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Emerging roles for hyaluronidase in cancer metastasis and 
therapy

Caitlin O. McAtee, Joseph J. Barycki, and Melanie A. Simpson*

University of Nebraska, Department of Biochemistry

Abstract

Hyaluronidases are a family of five human enzymes that have been differentially implicated in the 

progression of many solid tumor types, both clinically and in functional studies. Advances in the 

past five years have clarified many apparent contradictions, (1) by demonstrating that specific 

hyaluronidases have alternative substrates to hyaluronan (HA) or do not exhibit any enzymatic 

activity, (2) that high molecular weight HA polymers elicit signaling effects that are opposite 

those of the hyaluronidase-digested HA oligomers, and (3) that it is actually the combined 

overexpression of HA synthesizing enzymes with hyaluronidases that confers tumorigenic 

potential. This review examines the literature supporting these conclusions and discusses novel 

mechanisms by which hyaluronidases impact invasive tumor cell processes. In addition, a detailed 

structural and functional comparison of the hyaluronidases is presented with insights into substrate 

selectivity and potential for therapeutic targeting. Finally, technological advances in targeting 

hyaluronidase for tumor imaging and cancer therapy are summarized.
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1. Introduction

Hyaluronan (HA) is abundant as a polymer in joint and tissue matrices (Fraser et al., 1997; 

Laurent et al., 1996), where its roles in hydration, cushioning, and shock absorption have 

been well studied. Seemingly contrary to this architectural role, HA has also been well 

defined as a specific biological stimulus, critical for facilitating cellular proliferation and 

motility (Toole, 1997). A dramatic illustration of this role was elegantly demonstrated in 

embryonic heart development, in which HA is both a migration substrate and a signal for 

EMT, promoting the timed transformation and movement of pericardial cells to form the 

atrioventricular septum (Camenisch et al., 2000). HA is a simple linear polymer of 

alternating glucuronic acid and N-acetylglucosamine that can be repeated several hundred 

times. This relative chemical homogeneity may seem difficult to reconcile with the array of 

functional outcomes in which HA is implicated. However, advances in the past 20 years 

have revealed that the information content of the HA stimulus is highly context dependent 
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and may contribute radically different phenotypic outcomes based on processing or 

degradation by hyaluronidase enzymes and reactive oxygen species, and differential 

engagement of cell surface receptors and intracellular signaling cascades.

Newly synthesized HA polymers are generated by HA synthases HAS1, HAS2, and HAS3, 

which are integral plasma membrane enzymes with an intracellular active site that catalyzes 

alternating monosaccharide addition to an average mass of 100–2,000 kDa (Itano et al., 

1999), concurrent with extrusion of the polymer to the exterior of the cell. Normal HA 

synthesis is activated transiently for cell division or motility, after which HA is rapidly 

cleared from the site by endocytic uptake and/or hyaluronidase-catalyzed hydrolysis. There 

are five human protein-coding sequences assigned to the hyaluronidase family on the basis 

of overall homology and active site conservation (hyal1-hyal4 and PH20)(Csoka et al., 

2001). Three of these have measurable activity for endolytic HA hydrolysis, one acts 

primarily on chondroitin sulfate, and activity of the fifth has not yet been determined but it is 

inactive toward HA. We discuss these enzymes in detail below.

Cellular responses to HA polymers and HA oligosaccharides are executed through multiple 

mechanisms, involving both cytoskeletal reorganization upon direct binding of HA to 

surface receptors such as CD44 (Aruffo et al., 1990; Bourguignon et al., 2000; Legg et al., 

2002), and receptor-mediated internalization of HA-bound complexes through endosomal 

pathways (Harada and Takahashi, 2007; Tammi et al., 2001). These complex receptor 

mediated events and their aberrant behavior in cancer are the subject of several reviews 

within this volume. Through these receptors, specific sizes and quantities of HA have 

opposing impact on cell growth and tissue remodeling. For example, HAS overexpression 

leads to HA polymer accumulation that can promote tumor growth and/or metastasis (Enegd 

et al., 2002; Itano et al., 2004; Jacobson et al., 2002; Kosaki et al., 1999). These effects of 

HA are dependent on its steady state levels, and excess HA polymer suppresses tumor 

growth (Bharadwaj et al., 2007; Itano et al., 2004). Depending on actual chain length, HA 

oligomers may promote proliferation and angiogenesis, or induce apoptosis (Zeng et al., 

1998). In this review, we will discuss hyaluronidase-catalyzed processing of HA polymers 

to shorter fragments and oligomers and their effects on functional outcome.

2. Of mole rats and men: insights about hyaluronan and cancer

2.1 Hyaluronan and hyaluronidase accelerate human cancers

Respective functions of HA polymers and HA oligomers, resulting from altered gene 

expression of HAS or Hyal, respectively, have been carefully dissected in functional studies 

of cancer progression. The clinical significance of concurrent excess HA and Hyal 

overexpression in resected or biopsied human tissue specimens confirms the relevance of 

such mechanisms for human cancer. HA accumulation is a clinical feature of prostate 

cancers of Gleason sum >4, regardless of the patient’s hormone status. However, HA 

detection is confined to the stromal compartment until later stages of cancer, when HA can 

be observed in association with abnormal glandular epithelial cells as well (Aaltomaa et al., 

2002; Lokeshwar et al., 2001). Overexpression of Hyal1, combined with excess HA 

detection, clinically predicts prostate cancer biochemical recurrence and reduced five-year 

survival (Ekici et al., 2004; Gomez et al., 2009; Posey et al., 2003). Combination of Hyal1 

McAtee et al. Page 2

Adv Cancer Res. Author manuscript; available in PMC 2015 May 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and HAS2 expression is prognostic for bladder cancer recurrence and expression of Hyal1 is 

an independent marker for disease-specific mortality in this study (Kramer et al.). Levels of 

Hyal1 expression measured in clinically invasive resected prostate tumors are tumor 

promoting in mice (Lokeshwar et al., 2005). Similarly, the combined overexpression of 

HAS and either Hyal1 (Tan et al., 2011a) or Hyal2 (Udabage et al., 2005) is specifically 

observed at the invasive front in human breast cancer and associated functionally with breast 

cancer progression in mice.

Excess HA suppresses tumor growth in the absence of hyaluronidase. Stable HAS 

overexpression in prostate carcinoma cells that normally make negligible HA and HAS 

significantly reduces tumor take and tumor growth kinetics in either the subcutaneous 

(Bharadwaj et al., 2007; Simpson, 2006) or the orthotopic primary injection site (Bharadwaj 

et al., 2009). In orthotopically implanted animals that bore tumors, tumor vascularity was 

not appreciably different in HAS-overexpressing tumors and lymph node metastasis was not 

observed. Accumulation of HA in the tumors suggested poor clearance of HA produced by 

HAS-overexpressing tumor cells is antiproliferative. In fact, tumor cell proliferation was 

found to be inversely and temporally coincident with HA production, and these effects could 

be reversed either by coexpression with Hyal1 or exogenous hyaluronidase addition. 

Moreover, exogenously added HA did not affect cell growth. This implies that HA 

production within a tumor must be altered at the level of the tumor cell to impact growth, 

while the sources of Hyal1 could be numerous.

In contrast to HAS overexpression, HAS+Hyal1 co-overexpression potentiates both 

tumorigenesis and metastasis (Bharadwaj et al., 2009; Kovar et al., 2006). Prostate tumor 

cells that produce endogenous large quantities of HA polymer are more metastatic to lymph 

nodes when injected intraprostatically in mice, but only if they express Hyal1 (Patel et al., 

2002). Low HA-producing prostate tumor cells are normally not metastatic, but when 

transfected with Hyal1 alone, cells disseminated rapidly to lymph nodes following 

orthotopic implantation (Kovar et al., 2006). When these cells co-overexpressed HAS and 

Hyal1, there was a 6-fold increase in tumor size and all tumors exhibited lymph node 

metastasis. Knockdown of HA synthesis abrogated ≈90% of spontaneous lymph node 

metastasis of highly metastatic prostate tumor cells (McCarthy et al., 2005). Thus, HA 

production by tumor cells in prostate cancer may enhance the aggressive potential of the 

tumor by providing substrates for Hyal1-dependent autocrine proliferation. However, 

stromal HA production, activated by cytokines, may also serve to recruit macrophages to 

tumor sites and thereby enhance angiogenesis indirectly. Macrophages can induce 

degradation of HA polymers to oligomers through a combination of hyaluronidase-mediated 

cleavage and reactive oxygen species induced HA chain scission (Ohnuma et al., 2009).

Mechanistic studies in vitro have provided insights to the correlate processes of tumor 

progression impacted by HAS and Hyal. Coexpression of Hyal1 with HAS2 or HAS3 

diminished HA retention, but restored rapid proliferation in culture that was suppressed by 

HAS, which supports a combined role for excess HA synthesis and processing in 

maximizing unrestricted growth of prostate cancer cells. Stable HAS transfectants retain HA 

at the cell surface, grow significantly more slowly in culture, and exhibit 50–90% reduced 

adhesion and motility on extracellular matrix protein substrates. Adhesion is dependent on 
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differential engagement and cell surface presentation of β1 integrin receptors, which also 

alter motility. Integrin binding to ECM ligands is linked both to motility and to cell viability, 

and in fact, HAS overexpressing cells have higher levels of p21/p27 cyclin-dependent kinase 

inhibitors and commensurate increased time to S phase in cell cycle analysis (Bharadwaj et 

al., 2011). These effects were opposite in Hyal1 overexpressing tumor cells, which did not 

have altered adhesion receptor expression, were more motile and exhibited more rapid cell 

cycling. It is apparent that uncleared excess HA accumulation as a result of HAS 

overexpression can lead to alterations in cell surface receptor function.

2.2 Naked mole rats resist cancer

Validation of the respective functions of HA in tumor suppression and hyaluronidase in 

eliminating protection against tumorigenic insults was provided recently from an unexpected 

source: the naked mole rat, a mouse-sized hairless organism with a 20–30 year lifespan. 

Naked mole rats are resistant to cancers of any kind, whether exposed to chemical 

carcinogens, ultraviolet irradiation, injected tumor cells, or other type of cancer-inducing 

insult. One protective element in mole rats was found to be an unusually high level of 

stromal, interstitial, and subcutaneous HA of very high molecular mass, nearly double the 

average size of HA polymers found in humans and other rodents (Tian et al., 2013). The 

quantity of HA production was attributable to elevated expression of a single isozyme 

orthologue of the human HA synthase HAS2, which also produces HA of high molecular 

mass in humans and other mammals. Two substitutions at the HAS2 putative active site, 

both serine residues that are conserved glutamine residues among other mammalian HAS2 

orthologues, may promote increased processivity in the naked mole rat HAS2, but this has 

not yet been experimentally demonstrated. Also contributing to the steady state levels of 

polymeric HA is that the hyaluronidase activity of all tissues tested in the mole rat is 

significantly lower than in human cells or other rodent tissues. Therefore, the mole rats do 

not degrade HA appreciably.

Importantly, naked mole rat skin fibroblasts can be transformed by overexpression of 

constitutively active ras and SV40 large T antigen, and will grow in culture, but not in soft 

agar or in mice. These cells became tumorigenic and grew anchorage independently when 

their high level of HA polymer production was reduced by knocking down HAS2, or 

antagonized by increasing HA turnover with overexpression of hyaluronidase (Tian et al., 

2013). This is consistent with results discussed above in human breast and prostate cancers 

overexpressing HAS, which suppresses tumor growth, while concurrent HA synthesis and 

turnover with both HAS and hyaluronidase present, significantly accelerates tumor growth 

and metastasis. The authors further confirmed in vitro that the growth suppressive response 

to HA, manifest as early contact inhibition, was dependent upon signaling through the 

known axis of the CD44 HA receptor, Nrf2, and ultimately p16INK4a. These results are 

important because the respective roles for HAS2 and Hyal2 in naked mole rats were 

identified through unbiased approaches that validate mechanisms defined in systems that are 

not truly cancer resistant. Thus, HA turnover as a cause of cancer progression, and the 

absolute cancer-protective role of intact HA polymers, are concepts that could be firmly 

established in the intact naked mole rat, which has not been possible in cancer-susceptible 

organisms.
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3: Hyaluronidase Expression in Cancer

3.1 Hyal1

The expression and functional importance of hyaluronidases in cancer has been most widely 

characterized with respect to the Hyal1 enzyme. Hyal1 is normally expressed in many cell 

types and is found within cells, partially compartmentalized to vesicles that traffic in a 

manner distinct from clathrin or caveolin endosomal routes, and partially to lysosomes 

((Puissant et al., 2014) and McAtee, et al, submitted). As such, its role in housekeeping 

levels of HA and glycosaminoglycan (GAG) turnover is well accepted. However, Hyal1 is 

also a secreted protein that can be found in tumor interstitial fluid (Lokeshwar et al., 2005; 

Tan et al., 2011a) and in conditioned media of tumor cells in culture (Lokeshwar et al., 

2005; Simpson, 2006; Tan et al., 2011b), so its utility as a diagnostic and prognostic 

biomarker has been extensively validated and exploited.

Genitourinary cancer—Hyal1 is an accurate urinary diagnostic marker for bladder 

cancer, because it is significantly overexpressed in tumors and shed to the urine of cancer 

patients (Eissa et al., 2012a; Eissa et al., 2010; Eissa et al., 2012b). Hyal1 mRNA was 

increased 4- to 16-fold in bladder cancer specimens, and elevated Hyal1 expression 

predicted metastasis and mortality (Kramer et al., 2011). In addition, higher expression of 

Hyal1 correlated with bladder cancer progression to muscle invasion (Kramer et al., 2010). 

In prostate cancer, Hyal1 expression in biopsy samples predicted recurrence (Gomez et al., 

2009).

Colorectal cancer—Hyal1 was detected in serum samples from colorectal carcinoma 

patients, where serum Hyal1 was reduced in cancer patients compared to levels in normal 

samples (Kolliopoulos et al., 2013). This phenomenon could be attributable to localization 

of the free Hyal1 at the primary tumor site rather than in the circulation. A separate study 

showed that multiple isoforms of Hyal (Hyal1, 2, 3, and PH-20) had increased activity in 

colorectal cancer patient samples and the expression of Hyal1 and Hyal2 was especially 

associated with more aggressive stages of cancer (Bouga et al., 2010).

Breast cancer—Clinically, Hyal1 expression can be used to predict invasive breast cancer 

progression in patients with benign ductal hyperplasias (Poola et al., 2008). Hyal1 

overexpression in breast cancer enhances motility and anchorage independent growth in 

vitro, and angiogenesis in vivo (Tan et al., 2011b). Tumors in mice contained excess HA, 

resulting from increased HA fragment production by overexpression of Hyal1. Hyal1 levels 

are high in breast cancer cell lines MDA-MB-231 and MCF-7, and also in metastatic lymph 

nodes of breast cancer patients (Tan et al., 2011a). Knockdown of Hyal1 in MDA-MB-231 

and MCF-7 lines decreased invasion, adhesion, proliferation, and xenograft tumorigenesis, 

which confirms its role as a tumor promoter in this cancer type.

Ovarian cancer—Hyaluronidase activity and Hyal1 transcript levels are elevated in 

mucinous and clear cell epithelial ovarian cancers relative to benign or normal ovarian 

tissue, concurrent with decreased expression of estrogen receptor ERα (Yoffou et al., 2011). 

When ERα was overexpressed, Hyal1 expression decreased by approximately half, 
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suggesting a loss of ERα function may be a mechanism by which Hyal1 expression becomes 

elevated in these tumors (Yoffou et al., 2011). In grade 3 serous ovarian cancer, levels of 

Hyal1 transcript are lower and HA staining consequently higher in comparison to normal 

ovary (Nykopp et al., 2009). Thus, the expression of Hyal1 is associated with a range of 

malignant phenotypes, even within the same tissue.

Pancreatic and lung cancers—A study of pancreatic ductal adenocarcinoma showed a 

correlation between modest Hyal1 expression and lower survival rates (Cheng et al., 2013). 

In the same study, accumulation of HA was found enhanced in cancerous tissues compared 

to normal tissues. Hyal1 and Hyal3 were also confirmed to have high expression in lung 

cancer cells when compared to normal control and stromal cells (de Sa et al., 2012). These 

Hyals, as well as the HAS proteins, are predicted to have a mechanistic role in the 

invasiveness of lung cancer (de Sa et al., 2013). Defining the correlation between cancer 

stage, HA production, and Hyal expression could contribute to the development of more 

individualized treatments for cancer patients.

Hyal1 splice variants—Hyal1 can undergo alternative splicing, and its splice variants 

have also been studied in cancer. Hyal1 splice variants are enzymatically inactive because 

they are all missing a 30 amino acid region that is required for wild type activity (Lokeshwar 

et al., 2002). The Hyal1-v1 splice variant has been studied in a bladder cancer model, where 

it is proposed that it forms a complex with wild type Hyal1 and thus lowers its activity, 

causing decreased growth and increased apoptosis (Lokeshwar et al., 2006). Differential 

expression of many of the Hyal splice variants is also associated with cancer outcomes. In a 

study of lung carcinomas, a better prognosis was associated with higher expression of the 

Hyal3v1 splice variant, whereas poor prognosis correlated with expression of Hyal1 wild 

type (de Sa et al., 2012). Hyal1-v3, Hyal3-v1, and Hyal3-v2 splice variants were also shown 

to be associated with low tumor recurrence and low Gleason score in prostate cancer (de Sa 

et al., 2009).

3.2 Hyal2

Hyal2 expression has been more recently correlated with progression of multiple cancers 

with the availability of isozyme-specific antibodies. In some cases, loss of expression has 

been reported. For example, in a small scale study of human lung cancer, loss of Hyal2 

expression correlated with the presence of tumors (Li et al., 2007). Similarly, mRNA levels 

of Hyal2 were reduced in endometrial cancer relative to normal tissue (Nykopp et al., 2010). 

In contrast, expression of Hyal2 was significantly increased in pre-malignant and malignant 

melanomas (Siiskonen et al., 2013), and in breast cancer specimens (Tan et al., 2011a). 

Hyal2 was specifically expressed at the expanding margins of invasive breast cancer 

(Udabage et al., 2005).

Epigenetic modifications controlling Hyal2 expression have also been examined in cancer 

biomarker discovery. The methylation profile of numerous genes including Hyal2 can be 

used to identify normal versus head and neck squamous cell carcinoma (Langevin et al., 

2012). Hyal2 splice variants also show varying expression in gastric cancer samples 

(Ohnuma et al., 2009). Presence of the splice variant Hyal2ex2-3 was associated with gastric 
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tumor cell lines (Ohnuma et al., 2009). This splice variant is found in the 5′UTR of the 

Hyal2 gene, which may contribute to its differential expression in cancerous and normal 

tissues (Ohnuma et al., 2009).

Hyal2 is GPI-anchored at the plasma membrane and associated with cholesterol-rich lipid 

rafts (Andre et al., 2011), where it acts in complex with CD44 and Hyal1 to promote uptake 

and endocytic internalization of HA (Harada and Takahashi, 2007). Overexpression of 

Hyal2 in fibroblasts has been shown to reduce pericellular retention of HA and 

proteoglycan-rich matrix, partially by increased turnover and partly through loss of CD44 

from the cell surface (Duterme et al., 2009). In astrocytoma cells, the overexpression of 

Hyal2 significantly accelerated tumor growth through enhanced angiogenesis upon 

implantation in the HA-rich intracerebral microenvironment (Novak et al., 1999). As in 

breast cancer, Hyal2 was associated with increased invasive protrusions in the Hyal2-

overexpressing astrocytoma tumors. Results of Hyal2 manipulation in these models are 

reproduced in the naked mole rat model, in which normally non-tumorigenic skin fibroblasts 

became highly tumorigenic upon Hyal2 overexpression when implanted in HA-rich tissue 

(Tian et al., 2013).

Hyal2 has been shown to associate with RON tyrosine kinase in epithelial cells, sequestering 

it at the plasma membrane and suppressing its activity (Danilkovitch-Miagkova et al., 2003). 

Upon ligation of Hyal2 by infection with a transforming sheep retrovirus, RON kinase was 

released and activated EMT through the Akt/ERK pathway. Since the region of Hyal2 

required for viral recognition is proximal to the active site (Duh et al., 2005), it is probable 

that ligation of Hyal2 by HA or other GAGs triggers signaling through RON kinase. HA-

ligated Hyal2 may also signal through the WOX1 (a.k.a.WWOX) apoptosis inducer and 

Smad4 (Chang et al., 2010; Hsu et al., 2009). In these studies, it was suggested that binding 

of TGF-β1 to Hyal2 at the plasma membrane caused WOX1 association and complex 

formation, leading to nuclear translocation and induction of apoptosis through WOX1 

association with nuclear transcription factors including p53, ErbB2, and ErbB4 (Hsu et al., 

2009). However, the interaction between WOX1 and Hyal2 was found to occur in the Hyal2 

catalytic domain, which would not be expected to be available for binding to the 

intracellular WOX1 if it was engaged on the cell surface by TGF-β1, so the physiological 

significance of this mechanism needs further examination. It is still possible that the 

interaction of Hyal2 with WWOX protein at the plasma membrane could prevent it from 

functioning as a tumor suppressor (Hsu et al., 2009). Overexpression of Hyal2 in fibroblasts 

also reduces CD44-ERM interaction, which was actually found to result in lower ERM 

activation and decreased motility of these cells (Duterme et al., 2009). Further study of these 

complex putative mechanisms will be needed to better define the impact of Hyal2 on cancer 

progression.

3.3 Hyal3, Hyal4, PH-20

The other three human hyaluronidase family members, Hyal3, Hyal4, and PH-20, have been 

studied to a lesser extent in relation to cancer. Hyal3 does not have a GPI attachment site, 

but Hyal4 and PH-20 are GPI anchored at the plasma membrane. Of these three, only PH-20 

has hyaluronidase activity but its expression is testis-specific and does not change in 
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multiple tumor cell lines (Patel et al., 2002). Nonetheless, there is evidence for their 

involvement in the progression of certain types of cancers.

Hyal3 lacks any detectable enzymatic activity to date, but its overexpression was shown to 

impact hyaluronidase activity in mice by increasing Hyal1 levels (Hemming et al., 2008). 

Expression of Hyal3 transcripts and splice variants has been examined for potential 

diagnostic or prognostic value. In lung cancer, expression of the Hyal3v1 splice variant 

correlated with lower risk of death from disease (de Sa et al., 2012). In a small study of lung 

squamous cell carcinoma patients, ≈10% of patients carried one of two heterozygous 

mutations in exon 1 or 2 of the HYAL3 gene, found only within tumor tissue and not present 

in normal surrounding tissue (Zhang et al., 2013). Presence of these mutations was 

correlated with lymph node metastasis, but not with other clinical parameters such as tumor 

size, grade, or remote metastasis. A modest elevation in Hyal3 transcript was observed in 

conjunction with those for HAS3 and RHAMM, in nodular basal cell carcinomas (Tzellos et 

al., 2011). In a panel of breast tumor cell lines, mRNA expression of Hyal3 was associated 

with relatively low invasive potential (Udabage et al., 2005).

Hyal4 catalyzes degradation of other GAGs than HA, specifically chondroitin sulfate, which 

could impact tumor cell surface proteoglycan turnover and contribute to cancer progression. 

Hyal4 is endogenously overexpressed in clear cell renal carcinoma and papillary tumors of 

the kidney compared to oncocytomas (Chi et al., 2012). Moreover, expression of Hyal4 

independently distinguished between benign oncocytoma and renal cell carcinoma, 

suggesting a possible functional link to progression. An unbiased comparison of 

chromosome aberrations in low versus high grade glioma patients revealed a significant 

association between high grade glioma and the overrepresentation of specific portions of 

chromosome 7, including the HYAL4 gene (Li et al., 2013).

PH-20 expression has been examined in the context of breast cancer (Madan et al., 1999b), 

where it was found in normal, carcinoma in situ, invasive, and metastastic breast tissue, but 

elevation was significantly associated with invasive and metastatic cancer in African 

American women (Beech et al., 2002). This was a small study but suggests potential for 

PH-20 in early detection and prognosis. Similar association between high PH-20 expression 

and prostate (Madan et al., 1999a) or laryngeal cancer (Godin et al., 2000) has also been 

reported. In breast tumor cells, expression of PH-20 was functionally associated with 

upregulation of p53 and WOX proteins, which allowed cells to be more susceptible to tumor 

necrosis factor (TNF) (Chang, 2002). Like Hyal2, PH-20 enhances the expression of 

WOX1, which is pro-apoptotic and therefore can function as a tumor suppressor (Chen et 

al., 2004).

Overall, the differential expression profile of the hyaluronidase family members and their 

splice variants could be one of the determining factors in cancer prognosis but more 

systematic and larger scale studies are needed to understand the significance of these 

profiles.
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4: Hyaluronidase function and the metastatic process

4.1 Vesicle trafficking and cell motility

Many studies have investigated how the internalization of HA and its processing enzymes 

contribute to endocytic trafficking patterns and thus manipulate signaling pathway cascades 

controlling proliferation and migration, among other processes. HA is internalized from the 

keratinocyte plasma membrane through receptor mediated or bulk endocytosis by a route not 

involving clathrin or caveolin (Tammi et al., 2001). Using chemicals that disrupt lysosomal 

function, there was a shift to a higher molecular weight average fragment size of internalized 

HA, meaning that a portion of the internalized HA was targeted to lyosomes for degradation 

after uptake. Excessive or aberrant internalization and trafficking of HA has been 

demonstrated in tumor cells, which is proposed to result in incomplete HA breakdown 

products being recycled back to the cell surface (Fig 1), where they act as pro-angiogenic 

signaling molecules, or complete breakdown into precursor molecules to be fed into multiple 

pathways.

Murine macrophages secrete Hyal1 to the extracellular matrix, from whence its re-uptake 

involves the mannose receptor, but is mannose-6-phosphate independent (Puissant et al., 

2014). A portion of the internalized Hyal1 undergoes a single cleavage event in endocytic 

vesicles that are targeted to lysosomes, where cleaved Hyal1 retains enzymatic activity and 

likely completes degradation of GAGs. In HT1080 human fibrosarcoma cells, treatment 

with basic fibroblast growth factor (bFGF) increased HA production and decreased Hyal2 

expression, which caused build up of high molecular weight HA in the extracellular matrix 

(Berdiaki et al., 2009). Treatment of the cells with high molecular weight HA (3–4 × 106 

Da) impaired migration and treatment with low molecular weight HA (31 kDa) enhanced 

migration in a scratch wound healing assay (Berdiaki et al., 2009). Thus, the net effect of 

hyaluronidase-mediated HA turnover is increased motility in a variety of cell and tumor 

types.

HA turnover has been shown to affect levels of plasma membrane proteins, which translated 

to significant impact on cell adhesion and motility signaling pathways (Bharadwaj et al., 

2011; Bharadwaj et al., 2009; Bharadwaj et al., 2007). In prostate tumor cells, 

overexpression of HAS3 resulted in lower expression of N-cadherin on the plasma 

membrane, reduced motility, and delayed cell cycle re-entry, while overexpression of Hyal1 

produced opposite effects irrespective of HAS3 (Bharadwaj et al., 2009). Prostate tumor 

cells overexpressing Hyal1 have enhanced endocytic activity as measured by the rate of 

fluorescently labeled transferrin internalization (McAtee et al, submitted). It is probable that 

overall endocytic rate affects steady state levels of receptors at the plasma membrane. This 

observation would also explain many of the differences in receptor expression and 

internalization that have been reported to occur with differential expression of Hyals.

One way HA homeostasis could affect overall motility of the cell is through the formation 

and disruption of focal adhesions. In esophageal cancer cells, inhibiting HA synthesis by 

HAS3 knockdown or by diminishing the HA precursor pool with 4-methylumbelliferone 

disrupted filopodia and focal adhesions, which subsequently decreased proliferation and 

migration (Twarock et al., 2010). These outcomes occurred downstream of HA synthesis 
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inhibition following cleavage of focal adhesion kinase (FAK), which led to decreased 

activation of ERK. Since FAK plays a pivotal signaling role in multiple functions such as 

proliferation, motility, and invasion, a better understanding of the complex relationship 

between FAK, ERK, HA synthesis and HA turnover will provide insights to the role of HA 

in cancer progression.

4.2 Vesicle shedding

Increased vesicle shedding is an emerging hallmark of cancerous cells. Tumor cells secrete 

vesicles that contain proteins, microRNA, and other nucleic acids. Shedding vesicles or 

microvesicles are produced by budding from the plasma membrane, while the smaller (≤50 

nm diameter) exosomes are generated by inward budding within large intracellular 

organelles called multivesicular bodies that fuse with the plasma membrane to release their 

exosomal contents. Vesicle shedding was originally proposed to be a mechanism for cellular 

waste disposal, but strong evidence shows that exosome production and secretion in 

particular is a tightly regulated process with specific functional relevance. Exosomes are 

released by tumor cells, have been correlated with cancer progression, and carry relevant 

biologically active epigenetic regulators capable of transforming target cells. Vesicle 

shedding suggests a mechanism for local stromal-epithelial crosstalk at the tumor primary 

site, and for communication with cells in remote tissues to promote metastatic susceptibility. 

HA and Hyals have been implicated in these processes.

Both levels of cellular HA production and hyaluronidase Hyal1 overexpression have been 

found to correlate with the rate of vesicle secretion from the cell. Cells with high 

endogenous HAS levels had a higher rate of shedding vesicle release than cells with low 

HAS expression, and inducing overexpression of HAS3 in a low HAS background increased 

release of vesicles (Rilla et al., 2013). The origin of these vesicles was a combination of the 

tips of microvilli, the pinching off of the plasma membrane, and secreted exosomes. The 

shedding vesicles contained HAS3 protein and retained a perivesicular HA coat. 

Hyaluronidases were not examined in this study, but independently it has been shown that 

Hyal1 was contained in both exosomal and microvesicle fractions isolated from conditioned 

media of prostate tumor cells overexpressing Hyal1 (McAtee et al, submitted). The ratio of 

exosome- to microvesicle- associated Hyal1 was higher in cells overexpressing wild-type 

Hyal1 versus a catalytically inactive mutant (E131Q). Thus, the enzymatic activity of Hyal1 

is necessary for trafficking of Hyal1 into exosomal vesicles released by the cell.

The appearance of HAS3 and Hyal1 in vesicles is a novel mechanism by which HA 

homeostasis in tumor cells may influence cancer progression. Tumor cells that overexpress 

Hyal1 combined with HAS are more tumorigenic and metastatic, through autocrine-

enhanced proliferation and motility. However, the well-accepted angiogenic potential of HA 

oligomers may be partially or largely mediated by vesicle-associated HA delivery. The 

presence of HA and Hyal1 in exosomes indicates that it could be carried from the primary 

tumor site through the circulation and arrive at target cells in distant tissues. In this way, a 

tumor overexpressing HAS or Hyal1 could initiate events to prepare distant tissues for 

metastasis (Fig 1). HA or Hyal1 at the vesicle surface may facilitate docking and uptake of 

the vesicle and its contents by other cells. HA and Hyal1 could also produce active HA 
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fragments upon arrest in a remote site, irrespective of cellular uptake, and thereby initiate 

proliferation or migration. These mechanisms remain to be examined.

Exosomes produced by tumor cells are known to bear unique contents that can affect the 

proliferation and motility of non-tumorigenic cells. In a study of rat pancreatic 

adenocarcinoma cell lines, wild type cells and CD44 knockdown cells secreted exosomes 

with altered expression of ECM proteases, including hyaluronidase (Mu et al., 2013). 

Tumor-derived exosomes enhanced the migration of rat endothelial, fibroblast, and stromal 

cell lines. Exosomes are also involved in epithelial to mesenchymal transition in cancer 

progression. Application of exosomes with higher expression of TGF-β to primary 

fibroblasts can upregulate expression of α-smooth muscle actin and induce formation of a 

thick HA coat, both hallmarks for myofibroblast differentiation and cancer-associated 

stromal activation (Webber et al., 2010; Webber et al., 2014). Thus, exosome associated 

signals can also affect HA homeostasis of target cells and drive the epithelial to 

mesenchymal transtition.

4.3 Products of hyaluronidase: fragments versus oligos

The complex information content of HA as a molecular signal in cancer is largely 

attributable to polymer length and HA quantity, both of which are influenced by 

hyaluronidase processing. Only Hyal1 and Hyal2 are thought to contribute to processing of 

HA in most tumors. Both isozymes are capable of generating a range of fragment sizes, and 

tetrasaccharides are the complete digestion product. Since Hyal2 is GPI anchored, its 

activity in vivo is thought to be limited to short polymer generation. HA oligomers, 

specifically of 4–25 disaccharides, have been shown to stimulate angiogenesis (West et al., 

1985), despite the antiproliferative effect of larger HA polymers on endothelial cells that 

suppresses angiogenesis (Rooney et al., 1995; West and Kumar, 1989). The antiangiogenic 

effect of HA polymers on endothelial cells is irreversible once engaged except in the 

sustained presence of antagonistic HA oligomers (Deed et al., 1997). This normal function 

of HA may allow tumor cells to directly signal their own vascular development and has been 

exploited in therapeutic targeting. HA decasaccharides reduced proliferation, motility, and 

invasion of breast tumor cells and prevented osteolytic lesions in mice (Urakawa et al., 

2012).

Several reports have implicated Hyal1 processing of HA in prostate tumor angiogenesis. For 

example, inhibition of HA polymer synthesis suppressed growth (McCarthy et al., 2005; 

Simpson et al., 2002) and reduced vascular density of prostate tumors by ≈80%. Seemingly 

contrary to this finding, excess deposition of HA can suppress angiogenesis of prostate 

tumors (Bharadwaj et al., 2007). This supports a requirement for HA in angiogenesis, but 

clearly shows further metabolism of the polymeric form is critical for the angiogenic 

response. HA fragments (20–30-mers) have been detected in high-grade prostate cancer 

tissues (Lokeshwar et al., 2001) and knockdown of Hyal1 also impairs angiogenesis 

(Lokeshwar et al., 2005). HA production in relatively low quantities can promote 

angiogenesis in prostate tumors (Simpson, 2006), consistent with motility experiments in 

which low HA concentrations stimulate, while high levels inhibit, migration. This effect 
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suggests there is a threshold HA polymer level that saturates or antagonizes hyaluronidase 

activity.

HA fragments stimulate cellular chemokinesis. For example, the cervical cancer cell line 

Hela-S3 exhibited spontaneous chemokinesis that was reduced by knocking down HAS2, 

Hyal2, or CD44 (Saito et al., 2011). Addition of exogenous high molecular weight HA (230 

and 920 kDa) did not affect this motile phenotype, whereas short HA polymers (23 kDa) 

were able to restore the chemokinetic process in the Hyal2 knockdown background. Low 

molecular weight HA also enhances the migration and proliferation of human papillary 

thyroid carcinoma cells, acting through the toll-like receptor 4 (Dang et al., 2013). Low 

molecular weight HA (3–5 kDa) was shown to associate with CD44 and toll-like receptors 

to induce an inflammatory response in breast cancer cells (Bourguignon et al., 2011). HA 

size impacts CD44 clustering, which is stimulated by HA polymers and dispersed in the 

presence of oligomeric HA, leading to altered cell adhesion (Yang et al., 2012). HMW-HA 

treatment of embryonic fibroblasts stimulates Snail2 expression, and epithelial to 

mesenchymal transition (Craig et al., 2009).

4.4 Products of hyaluronidase: beyond hyaluronan

Chondroitin sulfate is a GAG with similar structure to HA that is covalently attached to 

proteoglycans at the cell surface and abundantly accumulated in the extracellular matrix of 

malignant tissue. Sulfated polysaccharides can have differential effects on HA homeostasis. 

Dextran sulfate has been shown to inhibit degradation of HA by PH-20 in vitro, but had 

complex net effects in cultured cells because the treatment also resulted in lower expression 

of CD44 and HAS, concurrently with enhanced expression of hyaluronidases (Udabage et 

al., 2004). Hyal1, Hyal2, Hyal4 and PH-20 have all been shown to have significant activity 

toward specific chondroitin sulfates. For example, fragments of chondroitin sulfate E have 

the ability to activate CD44 signaling, thus promoting tumor cell motility through 

cytoskeletal rearrangement and increased formation of filopodia (Sugahara et al., 2008).

Recently, quantitative measurement of degraded GAG products by 2-aminobenzidine 

derivatization and fluorescence monitoring of HPLC anion exchange fractionation has 

facilitated the direct comparative assessment of substrates for Hyal1, Hyal4, and PH20 

(Honda et al., 2012; Kaneiwa et al., 2010). Because this assay method eliminates some of 

the pitfalls of other previously used methods, new insights about substrate specificity and 

enzyme activity parameters have been possible. In particular, there were modest but 

potentially significant differences in substrate preference depending upon the pH at which 

activity was assayed. Comparison of enzyme efficiency (Vmax/Km) revealed approximately 

3-fold more efficient degradation of chondroitin 4-sulfate (CS-A) relative to HA at the 

frequently reported optimal pH of 4, and also at 4.5, but catalytic efficiency was comparable 

for both substrates at pH 3.5 (Honda et al., 2012). Hyal1 was also able to degrade 

chondroitin 6-sulfate (CS-C) and chondroitin, but this activity was lower by approximately 

an order of magnitude. At pH 4–4.5, recombinant, bead-immobilized PH20 was significantly 

less efficient than Hyal1 in catalyzing depolymerization of any of these substrates, but 

showed the greatest activity using HA and CS-A, followed by chondroitin. Neither enzyme 
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showed particularly strong size dependence for HA polymer cleavage by this method, which 

notably quantifies cleavage events stoichiometrically, in contrast to most other methods.

Thus, the existing view in the field that the hyaluronidase activities of this family of 

enzymes are the most physiologically relevant bears strong consideration. In the acidic 

context of a tumor, in which excess HA deposition, elevated proteoglycan expression, and 

aberrant GAG modification of cell surface proteins have all been well documented, the role 

of the hyaluronidase enzymes in remodeling the extracellular matrix may be equally or more 

significant because of their ability to cleave other GAGs. This method was also used to 

demonstrate that Hyal4 has chondroitinase activity, exhibiting a preference for chondroitin 

2,6-bissulfate (CS-D) followed by CS-C and CS-A, with no detectable activity toward 

chondroitin or HA (Kaneiwa et al., 2010). To date, Hyal4 activity has not been associated 

with cancer, but has not been widely examined.

5. Hyaluronidase targeting in cancer therapy and imaging

5.1 Structural and functional features of human Hyals

Structure determination and enzymological characterizations of Hyal1 have helped define 

the key features of human hyaluronidases. In 2007, the crystal structure of human Hyal1 was 

described, providing the molecular details of the enzyme active site and the orientation of 

the catalytic domain relative to the C-terminal EGF-like domain (Chao et al., 2007). Given 

the close pairwise sequence identity between Hyal1 and the other four human Hyals (41–

43%), we were able to generate highly credible homology models of each of the enzymes 

using Phyre 2 (Kelley and Sternberg, 2009). A comparison of the five human Hyals 

indicates that these enzymes have similar overall folds and conserved active site features. A 

pronounced substrate-binding cleft bisects the core of the protein, with several highly 

conserved residues located at the site of HA cleavage. Using site-directed mutagenesis and 

steady state kinetic analysis of recombinant purified protein, the contributions of several 

residues of Hyal1 to enzymatic activity were previously demonstrated (Zhang et al., 2009). 

In the proposed substrate-assisted mechanism, Tyr247 and Asp129 polarize the N-acetyl 

moiety of the N-acetylglucosamine residue to be cleaved, such that it forms an oxyanionic 

nucleophile to attack and hydrolyze its own glycoside bond. Glu131 protonates the hydroxyl 

leaving group and activates an incoming water to release the intramolecular HA 

intermediate. Arg265 also contributes to Hyal1 activity, as mutation to a leucine severely 

compromises its ability to cleave HA. However, its precise role in catalysis may be indirect 

through structural perturbations. Additional mutants at Tyr202 and Ser245 were shown to 

have full catalytic activity but impaired HA binding. Inspection of the models predicts that 

Trp321 and Tyr75 will also contribute to HA binding and not catalysis as both residues are 

remote from the site of cleavage. Recently, the thirteen amino acids in the loop between 

Cys207 and Cys221 in Hyal1 were replaced with four residues of alternating glycine and 

serine residues in an effort to extend the substrate binding cleft (Reitinger et al., 2009). 

Although comprehensive kinetic analysis was not reported, the engineered mutant had 

greater enzymatic activity at higher pH values relative to wild-type Hyal1. This observation 

and the high degree of sequence conservation at the enzyme active site suggest that the 

observed pH profiles of enzymatic activity for each of the hyaluronidases are unlikely to 
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reflect only the protonation state of catalytic residues, but rather the pH dependence of 

substrate association with the enzyme.

Comprehensive structural and mechanistic characterizations of the other four human Hyals 

are lacking. In comparison to Hyal1, human Hyal2 had limited hyaluronidase activity 

(Lepperdinger et al., 1998; Liu et al., 2003) and no detectable chondroitinase or heparanase 

activity (Lepperdinger et al., 1998) under the assay conditions employed. Hyal2 was 

reported to generate larger fragments of HA with an approximate molecular mass of 20kDa. 

From a structural standpoint, it is difficult to rationalize why a 20kDa fragment would not be 

degraded by the enzyme, given the similarities of the active site clefts of Hyal1 and Hyal2. 

This limited digestion may reflect structural domains of the HA substrate (Lepperdinger et 

al., 1998) rather than limitations of the enzyme active site. Alternatively, a soluble form of 

Hyal2 has been shown to degrade HA to considerably smaller fragments with extended 

incubation, and to a similar extent as with PH-20 (Vigdorovich et al., 2005). Hyal2 has also 

been shown to serve as a virus entry receptor (Vigdorovich et al., 2005). Residues that 

mediate this function are not highly conserved among the Hyals and are located adjacent to 

but distinct from the HA binding cleft (Duh et al., 2005). To date, hyaluronidase activity has 

not been demonstrated for mammalian Hyal3 (Atmuri et al., 2008; Hemming et al., 2008), 

despite conservation of key catalytic residues. A cursory examination of the substrate 

binding cleft suggests minor amino acid substitutions may preclude HA binding and/or alter 

substrate specificity. Interestingly, Hyal3 may still promote HA turnover by promoting 

Hyal1 activity (Hemming et al., 2008). Additional work in this area is needed.

Human Hyal4 was recently shown to be a chondroitin sulfate hydrolase, with limited to no 

hyaluronidase activity over the length of the assay (Kaneiwa et al., 2010). Subsequent 

studies confirmed the importance of Glu147 and Tyr218, which are equivalent to Glu131 

and Tyr202 in human Hyal1. There are two significant active site differences between Hyal1 

and Hyal4 (Kaneiwa et al., 2012). Both Tyr247 and Gln288 are proximal to the site of HA 

cleavage in Hyal1 (Fig 2). Human Hyal4 in contrast has a glycine (Gly263) and an arginine 

(Arg305) at these positions. Unpublished results indicate that mutation of Gly263 to a 

tyrosine did not alter the substrate specificity of human Hyal4 (Kaneiwa et al., 2012), but 

details of the characterizations are not yet available. In mouse Hyal4, a similar substitution, 

a mutation of Ser263 to a tyrosine, resulted in an enzyme with both hyaluronidase and 

chondroitinase activity. Interestingly, mouse Hyal4 has a glutamine residue at position 305 

that is structurally equivalent to Gln288 of human Hyal1. Gln 288 is adjacent to the C6 of 

the N-acetylglucosamine and near the C4 as well. Perhaps residues at this position 

contribute to substrate specificity.

The biological functions of PH-20 have been studied extensively, particularly with respect to 

fertilization. However, relatively limited mechanistic studies have been reported. Asp 146 

and Glu 148, equivalent to Asp 129 and Glu 131 in Hyal1, have been shown to significantly 

contribute to catalysis. Arg 211, Glu284, and Arg 287 of human PH-20 were also shown to 

be critical for optimal activity (Vigdorovich et al., 2005). Examination of the homology 

model of PH-20 indicates these residues are unlikely to be involved directly in substrate 

binding or catalysis, but are instead key structural residues involved in extensive hydrogen 

bond networks.
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The C-terminal EGF-like domain of Hyal1 packs tightly against the catalytic core of the 

protein. This domain is proposed to mediate protein-protein interactions that may influence 

the localization and efficacy of this family of enzymes. An examination of the sequence 

conservation in this region reveals limited selective pressure and may indicate that different 

isozymes have different interacting partners or cellular localizations. In Hyal1, deletion of 

the EGF-like domain eliminated its hyaluronidase activity (Zhang et al., 2009). Of the 

reported Hyal1 variants, several would largely eliminate the EGF-like domain (Lokeshwar 

et al., 2006; Lokeshwar et al., 2002). As previously discussed (Chao et al., 2007), it is 

difficult to ascribe functional significance to these variants because the structural data 

indicate that it is unlikely a folded protein would be produced. This is also the case for the 

described Hyal3 variants. To date, recombinant or purified versions of Hyal1 or Hyal3 splice 

variants have not been purified and characterized.

5.2 Targeting of hyaluronidase for cancer therapy

The role of hyaluronidases Hyal1 and Hyal2 in liberating or “activating” pro-tumorigenic 

and pro-angiogenic HA fragments is well supported by the functional studies described in 

the above sections, making it an obvious choice for pharmacological targeting in 

chemotherapy. Its extracellular or cell surface localization increases its appeal as an 

accessible target, and general cytotoxicity or off-target effects may be reduced by limiting 

inhibition to the extracellular space.

Numerous naturally occurring and synthetic compounds have been characterized as 

inhibitors of PH-20 or Hyal1 in vitro. Since PH-20 exhibits relatively high hyaluronidase 

activity over a broad pH range, inhibition of its activity is frequently screened by loss of 

absorption by the cationic carbocyanine dye, Stains-All, or by its use to detect product size 

shifting in gel electrophoresis. Stains-All is sensitive to pH shifts so its signal is significantly 

diminished in the low pH conditions that are optimal for activity of Hyal1. Consequently, 

Hyal1 and other acid-active hyaluronidases are typically assayed by chemical derivatization 

of acetamido groups and measurement of the resulting colorimetric product, known as the 

Morgan-Elson reaction. This technique has the added advantage of stoichiometrically 

reporting cleavage events. A third method that has been used directly to compare inhibitors 

of PH20 and Hyal1 is a competitive binding assay, or ELISA-like assay, which is a plate-

based assay that reports activity by loss of microplate-adsorbed HA polymers detected by a 

labeled HA binding protein. The limitation of this and the Stains-All assay is that the HA 

must be fully degraded before the positive signal is lost, so it is not able to quantify actual 

cleavage events catalyzed by the enzyme.

Using purified bee venom, bovine testicular, or recombinant human PH-20 hyaluronidases, 

the most potent inhibition was achieved with Vitamin C palmitate, also known as L-ascorbyl 

6-hexadecanoate (Botzki et al., 2004; Hofinger et al., 2007), and inhibition was greatest 

when the length of the alkyl chain was 12–16 carbons. Glycyrrhizic acid was somewhat 

effective against Hyal1 that was expressed and purified from Drosophila cell culture 

(Hofinger et al., 2007). PH-20 was also expressed by “autodisplay” on E.coli cells and 

compared directly to bovine testicular hyaluronidase (BTH) for efficacy of known inhibitors 

(Kaessler et al., 2011). BTH is frequently used to screen for new hyaluronidase inhibitors, 
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and this comparison revealed that while BTH was effectively inhibited by vitamin C 

palmitate and by two indole acetamide/carboxamide derivatives, only vitamin C palmitate 

significantly inhibited PH-20. Such comparative studies are important in identifying lead 

compounds for isozyme-selective inhibitors, but it is important to consider that the authors 

use the Stains-All method, which is non-stoichiometric and loses sensitivity at the low pH 

optimal for Hyal1 or Hyal2 activity. A series of indole derivatives was characterized with 

the Morgan-Elson assay, and though the authors only tested BTH (Olgen et al., 2010; Olgen 

et al., 2007), increasing the lipophilicity of the compounds was found to enhance affinity, 

which is consistent with results of vitamin C ester comparisons above.

Polystyrene sulfonates and sulfated HA showed greater potency than glycyrrhizic acid and 

comparable inhibition to vitamin C palmitate, using partially purified Hyal1 or PH-20 from 

cell conditioned media assayed in the competitive plate assay (Isoyama et al., 2006). 

Sulfated HA partially (Isoyama et al., 2006) or fully (Toida et al., 1999) inhibits Hyal1 and 

PH-20, but it is not clear from examination of the Hyal1 structure where a sulfate group 

would be tolerated at the active site, which is relatively locked down and sterically 

constrained in the model with superimposed HA tetrasaccharide.

Partially sulfated HA polymers (≈300–600 kDa average molecular mass) are the only 

hyaluronidase inhibitor that has been tested for anti-tumor efficacy in vivo. When given 

twice weekly (intraperitoneally) beginning at the time of prostate tumor cell injection, this 

treatment delayed or inhibited subcutaneous tumor growth in mice (Benitez et al., 2011). 

The authors tested effects of sulfated HA in vitro to determine if phenotypic effects that are 

promoted by enhanced HA turnover were reversed. This was in part the case, since 

treatment with sulfated HA induced apoptosis and decreased proliferation, motility, and 

invasiveness of prostate tumor cell lines. Sulfated HA functioned mainly through inhibiting 

Akt signaling, and overexpression of Akt or application of non-sulfated HA oligos reversed 

the sulfated HA effects. However, the study used a subline derived from LNCaP cells, which 

reportedly lack measurable hyaluronidase activity in conditioned media. Hyal1 expression 

and activity in the subline were not shown, so it is possible that the response mechanism is 

not exclusively dependent on hyaluronidase activity, particularly in light of the findings 

discussed above with respect to other substrates. The authors also reported an effect of the 

sulfated HA treatment on signaling downstream of HA receptors CD44 and RHAMM, both 

of which also have the potential to be engaged by the sulfated HA directly. Regardless of 

targeting specificity, it does appear that sulfated HA has promise in preventing tumor 

growth, but it will be important for ultimate clinical translation to determine whether 

sulfated HA can regress established tumors.

Interestingly, PEGPH20 has recently been used to sensitize pancreatic cancer to gemcitabine 

(currently a first line chemotherapy for this disease), with significantly faster response in 

mice, though growth of tumors is only delayed by accelerating delivery, and they still reach 

lethal size. Since HA is highly hydrophilic, its accumulation in tumor stroma increases 

interstitial fluid pressure so significantly that molecular transfer from the tumor vasculature 

into the tumor is virtually undetectable. PEGPH20 delivery intravenously prior to 

gemcitabine treatment was shown to reduce stromal HA and interstitial pressure, thereby 

allowing the drug to reach the tumor cells and induce cell death (Provenzano et al., 2012). 
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The prospect for use of hyaluronidases in this manner is exciting, but is not without 

precedent for concern about effects of residual HA degradation products on surviving tumor 

cell proliferation and motility, as well as tumor angiogenesis.

5.3 Hyaluronidase-targeting agents for tumor imaging

As a cancer biomarker and potential therapeutic target, use of hyaluronidase substrates for 

noninvasive tumor imaging has received increasing attention. Many investigators have used 

HA to target nanoparticles, isotopic labels, fluorophores, and other imaging agents to HA 

receptors that are elevated on the tumor cell surface in many solid epithelial tumors. In 

addition, the clearance route of HA through lymphatic vessels and accumulation in lymph 

nodes facilitates its use for imaging tumor associated lymphatic flux (Proulx and Detmar, 

2013; Sharma et al., 2007).

Another novel innovation is the use of HA as a probe for the activity of hyaluronidase. For 

example, subcutaneous tumors resulting from ovarian tumor cell line injection were 

effectively imaged by MRI using an intravenously delivered HA-DTPA conjugated to 

agarose beads, which chelated and partially shielded the contrast agent, gadolinium, 

subsequently releasing it specifically in the tumor, yielding a change in the imaging 

parameters (R1 and R2 relaxation rates). Hyal1 and Hyal2 activity in the ovarian tumor cells 

were both found to contribute in vitro to the degradation of the HA carrier, liberating the 

environmentally sensitive contrast agent (Shiftan et al., 2005). The HA-GdDTPA-bead 

targeting agent was further found to be sufficiently sensitive to report apparent kinetics of 

hyaluronidase activity in the tumors, and found the initial activity was localized primarily to 

the peripheral tumor, possibly concentrated in peritumoral lymphatics (Shiftan and Neeman, 

2006). Since hyaluronidases are elevated in the stromal space and/or at the tumor cell 

surface, and may be involved in the cellular uptake of HA, imaging probes that give no 

signal until activated by hyaluronidase cleavage offer higher levels of sensitivity.

Besides MRI contrast agents, fluorescent probes have been developed that illustrate the 

clinical potential for this approach, which may be translatable to an intraoperative setting. 

The FDA-approved near infrared fluorescent dye, indocyanine green, is used successfully in 

the clinic for identifying tumor-involved lymph nodes and metastatic cancer. By 

encapsulating the dye in a HA nanogel, the dye is more effectively solubilized and stabilized 

in vivo. A proof of concept trial determined that fluorescence intensity could be significantly 

increased in mice upon hyaluronidase exposure to release the dye, but the agent needs to be 

validated using tumor xenografts with differential hyaluronidase expression (Kim et al., 

2014; Mok et al., 2012). An additional intriguing use of HA was to provide the outermost 

envelope of multilayer liposomes. The liposomes contained the cytotoxic agent paclitaxel 

and were first coated with arginine/histidine-rich cell permeating peptides before coating 

with HA (Jiang et al., 2012). The HA screened the peptides from circulating proteases and 

targeted the particles to tumor sites enriched in hyaluronidase, whereupon the degradation of 

HA exposed the peptides, stimulating cellular uptake into vesicles that were dispersed in a 

pH-dependent manner to release paclitaxel to the cytosol. Specificity of HA targeting in 

mice was demonstrated by competition of the near infrared fluorescence signal in the tumor 

with free HA pre-injection, and by significantly reduced tumor growth and extended 
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survival time of animals treated with HA-targeted peptide-paclitaxel liposomes. Finally, 

fluorescent HA-based assays have been tested to improve the sensitivity of hyaluronidase 

detection in urinary samples, where it is effective in diagnosis of bladder cancer. 

Fluorescence correlation spectroscopy of autoquenched fluorescein-HA (Rich et al., 2012) 

and Forster Resonance Energy Transfer (FRET, (Chib et al., 2013)) upon cleavage of 

fluorescein-rhodamine double conjugated HA both showed promise for increasing the 

dynamic range of hyaluronidase detection and improving quantitative cancer staging with 

urinary samples.

6. Conclusions and future perspective

Hyaluronidase family enzymes have been broadly implicated in a variety of cancers, and 

have demonstrated potential for clinical utility both as biomarkers and therapeutic targets. 

However, a number of key questions remain to be answered before they can be fully 

exploited in cancer therapy. For example, systematic studies that examine structure-function 

relationships among the Hyals will be essential to understand the basis for substrate 

specificity, binding properties, and high affinity inhibition. Development of specific 

strategies to target individual Hyal proteins would be advanced by additional structural data 

in complexes of each Hyal with a putative substrate or inhibitor, so active site differences 

can be fully appreciated. Moreover, a more thorough comparison of tissue and tumor-

specific effects of each Hyal is needed to clarify when hyaluronidase activity is beneficial 

(e.g.; by removing HA to improve drug delivery) and when this activity is pro-tumorigenic 

and pro-metastatic (e.g.; Hyal1 and Hyal2). Rigorous comparisons of each Hyal in the 

context of HA accumulation, as has been done with Hyal1, are needed to determine 

respective tumorigenic and metastatic proclivity conferred by each Hyal. Finally, more 

large-scale systematic studies that examine all five Hyals in the same sets of staged cancers 

would better inform us of the clinical relevance of each Hyal in cancer initiation, 

progression, and metastasis, and give insights about true prognostic power of Hyal 

expression.
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Figure 1. Model for HA impact on tumor progression
HA polymers are synthesized at the cell surface by membrane embedded HAS. Reuptake 

and/or degradation of HA may require secreted hyaluronidases to generate low MW 

oligomers of HA. HA is retained by ligation to specific cell surface receptors or residual 

association with HAS, and can act on both tumor cells and associated stromal cells. Tumor 

cells may signal in HA and/or Hyal1-dependent fashion to endothelial cells of lymphatic 

vessels, lymph node or bone marrow sinusoids via other HA receptors. These signals may be 

released at the primary site to prepare metastatic target tissues and render them hospitable 

for tumor invasion, or tumor cells bearing HA may generate signals locally upon arrest in 

metastatic target tissues. The context of the HA signal is assumed to be free extracellular 

HA polymer or HA oligomer, but HA and/or Hyal1 delivery via exosomes or microvesicles 

is an emerging possibility. HA internalized by tumor epithelial cells may contribute to 

cellular transformation, proliferation, motility, and ultimately may be required for sustained 

tumor growth and metastasis.
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Figure 2. The structure of human Hyal1
(A) Surface representation of human Hyal1. A HA tetrasaccharide (solid spheres with 

carbons colored in green, oxygen in red, and nitrogen in blue) was docked in the enzyme 

active site in an orientation comparable to that observed in the bee venom hyaluronidase 

structure (pdb codes: Hyal1 2PE4; bee venom 1FCV). The surface of the protein is colored 

based on the sequence conservation among the five human hyaluronidases, with perfectly 

conserved residues colored in dark blue and residues with no sequence conservation colored 

in red. Residues found in 4 out of 5 hyaluronidases are colored in light blue, 3 out of 5 in 

grey, and 2 out of 5 in pink. The most highly conserved residues are generally located within 

the enzyme active site or key structural elements. (B) Conserved active site features of 
human hyaluronidases. A ribbon representation of Hyal1 is color-coded as in Panel A, 

with the HA tetrasaccharide shown in ball and stick representation. Key active site residues 

are shown in stick representation. Several perfectly conserved residues are clustered at the 

site of the substrate-assisted cleavage.
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