG); his3-11; leu2-3; ura3-52; (Ψ+); obtained 
from R. C. von Borstel. 

 
(e) Additional assays for oc suppression 
We attempted to devise more sensitive tests for oc suppression following the observation 
that mature-sized tRNA hybridized to a tRNATrp oc-specific probe (fig. 3B, lanes 8, 10, 11) 
in the presence of a cold competitor. A “drop test” was used, since this had previously 
been shown to be an effective method for detecting weak suppression (Shaw and Olson, 
1984). Essentially, this method involved concentrating the cells and then plating dilutions 
in 10 ml spots on selective media. Using this method, very weak oc suppression was de-
tected using pYRtRNATrpoc1, pYRtRNATrpoc2′, and pYRtRNATrpoclΔIVS transformants 
(results not shown) and these are the three oc constructs which produced a mature-sized 
tRNA. The relative efficiency of suppression in oc1 versus oc1ΔIVS transformants was 
monitored by colony color development in a RVB-45C genetic background. RVB-45C (a Ψ+ 
strain) has a suppressible oc ade2-1 marker. Colonies will be white if the oc nonsense mu-
tation in ade2-l is suppressed whereas they will be pink if suppression does not occur, due 
to accumulation of a precursor in the adenine biosynthetic pathway. The psi (Ψ+) factor is 
an extrachromosomal allosuppressor specific for oc nonsense mutations (Cox, 1977), thus 
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we would expect an enhanced level of suppression in this background. By this assay, the 
colonies containing the pYEtRNATrpoclΔIVS construct were white compared to pinkish 
white colonies of yeasts transformed with the pYEtRNATrpoc1 construct (results not 
shown). This indicated that the ade2-1 oc allele in a Ψ+ background is suppressed more 
efficiently with the construct encoding the intronless tRNATrp gene, presumably due to a 
slightly higher level of mature suppressor tRNA. Even in the best case the suppression is 
very weak, but it has been demonstrated that it is dependent on the continued presence of 
the Ψ+ factor. Compared to a control prototrophic strain, RVB-45C (harboring Ψ+) trans-
formed with pYEtRNATrpoc1LΔIVS was shown to be very sensitive to high salt in liquid 
culture (fig. 4). Hypertonic salt conditions are known to cause yeast strains to lose Ψ+ 
(Singh et al., 1979). In liquid medium where suppression must occur to allow growth of 
RVB-45C, doubling time was greatly extended with 1 M KCl and no growth was observed 
with 2 M KCl in the medium. Under similar growth regimes, the control strain was not 
affected significantly. The difference in the growth kinetics of the two strains with no 
added KCl reflects prototrophic growth versus growth due to weak suppression. All of 
these results indicate that, while suppression is very weak, it is genuine oc suppression. 
Suppression is maximal when Ψ+ is present, and cannot be measured in liquid cultures 
when Ψ+ activity is eliminated. However, none of these results provide a satisfactory ex-
planation of why oc suppression is so weak in situations where it can be detected. 
 

 
 

Figure 4. Effect of high salt concentration on the ability of a Ψ+ yeast strain to promote oc 
suppression, as monitored by growth. (A) Growth kinetics of a Ura+·Lys+ control strain 
(JG113-5R) growing in Ura– Lys– media containing no added KCl (––), 1 M KCl (––), or 2 
M KCl (––). (B) Growth kinetics of RVB-45C (Ψ+) transformed with pYEtRNATrpoc1ΔIVS 
in identical Ura– Lys– media containing no KCl (––) or 1 M KCl (––). This strain was 
unable to grow in medium containing 2 M KCl. The complete genotype of the two yeast 
strains is given in table I. 

 
(f) Conclusions 
(1) The failure of a putative op suppressor, with only the requisite anticodon change, to 
promote efficient suppression may be explained by the relative inability of the splicing 
machinery to remove the intron (from tRNATrpop1), whereas intron removal, accumulation 
of a mature-sized tRNA, and suppression are all readily detected when secondary changes 
are incorporated into the tRNATrp genes which were designed to enhance splicing efficiency 
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(op2 and op2′). The results with the oc2 construct may be explained if we assume that the 
secondary change produced an effect on overall processing, such that the precursor was 
aberrantly short. This precursor was not a substrate for the tRNA endonuclease, mature 
tRNA did not accumulate and, of course, suppression did not occur. The tRNATrpoc2′ pre-
cursor was cut efficiently in vitro and strains transformed with both this construct (oc2′) 
and oc1 accumulated a mature-sized tRNATrp; yet neither of these constructs promoted 
suppression in vivo. Furthermore, the oc1ΔIVS construct also failed to promote efficient 
suppression. Thus, oc suppression as well as op suppression are both very weak even in 
situations where they can be demonstrated. In contrast, am suppression is efficient and 
processing difficulties were neither invoked nor demonstrated. 

(2) An unanswered question is why do these suppressors operate with such vastly dif-
ferent levels of efficiency in situations where we were able to demonstrate suppression? 
The am suppressors are efficient and apparently the gene identity has not been changed 
(Yesland et al., 1993). It is a formal possibility, until experimentally clarified, that the op 
and oc changes (which both alter the first position of the anticodon) have a more drastic 
effect on tRNA identity or function than the change in the second position that was suffi-
cient to make the am suppressor. For example, the base modification 2′-O-methylcytidine 
is at the 5′ position of the wt tRNATrp anticodon (Sprinzl et al., 1989). The efficient am sup-
pressors derived from tRNATrp do not involve changes that would necessarily affect this 
base modification, whereas the inefficient oc and op suppressors both must have a uridine 
residue at this position and thus do affect this modification. The significance of this corre-
lation has not yet been explored, but there are precedents for a nucleoside modification 
deficiency in the anticodon being correlated with decreased suppressor efficiency. 

(3) Given that it is possible to create a codon-specific and efficient am suppressor in vitro 
which functions efficiently in vivo when introduced on a single copy plasmid, why are not 
am suppressors based on tRNATrp recovered in a genetic screen? Although it is possible 
that tRNATrp-derived suppressors do exist among the collections of partially characterized 
and unmapped suppressors, this possibility has yet to be fully explored. Nevertheless, it is 
difficult to map a redundant gene lacking a specific tag such as suppressor ability provides, 
so no mapping of tRNATrp genes has been reported for S. cerevisiae except for linkage group 
assignments (Atkin et al., 1992; Yesland et al., 1992). It is also possible that suppression 
mediated by a tRNATrp gene in its natural location (in vivo) is too inefficient to be detected 
due to an inherently low transcriptional activity, whereas the same gene on a plasmid is 
more active and suppression is detected. 

Several lines of experimentation could help resolve the issue. The flanking sequences of 
the six endogenous tRNATrp genes are not conserved (Riazi, 1992). Thus it will be possible 
to identify all tRNATrp genes individually and systematically disrupt them as has already 
been done for one copy (Atkin et al., 1992). The cloning of each gene also provides the 
means to study its in vitro transcriptional level as influenced by the respective flanking 
sequences. It should also be possible to replace any specific copy of a tRNATrp gene in its 
natural chromosomal context with the appropriate in vitro constructed am allele. This 
should allow us to determine whether each or every endogenous tRNATrp gene can func-
tion as a suppressor. Finally, the gene disruption experiments as done in Atkin et al. ( 1992) 
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introduce a reliable marker gene at the site which provides a way to map individual tar-
geted tRNATrp genes genetically, and this will eventually allow comparisons with mapped 
but otherwise uncharacterized nonsense suppressors in S. cerevisiae. 
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