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The ATP:Co(I)rrinoid Adenosyltransferase (CobA) Enzyme of
Salmonella enterica Requires the 2�-OH Group of ATP for Function
and Yields Inorganic Triphosphate as Its Reaction Byproduct*
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Maris V. Fonseca‡§, Nicole R. Buan‡¶, Alexander R. Horswill‡�, Ivan Rayment**‡‡,
and Jorge C. Escalante-Semerena‡§§

From the Departments of ‡Bacteriology and **Biochemistry, University of Wisconsin, Madison, Wisconsin 53706

The specificity of the ATP:corrinoid adenosyltrans-
ferase (CobA) enzyme of Salmonella enterica serovar
Typhimurium LT2 for its nucleotide substrate was
tested using ATP analogs and alternative nucleotide do-
nors. The enzyme showed broad specificity for the nu-
cleotide base and required the 2�-OH group of the ribo-
syl moiety of ATP for activity. 31P NMR spectroscopy
was used to identify inorganic triphosphate (PPPi) as
the byproduct of the reaction catalyzed by the CobA
enzyme. Cleavage of triphosphate into pyrophosphate
and orthophosphate did not occur, indicating that
triphosphate cleavage was not required for release of
the adenosylcorrinoid product. Triphosphate was a
strong inhibitor of the reaction, with 85% of CobA activ-
ity lost when the ATP/PPPi ratio present in the reaction
mixture was 1:2.5.

Adenosylcobalamin (AdoCbl,1 coenzyme B12) (Fig. 1) is re-
quired in diverse metabolic reactions (1–3). Formation of the
Co–C bond between the corrin ring and the upper ligand re-
quires the cobalt ion of the ring to be in its Co(I) oxidation state
before the 5�-deoxyadenosyl moiety of ATP can be transferred
to it. The set of reactions (two 1-electron reductions and one
adenosyl transfer) that convert corrinoids to their adenosylated

forms is known as the corrinoid adenosylation pathway, and
evidence for the existence of this pathway was first described
using crude cell-free extracts of Propionibacterium freunden-
reichii (4) and Clostridium tetanomorphum (5).

Our current understanding of the corrinoid adenosylation
pathway in S. enterica is shown in Fig. 2. In this bacterium,
corrinoid adenosylation is required for both synthesis and use
of corrinoids. It is known that de novo synthesis of the corrin
ring proceeds via adenosylated intermediates and that salvag-
ing of exogenous, incomplete corrinoids also requires a func-
tional corrinoid adenosylation pathway (6, 7). In S. enterica,
the inability to adenosylate cobalamin prevents the expression
of the ethanolamine utilization (eut) genes (8, 9), thus blocking
growth on ethanolamine as carbon and energy source (10). In
Escherichia coli, the inability to adenosylate Cbl results in the
unregulated, constitutive expression of the btuB gene, which
directs the synthesis of the outer membrane protein responsi-
ble for translocating exogenous corrinoids into the periplasmic
space of the cell (11–13).

Biochemical analysis of the reaction catalyzed by the CobA
enzyme (Fig. 2) suggested the nucleoside triphosphate bound to
the enzyme before the corrinoid substrate (14). Consistent with
this observation, the three-dimensional structure of the ter-
nary complex between hydroxocobalamin (HOCbl) and MgATP
shows that the corrinoid substrate is bound at the surface of
the active site, atop of a cavity that encloses the MgATP mol-
ecule (15). The CobA enzyme contains a P-loop motif of the
sequence GNGKGKT defined by amino acids Gly36–Thr42 (16,
17). This motif coordinates the �-, �-, and �-phosphates of the
nucleotide (15). The three-dimensional structure of CobA
shows the phosphates of ATP coordinated in opposite orienta-
tion to that found in other nucleotide hydrolases, i.e. the posi-
tion normally occupied by the �-phosphate is occupied by the
�-phosphate. This unusual mode for nucleotide binding is pro-
posed to correctly position the C-5� of the ribosyl moiety for the
nucleophilic attack by Co(I).

The work reported in this study was undertaken to establish
the identity of the phosphate byproducts of the reaction and to
begin the identification of moieties of the substrate that are
important for catalysis. The data obtained indicate PPPi is the
byproduct of the CobA reaction and demonstrate the impor-
tance of the 2�-OH group of the ribosyl moiety of ATP to the
adenosyltransfer reaction.

EXPERIMENTAL PROCEDURES

Reagents—Unless otherwise stated, all reagents were obtained from
Sigma. The ATP analog 5-mercapto-5�-deoxy-ATP (A(S)TP) was a kind
gift from G. D. Markham (Institute for Cancer Research, Philadelphia,
PA).

Purification of the CobA Enzyme—CobA was purified as described
previously without modifications (15).

* This work was supported in part by National Institutes of Health
Grant GM40313 and by a Dupont Aid-To-Education grant (to J. C. E.-
S.) and by National Institutes of Health Grant GM58281 (to I. R.). The
costs of publication of this article were defrayed in part by the payment
of page charges. This article must therefore be hereby marked “adver-
tisement” in accordance with 18 U.S.C. Section 1734 solely to indicate
this fact.

§ Recipient of a National Institutes of Health MARC Fellowship
GM17528 and an Advanced Opportunity Fellowship (AOF) from The
Graduate School of the University of Wisconsin-Madison. Present ad-
dress: Infectious Diseases Research, Eli Lilly and Co., Lilly Corporate
Center DC 1543, Indianapolis, IN 46285.

¶ A Howard Hughes Medical Institute predoctoral fellow.
� Supported by National Institutes of Health Biotechnology Grant

GM08349 and a National Science Foundation predoctoral fellowship.
Present address: Dept. of Chemistry, Pennsylvania State University,
University Park, PA 16802.

‡‡ To whom correspondence may be addressed: Dept. of Biochemis-
try, 433 Babcock Dr., Madison, WI 53706. E-mail: ivan_
rayment@biochem.wisc.edu.

§§ To whom correspondence may be addressed: Dept. of Bacteriology,
1550 Linden Dr., Madison, WI 53706. E-mail: escalante@bact.wisc.edu.

1 The abbreviations used are: AdoCbl, adenosylcoblamin; Cbl, cobal-
amin; HOCbl, hydroxocobalamin; PPPi, triphosphate; Fpr, ferredoxin
(flavodoxin):NADP� reductase (EC 1.18.1.2); FldA, flavodoxin; CobA,
ATP:co(I)rrinoid adenosyltransferase (EC 2.5.1.17); APPPP, adenosine-
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Corrinoid Adenosylation Assays—ATP analogs and alternative nu-
cleotide donors were tested as substrates for the CobA enzyme using the
potassium borohydride (KBH4)-dependent corrinoid adenosylation as-
says as described (14, 18). Briefly, reaction mixtures contained (final
volume, 1 ml): KBH4, 74 �mol; HOCbl, 50 nmol; CoCl2, 420 nmol;
MgCl2, 1 �mol; Tris-Cl, pH 8.0, at 37 °C, 200 �mol; CobA, 0.4 nmol, and
400 nmol of each nucleotide (unless otherwise stated). Reaction mix-
tures were incubated for 15 min at 37 °C. The amount of product
generated was quantified as described (14). The effect of triphosphate
on CobA activity was investigated by including increasing amounts of
triphosphate (0–3 mM) in the reaction mixture.

31P NMR Spectroscopy and Preparation of CobA Reaction Products for
31P NMR—For 31P NMR analysis, ferredoxin (flavodoxin):NADP� reduc-
tase (Fpr) enzyme and flavodoxin (FldA) protein substituted for KBH4 as
the reducing system for the generation of the co(I)rrinoid substrate of
CobA (19). The reaction mixture contained (final volume, 1 ml): HOCbl (1
�mol), ATP (2 �mol), MgCl2 (4 �mol), NADPH (2 �mol), Fpr (21 nmol),
FldA (24 nmol), CobA (12 nmol) in Tris-Cl (200 �mol) buffer, pH 8.0, at
37 °C. Reaction mixtures were incubated at 37 °C for 2 h. Samples from
reaction mixtures were transferred into 5-mm (internal diameter) NMR
tubes (Wilmad Glass, Buena, NJ). EDTA was added to a 10 mM final
concentration. The final volume of the sample was brought up to 0.6 ml
with 100% D2O (Cambridge Isotope Labs, Andover, MA).

NMR Data Acquisition—31P NMR spectra of corrinoid adenosyla-
tion assay products were obtained at 161.98 MHz using a Bruker
Instruments DMX-400 Avance console spectrometer equipped with a
9.4 T wide-bore magnet (Nuclear Magnetic Resonance Facility, Uni-
versity of Wisconsin-Madison). Spectra were Fourier-transformed
with 3-Hz line broadening. Chemical shifts were referenced to H3PO4

set to 0.0 ppm.

RESULTS AND DISCUSSION

Differences in the Base of the Nucleotide Substrate Have No
Effect on CobA Activity—To identify functional groups of the
ribose and base moiety of the nucleotide that are important for
activity, the specificity of CobA for the donor nucleotide was
assessed (Table I). It was previously shown that CobA had

FIG. 1. Chemical structure of AdoCbl.

FIG. 2. Corrinoid adenosylation pathway in S. enterica. In this model NADPH � H� is the source of reducing power to convert Co(III) to
Co(I) using ferredoxin (flavodoxin):NADP� reductase (Fpr) and flavodoxin A (FldA) proteins to perform the reductions (19). Fpr-FAD, oxidized form
of Fpr; Fpr-FADH2, hydroquinone form of Fpr; FldA-FMN, oxidized form of FldA; FldA-FMNH�, semiquinone form of FldA; PPPi, triphosphate.

FIG. 3. Interactions of MgATP within the CobA active site.
Schematic of the hydrogen bonding interactions around the MgATP
molecule in the CobA active site. Residue R51� corresponds to the side
chain of arginine from the 2-fold-related subunit. Color coding for
different atoms: O (red), C (black), N (blue), P (magenta); distances
shown in Å.

TABLE I
Use of alternative nucleotide donors by CobA

Nucleotide donor % Ratea

nmol AdoCbl min�1

ATP (adenosine-5�-triphosphate) 100
AMP (adenosine-5�-monophosphate) NMb

ADP (adenosine-5�-diphosphate) NM
ITP (inosine-5�-triphosphate) 83
dATP (2�-deoxyadenosine-5�-triphosphate) NM
dTTP (2�-deoxythymidine-5�-triphosphate) NM
dCTP (2�-deoxycytidine-5�-triphosphate) NM
dGTP (2�-deoxyguanosine-5�-triphosphate) NM
CTP (cytidine-5�-triphosphate) 150
UTP (uridine-5�-triphosphate) 125
GTP (guanosine-5�-triphosphate) 45

a Average rate for product formation under these conditions using
ATP as substrate was 0.4 nmol of AdoCbl min�1 � 0.14 nmol of AdoCbl
min�1.

b Not measurable under the assay conditions used.
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broad specificity for the donor nucleotide (14). When CTP, UTP,
and GTP were tested as substrates, product formation (relative
to the rate of ATP) was observed at rates that were 98, 88, and
37%, respectively. This broad specificity of CobA for its nucle-
oside triphosphate substrate was recently explained in light of
the few interactions between the base and the polypeptide

observed in the three-dimensional structure of the ternary
complex between HOCbl, MgATP, and CobA (15). Measure-
ments of the initial velocity of the reaction shown in Table I
were consistent with the conclusion that the specificity of the
enzyme for the base component of its nucleoside triphosphate
substrate is not high.

FIG. 4. Detection of ATP and its cleavage products in corrinoid adenosylation assay reaction mixtures. Panel A, chemical shifts
observed for peaks corresponding to the �-phosphate of ATP and the outer phosphates of PPPi in a 31P NMR spectrum of the complete reaction
mixture. Panel B, chemical shifts observed for peaks corresponding to the �-phosphate of ATP and the center phosphate of PPPi in a 31P NMR
spectrum of the complete reaction mixture. Panel C, chemical shift observed for the �-phosphate of ATP in a 31P NMR spectrum of a reaction
mixture in which the CobA enzyme was omitted. Panel D, chemical shift observed for the �-phosphate of ATP in a 31P NMR spectrum of a reaction
mixture in which CobA was omitted.

FIG. 5. Chemical shifts for standards added to the complete
reaction mixture. Panel A, chemical shifts observed for the �-phos-
phate of ATP, the outer phosphates of PPPi and PPi added to the
complete reaction mixture. Panel B, chemical shifts observed for peaks
corresponding to the �-phosphate of ATP and the center phosphate of
PPPi when these standards were added to the complete reaction
mixture.

FIG. 6. Inhibitory effect of triphosphate. Reaction conditions
were as described under “Experimental Procedures.” Amount of product
formed was calculated as described elsewhere (14, 19). The assay lack-
ing PPPi in the reaction mixture was done in quadruplicate, all other
determinations were performed in duplicate.

TABLE II
ATP analogs used as substrates by the CobA adenosyltransferase

enzyme

Analog % Ratea

nmol AdoCbl min�1

ATP (adenosine-5�-triphosphate) 100
APPPP (adenosine-5�-tetraphosphate) 93
AMPPNP (adenylyl-5�-

imidodiphosphate)
150

AMPCPP (�,�-methyleneadenosine-5�-
triphosphate)

NMb

AMPPCP (�,�-methyleneadenosine-5�-
triphosphate)

NMb

A(S)TP (5-mercapto-5�-
deoxyadenosine-5�-triphosphate)

NMb

a Average rate for product formation under these conditions using
ATP as substrate was 0.4 nmol of AdoCbl min�1 � 0.14 nmol of AdoCbl
min�1.

b Not measurable under the assay conditions used.
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The 2�-OH of the Ribosyl Moiety of ATP Is Pivotal for Enzyme
Activity—At enzyme concentrations appropriate for the meas-
urement of initial reaction velocity, 2� deoxyribonucleotides
failed to serve as substrates for CobA. At high enzyme concen-
trations (�1.3 �M), the rate of product formation was detect-
able (relative to the rate of the reaction when ATP was used as
substrate) in the following order of preference: dATP (39%),
dCTP (8%), dGTP (0.7%), and dTTP (not detectable). These
results can be explained in light of the three-dimensional struc-
ture of the CobA�MgATP complex (Fig. 3). As shown in Fig. 3,
the nucleotide is folded onto itself with the 2�-OH group of the
ribosyl moiety interacting with the �-phosphate of the nucleo-
tide. This hydrogen bond is proposed to be critical for exposure
of the C-5� carbon of the ribose to the Co(I) nucleophile. It
appears that the 2�-OH group is involved in generating a tor-
sional angle that is important for achieving the proper confor-
mation of ATP for the nucleophilic attack by the co(I)rrinoid.
The interactions of the CobA polypeptide with MgATP (Fig. 3)
also help explain the lack of enzyme activity observed when
ADP or AMP was used as substrate. The mixture of orthophos-
phate and ADP did not substitute for ATP, suggesting an
important structural role for the �–� phosphate bond in gen-
erating the correct conformation of the nucleotide substrate.
AMP is likely further affected by the lack of Mg2� coordination.

PPPi Is the Byproduct of the CobA Reaction—Fig. 4 illus-
trates chemical shifts observed in 31P NMR spectra of products
of the CobA reaction. The triplets observed at �20.9 ppm (JP-P

� 21.1 Hz) and �21.5 ppm (JP-P � 19.7 Hz) in the spectrum
obtained for the complete system (Fig. 4, panel B) correlate well
with the chemical shifts observed for the central phosphate of
authentic PPPi and the �-phosphate of ATP, respectively. In
the same spectrum, doublets corresponding to the �-phosphate
of ATP and the outer phosphates of PPPi were observed at �5.9
and �6.0 ppm, respectively (Fig. 4, panel A). The observed
chemical shifts were confirmed by addition of authentic ATP
and PPPi to the sample (data not shown). Signals with chemical
shifts corresponding to other phosphate-containing compounds
present in the reaction mixture such as NADPH and Cbl were
also observed (data not shown). The signals for PPPi were
absent in spectra obtained from a reaction mixture in which the
CobA enzyme was omitted (Fig. 4, panels C and D). These
signals were also absent in spectra obtained from a reaction
mixture in which Cbl was omitted (data not shown). On the
basis of these results, it was concluded that the byproduct of
the CobA reaction was PPPi. To investigate whether the PPPi

byproduct was further cleaved into PPPi and PPi during the
reaction, authentic PPi was added to the sample. A singlet with
a chemical shift of �6.4 ppm, corresponding to this compound
was observed (Fig. 5). This signal was not observed in the
original spectrum obtained for the complete reaction mixture
(Fig. 5, panel A). The reaction catalyzed by the CobA enzyme is
one of only two known reactions in which an adenosyltransfer
occurs (20). The ATP:L-methionine S-adenosyltransferase
(S-adenosylmethionine (AdoMet) synthetase, EC 2.5.1.6) en-
zyme catalyzes the adenosyltransfer from ATP to the sulfur
atom of methionine in a two-step reaction. The first step in this
reaction involves cleavage of the triphosphate chain of ATP
between the C-5� and the �-phosphate. In the second step,
triphosphate is hydrolyzed into PPi and Pi before the endprod-
uct of the reaction, AdoMet is released (21). The above results
obtained with the CobA enzyme suggested that unlike the
AdoMet synthetase enzyme, CobA has no detectable triphos-
phatase activity. Further support for triphosphate as the by-
product of the reaction was obtained from inhibition studies. As
shown in Fig. 6, triphosphate was a strong inhibitor of CobA
enzyme activity, with 85% of the activity lost when the ATP/

PPPi ratio in the reaction mixture was 1:2.5.
Results from Experiments with Non-hydrolyzable ATP Ana-

logs Provide Evidence for Nucleophilic Displacement of PPPi—
Several ATP analogs substituted in the triphosphate chain of
the nucleotide were tested as substrates for the CobA enzyme
(Table II). Compounds APPPP and AMPPNP were found to be
efficient substrates for CobA at rates comparable to that of
ATP, providing additional evidence that points at PPPi as sole
byproduct of the corrinoid adenosylation reaction. If CobA had
triphosphatase activity associated with it, these compounds
would be expected to be inactive as substrates for the enzyme
or affect the rate of product formation, as has been demon-
strated for AdoMet synthetase (21–23).

When �,�- and �,�-methylene-substituted derivatives of ATP
were tested as substrates for CobA, enzyme activity was not
measurable. These compounds were poor inhibitors of the en-
zyme under the conditions tested, since no inhibition of CobA
activity was detectable when they were present in the reaction
mixture at relatively high concentrations (0.5 and 1 mM, data
not shown). These results were in contrast to results obtained
with other nucleotide hydrolases where these compounds have
been found to be substrates and or inhibitors (22, 24–26). The
analog A(S)TP, however, was a strong inhibitor of CobA activ-
ity with complete inhibition of enzyme activity observed at 3 �M

A(S)TP. Inhibition by A(S)TP was expected because this analog
contains a sulfur bridge rather than an oxygen bridge between
the C-5� and the �-phosphate, making it non-hydrolyzable at
the C-5� position.

Conclusions—The results described herein further our un-
derstanding of the reaction catalyzed by the S. enterica ATP:
co(I)rrinoid adenosyltransferase (CobA) enzyme function,
which is required for de novo biosynthesis of AdoCbl and for the
assimilation of incomplete corrinoids. The crucial role of the
2�-OH group of the ribosyl moiety of ATP in CobA activity can
be readily visualized in the three-dimensional structure of the
binding site occupied by ATP. The �-phosphate of ATP is crit-
ical for positioning the target (the C-5�) for nucleophilic attack
by Co(I). The data are consistent with nucleophilic displace-
ment of the triphosphate chain of ATP. This mechanism ap-
pears to be similar to the reported one for the C. tetanomophum
co(I)rrinoid adenosyltransferase but different than the mecha-
nism reported for the P. freundenreichii enzyme. Unlike
AdoMet synthetase, CobA lacks any detectable triphosphatase
activity. This difference between AdoMet synthetase may re-
flect differences in the ease of product release between these
enzymes.
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