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Abstract25

Biomedical vocabularies and ontologies aid in recapitulating biological knowledge. The annotation26

of gene products is mainly accelerated by Gene Ontology (GO) and more recently by Medical27

Subject Headings (MeSH). Here we report a suite of MeSH packages for chicken in Bioconductor28

and illustrate some features of different MeSH-based analyses, including MeSH-informed enrichment29

analysis and MeSH-guided semantic similarity among terms and gene products, using two lists30

of chicken genes available in public repositories. The two published datasets that were employed31

represent (i) differentially expressed genes and (ii) candidate genes under selective sweep or epistatic32

selection. The comparison of MeSH with GO overrepresentation analyses suggested not only that33

MeSH supports the findings obtained from GO analysis but also that MeSH is able to further enrich34

the representation of biological knowledge and often provide more interpretable results. Based on35

the hierarchical structures of MeSH and GO, we computed semantic similarities among vocabularies36

as well as semantic similarities among selected genes. These yielded the similarity levels between37

significant functional terms, and the annotation of each gene yielded the measures of gene similarity.38

Our findings show the benefits of using MeSH as an alternative choice of annotation in order to draw39

biological inferences from a list of genes of interest. We argue that the use of MeSH in conjunction40

with GO will be instrumental in facilitating the understanding of the genetic basis of complex traits.41
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Introduction42

Understanding the genetic basis of variation for complex traits remains a fundamental goal of43

biology. Different approaches, including whole-genome scans and genome-wide expression studies,44

have been used in order to identify individual genes underlying economically relevant traits in a45

wide spectrum of agricultural species. These studies usually generate lists of genes potentially46

involved in the phenotypes under study. The challenge is to translate these lists of candidates genes47

into a better understanding of the biological phenomena involved. It is increasingly accepted that48

overrepresentation or enrichment analysis (Drăghici et al., 2003) can provide further insights into49

the biological pathways and processes affecting complex traits.50

Recently, the Medical Subject Headings (MeSH) vocabulary (Nelson et al., 2004) has been51

proposed for defining functional sets of genes in the context of enrichment analysis. MeSH is a con-52

trolled life and medical sciences vocabulary maintained by the National Library of Medicine to index53

documents in the MEDLINE database. Each bibliographic reference in the MEDLINE database54

is associated with a set of MeSH terms that describe the content of the publication. Importantly,55

MeSH contains a substantially more diverse and extensive range of categories than that of Gene56

Ontology (GO) (Ashburner et al., 2000), which is probably the most popular among the initiatives57

for defining functional classes of genes (Nakazato et al., 2008). Therein, GO terms are classified into58

three domains: biological processes, molecular functions, and cellular components. This ontology59

has been successfully used for dissecting relevant traits in livestock species (e.g, Peñagaricano et al.,60

2013; Gambra et al., 2013). Similarly, each MeSH term is clustered into 19 different categories; some61

MeSH categories, such as Diseases, are not included in GO, whereas other functional categories,62

such as Phenomena and Processes or Chemicals and Drugs, share similar concepts with those of63

GO. The recent availability of MeSH software packages has rendered agricultural species amenable64

to MeSH-based analysis (Tsuyuzaki et al., 2015). For instance, MeSH enrichment analysis has been65

successfully applied to mammals including dairy cattle, swine, and horse (Morota et al., 2015), and66

to maize (Beissinger and Morota, 2016). These studies showed the potential of MeSH for enhancing67

the biological interpretation of sets of genes in agricultural organisms.68
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The main objective of the current study was to report the availability of MeSH Bioconductor69

packages for chicken, and to illustrate the features of different MeSH-based analyses, including70

MeSH-informed enrichment analysis and MeSH-guided semantic similarity among terms and gene71

products. For this purpose, we used two lists of selected genes available in public repositories: (i)72

differentially expressed genes reported in a RNA-seq study (Zhuo et al., 2015) and (ii) candidate73

genes historically impacted by selection detected in a whole-genome scan using a broad spectrum74

of populations (Beissinger et al., 2015). The results of the MeSH-based enrichment analysis were75

contrasted with GO terms. The use of MeSH and GO terms in functional genomics studies can76

be further explored through computing the similarity between significant functional terms as well77

as the similarity between significant genes by leveraging the hierarchies of these two controlled78

vocabularies.79

Materials and Methods80

We used two datasets from previously published studies with the objective of demonstrate some81

capabilities of different MeSH-based analyses in chicken. The first dataset includes 263 genes that82

showed differential expression in abdominal fat tissue between high and low feed efficiency broiler83

chickens (Zhuo et al., 2015). The second dataset contains 352 genes identified by a whole-genome84

scan using Ohta’s between-population linkage disequilibrium measure, D2
IS, in a panel that included85

72 different chicken breeds (Beissinger et al., 2015). In both datasets, the list of background genes86

was defined as all annotated genes in the chicken genome available in NCBI. Below we present the87

MeSH analyses coupled with several example code for illustration purposes.88

The suite of MeSH (Tsuyuzaki et al., 2015) and the GOstats (Falcon and Gentleman, 2007)89

packages in Bioconductor were used for performing a hypergeometric test in the enrichment analysis.90

This test evaluates whether a given functional term or vocabulary is enriched or overrepresented91

with selected genes. In particular, the P -value of observing g significant genes in a functional term92
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(i.e. MeSH or GO term) was calculated by93

Pvalue = 1−
g−1∑
i=0

(
S
i

)(
N−S
k−i

)(
N
k

)
where S is the total number of selected genes, N is the total number of analyzed genes, and k is94

the total number of genes in the functional term under study. The meshr package has a feature to95

perform a multiple testing correction by choosing from Benjamini-Hochberg, Q-value or empirical96

Bayes method. We used a lenient P -value 0.05 for the illustrative data in order to directly compare97

the results from MeSH enrichment analysis with the ones from the GOstats package, which does98

not offer a multiple testing correction option. Although a multiple testing correction reduces false99

positives, if we view MeSH analysis as a tool to generate hypotheses or to obtain a big picture of100

selected genes for subsequent downstream analysis, we may want to know the top 10% of MeSH101

terms regardless of P -values.102

The first step of MeSH analysis is to load the namespace of the packages.103

104

l ibrary (MeSH. db)105

l ibrary (MeSH. Gga . eg . db )106

l ibrary ( meshr )107
108

The MeSH.db package contains the relationship between MeSH IDs and MeSH terms. The MeSH.Gga.eg.db109

is an annotation package that provides the correspondence between MeSH IDs and Entrez Gene110

IDs. This package was created based on gene2pubmed (ftp://ftp.ncbi.nih.gov/gene/DATA/) that111

maps Entrez Gene IDs and PubMed IDs. By using data licenced by PubMed112

(http://www.nlm.nih.gov/databases/license/license.html), we then associated PubMed IDs to MeSH113

terms. This was followed by merging MeSH terms with MeSH IDs via NLM MeSH (Tsuyuzaki et al.,114

2015). The meshr package performs a hypergeometric test and returns significantly enriched MeSH115

terms. Once the three packages are loaded, we proceed to create the object of a parameter class116

MeSHHyperGParams-class. This object contains all parameters required to run the hypergeometric117

test.118

119

120
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121

meshParams <− new( ”MeSHHyperGParams” , geneIds = se lectedGenes ,122

universeGeneIds = universeGenes ,123

annotat ion = ”MeSH. Gga . eg . db” , category = ”D” ,124

database = ”gene2pubmed” ,125

pva lueCuto f f = 0 .05 , pAdjust = ”none”126

)127
128

Here geneIds and universeGeneIds are the vectors of Entrez Gene IDs for selected and back-129

ground genes, respectively, category is one of the abbreviation codes for MeSH categories such as130

D (Chemicals and Drugs), C (Diseases), A (Anatomy), and G (Phenomena and Processes), pvalue-131

Cutoff is the numeric value for P -value cutoff, and pAdjust allows users to choose multiple testing132

methods from BH (Benjamini-Hochberg), QV (Q-value), lFDR (empirical Bayes), and none (unad-133

justed). Finally, the meshHyperGTest function accepts the MeSHHyperGParams-class object and134

perform a MeSH enrichment analysis.135

136

meshR <− meshHyperGTest ( meshParams )137
138

The returned object is MeSHHyperGResult-class and we can access the results with the summary139

function.140

141

summary(meshR)142
143

The summary function returns a data.frame object with information about MeSH ID, P -value,144

MeSH term, Entrez Gene ID, and PubMed ID.145

In addition, the hierarchical structures of MeSH and GO permitted us to compute semantic146

similarities between functional terms (Lord et al., 2003; Pesquita et al., 2009). This is a metric147

between two terms on the basis of their biological meanings of annotation: the closer two terms are148

in the hierarchy, the higher the similarity measure is between these terms. Figure 1 shows a MeSH149

hierarchy for illustrative purpose. In this example, the semantic similarity measure between Mesh150

Term 2 and Mesh Term 3 is greater than that of Mesh Term 1 and Mesh Term 2 because they are151

closer in the hierarchy. We employed the information content-based Jiang and Conrath’s measure152

(Jiang and Conrath, 1998) to compute the pairwise similarities within GO ontologies and MeSH153

headings. The semantic similarity measure between two terms t1 and t2 is given by the information154
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content IC(t) = − log p(t), where p(t) is the probability of occurrence of the term t and its children155

terms in MeSH or GO hierarchy. The semantic distance metric is a function of156

Dist = IC(t1) + IC(t2)− 2IC(MICA),

where MICA is the most informative common ancestor.157

We further computed semantic similarity between selected genes by aggregating their MeSH158

or GO terms assigned. This is a similarity measure at the level of genes which is analogous to a159

similarity matrix among SNPs (Morota and Gianola, 2013). We calculated similarity scores over160

all pairs of terms between the two vocabulary sets of genes under consideration. All these GO and161

MeSH-guided semantic similarity analyses were carried out using the GOSemSim (Yu et al., 2010)162

and the MeSHSim (Zhou et al., 2015) Bioconductor packages, respectively. We selected exactly163

the same genes as were identified in GO categories when computing MeSH-based gene similarity to164

allow direct comparisons between these two functional vocabularies. Source code and reproducible165

output reports generated by R Markdown are available as Supporting Files.166

Data Availability167

The MeSH.db, MeSH.Gga.eg.db, and meshr packages are availalbe for download at Bioconductor168

https://www.bioconductor.org/. The two datasets used in the current study have already been169

published. The gene expression data can be downloaded from170

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0135810#sec025. Raw data for171

the selective sweep data are available from http://dx.doi.org/10.6084/m9.figshare.1497961, and172

selected genes can be found in Beissinger et al. (2015).173
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Results174

Summary of MeSH and GO annotations175

The organism and the biomaRt Bioconductor packages were queried to annotate genes by MeSH and176

GO terms. Table 1 shows the total number of genes (background and selected genes) annotated by177

MeSH and GO in each of the datasets under study. Both MeSH and GO terms had a similar number178

of annotated known genes (10,227 vs. 12,460), whereas the number of selected genes with MeSH179

terms assigned was about one-half of that of GO. For example, in the gene expression (selective180

sweep) data, 245 (333) genes are annotated by GO while only 110 (145) genes are annotated by181

MeSH. It is important to note that this difference could be because the majority of chicken genes182

are annotated by Inferred from Electronic Annotation (evidence code: IEA) in GO, whereas all183

MeSH terms are assigned by manual curation at NCBI. On the other hand, the advantage of using184

GO-IEA over MeSH is that MeSH does not include genes with no published literature in PubMed,185

while GO-IEA can still predict function for these genes. We expect that over time, MeSH will186

improve as new knowledge is created and published in the scientific literature.187

Enrichment analysis188

Gene Expression Data: A subset of significant MeSH terms (P -value ≤ 0.05) enriched with dif-189

ferentially expressed genes detected in fat tissue between high and low feed efficiency chickens are190

highlighted in Table 2. The majority of the MeSH terms in the Chemicals and Drugs category191

are related to lipid deposition and lipid metabolism. For instance, Lipoproteins (MeSH:D008074),192

and Apolipoproteins (MeSH:D001053) are closely related to lipid transportation. Additionally,193

Fatty Acid-Binding Proteins (MeSH:D050556) regulates diverse lipid signals, while PPAR alpha194

(MeSH:D047493) controls lipid and lipoprotein metabolism. Interestingly, many GO terms re-195

lated to lipid deposition and metabolism, such as cholesterol metabolic process (GO:0008203),196

high-density lipoprotein particle assembly (GO:0034380), spherical high-density lipoprotein particle197

(GO:0034366), and high-density lipoprotein particle binding (GO:0008035), were also significantly198
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enriched with differentially expressed genes (File S1). Similarly, MeSH terms related to Wnt proteins199

and signalling pathways, such as Wnt Proteins (MeSH:D051153), Wnt4 Protein (MeSH: D060528),200

Wnt1 Protein (MeSH:D051155), and their counterparts in GO, such as regulation of Wnt signal-201

ing pathway (GO:0030111) and Wnt signaling pathway (GO:0016055), were found as significant.202

The Wnt proteins are known to interact with lipids. We also found Steroid 17-alpha-Hydroxylase203

(MeSH:D013254) and steroid 17-alpha-monooxygenase activity (GO:0004508) as significant terms;204

these two categories are enriched in genes involved in the synthesis of lipids. Moreover, we detected205

some MeSH terms related to the immune system regulation (e.g., Interleukin-6 (MeSH:D015850)206

and Chemokines (MeSH:D018925)). Lastly, Glycoproteins (MeSH:D006023), is produced from the207

gene AHSG and plays a role in glucose metabolism and the regulation of insulin signaling. Taken208

together, our findings confirm that MeSH enrichment analysis can either reinforce findings from209

GO or even bring an additional biological insight. Figure 2 depicts the semantic similarity between210

significant MeSH terms in the Chemicals and Drugs category. In general, this subset of MeSH terms211

showed low to high levels of semantic similarity.212

For the Diseases category, which is unique to MeSH-based analysis, a subset of significant213

MeSH terms that deserves particular attention in the area of feed efficiency and lipid metabolism214

in poultry is highlighted in Table 2. For instance, Hyperplasia (MeSH:D006965) is a potential215

contributor to abdominal fat mass in broiler chickens; its relationship with Diabetes Mellitus, Type 2216

(MeSH:D003924) is well-documented in humans. Some MeSH terms directly related to the immune217

function, such as Newcastle Disease (MeSH:D009521) and Inflammation (MeSH:D007249), also218

showed a significant enrichment with differentially expressed genes. Interestingly, Hyperplasia and219

Inflammation showed a moderate semantic similarity according to the MeSH hierarchy (File S1).220

Selective Sweep Data: Table 2 shows the results of the MeSH-informed enrichment analysis221

using genes putatively swept or under epistatic selection derived from a chicken diversity panel.222

Most of these terms are related to insulin metabolism. For instance, resistance to insulin occurs223

in birds due to high plasma glucose and fatty acid levels; this is supported by Insulin Resistance224

(MeSH:D007333) in both the Diseases and Phenomena and Processes categories, as well as Recep-225

tor, Insulin (MeSH:D011972) and Insulin (MeSH:D007328) in the Chemicals and Drugs category.226

Moreover, we identified MeSH terms involved in the circadian clock of chicken. These are Period227
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Circadian Proteins (MeSH:D056950), CLOCK Proteins (MeSH:D056926) and ARNTL Transcrip-228

tion Factors (MeSH:D056930) in Chemicals and Drugs, as well as E-Box Elements (MeSH:D024721),229

Biological Clocks (MeSH:D001683), and Light (MeSH:D008027) in Phenomena and Processes. Fig-230

ure 3 shows the semantic similarities among MeSH terms in the Chemicals and Drugs category.231

Biological clock-related annotations, such as Period Circadian Proteins and CLOCK Proteins, ex-232

hibited moderate to high similarity. The results obtained from the other MeSH and GO categories233

were shown in File S2.234

Gene semantic similarity235

Gene Expression Data: Comparison of gene semantic similarity between MeSH and GO Biological236

Process for a subset of significant genes (n=49) from the RNA-seq dataset is depicted in Figure 4.237

MeSH-based gene semantic similarity analysis showed that genes related to energy reserve metabolic238

process are highly related. For instance, genes that are involved in triacylglycerol and cholesterol239

biosynthesis, such as methylsterol monooxygenase 1 (MSMO1), insulin induced gene 1 (INSIG1), 1-240

acylglycerol-3-phosphate O-acyltransferase 9 (AGPAT9), and ADP ribosylation factor like GTPase241

2 binding protein (ARL2BP), were highly similar to each other based on the MeSH hierarchy.242

Interestingly, GO-based analysis produced slightly different results; for instance, the gene MSMO1243

was highly similar to INSIG1 but moderately similar to AGPAT9 and ARL2BP. Additionally,244

genes MSMO1 and INSIG1 were moderately or highly related to lecithin-cholesterol acyltransferase245

(LCAT) and cytochrome b5 type A (microsomal) (CYB5A) based on the GO structure. These two246

genes, involved in lipid metabolism, also showed high similarity to apolipoprotein A-I (APOA1)247

and cytochrome P450, family 17, subfamily A, polypeptide 1 (CYP17A1). The relationship among248

these genes were low to moderate based on the MeSH hierarchy. The results based on the GO249

Molecular Function and Cellular Component categories were presented in File S3.250

Selective Sweep Data: Gene semantic similarity based on both MeSH and GO Biological Pro-251

cess among a subset of genes (n=45) under selection is shown in Figure 5. Notably, a large group252

of genes, including strawberry notch homolog 1 (Drosophila) (SBNO1), ARP5 actin-related pro-253

tein 5 (ACTR5), SET domain containing 1B (SETD1B), Obg-like ATPase 1 (OLA1), and histone254
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deacetylase 9 (HDAC9) were highly related based on both MeSH and GO-guided semantic similarity255

analyses. All these genes are involved in chromatin organization and regulation of gene expression.256

Moreover, particular attention was paid to the top five candidates under epistatic selection reported257

by Beissinger et al. (2015). These genes are adenylate cyclase 5 (ADCY5), myosin light chain ki-258

nase (MYLK), phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit beta (PIK3CB),259

calcium binding protein 39 (CAG39), and interleukin 1 receptor accessory protein (IL1RAP). Al-260

though none of these pair of genes appeared in a GO-based similarity matrix, ADCY5 and MYLK261

presented a low to moderate gene semantic similarity based on the MeSH hierarchy (File S4).262

Discussion263

This article reports the MeSH analysis for chicken using the newly developed Bioconductor packages.264

These new resources enabled us to carry out different MeSH-based analyses, including enrichment265

analysis and MeSH-guided semantic similarity among functional terms and gene products. We266

exemplified the potential usefulness of these MeSH-based approaches by using two different publicly267

available chicken data.268

The adipose tissue is the major site for lipid deposition and lipid metabolism, and it plays269

a central role in energy homeostasis. Unsurprisingly, several MeSH terms closely related to fat270

metabolism, such as Lipoproteins, Apolipoproteins, Fatty Acid-Binding Proteins, and PPAR alpha,271

were significantly enriched with genes that showed differential expression in fat tissue between high272

and low feed efficiency broiler chickens. We found some genes were annotated by the same MeSH273

terms. For instance, gene overlap between Lipoproteins and Apolipoproteins was one-half and 66%274

of genes were shared between Fatty Acid-Binding Proteins and PPAR alpha. It is likely that this275

gene overlap is observed because each MeSH term inherits all annotations from its more specific child276

terms (Falcon and Gentleman, 2007). It is possible to address this issue by conducting a conditional277

analysis that is implemented in the GOstats package. Adding this feature in the meshr package278

might alleviate the overlap of genes. Also, adipose tissue is now recognized as a metabolically279

active tissue that has important endocrine and immune regulatory functions (Kershaw and Flier,280

2004). Interestingly, we found many significant MeSH terms, such as Interleukin-6, Chemokines,281
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and Immunoglobulins, that are closely associated with the regulation of the immune function.282

Overall, our MeSH-based findings provide further insights into the biological mechanisms underlying283

differences in adiposity between high and low feed efficiency broiler chickens.284

Included in our exemplary applications of MeSH annotations is a set of 352 genes previously iden-285

tified as putatively affected by selection. Genes identified through population-genetic approaches286

such as this can be elusive, because their identification does not rely on phenotypes. Therefore287

associating selection with any specific trait is often very difficult (Akey, 2009). As we demonstrate288

in this study, tools such as GO and now MeSH are useful for suggesting biological interpretations289

that can later be followed up on or drive future biological hypotheses. For instance, our results290

showed that insulin-related MeSH terms appeared unusually often in the set of genes impacted by291

selection. This implies that selection for insulin-related traits may have played an important role292

in differentiating chicken breeds. Furthermore, our analysis involved testing for semantic similarity293

between pairs of genes, which was particularly useful for evaluating the most promising gene-pairs294

highlighted by Beissinger et al. (2015) as candidates for epistatic selection. Our expectation was295

that these pairs of genes are likely to be related to each other, as they have been predicted to be296

involved in the same selected phenotype. Our finding that one pair showed at least a weak semantic297

similarity may be interpreted as evidence that these two genes, ADCY5 and MYLK are the most298

likely among the set to truly be epistatic.299

The recent advancement in cataloguing genes with MeSH and GO has made it possible to assess300

the role of selected genes and has opened new opportunities for genetic research. Enrichment301

analysis recapitulates a set of genes into higher-level biological features. We argue that obtaining302

a complete picture of genes of interest using MeSH and GO is an important initial step toward303

functional genomics studies in poultry as well as other agricultural species as it facilitates efforts to304

illuminate the genetic basis of phenotypic variation.305
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Tables369

Table 1: Number of known and selected genes annotated by MeSH (Medical SubjectHeadings) and
GO (Gene Ontology).

Annotated Genes Selected Genes
Data MeSH GO Total MeSH GO

RNA-seq
10227 12460

263 110 245
Selective Sweep 352 145 333
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Table 2: A subset of statistically signicant MeSH (Medical Subject Headings) terms. Background
and Selected denote the number of background genes and selected genes annotated by the MeSH
term, respectively. CD, D, and PP denote Chemicals and Drugs, Diseases, and Phenomena and
Processes, respectively.

Data Category MeSH ID Background Selected MeSH Term P -value
RNA-seq CD D008074 14 4 Lipoproteins 0.0001

D001054 7 2 Apolipoproteins A 0.0069
D001053 5 2 Apolipoproteins 0.0034
D050556 17 3 Fatty Acid-Binding Proteins 0.0037
D047493 7 2 PPAR alpha 0.007
D012177 6 2 Retinol-Binding Proteins 0.005
D051153 91 8 Wnt Proteins 0.0003
D060528 8 3 Wnt4 Proteins 0.0003
D051155 19 2 Wnt1 Proteins 0.0488
D015850 25 4 Interleukin-6 0.0078
D018925 14 2 Chemokines 0.0276
D007136 76 5 Immunoglobulins 0.0127
D013254 1 1 Steroid 17-alpha-Hydroxylase 0.0188
D006023 120 15 Glycoproteins < 0.0001

D D006965 1 1 Hyperplasia 0.0188
D003924 2 1 Diabetes Mellitus, Type 2 0.0373
D009521 9 3 Newcastle Disease 0.0005
D014802 5 2 Vitamin A Deficiency 0.0034
D007249 12 2 Inflammation 0.0205

Sweeps CD D011972 2 8 Receptor, Insulin 0.0160
D007328 26 3 Insulin 0.0268
D056950 5 2 Period Circadian Proteins 0.0037
D056926 8 2 CLOCK Proteins 0.0160
D056930 6 2 ARNTL Transcription Factors 0.0122

D D007333 1 1 Insulin Resistance 0.0252
PP D007333 1 1 Insulin Resistance 0.0252

D024721 8 2 E-Box Elements 0.0160
D001683 13 2 Biological Clocks 0.0410
D008027 28 3 Light 0.0325
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Figures370

Figure 1: A cartoon illustrating semantic similarity among MeSH terms in the MeSH hierarchy.
The semantic similarity measure between Mesh Term 2 and Mesh Term 3 is greater than that of
Mesh Term 1 and Mesh Term 2 because they are closer in the hierarchy.
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Figure 2: MeSH semantic similarity in the Chemicals and Drugs for the RNA-seq dataset. The
higher the semantic similarity between MeSH terms, the bigger (darker) the circle. D006023 (Gly-
coproteins), D008074 (Lipoproteins), D001054 (Apolipoproteins A), D001053 (Apolipoproteins),
D050556 (Fatty Acid-Binding Proteins), D047493 (PPAR alpha), D012177 (Retinol-Binding Pro-
teins), D051153 (Wnt Proteins), D060528 (Wnt4 Proteins), D051155 (Wnt1 Proteins), D015850
(Interleukin-6), D018925 (Chemokines), D007136 (Immunoglobulins), and D013254 (Steroid 17-
alpha-Hydroxylase).

22



Figure 3: MeSH semantic similarity in the Chemicals and Drugs for the selective sweep dataset.
The higher the semantic similarity between MeSH terms, the bigger (darker) the circle. D011972
(Receptor, Insulin), D007328 (Insulin), D056950 (Period Circadian Proteins), D056926 (CLOCK
Proteins), and D056930 (ARNTL Transcription Factors).
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Figure 4: Gene semantic similarity for the RNA-seq dataset. The higher the semantic similarity
between gene pairs, the bigger (darker) the circle. Top:MeSH, Bottom:GO.
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Figure 5: Gene semantic similarity for the selective sweep dataset. The higher the semantic simi-
larity between gene pairs, the bigger (darker) the circle. Top:MeSH, Bottom:GO.
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