
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Biological Systems Engineering: Papers and
Publications Biological Systems Engineering

2001

Estimation Of Reference Crop Evapotranspiration
Using Fuzzy State Models
Lameck O. Odhiambo
University of Nebraska-Lincoln, lodhiambo2@unl.edu

R. E. Yoder
University of Tennessee, Knoxville, ryoder2@unl.edu

D. C. Yoder
University of Tennessee, Knoxville

Follow this and additional works at: https://digitalcommons.unl.edu/biosysengfacpub

Part of the Bioresource and Agricultural Engineering Commons, Environmental Engineering
Commons, and the Other Civil and Environmental Engineering Commons

This Article is brought to you for free and open access by the Biological Systems Engineering at DigitalCommons@University of Nebraska - Lincoln. It
has been accepted for inclusion in Biological Systems Engineering: Papers and Publications by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

Odhiambo, Lameck O.; Yoder, R. E.; and Yoder, D. C., "Estimation Of Reference Crop Evapotranspiration Using Fuzzy State Models"
(2001). Biological Systems Engineering: Papers and Publications. 448.
https://digitalcommons.unl.edu/biosysengfacpub/448

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/77935431?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fbiosysengfacpub%2F448&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/biosysengfacpub?utm_source=digitalcommons.unl.edu%2Fbiosysengfacpub%2F448&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/biosysengfacpub?utm_source=digitalcommons.unl.edu%2Fbiosysengfacpub%2F448&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/agbiosyseng?utm_source=digitalcommons.unl.edu%2Fbiosysengfacpub%2F448&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/biosysengfacpub?utm_source=digitalcommons.unl.edu%2Fbiosysengfacpub%2F448&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1056?utm_source=digitalcommons.unl.edu%2Fbiosysengfacpub%2F448&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/254?utm_source=digitalcommons.unl.edu%2Fbiosysengfacpub%2F448&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/254?utm_source=digitalcommons.unl.edu%2Fbiosysengfacpub%2F448&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/257?utm_source=digitalcommons.unl.edu%2Fbiosysengfacpub%2F448&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/biosysengfacpub/448?utm_source=digitalcommons.unl.edu%2Fbiosysengfacpub%2F448&utm_medium=PDF&utm_campaign=PDFCoverPages


Transactions of the ASAE
Vol. 44(3): 543–550    � 2001 American Society of Agricultural Engineers ISSN 0001–2351                           543

ESTIMATION OF REFERENCE CROP EVAPOTRANSPIRATION

USING FUZZY STATE MODELS

L. O. Odhiambo,  R. E. Yoder,  D. C. Yoder

ABSTRACT. Daily evapotranspiration (ET) rates are needed for irrigation scheduling. Owing to the difficulty of obtaining
accurate field measurements, ET rates are commonly estimated from weather parameters. A few empirical or semi–empirical
methods have been developed for assessing daily reference crop ET, which is converted to actual crop ET using crop
coefficients.  The FAO Penman–Monteith method, which is now accepted as the standard method for the computation of daily
reference ET, is sophisticated. It requires several input parameters, some of which have no actual measurements but are
estimated from measured weather parameters. In this study, we examined the suitability of fuzzy logic for estimating daily
reference ET with simpler and fewer parameters. Two fuzzy evapotranspiration models, using two or three input parameters,
were developed and applied to estimate grass ET. Independent weather parameters from sites representing arid and humid
climates were used to test the models. The fuzzy estimated ET values were compared with direct ET measurements from
grass–covered weighing lysimeters, and with ET estimations obtained using the FAO Penman–Monteith and the
Hargreaves–Samani equations. The estimated ET values from a fuzzy model using three input parameters (Syx = 0.54 mm, r2 =
0.90) were found to be comparable to ET values estimated with the FAO Penman–Monteith equation (Syx = 0.50 mm, r2 =
0.91) and were more accurate than those obtained by the Hargreaves–Samani equation (Syx = 0.66 mm, r2 = 0.53). These
results show that fuzzy evapotranspiration models with simpler and fewer input parameters can yield accurate estimation of
ET.

Keywords. Reference crop evapotranspiration, Fuzzy evapotranspiration model, Lysimeters, Penman–Monteith equation,
Hargreaves–Samani equation.

vapotranspiration (ET) is the process by which
water is transferred from the earth’s surface to the
atmosphere by evaporation from the soil, water, and
wet plant surfaces, and by transpiration through

plants. It is driven by the available energy (net irradiance),
and is limited by the rate of energy exchange between the
surface and the overlaying atmosphere (sensible and latent
heat fluxes), the available soil water, and the ability of the
plant to conduct water from the soil, to the leaf, and then to
the bulk atmosphere (Hatfield and Fuchs, 1990). The water
transfer occurs from a constantly changing surface, e.g., the
plant canopy may not completely cover the soil and increases
as the canopy develops, and the soil surface changes from a
completely wet (free water) to a completely dry (air dry) soil
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surface. The net irradiance and sensible and latent heat fluxes
also have temporal variation.

Accurate measurements of daily ET rates are needed for
irrigation scheduling. Owing to the difficulty of obtaining ac-
curate field measurements, ET is commonly estimated from
weather parameters. A few empirical or semi–empirical
methods have been developed for estimating daily reference
ET from weather parameters (Jensen et al., 1990; Hatfield
and Fuchs, 1990). The reference crop ET is converted to actu-
al crop ET using crop coefficients. Where sufficient data are
available,  the FAO Penman–Monteith method (Allen et al.,
1998) is now accepted as the standard method for the defini-
tion and computation of the daily reference evapotranspira-
tion, i.e., evapotranspiration from a grass reference crop (a
cool season grass) with specific characteristics. The FAO
Penman–Monteith  equation is a sophisticated expression (eq.
2) and requires several input parameters, some of which have
no actual measurements, but are estimated from measured
weather parameters (table 1). The simpler Hargreaves–Sa-
mani equation (Hargreaves and Samani, 1985), which re-
quires only measured maximum and minimum temperatures
in addition to estimated extraterrestrial solar irradiance, has
been recommended for general use (Hargreaves, 1994).
However, there is still no consensus on the most appropriate
method to use for estimating ET on a daily scale using sim-
pler and fewer input data. Hence, further research is required
on reliable, robust, and widely applicable approaches to esti-
mate ET on a daily scale and/or shorter periods.

E
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Table 1. Contrast between the measured data and required input parameters for the FAO Penman–Monteith equation and Model II.

Method Measured Data Input Parameter Parameter Estimation

FAO
Penman
Monteith
Equation

Incoming solar irradiance (RS) Net irradiance at the crop 
surface (Rn)

Rn is estimated as the difference between incoming and outgoing 
irradiance of both short (Rns) and long (Rnl) wavelengths. Calculation
of Rnl requires estimation of clear sky solar irradiance (Rso) and 
extraterrestrial irradiance (Ra).

Soil heat flux (G) Soil heat flux (G) For a one–day interval, G ≈ 0. For longer periods, G must be estimated
from soil heat capacity, air temperature, and effective soil depth.

Relative humidity (RH) Actual vapor pressure (ea),
Saturation vapor pressure (es),
Slope of saturation vapor
curve (∆)

The ea is estimated from RHmin and RHmax. The ae can also be 
estimated from dew point temperature. Estimation of es and ∆ requires
Tmin, Tmax, and Tmean.

Wind speed at 2 m height (u2) Wind speed at 2–m height (u2) u2 is needed in the calculation of aerodynamic and canopy resistance
constants.

Air temperature 
(Tmin and Tmax)

Minimum air temperature
(Tmin) and maximum air 
temperature (Tmax) for 24–h
period

Mean air temperature (Tmean)

Elevation Psychrometric constant (γ) Involves calculation of atmospheric pressure (P), and needs latent heat
of vaporization (λ), specific heat at constant pressure (cp), and ratio of
molecular weight of water vapor/dry air (ε).

Latitude (L) Latitude (L) L is needed in the calculation of Ra.

Day of year (J) Day of year (J) J is needed in the calculation of Ra.

Fuzzy Incoming solar irradiance (RS) Incoming solar irradiance (RS) None
Model
II

Relative humidity 
(RHmin and RHmax)

Mean relative humidity (RH) Mean relative humidity (RHmean)

Day wind speed 
at 2–m height (Ud)

Day time wind speed at
2–m height (Ud)

None

In this study, we examined the suitability of using a fuzzy
logic approach to estimate daily ET with simpler and fewer
number of parameters. The objective was to achieve an
accurate estimation of daily ET using either two or three
simple measurable parameters. Two fuzzy evapotranspira-
tion models were developed and applied to estimate
reference grass ET, one using two weather parameters, and
the other using three. Independent weather parameters from
sites representing arid and humid climates were used to test
the models. The fuzzy estimated ET values were compared
with direct ET measurements from grass–covered weighing
lysimeters and with ET estimations from the FAO
Penman–Monteith  and the Hargreaves–Samani equations.

FUZZY SETS THEORY AND ESTIMATION
Fuzzy logic was introduced by Zadeh (1965) and has been

successfully applied in expert systems, regression, and other
data analysis methodologies (Kaufmann and Gupta, 1991;
Terano et al., 1992). The concept of fuzzy logic and
estimation has been used in various types of systems.
Postlethwaite (1989) developed an estimator based on fuzzy
logic to estimate the specific growth rate of baker’s yeast for
control of fermentation in batch–fed fermentation processes.
Tao et al. (1994) developed an estimator based on fuzzy
IF–THEN rules for multidimensional multitarget tracking
with multisensor data taken in a cluttered environment. The
estimator based on the IF–THEN rules consisted of Gaussian
membership functions, a “minimum operator” to evaluate the
conjunction AND, and centroid defuzzification. Saruwatari
and Yomota (1995) developed a fuzzy based forecasting
system to estimate irrigation water requirement on paddy

fields. The system was formulated by using the fuzzy theory
based on analysis of the logic of water management, which
was composed from the experience and knowledge of
irrigation administrators.

Shabani et al. (1996) presented an approach to an
electrical power system state estimation based on the
application of fuzzy logic. Significant improvements in state
estimates were achieved by using a hybrid estimator
incorporating fuzzy logic concepts. Chuang et al. (1997) used
a fuzzy estimator to estimate the relationship between
perspective projection and kinematics in a problem of
controlling a robot to track a randomly moving object using
visual servoing techniques. Tay and Tan (1997) developed a
fuzzy system as a parameter estimator for nonlinear dynamic
functions. In the studies cited, results of simulations were
better using a fuzzy estimator than when using a linear model.

Ribeiro and Yoder (1997) used fuzzy logic concepts to
develop a fuzzy evapotranspiration estimator for an
automated irrigation control system. They used triangular
membership functions and the centroid defuzzification
method. The rules were formulated based on the existing
knowledge about ET, as well as on the relationships between
each input and ET obtained in a regression analysis. They
used two weather parameters (solar irradiance and relative
humidity) as inputs to the estimator, and obtained a squared
correlation coefficient (r2) of 0.68 between fuzzy estimated
ET and lysimeter measured ET. Their estimator was later
optimized by incorporating an adaptive neural network and
yielded an r2 of 0.74. This estimator was designed to estimate
ET for a limited range of climatic conditions found at
Crossville, Tennessee, U.S.A.
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FUZZY EVAPOTRANSPIRATION MODEL
A fuzzy ET model uses a fuzzy inference system to

process the input weather parameters to output evapotran-
spiration (ET). Such a model consists of four functional
components: a fuzzifier that transforms real numerical input
data into fuzzy sets (a process known as fuzzification), a set
of control rules (rule base) governing the relationships
between input and output parameters, an inference engine
that performs the fuzzy reasoning based on the control rules,
and a defuzzifier that transforms the fuzzy output into real
numerical numbers (a process known as defuzzification). A
complete description of the fuzzy inference process can be
found in several references, including Kaufmann and Gupta
(1991), Jang and Sun (1995), and Tsoukalas and Uhrig
(1997).

Two fuzzy ET model structures were developed, one using
two input parameters, and the other using three input
parameters.  The input parameters included measured
incoming solar irradiance (RS) in MJ m–2 d–1, percent
relative humidity (RH) computed as (RHmin + RHmax)/2, and
average daytime wind speed (Ud) in m s–1. The second model
had two intermediate parameters, i.e., equivalent evapora-
tion (EV) representing the available energy for vaporization,
and an atmospheric factor (C) representing the capacity of the
atmosphere to absorb water vapor. The input and output data
spaces were selected to include a wide variety of climates
between latitudes 60o N and 60o S (table 2). For ease of
reference in the text, the two fuzzy model structures are
denoted Model I and Model II.

MODEL I
This model used two input weather parameters, solar

irradiance (RS) and relative humidity (RH), to estimate ET
(fig. 1). In this model, an integrated effect of daytime wind
speed (Ud) and air temperature (T) on RH is assumed, i.e., the
changes in T and Ud are reflected in RH. Fuzzification was
achieved by categorizing the input and output data space for
each parameter (i.e., RS, RH, and ET) into the five fuzzy sets
shown table 3, and the degree of membership of data points
in the respective fuzzy sets was determined by the Gaussian
distribution curve (fig. 3). The control rules for estimating ET
were based on known relationships between RS, RH, and ET.
These were expressed in linguistic terms by IF–THEN
statements.  For example:

Rule 1:1 If RS is VERY LOW and RH is MEDIUM, then
ET is VERY LOW,

Rule 1:2 If RS is MEDIUM and RH is MEDIUM, then ET
is LOW,

Rule 1:3 If RS is HIGH and RH is LOW, then ET is HIGH,
etc.

The IF part of the rule statement is referred to as the
antecedent,  and the THEN part is referred to as the
consequent.

Table 2. Input and output data space used in
the fuzzy evapotranspiration models.

Input/Output Parameters Minimum Maximum Units

Solar irradiance (RS) 2 37 MJ m–2 d–1

Relative humidity (RH) 20 100 %
Wind speed (Ud) 0 10 m s–1

Evapotranspiration (ET) 0 12 mm d–1

Equivalent evaporation (EV) 0 12 mm d–1

Atmospheric factor (C) 0.5 1.5

Fuzzy
Reasoning

Radiation

Humidity

Evapotranspiration

Figure 1. Structure of fuzzy Model I using two input parameters.

MODEL II
This model used three input weather parameters, RS, RH,

and Ud, to estimate ET (fig. 2), and is based on the basic
physics of heat and vapor transfer. It assumes that ET is
driven primarily by the energy available for use in the
vaporization process. Solar irradiance (RS) is the main
energy source, so the vaporization process increases with
increasing RS and is only limited by the capacity of the
atmosphere to absorb water vapor. When the atmospheric
limitation is removed, ET is assumed equal to net solar
irradiance expressed in equivalent evaporation (EV) in mm
d–1. This can be calculated as:

EV = 1/� Ü (1 – �)RS [MJ m–2 d–1] (1)

where � is latent heat of vaporization and � is albedo for the
reference crop (� = 0.23).

The capacity of the atmosphere to take up water vapor
depends on the relative humidity of the air and wind speed.
Relative humidity and wind speed are therefore responsible
for an atmospheric factor (C) representing the capacity of the
atmosphere to absorb water vapor. In a manner similar to
Model I, fuzzification in Model II was achieved by
categorizing the data space for each input, intermediate, and
output parameter (RS, RH, Ud, EV, and C) into five fuzzy sets
(table 3). The degree of membership of data points in the
respective fuzzy sets was determined by the Gaussian
distribution curve (fig. 3). Model II consisted of two sets of
control rules for estimating the two intermediate parameters,
EV and C. The EV values were estimated from RS, and the
C values from RH and Ud. The control rules for estimating the
EV values were expressed as follows:

Rule 2:1 If RS is LOW, then EV is LOW,
Rule 2:2 If RS is MEDIUM, then EV is MEDIUM,
Rule 2:3 If RS is VERY HIGH, then EV is VERY HIGH,

etc.
Similarly, the control rules for estimating the C values

were expressed as follows:
Rule 3:1 If RH is VERY LOW and Ud is LOW, then C is

MEDIUM,

Table 3. Fuzzy sets for input and output variable space
used in the fuzzy evapotranspiration models.

Fuzzy Sets Abbreviation

Very low VL

Low LO
Medium ME
High HI
Very high VH
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Rule 3:2 If RH is MEDIUM and Ud is low, then C is LOW,
Rule 3:3 If RH is VERY HIGH and Ud is MEDIUM, then

C is VERY LOW, etc.

In Model I, ET was obtained through simple control rules
and fuzzy reasoning. In Model II, the intermediate
parameters,  EV and C were obtained through the control
rules and fuzzy reasoning, and ET was obtained by the
algebraic product T–norm operation, i.e., ET = EV Ü C. The
Mamdani fuzzy inference method (Mamdani and Assilian,
1975; Tsoukalas and Uhrig, 1997) was employed to perform
the fuzzy reasoning. A minimum operator was used to
evaluate the conjunction AND by taking the minimum of the
quantified fuzzy sets, and a truncating operator was used to
evaluate the consequent THEN part by truncating the output
fuzzy set at the level of the firing strength of the rule. The
truncated output fuzzy sets for all the fired rules were
aggregated into a single fuzzy set. The aggregate output
fuzzy set encompasses a range of output values, and was
defuzzified in order to resolve a single crisp output value
from the set. There are a number of methods for 

ET

EV

C

Radiation

Humidity

WindSpeed

Fuzzy
Reasoning

Fuzzy
Reasoning

Figure 2. Structure of fuzzy Model II using three input parameters.

0

0.5

1 VL LO ME HI VH

Spread

Center

Input/output data space

M
em

be
rs

hi
p 

va
lu

e

Min Max

Figure 3. Gaussian distribution curve membership functions for input
and output variables.

defuzzification.  The choice of defuzzification method may
have significant impact on the speed and accuracy of a fuzzy
controller (Tsoukalas and Uhrig, 1997). The centroid method
was selected to obtain the representative real non–fuzzy
value for the output.

Although the control rules were based on known
relationships between input and output variables, it was very
difficult to know the exact consequent fuzzy set for all the
conditions. The sampled input–output pairs were used to help
identify some of the consequent fuzzy sets, and trial–and–er-
ror methods were used to adjust the consequent fuzzy sets one
step up or down until the model output best fitted the sample
data. For example, the consequent fuzzy set for Rule 1:2 was
adjusted by trying “ET is VERY LOW,” “ET is LOW,” and
“ET is MEDIUM” to determine which one gave the best fit
with the sample data. The procedure was repeated for all the
consequent fuzzy sets of the control rules. The centers and
spreads for both the antecedent and consequent fuzzy sets
were fixed such that the five fuzzy sets were evenly
distributed over the data space, as shown in figure 3. The
fuzzy control rules for both models (Model I and II) were
adjusted using a part of the 1997 weather data collected at
Crossville, Tennessee. The final rules derived for Model I are
summarized in table 4, and for Model II are summarized in
tables 5 and 6.

MATERIALS AND METHODS
The two fuzzy ET models were used to estimate grass

evapotranspiration  (ET) using independent climatic data sets
from three lysimeter sites representing arid and humid
climates.  Arid locations are classified as those locations at
which the mean daily relative humidity is less than 60%, and
humid locations are classified as those locations at which the
mean daily relative humidity is greater than or equal to
60%(Jensen et al., 1990). A description of the lysimeter sites,
climates,  and locations evaluated are presented in table 7,

Table 4. Fuzzy control rules for evapotranspiration estimation
using fuzzy evapotranspiration Model I.

RS
  RH VL LO ME HI VH

VL VL LO ME HI VH

LO VL LO ME HI HI
ME VL LO LO ME ME
HI VL VL LO ME ME
VH VL VL LO LO LO

Table 5. Fuzzy control rules for atmospheric factor used
in the fuzzy evapotranspiration Model II.

RH
  WS VL LO ME HI VH

VL ME LO VL VL VL

LO ME ME VL VL VL
ME HI ME LO LO VL
HI HI HI ME LO VL
VH VH HI ME ME LO

Table 6. Fuzzy control rules for equivalent evaporation used
in the fuzzy evapotranspiration Model II.

RS VL LO ME HI VH

EV VL LO ME HI VH

https://www.researchgate.net/publication/222193242_An_Experiment_in_Linguistic_Synthesis_With_a_Fuzzy_Logic_Controller?el=1_x_8&enrichId=rgreq-080c6a518f3a7f2cd29fda88ecc64797-XXX&enrichSource=Y292ZXJQYWdlOzI3NDM0MzI5NjtBUzoyNDgyNjAwMjc3NDQyNTZAMTQzNjIwMTIxMTY0NQ==
https://www.researchgate.net/publication/222193242_An_Experiment_in_Linguistic_Synthesis_With_a_Fuzzy_Logic_Controller?el=1_x_8&enrichId=rgreq-080c6a518f3a7f2cd29fda88ecc64797-XXX&enrichSource=Y292ZXJQYWdlOzI3NDM0MzI5NjtBUzoyNDgyNjAwMjc3NDQyNTZAMTQzNjIwMTIxMTY0NQ==
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Table 7. Description of location and climates
of lysimeter sites evaluated.

Site/Date Lat.
Alt.
(m)

RS
(MJ m2 d–1)

RH
(%)

Ud
(m s–1)

T
(°C)

Crossville, Tenn.
° ′(Jul. – Sep. 1997)

(May – Jun. 1994)
35° 55′ N
35° 55′ N

573
573

19.9
22.3

79.5
78.1

1.0
1.1

21.0
17.5

Paraipaba, Brazil
(Mar. – May 1998) 3° 29′ S 30 19.0 84.8 3.2 27.6

Bushland, Texas
(May – Sep. 1998/99) 35° 11′ N 1170 23.5 59.4 4.2 22.2

where RS, RH, Ud, and T are the average incoming solar
irradiance, relative humidity, daytime wind speed, and air
temperature,  respectively, for the periods evaluated
(indicated in table 7). Based on the above conditions, the
Bushland, Texas, site was classified as arid, while the sites at
Crossville, Tennessee, and Paraipaba, Ceara, Brazil, were
classified as humid. The fuzzy estimated ET values were
compared with direct ET measurements from reference grass
lysimeters, and ET estimations from the FAO Penman–Mon-
teith (Allen et al., 1998) and the Hargreaves–Samani
(Hargreaves and Samani, 1985) equations. The comparisons
were based on daily ET values calculated from the daily
mean of the relevant climatic parameters.

The instrumentation set up for data acquisition at the sites
consisted of weighing–type lysimeters, which were used to
directly measure ET, and automated weather stations. A
summary of the characteristics of the lysimeter facilities at
each site is presented in table 8. Daily ET was determined as
the difference between lysimeter mass losses (from
evapotranspiration)  and lysimeter mass gains (from
irrigation, precipitation, or dew), divided by lysimeter area.
Solar irradiance, relative humidity, wind speed, and air
temperature were measured at adjacent weather stations.
Data from the lysimeter and the weather station were
recorded with a data logger and transferred to a personal
computer. Raw lysimeter ET data for well–watered grass
along with supporting climatic data were obtained by
personal communication with investigators working at the
sites.

Daily ET based on the FAO Penman–Monteith method
was computed as follows:
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Table 8. Summary of the characteristics of the
lysimeter facilities at the evaluated sites.

Crossville,
Tennessee

Paraipaba,
Ceara, Brazil

Bushland,
Texas

Type of lysimeter Weighing Weighing Weighing

Type of scale system Lever load 
cell[a]

Floor stand 
scale

Lever load 
cell[a]

Soil profile Monolith Reconstructed Monolith
Wall material Steel Steel Steel
Surface area (m2) 4.0 2.25 9.0
Soil depth (m) 1.8 1.0 2.3
Drainage type Free drainage Free drainage Free drainage
Sensitivity (ET mm) 0.05 0.18 0.05
[a] Counterbalance lever load cell.

where
ET = estimated grass evapotranspiration (mm d–1)
� = slope of the saturated vapor pressure curve

(kPa oC–1)
Rn = net irradiance at the crop surface (MJ m–2 d–1)
G = soil heat flux density in MJ m–2 d–1 (positive when

heat flux is toward the surface)
� = psychrometric constant (kPa oC–1)
es = saturation vapor pressure (kPa)
ea = actual vapor pressure in kPa (derived from

maximum and minimum relative humidity)
u2 = wind speed at 2–m height (m s–1)
T = mean daily air temperature at 2–m height in ³C

(T = (Tmax + Tmin)/2).
The slope of the saturation vapor pressure (�) was

calculated using mean air temperature (T), and the saturation
vapor pressure was computed as the mean between the
saturation vapor pressure at the daily maximum and
minimum air temperatures. Measured incoming solar
irradiance (RS) was used to calculate the net shortwave
irradiance (Rns) as:

( )RSRns �−= 1  (3)

and the net longwave irradiance (Rnl) as:
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Rns and Rnl were used to determine the net irradiance (Rn) for
equation 2 as:

nlnsn RRR −=  (5)

The term � is albedo (� = 0.23 for grass reference crop), � is
the Stefan–Boltzmann constant (4.90310–9 MJ K–4 m–2 d–1),
Tmax,K and Tmin,K are the maximum and minimum absolute
temperatures during the 24–hour period, and Rso is the
calculated clear–sky irradiance in MJ m–2 d–1 (Allen et al.,
1998).

The Hargreaves–Samani equation for determining daily
ET was expressed as follows:

( ) 50.08.170023.0 TDCTRAET o ×+××=  (6)

where
RA = extraterrestrial irradiance expressed in equivalent

water evaporation (mm d–1)
TD = (Tmax – Tmin)
T �C = (Tmax + Tmin)/2
Tmax and Tmin are maximum and minimum temperatures

in ³C. The values of RA for different months and latitudes are
given in Hargreaves (1994).

RESULTS AND DISCUSSION
Graphical comparisons of fuzzy estimated ET values with

lysimeter–measured  ET values show that both fuzzy models
are able to capture the trends in daily ET (figs. 4 through 7).
As can be seen, Model I ET values gave a good fit to the
lysimeter–measured  ET at Crossville (figs. 4 and 5), but
underestimated ET at both the Paraipaba (fig. 6) and
Bushland (fig. 7) stations. An overview of the plots shows
that Model II ET values gave a good fit with
lysimeter–measured  ET at all the stations evaluated.
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Figure 4. Graphical comparisons of fuzzy estimated ET and
lysimeter–measured ET at Crossville, Tennessee (1997 data).
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Figure 5. Graphical comparisons of fuzzy estimated ET and
lysimeter–measured ET at Crossville, Tennessee (1994 data).

Statistical analyses of daily ET were done to evaluate the
accuracy of the fuzzy ET models relative to lysimeter–mea-
sured ET. The statistical parameters used were the standard
error of the estimate (Syx) and the squared correlation
coefficient (r2). These statistical parameters were also used
to compare the results of the fuzzy ET models with the ET
estimations from the FAO Penman–Monteith and the
Hargreaves–Samani equations (table 9).

The standard error of the estimate (Syx) represents a rough
estimate of the average amount of estimation error, that is, the
average amount by which the estimation method will either
overestimate or underestimate the true ET given by lysimeter
measurements.  The results show that the estimation error
(Syx) varied from 0.25 to 0.97 mm for Model I, 0.22 to
0.78 mm for Model II, 0.25 to 0.66 mm for the FAO
Penman–Monteith  equation, and 0.27 to 0.87 for the
Hargreaves–Samani equation. The Syx values when data at all
the sites are combined were 0.73 for Model I, 0.54 for Model
II, 0.50 for the FAO Penman–Monteith equation, and 0.66 for
the Hargreaves–Samani equation. The results show that the
estimation error for Model II and the FAO Penman–Monteith
equation were low and consistently comparable at all the sites
evaluated.  Analysis of the estimated mean ET values, using
error bars at 5% positive and negative potential error,
indicates that the ET estimates of Model II and the FAO
Penman–Monteith  equation were not significantly different
from the lysimeter–measured ET at all the sites evaluated. On
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Figure 6. Graphical comparisons of fuzzy estimated ET and
lysimeter–measured ET at Paraipaba, Ceara, Brazil (1998 data).
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Figure 7. Graphical comparisons of fuzzy estimated ET and
lysimeter–measured ET at Bushland, Texas (1998/99 data).

the other hand, the ET estimates of Model I and the
Hargreaves–Samani equation were significantly different
from the lysimeter–measured ET at all sites except at the
Crossville site for Model I.

The squared correlation coefficient (r2) provides an
additional measure of predictive accuracy of a model. The r2

value can be interpreted as the strength of the straight–line
relationship between the estimated ET and the lysimeter–
measured ET. A high r2 value (close to 1) indicates a perfect
fit. The r2 values obtained ranged from 0.72 to 0.89 for
Model I, 0.80 to 0.90 for Model II, 0.81 to 0.88 for the
Penman–Monteith  equation, and 0.31 to 0.66 for the
Hargreaves–Samani equation. Figures 8 through 11 show the
fitted ET estimates versus lysimeter–measured ET when data
at all the sites are combined. The results show that Model II
and the FAO Penman–Monteith equation had the highest
overall predictive accuracy and that their r2 values were
consistently similar. The range of r2 values obtained with
Model II is also comparable to the range of r2 values obtained
for the FAO Penman–Monteith equation in other evaluation
studies of ET estimation methods (Jensen, et al., 1990).

The overall assessment indicates that Model II estimated
ET as precisely as the FAO Penman–Monteith equation at all
the sites evaluated, while Model I performed well only at the
Crossville site. Both Models I and II performed better than
the Hargreaves–Samani equation. Model I appear to be
site–specific and works well only within a range of Ud and T
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Table 9. Statistical analyses of daily estimated ET using fuzzy models and the Penman–Monteith and Hargreaves–Samani equations.
Location/Date No. of Data Parameter Fuzzy Model I Fuzzy Model II [a]FAO PM Equation [b]H–S Model

Crossville, Tennessee (1997) 29 Standard Error (Syx) mm 0.25 0.22 0.25 0.44

r2 0.89 0.90 0.81 0.31

Crossville, Tennessee (1994) 50 Standard Error (Syx) mm 0.57 0.46 0.35 0.72
r2 0.86 0.87 0.88 0.31

Paraipaba, Ceara, Brazil (1998) 60 Standard Error (Syx) mm 0.56 0.44 0.44 0.27
r2 0.81 0.87 0.88 0.66

Bushland, Texas (1998/99) 37 Standard Error (Syx) mm 0.97 0.78 0.66 0.87
r2 0.72 0.80 0.87 0.61

All locations combined 176 Standard Error (Syx) mm 0.73 0.54 0.50 0.66

r2 0.73 0.90 0.91 0.53
[a] FAO Penman–Monteith Equation.
[b] Hargreaves–Samani Equation.

similar to the average conditions under which it is developed.
Model I control rules can be adjusted to obtain good results
for other conditions, but again the results are not transferable.
Model II is more broad–based and gave good results
comparable to the FAO Penman–Monteith equation under
varied climatic conditions. The performance of the fuzzy
models has not been tested under extreme winter conditions.
However, Model II should work well in tropical conditions
where temperatures are generally moderate to
high, but it may need tuning (adjustment of control rules)
during very cold periods. The main advantage of Model II
over the FAO Penman–Monteith method is that it requires
fewer and simpler parameters to achieve equivalent
prediction accuracy. The contrast between the measured data
and required input parameters for the FAO Penman–Mon-
teith equation and Model II is given in table 1.

SUMMARY AND CONCLUSIONS
The objective of the study was to achieve an accurate

estimation of daily ET using simpler and fewer parameters.
Two fuzzy evapotranspiration models, using two or three
weather parameters, were developed and applied to estimate
grass ET. Independent weather parameters from sites
representing arid and humid climates were used to test the
models. The fuzzy estimated ET values were compared with
direct ET measurements from grass lysimeters and ET
estimates with the FAO Penman–Monteith and Hargreaves–
Samani equations. The results show that a fuzzy model with
two input parameters is site–specific, and a fuzzy model with
three input parameters is broad–based. Both models
performed better than the Hargreaves–Samani equation in
estimating daily ET. The fuzzy model with three input
parameters achieved accurate daily ET estimation compara-
ble to the FAO Penman–Monteith equation at all the sites
evaluated. The main advantage of Model II over the FAO
Penman–Monteith  method is that it requires simpler and
fewer parameters to achieve equivalent prediction accuracy.

In further work, the authors are optimizing fuzzy ET
Model II through neural training with input–output
examples. This will provide a systematic way of tuning the
membership functions, and extracting the fuzzy rules to
make them more transferable from one site to another.
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