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MANAGEMENT OF INVASIVE SPECIES USING OPTIMAL CONTROL
THEORY

Christina J. Edholm, Ph.D.

University of Nebraska, 2016

Advisers: Richard Rebarber and Brigitte Tenhumberg

In my dissertation I will discuss the use of optimal control theory to determine
management strategies for an invasive species. 1 focus on a Diaprepes Root Weevil,
which is an invasive species having a substantial negative impact on citrus tree growth
in regions such as Florida and California. At the larva stage of the life cycle Diaprepes
Root Weevils cause destruction of citrus trees at the root level resulting in loss of citrus
crops. This detrimental effect for farmers motivates research into how to minimize the
economic loss due to the Diaprepes Root Weevil. For my work, I use optimal control
theory to determine levels of pesticide or biological control to apply to the Diaprepes

Root Weevil to reduce the economic loss.
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Part 1

Invasive Species Single Patch

Optimal Control



Chapter 1

Background

1.1 Mathematical Background

A useful source for the history of control theory is a paper entitled Control Theory:
History, Mathematical Achievements and Perspectives [FCZI03|. The article covers
highlights from the development of Control Theory, additionally exploring specific
topics and examples. Furthermore, the article considers feedback, optimization, con-
trollability, and optimal control. There is also a look at specific examples utilizing
control theory, and possible avenues for future study. As mentioned in the article
one of the key development of Optimal Control Theory can be traced to Pontrya-
gin. Specifically, there was a book published in 1962, The Mathematical Theory
of Optimal Process, by L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelize, and
E.F. Mishchenko[Pon87]. An important development was the Pontryagin Maximum
principle which established necessary conditions to an optimal control problem and
relates this to the Hamiltonian, a useful tool for solving optimal control problems. For
a more in-depth look we refer the reader to the original book or the book Optimal

Control Applied to Biological Models by Lenhart, S. and Workman, J.T. [LW07], a



very useful source. The book by Lenhart and Workman covers an introduction to
Optimal Control Theory, focusing on a full treatment of continuous time systems, and
includes discrete time as well. Additionally, it includes many examples of optimal
control applied to biological systems, with both the mathematics and code included.

For specifically Discrete-Time Optimal Control Theory, a good resource is Optimal
Control in Discrete Pest Control Models by Kathryn Dabbs[Dabl10]. The paper gives
an overview of how to solve discrete-time optimal control problems and looks at specific
models. Another paper on discrete-time optimal control with existence, necessary
condition, and uniquness proofs is Optimal control of gypsy moth populations by
Whittle, Lenhart, and White [WLWO0S]. In this thesis, we focus on a model which
does not fit into this framework, allowing for variations to the mathematical set-up
and a full treatment of existence, necessary condition, and uniqueness proofs for the
optimal control.

Additionally, there have been many papers linking Optimal Control Theory to
biology, a few that we have found useful in our studies: [MSI12], [Fil62], [Gral(],
[Dab10], [WLWO0S], [MLW15], [JLPB05|, [Ris77], and [Leu93]. Some of these papers
also address invasive species as their biological inspiration for implementing Optimal
Control. For instance, the Gypsy Moth is a specific invasive species studied in both
[WLWO08] and [MLW15], which utilize a different model but use Optimal Control
Theory to study management, and in [MLWI15| include an integrodifference model. In

the next section I will explain more about invasive species.



1.2 Biological Background

Our research involves applying control theory techniques to natural resources manage-
ment, in particular management of invasive species.

Since the beginning of agriculture, people have always had to deal with pests
affecting their crops, and developing methods to control the effects. Originally people
had to eliminate pests by hand, through picking or mechanical methods, until 2500-
1500 B.C. when the Sumerians and Chinese introduced pesticide. Today there is still
a great loss of crops to pests. Specifically we consider crops which we use in our daily
lives. For instance, there is a loss of approximately 50% of wheat to pests, while
cotton loss can exceed 80% [Oer06]. There are various methods applied to combat
pests including implementing predators, weeding techniques, biological control agents,
and pesticides[Oer(6].

Across the world annually there is approximately $40 billion spent on pesticides,
while the United States made up a quarter of that cost [PU03, [PG97]. Despite
attempts to apply pesticide, in the United States there was still a loss 37% of crops, to
the ecological pests. Specifically there was 13% lost to insects|Pim05]. Furthermore,
even though we have increased pesticide application in the past 50 years by more than
a factor or ten, there is still approximately twice as much damage now from insects
than then [PMZ791]. [Pim05]

Another important factor to consider is the human element which affects invasive
species. When humans disrupt a territory, the result is a possible response growth
in invasive species, with the destruction of the terrain linked to the original species
increased chance of eradication [Hob00, [Fah02 [DL09]. So, humans not only inadver-
tently encourage the growth of these dangerous invasive species, we also cause the

extermination of the preexisting healthy organisms. The resulting inhospitable area



becomes an impediment for both the invasive and native species[Fah02l, [DL09], shaping
the landscape. There has already been research looking into humans affects on the
landscape linked to increase in invasions [Hob00, [Wit02]. However with the evolution
of human society changes are constantly occurring that could influence dangerous
invasive species. Additionally, with the increase in the human population of around
5000 million people in the last 65 years, there will be more cases of invasive species

and more control required to produce enough crops for the population [CAP16].



1.3 Overview

Our plan is to explore management of invasive species using optimal control theory.
In part one we will consider a single patch model with no dispersal.

In Chapter 2 we will introduce a basic model which takes into consideration an
invasive pest lifecycle and applying a control, for instance a pesticide, a non-persistent
short-lived biocontrol agent known as control agent. Furthermore we will prove
existence, necessary conditions, and uniqueness for the optimal control. In Chapter
3, we consider what happens when the control persists longer than one time step.
Again we will prove existence, necessary conditions, and uniqueness for the optimal
control. In Chapter 4, we explore a case study investigating a specific invasive species,

Diaprepes abbreviatus, DRW.



1.4

Reference Chart

Notation Description
P, Number of eggs
Pest P Number of larva,
Vector P, Number of pupa
P, Number of adult
Y1 Egg survival
Yo Transition rate egg to larva
01 Fecundity rate of female adults
Pest 02 Adult survival
Matrix G Larva survival
© Transition rate larva to pupa
21 Pupa survival
Vo Transition rate pupa to adult
Initial Oe Initial Proportion eggs
Pest o] Initial Proportion larva
Vector Dp Initial Proportionpupa
Da Initial Proportionadults
Control N Number of control agents
o search efficiency/encounter rate of control
Cost 51 loss of harvest per square meter per time steo
Function B cost of control per square meter per time step
Nematodes Persist I mortality /degradation of control agent




Chapter 2

Basic Model

2.1 Parameters

We denote pests by the vector P and control by the vector N. We consider a system
where it is possible to apply control every time step, hence we establish a discrete-time
model with constant time steps. The pest life cycles and dynamics, we used a 4 x 4
matrix, A, taking into account the pest eggs (P.), larva (P), pupa (P,), and adults
(P,). Note this can be generalized and applied to pests with a larger or smaller number

of stages; additionally the matrix can characterize different pest stages. Let:

w 0 0 6
A 2 G 0 0
0 CQ 141 0
0 0 1) 02

The control is applied only to the larva stage P, or the second stage of the pest
stages. The control search/application efficiency is denoted by «, and accounts for
how likely a control agent is to encounter a pest larva. Below is the formulation of

the pest dynamics with the control included in the larva stage, where ¢ is a time step.



P(t + 1) = AP(t) (2.1)

P.(t+1) v 0-e N 0 g P.(t)
P(t+1) Y2 Gee W00 B(1)
B+l | |0 e o oo || P
P,(t+1) 0 0-e N0y 6y | | Pult)

We denote initial values by

P.(0) b
PO || @
B,(0) Pp

| 20) ] | e

2.2 Cost Function

We constructed the cost function by breaking it down into the control and pest
components. Specifically, if we look at the cost incurred to an environment by an
invasive pest there will be the loss of profit from the pest existing in the environment
and the cost to purchase control to apply to the environment to deal with the pest.
Since destruction of the environment is catastrophic we expect a nonlinear term
for the cost of pest damage. Specifically, when there is a low density of the pests, we
expect the affected specie will not suffer large losses, but at a high density of pests
the mortality rate becomes exponentially large. Furthermore, since we don’t have
a functional term we use the square which ensures mathematical uniqueness. For

mathematical convenience we choose to model the cost of pest damage as (3 P(t)%.
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The exponential increase of damage ensures that control will be applied at some point,
which is a desirable feature in the cost function because it prevents plant death as a
result of too high pest density.

In addition to the cost related to pest damage, we need to consider the cost of
purchasing the control agent which is 52N (t). So (s is the price of a single control
unit. So the total cost is cost due to pest damage, 5, F(t)?, plus the cost of using
control, SoN(t),

Cost = B1P(t)* + B2 N(t)

where 5, and (5 will be determined by the specific invasive species.

2.3 Optimal Control Problem

Realistically, there is going to be a maximum amount of control we can purchase and
apply. We denote N,,,, as the maximum amount of control at any time step we can
apply to the environment.

The set-up over our Optimal Control Problem is to minimize the objective func-

tional for T' time steps

J(N) = i BiP(t) + BN (1)

subject to
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Pe<t+1) :’Ylpe(t) +91Pa(t) Pe(()) = ¢e

P(t+1) = nP.(t) + Ge MO P(t)  P(0) = ¢
(2.2)

P,(t+1) = Ge MOP () + nP,(t) PBy(0) = ¢,

Po(t 4+ 1) = 1uPy(t) + 2P, (1) P,(0) = ¢,
where N(t) > 0foralltand N € N={N :{1,....T} = {z € R0 < 2(t) < Npga,t =
1,2,...,T}}.

We will prove the existence and uniqueness of the optimal control, which we denote
by N. We will also prove necessary conditions for the optimal control N'. The proofs
roughly follow the proofs in Optimal Control of Gypsy Moth Populations by Whittle,
Lenhart, and White [WLWO0§|. The existence proof roughly follows from Optimal
Control in Discrete Pest Control Models by Kathryn Dabbs[Dabl10]. A useful source
for proofs in Optimal Control theory is Optimal Control Applied to Biological Models
by Lenhart, S. and Workman, J.T. [LW07].

Note in the following proofs each P., P;, Py, P, is a function of . Similarly each

P, Pr, Py, P; is a function of N +ne.
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2.3.1 Existence

Theorem 2.3.1. There exists N' € N which minimizes J(N).

Proof. Each F,, P, P, P, is continuous as a function of N at every time step by
Equation 2.2] Define B™ = {(N(1),..N(T))|N € N}. We note that there is a natural
isomorphism between N and B*. Considering J : N — Bt — R, we see that J is
continuous as a function of N. We have that B* is a compact subset of R? in the
standard Euclidean topology. Thus, AlfléfN J(N) exists. Hence, we have a sequence Ny €
N such that klggo J(Ng) = Alfrelfl’\T J(N), with corresponding P, , P, , P,, . P,, sequences.
Thus we can find subsequences Ny, P, Plkj,P P, such that jli_glo J(Ny,) =

[ ot ag.
k] pkj kj

inf J(N), Ny, = N, Pekj — ’P&Plkj — Pl,Ppkj — Pp,Pakj — P,. Therefore, there

NeN
exists ' € N which minimizes J(N).

2.3.2 Necessary Conditions

Adjoint System: Define the following terminal value system, called an adjoint

system:

Ae(t) = At + Dyr + N(t+ 1)

A (1) = 26 Py(t) + Ni(t + 1)Ce™ N0 4 A (t + 1) e N
Ap(8) = Nt + Dy + Aot + Dy
Aa(t) = Xe(t + 1)0; + No(t + 1)0

A(T) = 0, N(T) = 0, A\, (T) = 0, Ao(T) = 0.
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These adjoints, A, are useful in establishing the formulas and necessary conditions
for the optimal control. Additionally adjoints are effective for computational pur-
poses, specifically the forward backward sweep discussed later. Note the adjoints are

constructed by
Ae(t) = [BiPi(t)* + BN ()b, + Pe(t)p At + 1) + Pi(t) p Nt + 1) + Po(t) p A (t + 1)

+P.(t)pAa(t + 1),

similar construction follows for the other adjoints. The adjoints were formulated by
Pontryagin and colleagues, the adjoints variables preform a function similar to that of

Lagrange multipliers. [LWQT7]

Theorem 2.3.2. If there ewists an optimal control N, then there exists an adjoint

system and

where &(t) = G (t+ 1)Pi(t) + QA (t + 1)Pi(t).

Proof. Since we have that N/ minimizes J(N); for all sufficiently small ¢ > 0 and for
all p e {n=(n),...n(T)In(t) < 1,t =1,..., T} we have that J(N +ne) > J(N).
To determine the structure of the control consider directional derivatives of the cost
J, we will take a directional derivative of functional .J; for the directional derivative
in the direction of n with & > 0 sufficiently small and 0 < N + ne = N € N we have

that:

0 < lim ~[JN +5e) — JA)]

e—0t €
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= lim — [Z BiPs(t)* + BoNE(t) Z BiPy(t)? + ﬁ2N(t)]

e—0t €

T-1
()2 — Pyt “(t) = N(t
= [51 lim PE() = Pilt)” + [y lim N = N®) N()]
=0 e—0t € e—0+ B
(t) = N(t
We have that lir(l)q+ M = n(t), and we will define the sensitivities,
E—

De(t) u(t), bp(), Ya(t) as

1/}e< ) — ll_I}é w’ ¢z(t) — ll_I)I(l) Pl( ) - ,Pl(t)J
Up(t) = lim M Yult) = lim Pe(t );Pa(t)

where 1.(0) = 0, ¢,(0) = 0, ¢,(0) = 0, ¢,(0) = 0. We have the limits exists from
Chapter 23 in Optimal Control Applied to Biological Models [LW07].

Hence, we can write:

we(t + 1) = ’Vﬂbe(t) + 91%@)

it + 1) = e (t) + Ge VD (t) — GaeNOP(t)n(t)

Up(t+1) = 11(1) + Goe™ VO (1) — Gae VO ()n(1)

Va(t + 1) = vo1hy(t) + 02104(t).
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Now, returning to

T-1

0< lim ~[JN +7e) — JN)] = 3 B2Pu(t)a(t) + Bon(t).

—0+
3 g —o

To remove the sensitivity ;(¢) we will manipulate the sensitivities and adjoints

equations.

We have that:

e (t + 1) %(t) 0
Yi(t+1) g Pi(t) _ —Crae * NOP(t)n(t)
Uyt +1) V(1) —Gae NP (t)n(t)
| Ya(t+1) | va(t) || 0 |
- ol 0 0 0, ]
—aN (k)
where B = T Ge 00

0 0 1%5) 92

Now we have that:

0
o _ 12P,
2512731(15)%@): {we(t) i(t) ¢p(t) Ya(t) 6 Ol(t)
- O -
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() At +1)
{ NN I IPYICESY
— Ve(t) i(t) p(t) al(t) ] 7
A1) Mt +1)
() | Aot +1)
A |
- (%)
— 3 {we(t) Yi(t) dp(t) w“(t)} A (1)
| Aa(t)
[ At +1) _
T-1 T At +1)
-2 [ be(t) Pi(t) Pp(t) a(t) } v Ap(t +1)
| Aot +1)

Recall that 1.(0) = 0, ¢,(0) = 0, ¥,(0) = 0, ¢,(0) = 0 and A\ (T) = 0, N(T) =
0, \p(T') = 0, A\o(T') = 0. Therefore we can change the indices, so that:



)‘E(T - 1)

oo oo
[ N
55%5
v~ 3
< < < <
L —

=

|

=

3

=

~—~

—

|

)

[s9

=

=

|

=

=5

=

|

)

O

=

| I

+

_|_
~~~ —~ —~
S = 2 <2
< < < <

— /N
— —
~ ~—
g IS8
~< ~<

— /
— —
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Now combining everything we have that:

0 < lim —[ (N +ne) — JN)] = 25127%(?5)%(75) + Ban(t)

e—0t &

: Ni(t+ 1)G+ At + DG [—ae N OP(t)n(t))] + Ban(t)
—ST 0] PUON(E + 1)+ A(t + 116 + Ba]

0= nt) [~ae ™ NOP @) [Nt +1)G + Nt + 1)C] + Bo]

o+
Il
o

for all n € {n = (n(1),...,n(T))n(t) < 1,t =1,....,T}. Then we have that for all ¢,
0= —ae™ MO (BN + 1)+ At + 1)G] + B

Consider:

0= —ae" NOP ()Nt + 1)G + M\t + 1G] + 2 =
e NOD N (E+ 1)+ Mt +1)E] = %

—aN(t) _ 52
PN DG T N DG

- Ba
—aN(t) =1n [oﬂ’z(t)[)\l(t + 1)+ At + 1)(2]] =

e

aN(t) =In {apl(t)[)\l(t T DG+ A+ 1)C2]} .

B
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Note that o > 0. We need that N(t) > 0, so

aPi(t) [Nt +1)G + At + 1) >0

hl 9
B o

meaning

QPO+ 1)+ Mylt 1G]

B2 =L

Hence when

% < Pit) Mt + )G+ A+ 1)E,

then we have

N(O) = 3 [ PUO(E+ 16+ Aplt + D))

Now we will consider if

% > PN+ 1)G+ At + 1)l

Then returning to

N

0= nt) [~ae”NOP ) [Nt + 1)C + Ap(t 4+ 1)Ca] + Bo]

t

Il
o

for all n € {n = (n(1),...n(T))|n(t) <1,t=1,...,T}.

0= n(t) [~ac”VOP@)N(t + 1) + At +1)C] + 5o

t

S

Il
o

-1

T-1
< ;n(t) {—ae‘“N © (%) +ﬁ2} = 0(t) [=Bae N + 5y

t=
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Hence we have if

% > Pu) Nt + 1)+ Mt +1)G]
then
T-1 T_1
0< 30 0(t) [~Boe™N 0 + 5] = 3 (1) [~e N 4 1]
t=0 —

Recall we have that N (t) > 0.

If N(t) > 0 we have that By(—e *N® 4 1) < 0 contradiction.
Thus, if

% > PNt +1)G + At +1)C]

we must have that AV (t) = 0. Set

§(t) = Pu(t)[Ault + 1)C1 + Ap(t + 1)¢]

Meaning that

« 2

N(t) = max(0, - ln[%(ﬂ(t) Dt + 1G4 At + DG

2.3.3 Uniqueness

Theorem 2.3.3. Uniqueness: If the optimal control N exists, then it is unique.
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Proof. Tn order to show A is unique we will show that J(N) = 37" 8, Pi(t)2+ Ba N (t)
is strictly convex. Recall that if a function is strictly convex then there exists a
unique minimum such that J(N) < J(N) for all N € N\ N. To show that J
is strictly convex we will look at J along a line segment from N to n by defining
2(6) = J(1 —e)N +en) = J(N+e(n—N)) for Nyn € N, and 0 < ¢ < 1. Note
that if z, a one dimensional function, is convex in every possible direction then J
will be convex. To establish convexity we will show that z”(e) > 0. First take the

derivative of z, note that Pf is a function of N +e(n— N) and P7** is a function of

N+ (t+4+¢)(n—N).

_ 5 [y =IO 0 - i)

By The Chain Rule:

2(6) = ST B2PE (U () + Aalnlt) — N(1).

Note we define sensitivities similar to in Theorem 2.3.2k

Vet +1) = mug(t) + 6105(1)
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Ui (8 + 1) = 1205(8) + Gem NV D5 (1) — Gae N O P (1) (n(t) — N(2))
G5t +1) = (1) + Ge N Y] (1) = Gae MO () (n(t) — N(1))
V5 (t+ 1) = vag (1) + 02005 (1)
where 1.(0) = 0, ¥,(0) = 0, 1,(0) = 0, 1, (0) = 0.

In order to continue we must define derivatives of the sensitives, o¢ (t), o7 (t), o5 (t), o5 (%)

as:

of(t 4 1) = i Yo EFD ZVEEHD) - ey gy gy WA D 4 )

7—0 T T—0 T !

ﬁ@+¢>:hm¢$“@+l)—¢ﬂﬁ+D7 ﬁ@+4):hm¢§”@+i)—¢ﬂt+w

7—0 T 7—0 T

Hence, we can write:

o (t4]) = tim YD Z I AT e ST US| ) — R

70 T T—0 T 70 T

=m0 (t) + 0105(t)

Yo (1) — Ya(t)

T

(1) = g D) GO 50

T 7—0 T 70

= VQO';(t) -+ ‘920’2(15).
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Qv mfﬁwvadlwmdmmmwv>\q| vatv ﬂvnT vam@\;thdIQA@vZ| va©vﬁﬂv| AANV>\4| vatv vamﬁgmzwolwwoﬂv| vambﬁvmzvolwﬂvnT vabm\h _

(DN — (D) (1) 2 () w20 — (D) 10y ol (DN — (W)W = [(DN — (D)2) (1) 1) o0 — ()10 o_2]1 + (3)207L =

: g (3) N — ()0 - i 19+ - Ot oL
. B N ! 5 ——wr i =
Gv wwngd\w N vam.fbf@vikzwo\w Qv Mqﬁthd\m - vam.fm (1) s n0—2 Qv = @vﬁh%
) e
wi| =

(N = D0 yonw209 + Dy 0219 = 205 = (DN = DDl (o200 = (Bos 0y, 29 + (D220

L 0L
B Y (1+4)e

(1 4 2) Lo ognduwoo (i om ‘moyN
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NAA@Z - vaiv vamf.ﬁwvaBlwmdmv + AANVZ - vatv va%\wngdIQdNVN - vambﬁvadImmv + vawbﬁl =

(DN = (D) (1) 2 (1) po-20 = (D30 o2l (DN = (1)2)02 = [(DN = (D0) (1) 20y o0 = (D10 yw_2]® + ()01 =

L 0+
= i = (14 7)%
(T+ 0% — (142450 (T+4)

(1 + 2)20 oynduwion [[im om ‘moN

(DN = DL (B)sd 40220 + (DN = (D)3 20 5). 020198 = (1) 39(5), 02" + (1) 2050 =
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Zﬁﬂa t) + Ba(n(t) — N(t))

T7—0 T

Z%@:hm(uf+@—zgvzz

= lim 3" BB (U7 + Aaln(t) — N(1) — [B2BF(OU (D) + Aaln(t) — N(©)

T-1 T-1
Prre(t)re(t) — Pr(t)ws(t
=3 Bzt AU = BOUE 5 90054 Pr(e) + w5 1))
T—0 T
=0 t=0
T
We now need to show that z” Z ) + 5 (t)%*] > 0. To bound

=0
2"(g) > 0 we will show that [of(¢)PF(t) + ¥ (t)?] > 0. To do this we will show that
) =

of(t) > 0 for all t. Note we have that Pf(t) > 0 and ¢5(t)? > 0.

Sensitivities We need the equations for the sensitivities for various ¢t values. We

have that 97 (0) = 0, ¥7(0) = 0, 5(0) = 0, ¥;(0) = 0, so for t = 1:

Yo (1) = my(0) + 0195(0) =0

U (1) = 7212(0) + Ge ™ Dy (0) — Grae N O PF(0)(n(0) — N(0))

= —Gae " OP(0)(n(0) — N(0))

U (1) = w115 (0) + e N DY (0) — Gae N O P(0)(n(0) — N(0))



Next, for t = 2

¥e(2) = mee(1) + 01y (1) = 0

U5 (2) = (1) + Ge NV Wyi(1) — Gae M WP (1)(n(1) — N(1))
= Ge N D (=Gae M O P (0)(n(0) — N(0))) — Gae M W PE(1)(n(1) — N(1))

= —Glae NV OmeMWPE(0) (n(0) = N(0))) — Gae™ M WP (1) (n(1) = N(1))

Up(2) = (1) + eV WE(1) = Gae VW (1)(n(1) — N(1)
= v1(—Gae N O PF(0)(n(0) — N(0)))
+Gem N W (—Grae N O PE(0) (n(0) — N(0))) — Gae ¥ W PE(1)(n(1) — N(1))
— —1Gae= O PE(0)(n(0) — N(0))

—GGae” MOV WPE0)(5(0) — N(0))) — Gae W (1)(5(1) — N(1))

V3(2) = vatp (1) + 0205 (1) = va(—Goae™ O FE(0)(5(0) — N(0))).

Then, for t =3

28
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Ve(3) = Mve(2) + 0195 (2) = 01[varhy (1) + 02905 (1)]

= O11a(—CGoae N O PF(0)(n(0) — N(0)))

Ui (3) = 10i(2) + Ge M P (2) — Gae NI B(2)(n(2) - N(2))
= Ge N O[=Fae N O=N O PE(0) (5(0)— N(0)) —~Grae NV BE(1) (n(1)—N(1)]
~Gae M PP (2)(n(2) — N(2))
= —(fae N O =@ PE(0) (5(0) — N(0)))
—(lae NN @ PE(1)(n(1) - N(1)

~Gae IR (2)(n(2) — N(2))

U (3) = 195 (2) + Ge N PF(2) — Gae NP (2)(n(2) — N(2))
= 1 [~1Gae” VO F(0)(1(0) = N(0)) — GGae M OV W PE(0)(5(0) — N(0)))
—Gae” M WP (1) (n(1) = N(1))]+ eV @ [=(Fae N O N W Pz (0) (5(0) - N(0)))
—Gae™ MO (1)(n(1) = N(1)] = Gae NP B (2)(n(2) — N(2)
= 1 Gae MO P (0)(5(0) = N(0)) = 1 GGae N OO PE(0)(5(0) — N(0)))
—1nGae N WP (1) (n(1) = N(1)) = GGae N 0N O=eN@ pe (0)(5(0) — N(0)))

—GGae MmN BE 1) (5(1) = N(1) = Gae™ M @ P (2)(n(2) — N(2))
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Va(3) = 1ot (2) + 6205(2) =
= vo[—11Geae” N OB (0)(n(0) — N(0)) — GGrae N O N W PE(0)(5(0) — N(0))
~Gae” ™ WP (1)(n(1) = N(1))] + Oa[va(~Gae ™ O 7 (0)(5(0) — N(0)))
= —vaGoae” O (0)(1(0) = N(0) — valoGrae™ N O=eM W BE(0)(n(0) — N(0)))
—vaGoae N WP (1)(5(1) = N (1)) + Oava(=Gae N O P (0)(n(0) — N(0))).

Lastly, when t = 4

Ui(4) = i (3) + 0195 (3) = m[Brva(—Goae N DV P (0)(n(0) — N(0)))]

+01 [— 1o Gae™ N O P (0)(n(0) — N(0))
—valaCrae” N O7N W PE(0)(n(0) — N(0))) = valoae M WP (1)(n(1) — N(1))

+0a15(—Cace N O PF(0)(n(0) — N(0)))]

Vi) = %vi(3) + Gem () = Gaem MR 3)(n(3) — N(3))
= 2[f1vs(=Cae™™ " O BE(0)(n(0) — N(0)))
+Gem N O [=GaemMOmN @ BE(0) (n(0) — N(0)))
~(aem M WTNEPE 1) (n(1) = N(1) = Gae @R (2)(n(2) - N(2))]

—Crae” VB PE(3)(n(3) — N(3))
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V5 (4) = 11ty (3) + Ge N OYf(3) — Gae M PE(3)(n(3) — N(3))
= ni[—vanGae ™ O F7 (0)(n(0) — N(0))
~1aGaGrae” N O W PE(0) ((0) — N(0))) — vadoae M W (1) (n(1) — N(1))
+055(—~Coae "N OV BE(0) (n(0) — N(0)))]
+Goe N O (Faem oM OV W=V @ PE(0) (5(0) — N(0)))
—(fae NN B PE(1)(n(1) - N(1)) = Gae N DB (2)(n(2) — N(2))

—Gae VB PE(3)(n(3) — N(3))

V5 (4) = va[~viGae N O PE(0)(1(0) — N(0))
—viGGrae N O W PE(0)(n(0) — N(0))) — riae NV B (1)(n(1) — N(1))
—Ga(fae N O =N @ pe (0) (5(0) — N(0)))
~GaGrae” TN B PE(1) (5(1) — N(1) = Gae VBB (2)(n(2) — N(2))]
+la[—vav1Gae™ O P (0)(n(0) — N(0))
—va(oGrae” N N W PE(0) (n(0) — N(0))) — valoae NV W (1)(n(1) — N(1))
+05v5(—Goae N O P(0)(n(0) — N(0)))].

We have established values for ¢ (t), 5 (%), w;(t), WPeE(t) for t =0,1,2,3,4.

Values for 0 We need o] > 0, so we will focus on the values of of. However, we

must recall that the formulas for ¢°, 1%, and P are all interconnected. Specifically,



32

we have that:

05 (t+1) = 3105 (E) + 0105 (1)
G1(t4+1) = 1205 (D) +Cre™ N D7 (1) -2 ae =N O (1) (n(t) - N (1) +Cra2e =N O PE (1) (1) N ()2
op(t+1) = 1105 (1) +Goe™ N D f (£)=2Ga0e N O () (v(t)~N (1)) +Ca02e N O PE (1) (n(1)= N (£)?

oo (t+1) = va0,(t) + 205 ().

Recall that 0Z(0), 07(0), 0;(0), 05(0) = 0. Consider ¢ = 1:

0c(1) = 10c(0) + 6105(0) = 0

07 (1) = 7202 (0) + Ge™ ¥ Vo (0) — 2Giae™ N Dy (0)(1(0) — N(0))

+Ga?e M OB (0)(n(0) — N(0))? = Gua®e ™ D B7(0)(1(0) — N(0))*

0,(1) = 110;(0) + Goe™ ¥ Vo (0) — 2Gae ™™ DYf(0)(n(0) — N(0))

+Gae M OB (0)(n(0) — N(0))? = GaZe ™ DB (0)(1(0) — N(0))*

0o (1) = 120,(0) + 6207,(0) = 0.

a

Next, t = 2

0e(2) = mog(1) + 0105(1) =0

07(2) = 70 (1) + Ge™ ¥ o (1) — 2Gae™ M Wyp(1)(n(1) — N(1))
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+Gate M WP (1)(n(1) - N(1))* =
= (fa’e "W OHWIPE(0) (n(0) — N(0))?
+2¢ a’em NV OENVEDIPE(0) (5(0) — N(0))(n(1) = N(1)+
+Gate M WP 1)(n(1) - N(1))?
= (fa’e "W OHWIPE(0) (n(0) — N(0))?
+2¢tae NV OV PE(0) (5(0) — N(0))(n(1) — N(1)+
+G0%e” N W (1 PE(0) + G MV BE(0) (n(1) — N(1))?
= Gate M Wy, P(0)(n(1) — N(1))?
+(Fate W ORWIPE(0)[(n(0) — N(0))?
+2(1(0) = N(0))(n(1) = N(1)) + (n(1) = N(1))’]
= Gate M Wy, PE(0)(n(1) — N(1))?

+(Faem O WIPE(0)[(n(0) — N (0)) + (n(1) — N (1))

0;(2) = 105 (1) + Gem N o (1) = 2Gae” N WyE(1)(n(1) - N(1))
+eate M UP(1)(n(1) - N(1))* =
= nGa’e ™ OB (0)(n(0) — N(0))* + GiGa’e” ™ O WIPE(0)(5(0) — N(0))?
+2G1Ga’e” N OHIIPE(0) (n(0) — N(0))(n(1) — N(1))

+Gate M WP (n(1) - N(1))?
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= 11Ga’e N O P (0)(n(0) — N(0))* + G Gate N OO PE(0) (n(0) — N(0))?
+2¢Goale OV PE(0) (5(0) — N(0))(n(1) — N(1))
+Ga’e™ N W (P2 (0) + Ge MO BE(0)((1) — N(1))?
= 1160’V O P (0)(5(0) — N(0))* + Ga’e*N Myy PE(0) (n(1) — N(1))*
+(iGale *OFEMIBE(0)[((0) — N(0))?
+2(1(0) = N(0))(n(1) = N(1)) + (n(1) = N(1))’]
= 11G0%e*N OPF(0)(5(0) — N(0)) + GaZe N My PE(0) (n(1) — N(1))*

+(iGeae VOO BE(0)[(5(0) — N(0)) + (n(1) — N(1)))?

05(2) = 1205(1) + 0505(1) = v [Gae M O 57 (0)(1(0) — N(0))7] .

Then, t =3

0:(3) = 110%(2) + 0105(2) = 01 [v3G0%e™*N O P (0)(n(0) — N(0))?]

07 (3) = 1205 (2) + Ge™ Vo (2)
—2Gae” N OYE(2)(n(2) = N(2)) + Ga’e N O P (2)(n(2) — N(2))? =
_ 65&26704(N5(0)+N5(1)+N€(2))Pls(0) (77(0) . N(O))Q
+2(Fa?e T OROHIE) B2 (0) (n(0) — N(0))(n(1) — N(1))

+(tate NI PE(1) (n(1) - N(1))?
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+2(Ta’e NTOHNTENTRD) P (0) (n(0) — N(0)) (n(2) — N(2))
+2(a’e NI PE (1) (n(1) = N(1))(n(2) = N(2))
+Gate N PP (2)(n(2) - N(2))?
= (fa?em* WV ORNOENE) BE(0) (5(0) — N(0))*+
+2¢7alem W OHNIIENEE) PE(0) (1(0) — N(0))(n(1) — N(1))
+(raPe NIV CD [, PL(0) + Ge MO PE(0))(n(1) — N(1))?
+2({a’e NV OV WENE) P (0)(5(0) — N(0)(n(2) — N(2))
+2(7a%e W N[, PE(0) + Ge MO PF(0)] (n(1) = N(1))(n(2) = N(2))
+Ga?e N O, PE(1) + e VW B (1)](5(2) — N(2))?
= (fa?em e VORIV BE(0) (5(0) — N(0))?
+2(Fate WTOHNTINTED) P (0) (n(0) — N(0))(n(1) = N(1))
+(PaZem sV N @), P(0) (n(1) = N(1))?
+(PaZem s WO WENE) BE(0)(5(1) — N (1))?
+2(Fa’e N OV WENE) P (0) (5(0) — N(0)(n(2) — N(2))
+2(Fae NV WEN @, PE(0) (5(1) — N(1))(n(2) = N(2))
+2(Tate NI OENTINEED) P (0) (n(1) — N (1)) (n(2) — N(2))
+Ga*e N Oy PL(1) + Gem VD e PL(0) + Gem VO B 0)])(n(2) — N(2))”

— (Ba2e— 0 OFN MENG) pe(0)(5(0) — N(0))?
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+2(Fa?e T OROHIE) B2 (0) (n(0) — N(0))(n(1) — N(1))
+(fate N WINTE, P(0)(n(1) — N(1))?
+(Palem oW ORNOENEE) PE(0) (n(1) — N(1))*+
+2(fa%e T OROHIE) B2 (0) (n(0) — N(0))(n(2) — N(2))
+2¢Fae WD, PE(0) (5(1) = N(1)(n(2) — N(2))
+2(a?e T OFOHNE BE(0) (n(1) — N(1)(n(2) — N(2))
+Gate N P, PA(1)(n(2) — N(2))°
+(FaPem W@, P2(0) (n(2) — N(2))?
+(Palem WO PE(0) (n(2) — N(2))?
= (Ja?e (NIOENWHNE) pe(0)[(5(0) — N(0))?
+2(n(0) = N(0))(n(1) — N(1)) + (n(1) — N(1))’]
+(Falem WOFNHUENED PE(0)[2(n(0) — N(0)(n(2) — N(2)) +2(n(1) — N(1))
(n(2) = N (2))]
+(Palem O PE(0) ((2) — N(2))?
+(alem @A, P2(0)[(n(1) =N (1)) +(n(1) =N (1)) (n(2) =N (2))+(n(2) =N (2))}?
+Gate NV P, PE(1)(n(2) — N(2))°
= (FaPem @ WHOFNTIENED PE(0)[(5(0) = N(0)) + (n(1) = N(1)) + (n(2) — N(2))]*

+(Fatem (W, PE0)[(n(1) = N(1)) + (n(2) = N(2))
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+Ga?e M P PE(1)(n(2) — N(2))?

05(3) = 1105(2) + e~ o] (2) — 2Gae M PYF(2)(n(2) — N(2))+

Ga’e M@ PE(2)(n(2) — N(2))* =
= vi[Ga’e M OB (0)(1(0) = N(0))* + Ga’e ™ WapP2(0)(n(1) — N(1))?]
+ui[GiGaPe N OENIIPE(0)[(1(0) — N(0)) + (n(1) = N(1))]’]
+Gle™ M P07 (2) — 2067V DYF(2)(n(2) - N(2)) + a’e N O PE(2)(n(2) - N(2))7]

using o7 (3) = Ci[e= N @of (2) - 2ae= N Dy (2)(n(2) — N(2)) + a2e N D PE(2)(n(2) — N(2))?]
= n[1Ga’e M OB (0)(n(0) — N(0))? + Ga’e N Wy PE(0)(n(1) — N(1))?]

+u1[GiGae” O PE(0)[(n(0) — N (0) + (n(1) = N (1))

+%[<f’a2€“(NE(O”NE“)*NEQ”BE(0)[(77(0) = N(0)) + (n(1) = N(1) + (n(2) = N(2)J]

+ 2 {GGale NN PEO) (1) = N(1) + (1(2) ~ NP

+%[<1a2eaNE%P;(lxn(z) ~ N(2))?]

o:(3) = VQO—;(2) + 0505(2) =
= a1 Gea’e M O BE(0)(n(0) — N(0))* + Qe N Wy P(0)(n(1) — N(1))?]

+1[¢1Ga’e N OFNE) PE(0)[(1(0) — N(0)) + (n(1) — N(1))]*]
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+0s[v2 [Gaa®e N O BE(0)(1(0) — N(0))]]
= va11Ga’e™ N OB (0)(n(0) — N(0)) + vagoa’e ™ Wu PE(0) (n(1) = N(1))?
traGiGa’e N OFNIPE(0)[(n(0) — N(0)) + (n(1) = N(1)]?
+0av2G0”e N O B (0) (1(0) — N(0))*

Next, t =4

0:(4) = 10L(3) + 6105(3) =
71lbr [reGza’e N O BE(0)(n(0) — N(0))°]]
+HorwariGoa®e N OB (0)(n(0) — N(0)) + vaGa’e N Wp PE(0)(5(1) — N(1))?
+0105GiGate N OFNWIPE(0)[(5(0) — N(0)) + (n(1) — N(1))]?

+16a12¢2a%e N O PE(0)(1(0) — N(0))

07 (4) = 1205(3) + Ge N Do (3)
—2Gae” N OyE3)(n(3) = N(3)) + Ga’e PP (3)(n(3) - N(3))* =
= 7205(3)
+rem NP [Faem N OFNTWENTE) PE(0)[(n(0) = N(0)) + (n(1) = N (1) + (n(2) — N(2))]’]
+Ge N @ [Fatem AW OENTE, PL0)[(n(1) — N (1) + (n(2) — N(2))]]
+Gie N @G aemoN Py PE(1)(n(2) — N(2))?)
—2Giae” "V @ (n(3) - N(3))[~(Fae N O N =N @) BE (0)(5(0) — N(0)))

—2Gae” N P (5(3) = N(3))[~Gae N DN E P (1)(5(1) — N(1))]
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—2Gae” N P (n(3) = N(3))[~Grae™ N P PF(2)(n(2) — N(2))]
+Ga®e N PE(3)(n(3) - N(3))?
=720:(3)
+(faZem CNTOENIDENTRIENTED PE(0)[(5(0) — N (0)) + (n(1) = N (1)) + (n(2) — N(2))]?
+Ge N @[Fatem W OENTE, PL0)[(n(1) — N (1) + (n(2) — N(2))]7]
+Cie N @G aemoN Py PE(1)(n(2) — N(2))?)
—2Giae” "V @ (n(3) - N(3))[~(Fae N O N =N @) BE (0)(5(0) — N(0)))
—2Gae” N P ((3) = N3))[-(Fae N DNy, PE(0) + e N O PE(0)](n(1) — N(1)]
—2Gae” N O (n(3) =N (3))[~Grae™ N P P (1)+Cie N Oy, PE(0)+Ge N O PE(0)}] (n(2) - N (2))]
+Ga%e N O PE2)+Gem NV (o PE (1) 4+ Gem N e PE(0)+ e N O P (0)))](n(3) - N(3))°
=720¢(3)
+(fa%em NTOENTDENTENTED PE(0)[(5(0) — N(0)) + (n(1) = N(1)) + (n(2) — N(2))]?
+(Fatem o NTDENTRIENTED A, PE(0)[(n(1) — N(1)) + (n(2) - N(2))]?
+(Ta?e NNy, P2 (1) (5(2) — N(2))?
+2(¢fa%e T OFNHDEN@ENTE) BE (0) (n(3) — N (3))(1(0) — N(0))
+2¢F et NI NI EDENTEN A, PE(0)(5(3) — N (3))(n(1) — N(1))
+2(¢faPem N OFNTWFNTEENTED Pe(0) (n(3) — N(3))(n(1) — N(1))
+2(fa?e W OFNTOENTEDENE) P (0) (n(3) — N(3)(n(2) — N(2))
+2¢fa?em d NN EDENTEN A, PE(0)(5(3) — N (3))(n(2) — N(2))
+2¢ e VTN, PE(1) (n(3) = N(3)(n(2) — N(2))

+Gra?e N By, PE(2)(n(3) — N(3))?
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+(Gale N DENT By, PE(1)(n(3) — N (3))?
+(fatem TN, B2 (0)(5(3) — N(3))?
+(ta2e N OFN(HFN2)+N(3) pe(0) (n(3) — N(3))?
= 720(3)
+({aPem e W OFNTWENTDENTED Pe(0)[(5(0) = N (0)+(1(1) =N (1)+(1(2) =N (2))+(n(3) N (3))]?
+(Falem e W IENT@ENT A, P2 (0)[(n(1) = N(1)) + (n(2) = N(2)) + (n(3) = N(3))]”
+(Fate * VT ETNED, PE(1)[(n(2) - N(2) + (n(3) = N3)P?

+Gate N Dy PE(2)(n(3) - N(3))?

For t =5,

07 (5) = 1205 (4) + Ge™ N o (4)
—2Gae” N DY) (n4) - N(4)) + Gate N WP (4)(n(4) - N(4))* =
= 71205 (4) + Ge™ N W05 (3)]
+(Pa%e NI OFNTWENTEENTE N BE(0)[(1(0) =N (0)+(n(1) =N (1)) +(n(2) =N (2))+(n(3)—N(3))]>
+(fatem W WENTRENTD N D)5, PE(0)[(n(1) — N (1)) + (n(2) = N(2)) + (n(3) = N(3)))*
+(FaZem * W EENTEENT Iy, PE(1)[(n(2) - N(2) + (n(3) = N(3)))?
+Gialem T BTNT M4, PE(2) (n(3) — N(3))°

—2Gae” "N W ((4) = N(4)) 1205 (3) + Ge™ N P (3) — Glae N O P7(3)(n(3) — N(3))]

+Grate N WP (4)(n(4) — N(4))7

= 7205 (4) + e N W[y505(3)]
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+(Tate” XN ORNTDENTRENTGENTA) B (0)[(1(0) =N (0))+(1(1)—N (1) +(n(2) =N (2))+(n(3) =N (3))]*

+(Ha?e NTENEENEEENT D, PE(0)[(n(1) — N(1)) + (n(2) = N(2)) + (n(3) = N(3))]*
+(FaPe dNTDENEEENT D, PE(1)[(n(2) - N(2)) + (n(3) — N(3))]?
+(Ta?e NI TNy, Pe(2)(5(3) — N(3))?
—2Giae™*V W (n(4) — N(4) 1205 (3)]
—2Gae” N D () = N@4))[Ge™ N @i (3) — Gae N PP (3)(n(3) — N(3))]
+Grate VWP (4)(n(4) — N(4))7

=205 (4) + e W0t (3)] - 2Giae™ N W (n(4) = N(4)) 292 (3)]

+(Tale T OFNHENTED NN BE (0)[(1(0) =N (0)+(n(1)—N (1)) +(1(2) =N (2))+(n(3)—N(3))]?

+(aPem e N FNT@ENTDEN A, PE(0)[(n(1) — N (1)) + (n(2) = N(2)) + (n(3) = N (3)))*
+(Falem e W EENTEENTD), PL(1)[(n(2) = N(2)) + (n(3) = N(3))J?
+(ale N EN W), PE(2)(n(3) — N (3))?
—2Gae” N W ((4) = N(4)[Ge N Dyi(3) = Gae NI PE(3)(n(3) — N(3))]
+Ga®e N WP (4)(n(4) - N(4))?
=205 (4) + e N W07 (3)] - 2Gae™ N W (n(4) — N(4)) 1295 (3)]
+(FaPem oW OFNTWENTDENTENTAD Pe(0)[(5(0) — N(0)) + (n(1) = N(1)) + (n(2) — N(2))
+(n(3) = N(3)) + (1(4) = N(4))?
+(aPem e FNT@ENTDENT )y, PE(0)[(9(1) =N (1) +(1(2) =N (2)+(1(3) =N (3))+(1(4) N (4))]?
+(Fatem e N BENTEENT DI, PE(1)[(0(2) = N(2)) + (n(3) = N(3)) + (n(4) — N(4))]”
+(GaPem W EOEN Dy, P2(2)[(n(3) — N(3)) + (n(4) — N(4))]”

+Gra%e N Wy PE(3)(n(4) — N(4))?
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=20c(4)+
+Gem N Wanby |aGaa®e N O P (0)((0) — N(0))?
+2G1GoaPvafhe” N OFNT D)y, PE(0) (n(4) — N(4))(n(0) — N(0)))
+(Palem * NN WENTEENTONA) Pe(0)[((0) — N(0)) + (n(1) = N(1)) + (n(2) — N(2))
+(n(3) = N(3)) + (n(4) — N(4))]?
+(faZem ANTIENTRD NN, P2 (0)[(5(1) =N (1))+(n(2) =N (2)+(n(3)—N (3))+(n(4)— N (4))]
+(FaPem dVTERNTEEN D), PE(1)[((2) — N(2)) + (n(3) = N(3)) + (n(4) — N (4))]?
+(FaZem * WV EENT D, PE(2)[(n(3) - N(3)) + (n(4) — N(4))*
+¢ra’e” N Wy PE(2)(n(4) — N(4))*+
Grae N WMo vaGae N O P (0)(n(4) — N(4))°+
Gate™ N Wohiu01 Py(0))) (n(4) — N(4)*+
GaPem N Wau0,0, P (1) (n(4) — N(4))?
=20c(4)+
+(Tate W OFNTWENTDENEONTD) P (0)[(5(0) — N (0)) + (n(1) = N(1)) + (n(2) = N(2))
+(n(3) = N(3)) + (n(4) — N(4))]?
+(faPem AT NI EENTDENT D)5, P2 (0)[(n(1) =N (1)) +(n(2)— N (2)+(n(3) =N (3))+(n(4)—N (4))]”
+(FaZem W EHENTEENT D), PE(1)[(n(2) — N(2)) + (n(3) = N(3)) + (n(4) — N(4))?
+(Tale N EHENE)y, P2(2)[(n(3) — N(3)) + (n(4) — N(4))?
+Gale N Wy, PE(2)(n(4) — N(4))?
+1ae” N Wyy0,0501 B (0))) (n(4) — N (4))

+Gate N Way0,0, P (1) (n(4) — N(4))?
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+C1Ga?vafhe ™V OFN )y PE(0) (n(0) — N(0))
+2¢1 a0’ vabre N OFNT D), BE(0) (n(4) — N(4))((0) — N(0)))
G1Gaa?vafy e N OENT D)y, P (0) (n(4) — N(4))
=20c(4)+
+(Pa2em NI OFNTWENTENEOND) P (0)[(5(0) — N (0)) + (n(1) — N(1)) + (n(2) = N(2))
+(n(3) = N(3)) + (n(4) — N(4)))*
+(jatem ANTDENTDENTSENT D, PE(0)[((1)~N(1))+(n(2)~N(2)+(n(3)~ N (3))+(n(4)~ N (4))]
+(FaZem W EHENTEENT D), PE(1)[(n(2) — N(2)) + (n(3) = N(3)) + (n(4) — N(4))?
+(Fa%e *NT Iy, PL(2)[((3) — N(3)) + (n(4) — N(4))]?
+GaPe N Wy PE(2)(n(4) — N(4))?
+rae” N Wyy0,0501 B (0))) (n(4) — N (4))
+1aem N W0,60, PS (1) (n(4) — N(4))?

+(1GaaPvafre” OV oy PE(0)[(0(0) — N(0)) + (n(4) — N(4)]”

Analysis Note the formula for o¢(¢) is a combination of positive parameters, ex-
ponential functions, and squares of the various (n(i) — N(i)). Therefore, we have
in cases t = 1,2,3 that ¢5(t) = 0 and when ¢t = 3,4 we have that ¢5(¢t) > 0. In
cases t = 1,2,3,4,5 we have that o7 (t) > 0 since the formula for o7 (¢) is a combina-
tion of ¢Z(t), positive parameters, exponential functions, and squares of the various
(n(i) — N(i)). We achieved the formulation of o7 (¢) by grouping terms so that we
had summations of (n(i) — N(i)) squared, ensuring a positive answer. In the above

iterations we can see a pattern for the formulation of o7. Consider the formulations of
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oy

it +1) = 7200 (t) + Ge Y Wop(t) — 2Cae N i (t) (n(t) — N(2))
+qaZe ML) (n(t) — N(t))?
= 7207 ()+Cile™ N Vo (t)—2ae” N Oyi () (n(t) = N () +a’e M OB () (n(t) =N (1))

= Y90, (t) + QA1)

where
Qt) = eV Voi(t) = 20e” N OY(t) (n(t) — N(1)) + o’ N OP (1) (n(t) — N(1))*.
Now we can restate the formulas for the various ¢ as follows:
oot +1) = mog(t) + biog(t)

ot +1) = y0.(t) + GEAL)
op(t +1) = 110, (t) + Q)
oot +1) = 10, (t) + 00 (1).

Using this formulation we can see how all the functions rely on €(¢). For instance:
¢(1) = 10(0) + 610,(0) = 0

ot +1) = 120.(0) + G2(0) = G£2(0)
op(t + 1) = 110,(0) + (2(0) = (2(0)

oot +1) = 120,(0) + 020,(0) =0
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7¢(2) = noc(l) +610,(1) =0
01(2) = 7200 (1) + GQ(1) = G2(1)
0p(2) = 1105(1) + LUL) = 116R(0) + GAL) = G Z V(1 —

04(2) = 120,(1) + 0205 (1) = 12(2£2(0)

c(3) = m0oc(2) + 0105(2) = 010200(0)
01(3) = 120¢(2) + GA2) = G(2)
05(3) = 1105(2) + GU2) = V2GR0) + 1GUL) + GRA2) = G Z V(2 —
0a(3) = 1207,(2) + 6205(2) = 1211 GQ0) + 12GUL) + 022(:2(0)

1 0
= VQCQ Z V?Q(l — h) + 92V2C2 Z I/{LQ(O — h)
h=0 h=0

1 0
0'2(4) = ’)/10'2(3)4—010'2(3) = ’ylell/QCQQ(O)—f—@l [VQCQ Z V?Q(l_h)—i_QQVQCQ Z V?Q(O—h)]
h=0 h=0

01(4) = 1205(3) + GUB) = 12012G2A0) + GO(3)
7,(4) = 1105(3) + 6B = & > A3 —

h=0

05(4) = 120,(3) + 0204(3) =

2 1 0
- <y2g2 > 2 - h)> + 6, <u2g2 > vl - h)) + 62 <u2<2 > 0 - h))
h=0 h=0 h=0



—u2<229 *QZ (9—h)]

h=0

05 (5) = 1ot (4) + 0105(4) = 71 [11611262(0) + O[22 Y 05[> viQ(g — h)]]

g=0 h=0

012G Y 053> v (g — h)]]

g=0 h=0

9
= 0110(2 (’Y +’Y1Zt91 g [Z V(g — h)

0 g
= 611202 (’Y% > 67 [Z V' Qg — h)
g=0 h=0

1 g
e [z 0 — )
g9=0 h=0

2 d g
= 011202 (Z e Z 059 lz Vi Ug — h)] >
d=0 9=0 h=0
1 d g
01(5) = 120¢(4) + (1Q2(4) = 720112C (Z "y 6 lz V' Qg — h)
d=0 g=0 h=0

op(5) = 10, (4) + C2ZV1 (4—h)

3 g
05 (5) = a0 (4) + 6205(4) = vaCa Y 05[> v Qg — 1)
h=0

g9=0

Thus, we can write for t > 5:

g
+Z€2 g Zufﬁ(g
g=0 h=0

- h)])

2 g
+> 6,7 Qg —h)
g=0 h=0

> +12(4)

oi(t+ 1) =moi(t) + 0105(t) = 01120 (Z Aim2d Zed [Z V(g — h)])

o1(t+1) = 70 (1) +G Q) = Y2bh12C (Z% i dzed ! ZV{LQ 9=

op(t +1) = 110,(t) + G QQZV{LQt_

h)

>+C19(t>

46

)
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t—1 g
oot + 1) = 10, (t) + 0207 (t) = 1a(y Z gi-1-o [Z V(g — h)] :

g=0 h=0

Hence, we have o (t4-1), 07 (t+1), 05 (t +1), 05 (t + 1) defined as functions of model

parameters and §2(¢). Recall,
Q(t) = e Vo (t) — 2ae™ MOy (6) (5(t) — N(1)) + a’e M O (1) (n(t) — N(t))*.
Our next step is to examine ;. We define
w(t) = e M OYE(t) — aem MO (t)(n(t) — N(t)

then we have:

et +1) = myg(t) + 0105(1)
Uit +1) = yvi(t) + Gu(t)
Ut +1) = gy (t) + Gu(t)
Ya(t +1) = vty () + 029 (2).

Using this formulation we can see how all ¢° function rely on w(t). Note how the

formulation of 1* with w looks similar to the formulation of ¢ with €2. Consider:

¥e(1) = e (0) 4 0115 (0) = 0
Y (1) = 7205(0) + Qw(0) = Gw(0)

Yy(1) = 11¢(0) + Gw(0) = Gw(0)
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Pi(1) = V2¢;<O> + 0295(0) =0

VE(2) = ni(l) +0195(1) = 0
U5 (2) = 305 (1) + Ge(1) = Gw(1)
V5(2) = 1t (1) + Gw(l) = mGw(0) + Gu(l) = G Y rw(l - h)
V5(2) = ot (1) + 0205(1) = 1w (0)

Using a similar method as we did with the ¢° functions with €2, we have for ¢t > 5:

WS+ 1) = () + 010t —M@(Zvi”Z@”[Z g—h)])

g

Yi(t+1) = 72 () +Cw(t) = 7201120 (Z% 5 dzed I [ZV w(g
g=0

h=0

)‘l'Clw()
Up(t+ 1) = 1t (t) + Guw(t) @Zvl (t—h

t—1 g
Yt + 1) = vats(t) + 0205 () = 10 > 0517 [Z Viw(g — h)] :
g=0 h=0

We now consider values of w(t), note we will only need to input ;.
w(0) = =M Oy (0) —aem O P (0) (n(0) = N(0)) = —ae™* O BE(0)(n(0) — N(0))

w(1) = e N W (1) — ae™ N O P (1)(5(1) - N(1))
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= eV O[Cw(0)] — ae M WP (1) (n(1) - N(1))

= —Gae *W O LE0)(5(0) — N(0)) — ae” DB (1)(n(1) — N(1))

w(2) = N Dy (2) — ae VOB (2)(n(2) - N(2))
— N O[u(1)] - ae NV OB (2)(n(2) — N(2))
— —Cae N OHNWINC) B (0) (1(0)— N (0))—Grare NV N P (1) (5(1) N (1))

—ae M@ PF(2)(n(2) - N(2))

= —aZC2 et N PE(c) (n(c) — N(e))

w(3) = eV OYE(3) — ae MO P (H)(n(3) — N(3))

= eV O[Gw(2)] - ae MO P (t)(n(3) — N(3))

3
=~y (e BN P () (n(e) ~ N(©))
c=0

w(d) = e N WY () — ae N WP (4)(n(4) - N(4))
= ¢ N Oya01Gw(0) + Gw(3)] — ae VWP (4)(n(4) — N(4))
= e N D015 Gow(0) — aZ<4 fem@ b N P (0) (m(e) — N ()
= —ayabivaloae OO PE(0) (n(0) — N(0))

—aZC4 femZass N PE(¢) (m(c) — N(c))
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w(5) = e M OY[(5) — ae MO P (5)(n(5) — N(5))

= e N [V2011:C, <Zﬁ i dzed I [Z’ﬁ w(g —h)

)+<1w<4>]—ae‘a““)ﬂ%)<n<5>—N<5>>

1 d g
= NV Ou0115( (Z mn Z 0y ° [Z viw(g — h)] )
d=0 g=0 h=0

5
—a Y e X M@ P () ((e) — N(e)

c=0

w(t) = eV Oyi(t) — ae OB () (n(t) — N(t)

t—1-3 g
— e—alN<( 7291]/2(2 ( Z ’Y{ 1-3— dZe -9 [Z V{lw(g _ h)])
g=0

h=0

—aZc” SN P e) () — N (o)

t—1-3 d g
= N 0100, ( Z y e Z 05 ¢ [Z viw(g — h)] )
g=0 h=0

—azct e 2N WP ) () = N (o

We can similarly study €(t):

= a?e= MO PE(0)(n(0) — N(0))%.

We have already calculated the values of Q(t) for t = 1,2,3,4,5 since we have
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calculated of(t) for t = 1,2,3,4,5, and recall o;(t) = v0:(t) + 1§2(f). In these
equations we found we could group terms by common parameters and then simplify
the associated (n(i) — N(i)) terms into a sum which is squared. Below we have a

formula for Q(t) in terms of parameters, w(t), and (t).

Q(t) = eV Wof (t) — 2ae™N Oyi (1) (n(t) — N (1)) + a’e™ N O P ()(n(t) — N(1))”

t d g
—2qe N (®) [7291V2C2 < 75_4_d Z Gg_g [Z I/{Lw(g —h)

+a?e N I PE(t)(n(t) — N(t))?

t—d d g
= e N () [’72911/2@ (Z o Z 05 [Z Vi Qg — h)
d=0 9=0 h=0

) + GOt — 1)]

t—4 d
—2ae~ N () [’yg@wggg <Z 75747(1 Z 9‘21_9 [Z V{Lw(g —h) > + G (t — 1)1 (n(t) = N(t))

d=0 g=0 h=0

+ate ™ OPE(0)(n(t) — N(1))?

t—4 d g
— N W0 1oy (Z Wy g [Z VIQ(g — h)
d=0 g=0 h=0

) + e N Wt —1)

t—4 d g
720[670[N6(t)’)/2911/2C2 (Z "}/i_4_d Z 9379 [Z V{lw(g - h)] ) (U(t) - N(t))
d=0 g=0 h=0

—2ae™* N Ot = 1) (n(t) — N(1) + a®e” N OB () (n(t) - N(1))?

t—4 d g
= e N O00,15¢, (Z yimad Z eg—g [Z Qg — h)} )

d=0 g=0 h=0

-4 d g
—2ae™ N y0,15¢ (Z e Zeg_g [Z viw(g — h)]> o) =)

d=0 g=0 h=0

+efaN5(t)<1 [Qt —1) — 2aw(t — 1)(n(t) — N(t))]

+a2€_aNE(t)BE (t) (n(t) — N(t))2
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We simplify this as we did in the t = 5 case. Note how both the summations
will result in the same parameters associated with the values of €2 and w. The last
term, a2e" N W PE(¢)(n(t) — N(t))?, will be expanded by using the formula for Pf(t).
By expanding P (t) we will have various terms multiplied by (n(t) — N(¢))* which
will aid in forming summations of (n(z) — N (7)) which are squared. Meanwhile, the
other terms will result in the other various (7(i) — N (7)), and since the summations
parameters match we will be able to group appropriate terms. Note from above we do
know that every w(t) has a negative throughout the term, and this will allow us to
switch the sign on the second summation and term —2ae™*N" ¢ w(t —1)(n(t) — N(t)).
The result will be the summations of (n(i) — N (7)) squared multiplied by associated
parameters, making €2(¢) > 0.

If we have that Q(¢) > 0, then

t—2 d g
O'Z(t + 1) = ’}/10'2(?5) -+ 910'2<t) = (91UQCQ <Z ’}{727612 9379 [Z l/{lQ(g — h)] ) > 0.
d=0

g=0 h=0

Hence, we have that o7 (t) = y20:(t) + () > 0
T—1
Thus, we have that z(¢) = Z Bi2[of (1) P (t) + 5 (t)?] > 0. This establishes the
=0
convexity of J, which guarantees uniqueness of the minimum.

]
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Chapter 3

Biological Control Persists

To make the model closer to reality, we decided to include in our model that control
agents can persist for some time in the environment, and will not necessarily die off
after one time step. Our goal is to minimize the objective functional which incorporates
the cost functional that allows for the control agent to decay over several time steps.
To account for this decay we let NV,, be the new control agents being added to the field

by the farmer and N, be the decayed control from previous time steps.

3.1 Updated Model

We have the objective functional using the same cost function as previously but now

purchasing new control agents, N,,.

TN = S BB + BaNa)

Pest Dynamics with the control agents applied to the second, larva, stage and
the possible survival of the control agents serves as a constraint to the optimization

problem, including now the old control agents, N,.
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Pt +1) = nPt) + 6: Pa(t) P.(0) = 6.
Pt +1) = 1Pu(t) + e O B R(0) = g,
Pyt +1) = Ge MO MR (1) 4 Py(t)  By(0) = 6,
Palt+1) = maPy(t) + 6:Pu(t) Pa(0) = 64
Noft+1) = Noft)e ™ + Na() No(0) =0

Furthermore the control N, (t) > 0, since we cannot add a negative quantity of
nematodes, which also bounds N,(t).

We assume exponential decay models control agents survival, based on control
agents life expectancy. Specifically, u determines the rate of decay. When we use large
values for p the N,(t)e " term approaches zero and we have results that resemble
the basic model, reflecting the control agents surviving for less time. For instance, if

i = 1In(2) we have,
1
No(t+1) = NO(t)eiln(Q) + Ni(t) = §N0<t) + Na(t)

meaning half the old control agent are active from one time step to the next.

3.2 Optimal Control Problem

The goal for our Optimal Control Problem is to minimize the objective functional

J(N,) = iﬁlpl(t)z + B2 Ny (t)

subject to
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Pe(t+1) :71Pe(t) +61Pa<t) Pe<0) = (be

Pyt +1) = qPe(t) + Qe @O OB () F(0) = ¢

Blt+1) = e MO ORW LBl RO =6

P.(t+1) =1aP,(t) + 02 P, (1) P,(0) = ¢,

No(t+1) = Ny(t)e™ + Ny(t) N,(0) =0

where N,(t) > 0 for all £ and N, € N = {N : {1,....T} — {z € R|0 < z(t) <
Noaz, t = 1,2,...,T}}.
Again we will prove the existence and uniqueness of the optimal control, which we

denote N,,. Additionally, we will prove necessary conditions for the optimal control

N,,. The proofs roughly follow the proofs in Theorems [2.3.1] [2.3.2] [2.3.3

Note in the following proofs each P., P}, Py, Pa, N, is a function of A,,. Similarly

each P, Py, Py, P, N is a function of N, + ne.

3.2.1 Existence

Theorem 3.2.1. There exists N,, € N which minimizes J(N,,).

Proof. Each P., P, By, P,, N, is continuous as a function of NN, for every time step by
Equation Define Bt = {N(1),..N(T)|N € N}. We note that there is a natural
isomorphism between N and B*. Consideing J : N < BT — R, we see that J is con-

tinuous as a function of N,,. We have that B is a compact subset of R” in the standard
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Euclidean topology. Therefore Nlnf J(N,) exists. Hence, we have a sequence N,, € N
n€EN

such that khm J(Ny,) = NmfN J(N,,), with corresponding P.,, P, , P, , Pa,, No,
—00 n€
quences. Thus we can find subsequences Nnk ,Pek ,Plk ,Ppk ,Pak ,Nok , such that

hm J(N ) == ]VlanJ(Nn>, Nnk — Nnapek_ — 7)67Plk. — Pl7ppk- — Pp7pak~ —
W E J J J J J

]—)OO

P, Nok]_ — N,. Therefore, there exists N,, € N which minimizes J(N,,).

3.2.2 Necessary Conditions

Adjoint System: Define the following terminal value system:

Ae(t) = Ac(t+ D)y + Mt +1)72
A(t) = 281Pi(t) + N(t + 1)Gre N TMD) 4 3 (1 4 1) GpemoWolDem AR (1)
)‘p(t) = )‘p(t + Dy + Ao(t+ 1)

Aa(t) = Ae(t + 1)1 + Mot + 1)05

Ao(t) = —aGre Ny (k + 1)e= WM TN NP (k) — alye ™Ay (k + 1)e™ *WolRleHNR NP (k)

+Xo(k+ 1)e™#

A(T) = 0, N(T) = 0, \(T) = 0, A\o(T) = 0.

Theorem 3.2.2. If there exists an optimal control N,,, then there exists and adjoint

system and
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L if N0 > g, (1)
nll) = .
Lin(g,) — No(Deif e 0" < g, (1)

. aP, A 1 A 1
U)Zth gn(t) — l(t)[ lﬂ(zi)\)f(ltili(t"r )CQ]

Proof. Since we have that A, minimizes J(N,,); for all sufficiently small ¢ > 0 and for
allp € {n=),..n(T)n(t) < 1,t =1,...,T} we have that J(N,, + ne) > J(N,).
Now we will take a directional derivative of functional .J; so for the directional derivative

in the direction of 1 with sufficiently small € > 0 and 0 < N,, + ne = N2 € N we have

that:
c@u%gmm+w—ﬂMm=
1 T—1 T-1
= lim — [Z BiPL (1) + BN (t) = Y BiPu(t)* + @M(t)]
t=0 t=0
T-1 AvE 2 <(4) _ =1
_ l By lim PE(t) : Pt 5 lim N () . Nn(t)] = Bi2Pi(t)u(t)+Ban(t).
t=0 t=0

Where we will define the sensitivities 1.(t), ¥i(t), ¥, (t), Ya(t), Vo(t) as:

T U RO O G R ek )
wa(t) = ll_I;% w’ %(f) —_ }}_I}% '/\[og(t) - '/\[O<t)

where ¥.(0) = 0, ¥,(0) = 0, 1,(0) = 0, ¥,(0) = 0, ¢,(0) = 0. We have the limits
exists from Chapter 23 in Optimal Control Applied to Biological Models [LW07]
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Hence, we can write:

Yelt + 1) = 12 (t) + 13ha(t)

Dt +1) = Yatbe(t) + Grem MO Oy (1) — G ae e NNy, (1) (1)
—Clae’a(No(t)ew*N”(t))Pl(t)n(t)

Up(t+ 1) = ity (8) + Ge N A Dy, (1) — GaeTrem N DIy, (1) Py (1)

_@ae—a(/\fo(t)e*”+Nn(t))73l(t)n(t)
Va(t + 1) = 11y (t) + Oa1pa (1)

Yo(t + 1) =, (t)e ™ + n(t).

Now, returning to 0 < lim 1[ J (N, +ne) — 2&273; Yu(t) + Ban(t).

e—0t €

To remove the sensitivities ¢;(t) we will manipulate the sensmvmes and adjoints

equations.

We have that:

be(t +1) Ve(t) 0

P (t+1) Py(t) — e WNo O N YDy (4) (1)
Up(t+1) | =B | (t) | = | —Ceae aWo e FNR NPy (t)1)(1)
Yo (t+1) a(t) 0

Yo(t + 1) Yo(1) n(t)




_’)/1 0 0 01 0

Yo GeTeWee HNL®) g0 —(aemHem N HN ) Dy (1)

where B =| 0 CQG—G(No(t)e"“an(t)) v, 0 _@ae—ue—a(No(t)e’”Jan(t))pl(t)
0 0 1%) 92 0
i 0 0 0 O e H

Now we have that:

0
-1 1 B12P(t)
;mmtwl(wzm[we(w W(t) G bt v || 0
0
0
At) | At +1)
. (D) (t+ 1)
=3l ) ) ) o) | [ | a0 | -5 e
Al A1)
I Ao(t) | I Ao(t+ 1)
(1) |
- A(?)
-3 G w0 0 o b | |
Al
00
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Ae(t +1)
. N+ 1)
S| vt ) w0 i) st | BT e+
Aot +1)
At +1) |

Recall that ¢.(0) = 0, ¥;(0) = 0, 1,(0) = 0, ¢¥,(0) = 0, ¥,(0) = 0 and A\ (T) =
0, M(T) =0, \p(T) =0, Ao (T) =0, A\o(T") = 0. Therefore we can change the indices,

so that:
A(t+1) |
. - N(t+1)
;512791 Ju(t ; [ Vet +1) Yt +1) Yt +1) o(t+1) o(t+1) } Ap(t+1)
Aot +1)
| ot +1) |
Ye(t)
_— Yi(t)
- [ Ae(t+1) NE+TL) Ap(t+1) Aa(t+1) N(t+1) }B Uy (t)
. bal)
| Po(t) ]
IRCXCES VI I )
oy it +1) Yi(t)
= [A@(tﬂ) MNE+1) Apt+1) A(t+1) Ao(t+1)] Yot +1) | =B | ¥,(t)
- Yalt 4 1) e
| Yo(t+1) | Yo(t) |
0
s —Grae= @ Woe™ NI Py () (1)
{ Ae(t+1) NE+TL) Mpt+1) A(t+1) A(t+1) —Cpae N HNa ()P (£)y)(t)
= 0
n(t)




61

=3 N(t+1) (—Clae“’wt"”e*“w““”Pz(t)n(t))

Pt + 1) (~Gae @ WO NP (£)5(2) ) + Aot + 1n(2)

= Dt + DG+ Aplt 4+ 1)) [—ae @O MDD @)y (1)] + Aot + 1(t)
t=0
T-1
= {—ae’“(/\f"(t)eﬂ*/\/’t(t))Pl(t)()\l(t + )G+ Ap(t+1)E) + Aot + 1)] n(t).
t=0

Now combining everything we have that:

T-1

0 < lim E[J(Nn +ne) — J(N,)] = Zﬁﬂﬂ@%(ﬂ + Ban(t)

e—0t &

= [_ae—awo(t)e—uwn(t»ﬂ(t)(Al(t +1)C A+ A+ 1DG) 4+ Mo (E+ 1)} n(t) + Ban(t)

I
3
—~

~
~—
|
Q
ml
2
£
e
|
S
+
s
=
Y
—~
~
~—
—~
g
—~
~
+
—_
~—
I
—
_|_
>
i
—~
~
_|_
—_
~—
&
~—
+
>
Q
—~
~
+
—_
~—
_|_
™
[N}
[

0=S"n(t) [_ae—a(No(t)eerNn(t))pl(t)()\l(t )G+ A+ D)) + Aot + 1) + 52}
for all n(t) € {n = (n(1),...,n(T))n(t) < 1,t =1,...,T}. The we have that for all ,
0 = —ae  @We " SNuOID (1) (N (E+ 1)C1 + Ap(t + 1)Ca) + Aot + 1) + S

Consider:

0 = —ae @WNe@e tNuOIDy (1) (N, (t + 1)C1 + A\t + 1)Co) 4+ Aot + 1) + By <=

Ao(t+1) + Bo _ o aNo(®e FHN(®)
aPy(t) (Nt + 1)C + Ap(t + 1)C2)

—
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= —a(N,(t)e ™ + N, (1) =

o { Ao(t+ 1) + Po }
aPy(t) (Mt + 1)+ Ap(t +1)C2)

L [P 00 0]
o Mot + 1) + B

L TaP(t) (Nt 4+ 1)G + A+ 1)¢)
Naw_am{ l l%@+u+@

Noy(t)e™ + N, (1)

} — N, (t)e ™.

Note that o > 0. We need that N,(t) > 0, so

In {oﬂ?l(t)(/\l(t + )G+ A\ (E+ 1))
)\O(t + 1) + [

[P 06t 106
)\o(t + 1) + B

aPy(t) (Mt + 1)+ Ap(t+ 1)) > goNo(t)e ™t
)\o(t + 1) + B9 o .

1 } —N,()e™™ >0 =
«

} > aN,(t)e ™ <=

Hence if
aP ()Nt + 1)+ At + D) o anpre s
)\o(t + 1) + B B ’

then we have

No(t) = L[ @PONE DG+ A+ 1G]

o B+ Ao(t n 1) ] — No(t)e_“.

Now we will consider if

aPO) (Mt +1)61 + At + 1)) oy (pye
)\o(t + 1) + 52 ’

then we have

PO+ 1)+ Aglt + 1)) <~ 07 [t 41) + o]
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Returning to:

T-1
0= D nlt) |—ae oD NP (1) (1 + 1)+ Aplt + 1)) + Aolt + 1) + )
t=0
T-1 1
< ; n(t) {—ocea(N"(t)e_MrN“(t))[aeo‘N(’(t)e_“(/\o(t + 1)+ B2)] + Ao(t +1) + 52]

- Zn(t) [—e7 M OIN(t + 1) + B2)] + Aot + 1) + Be]

T-1
Zn o(t+1) — e M ON(t 4+ 1) + By — e 3,] .

t=

Hence we have if

aPy(t) (Nt +1)G + At +1)C2)
Aot +1) + B2

< 6oc/\/o(lf)e"‘

then

0< Zﬁ(t)[ko(t +1)— e—aNn(t))\o(t + 1)+ By — e—aNn(t)Bz]

= () Aot + 1)(1 — =N W) 4 (1 — e O)].

Recall we have that A, () >0

If MV,(t) > 0 we have that

Aot +1)(1 — e MDY 4 ,(1 — e NnlD)) < 0,

which is a contradiction. Thus, if

aPi(t) (Nt + 1)+ Ap(t+ 1)) < ooNo(t)e#
(t+

)\o )+ﬁ2
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we must have that A, (t) = 0. Set &,(t) = apl(t)[’\lﬁgg)f(ltﬁf ()]

Na(t) 0 if eeNo®e™ > ¢ (1)
aIn(6) —No(t)erif O < g (1)

3.2.2.1 Comparing Basic and Persist Model Equations

Back in Theorem 2.3.2] we established:

Nt 0 if 82 > P(t) [Nt + 1)¢ + At + 1)¢)
Ln[£PON(E+ DG+ A+ D] i 22 <Pt + 16+ At + 1))

From Theorem [3.2.2] we established:

if eoz./\fo(t)ef“ > aPi ()M (E+1)G+Ap (E+1)¢2]

N (t) — 0 62+)\o(t+1)
Py (8)[ A (E41) 1+ Ay (E+1 _ e o et aPU(t) [N (EH+1)C1 A, (E+1
[P IG] N (e i N0 < PG s

We want to see if the Persist model will reduce to the Basic model if we re-
duce the time that control persists, meaning y — oco. Note if we take u — oo
in P., P, Py, Py, Ae; \i, A\p, Aq from Theorem we have the same equations from

Theorem [2.3.2] First consider N, and \,.

lim N,(t + 1) = lim [N,(t)e ™ + N, (£)] = No(#)

HU—>00 HU—>00

lim Ao(t) = lim [—a¢ie ™\ (k + 1)e *WNoBeH N DD (k)]

H—>00 pH—00
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+ lim [—OZCQG_H)\p(k + 1)e—a(No(k)e*“+Nn(k))'Pl(k) + )\o(k + 1)6_“] =0

H—00

Therefore, we have that N,(t + 1) = N,(¢t) and \,(¢) = 0, which relates to the
Basic model. Firstly, N,(t + 1) = N, (t) states that the only old control is the new
control from the previous step, no old control survives. While A,(t) = 0 eliminates
the old control from the process, since it doesn’t exist as a factor in the basic model.

Now we will look at the equation for N, () and take the limit of u — co. First

aNo(t)e™ - APIONEHDG+Ap(EH1D)E]

consider when e ASWeEsY then N, (t) = 0. So taking u — oo:

s aPi () [Nt + 1)+ Ap(t + 1) —
ba+0

1> %Pl(t) Nt + 1)C+ At + 1)G] <=

% > PUtIN(E+1)C + A(t+1)G).

So as p — oo, if

% > PN+ 1)+ Aplt+ 1)C)

then A, (t) = 0. This is the same as with N (¢).

Next consider when

coNa(t)e ™ aPy(t) [N+ )G+ At + 1))
- By 4+ Aot +1)

then

1 aP®)NE+ 1)+ A+ 1G]
Nalt) = 3o By + Aot + 1)

] = No(t)e ™.

So taking 1 — oo for the first part we have:
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o o APONE+ )G+ At + 1)

0 < BQ 0 <
% < PO+ DG+ Al + 1

then we have that:

1 @R+ )G+ At + 1G]

N, (t) = - n| 540 | = No(t)-0
1
= S I[S PN+ DG+ M+ 1)G).
o B
So as j — oo:
0 if 22 > PNt + 1)C + Mp(t+ 1))

No(t) =
LI[EPONE+ DG+ A+ 1G] i 2 < PO+ DG+ At + 1))

which is the same as the Basic model.

3.2.3 Uniqueness

The following proof is similar to the proof of Theorem [2.3.3] Differences occur in the

additional variables associated with considering old Nematodes, N,, which affects
Theorem 3.2.3. Uniqueness: If the optimal control N, exists, then it is unique.

Proof. In order to show A, is unique we will show that J(N,) = Y1 B1P(t)? +
Ba Ny () is strictly convex. Recall that if a function is strictly convex then there exists
a unique minimum such that J(N,) < J(IV,) for all N,, € N,, \ N,,. To show tha J

is strictly convex we will look at J along a line segment from N, to n by defining
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z(e) =J((1 —e)N, +¢en) = J(N, +e(n — N,)) for N,,n € N,,, and 0 < ¢ < 1. Note
that if 2z, a one dimensional function, is convex in every possible direction then J

will be convex. To establish convexity we will show that 2”(¢) > 0. First take the

derivative of z:

/ 1
o) =1

(J(Nn +(t+¢e)(n—Ny,)) — J(N, +e(n— Nn))>

;:&b%ww> O] 1 g, [y =Nl
:Fwﬂﬁfmﬂ) PO+ st a0

By The Chain Rule:

Zmzpl t) + Ba(n(t) — Na(1)).

Note we define sensitivities similar to in Theorem [3.2.2}

Vet +1) = mug(t) + 6105 (1)

Vit +1) = 1y (t) + Qe W TN OYE(E) — Gaetem MO NS4 PE (1)
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—Grae” N OOV PE (1) (5(t) — Na(t))

Yot + 1) = (1) + Geem o0 TN (1) — Gae e MO YE (1) P (2)

—Goae WSO ENLD) PE (1) () — N,y (1))

Vot +1) = vty (t) + 0215 (¢)

Yot +1) = ¢g(t)e™ + (n(t) — Na(t))

where ¥¢(0) = 0, ¥1(0) = 0, ¥,(0) = 0, ¥a(0) = 0, ¥,(0) = 0.
In order to continue we must define derivatives of sensitives, o.(t), 0,(t), 0,(t), 04(t), 0,(t)

as:

CEE ) -t + 1 T 1) — it 4+ 1
7—0 T T—0 T

T+€ t—i— 1 YR t—|— 1 T+¢€ t 1 )€ t 1
UZ(tJrl):limwp C+D - il ), o2t +1) = lim Yo U HD Z vt )
T—0 T T—0 T

et 4+ 1) —s(t+ 1
T—0 T

Hence, we can write:

T+€t 1) — st 1 7’+6t _ et 7’+6t _ et
=0 T 7—0 T 7—0 T
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=m0 (t) + 6104 (t)

(A Gl Dl (el VP A O Bl 1 O vt () — ¢e®)

o (t+1) = 71_15/% =wli

T T—0 T T—0

T

= 10,(t) + oy (t)

ot +1) — Y5t +1)

os(t+1) =lim
7—0 T

T+£t _ at
gy V) )
T7—0 T

(n(t) = Nu(t)) = (n(t) = Nn(t)) = e o5 (1),
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(DN — D)) 2 (gt omyznyo—2P1 — D20 20 (yua . o@yearo_21-20 = ()20 (gt smenyw?D + (2) 208 =
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("N = DWW (2ia+ 4o 2000-21-250% + ()N = DD @) ()10 21020~
(1220 (4. on2no-2-29% = (V"N = (D)W 23+, _ozyo-2n- 2700+

(D3P (yn+a_o) 20021220 F (DD 3P (3 2,00y 23y —-Pr—20D—

()N = (W) (B iy o) 2010-70% = (DI 2yt o) 2ay0-21-70% = (D20 (g, a2y + (15071 =

TGV:Z - QVSGvmmfrvwz+i|w€m2vd\md — Qvm&gmfASmZ?hSmZvd\wx\md — Sm?@wz+i|m€wzvd\wg ((1)"N — (2)le)oe—
(1) 5d (D20 (G4 o 202 | #-20D—

_HAA.\.QQZ - va?v G.vmf.@.vMQMAA@WZ.T:\MWGVNZVGIQNO - vaM%\vamf.vaMx\wAQVWZI_.i\mngvdIQiI@\G — vamﬁ\@nwvMQ«Q@WZ.T&\&QMZVBIQH_ il@@m@|

mevtz - QvgvvAvamNQwASwZ.Ti\uCVWZVBIQ@ — vamm\imwvmNQwAﬁwvwz._.x\mngv@lwilwé — vamwaA@mZ.T:\wﬁvavSl@g m,u + vawbﬁh =

L 042

wip ()N — (Hl)oe—

(D) 2d (@ inrt oG 20— — (D agad (0)., 5N+ o) . oN)0—2
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(DN — QVSGvmNnN%vwzibcvmzvc\mmdmv + vab@wf%vwzflmﬁ%Zvcwmiwmdmvl

AAE:Z - Gv\x& vamgﬁ&mNDNAQVWZ.Ti\mQmzvdlwilmm@mvm + wavmﬂiwvmfA@vWZ.Ti\m@vavdlwimlwmwONVIT

()N = D)D) 2y 2o 2nyo- 2028 — DD 0y 54, o) 20— 21-20D8 = (13024, _oynyo- 2D + (1501 =

NAQV :Z - vatv vamfthz._.i\wgmzvvolwm@mv;l
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Next we compute

2(2) = S BRPE (1) + Baln(t) — No(t)

T-1

= lim Y B2BT (007 () + Ba(n(t) — Nu() = [Br2B (%7 (1) + Ba(n(t) = Na(t))

T-1 T+e T+€ £ € -1
= " 2 tim FEOUTO = BV _ 5 g, 50 Prt) + w17
t=0 t=0

-1
We now need to show that 2”(g) = 2512[015(75)36(75) + ¥£(t)?] > 0. To bound
t=0
2"(e) > 0 we will show that of(t) > 0.

We start by calculating some of the terms for both ¢ and ¢° functions.

We have that 17 (0) = 0, 97 (0) = 0, 15(0) = 0, ¥;(0) = 0, ¥5(0) = 0, so for t = 1

¥e(1) = e (0) 4 0115 (0) = 0

Vi (1) = 7202(0) + Ge @M OTTHNIONYF(0) — Grae e PEOTTENIONYE(0) PF(0)

—Crae WSO ENO) Pe(0) (1(0) — N, (0))

= —Gae ® W OTHENLO) P (0)((0) — N,,(0))
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PE(1) = 195 (0) + Goe N O HNaOye () — Gae He* N FNR O 2 (0) PE(0)

—(o0e

—a(N5(0)e™"+N3(0) pe(() (5(0) — Nyy(0))

= —Gae WOV PE(0) ((0) — N, (0))

Yo (1) = 1a1py(0) + 62¢05(0) = 0

Yo (1) = 95(0)e™ + (n(0) — Na(0)) = (n(0) = Nn(0)).

Next, for ¢t = 2

PE(2) = (1) + 0195 (1) =0

Vi (2) = 720i(1) + Ge oo WHNRDIYE(1) — Gae e o e NS (1) P (1)

—Goe

= Cle—a(NE(l)e*“wLNS(l))M(1) —

—eWe NI PE(1) (n(1) — N (1)) =

C1%_,16_a(1\f§(1)e*M+N$L(1))(n(o) — N,(0))PF(1)

—Crae @MW N D) Pe(1) (1) — Ny (1))

Up(2) = 1t (1) + Qe W WTTENIYE() — Gae e NN (1) PE(1)
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—Goae” NN PE(1)(1(1) — N,(1))
= 1 5(1) + Qe *Ne T HNAMyE (1) — Gae e *Ne M+ N (5)(0) — N, (0)) PF (1)

o @MW ENE D) Pe(1) (1) — Ny (1))

Va(2) = 1ty (1) + 6205(1) = varfy(1)

U5(2) = ¢g (e + (n(1) = Na(1)) = (n(0) = Nu(0))e™" + (n(1) = Nu(1)).

Lastly, for t = 3

Ue(3) = mvi(2) + 01¢5(2) = 01(2)

¢;‘(3) — 72@[)2(2) + Qe—a(Ni(?)e*“JrNi(?))wla(2) _ Clae—ue—a(Ni(2)6*“+Ni(2>)¢§(2)pla(2)

—Clae—tWNE@ETNIR) pe(9)(5(2) — N,(2))
:Clefo‘(NE( e HENE(2 wl( ) Cla(f”e a(NE(2)e™H+NE(2 wg( ) ( )

—Guae RN BE(2) (5(2) — Na(2))

UE(3) = 115 (2) + Goe NPT TR e (2) — Gyae e N HENER) e (2) PE(2)
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— e WM ENL ) P (2)((2) — N, (2))

Ve (3) = 12ty (2) + 6295(2)

U5(3) = 5 (2)e™ + (n(2) — Nu(2))-

Recall that ¢£(0), o7 (0), 05(0), 05(0) = 0, 05(0) = 0. Consider ¢t = 1:

p

oo (1) = 10¢(0) + 0105(0) =0

05(1) — 7252(()) + Cle—a(NS(O)e*“+Nﬁ(0))UZE(O) _ 261ae—ue—a(sz(0)6*“+Nﬁ(0))¢l€(owg(o)

—2G e N O FHNOD Y8 (0) ((0) — N,(0)) — Gae He o O N Pe(0)67(0)
+<1062672“67641\[5(0)6_M+Nﬁ(0))PIE'I/JE(O)2
+2G e e N OTENIOD PE(0)9 (0) (7(0) — N (0))
+Grale N OHNO) BE(0) (n(0) — N, (0))?

= GraPe * OO BE(0) (5(0) — N, (0))?

05(1) = 1105(0) + Qe W OHNONg7(0) — 2GaeHem W OHNOYE(0))y3 (0)

—2Gpae” B OTTENONYT(0)) (1(0)—Na(0))+Coa®e e N0 HHO) PE(0)07(0)?
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+200%e e N OTHENLOD PE(0)4)5 (0) (1(0) — N, (0))
_CQQe—ue—a(Ni(0)6”‘+N$L(0))plf (0)05(0)

+<2a26—a(N§(O)e*“-i-N;i(O))Pla(O) (77(0) o Nn(O))2

= (aZe MOV BE(0) (1(0) — Na(0))

Next, t = 2

07(2) = 7207 (1) + Qe W WTHENDIgE(1) — 2 ae e N DTN F (1) g5 (1)

—2Giae” M OTENRDIYE) (5(1) = Ny (1)) = Gae e oMo PE (1)o7 (1)
+C1042672u€fa(N§(1)6*“+Nﬁ(1))Bswz(1)2
+2¢a%e e W DTN PE(1)y2 (1) (1(1) — Na(1))
+Grale TN BE(1) (5(1) — N, (1))?

— 7202(1) + gle—a(NS(1)6*“+N5(1))018(1) _ 2@ae—ue—a(Ni(l)e*”JrNs(l))wf(1)%(1)

_2C1aefa(Ng(l)e—quNﬁ(l))wis(1)(77(1) . Nn(l)) + Cla2€f2u€7a(Ng(1)6—#+Nﬁ(1))Plsz/}z(l)2
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+2¢a%e e W DTN PE(1)y2 (1) (1(1) — Na(1))

+Gate RO PE (1) (5(1) - No(1))?

05(2) = 110%(1) + Goe  MEW N0 (1) — 9gyae e WET NIy (1)) (1)

—2Gpae oWV R (1)) ((1(1) = Np (1)) HGea?e e Mo e M) B2 (1)95(1)?
+2Gale e N NI PE(1)y3 (1) (n(1) — Na(1))
_C2a€—ue—a(N§(l)e‘“+Ni(1))ple(1)02(1)
+Galem MWW BE(1) (n(1) — Na(1))
= 110;,(1) + (e * W WIgE (1) — 2Gae e NN (1))y5 (1)
—2ae MEOTHNRDIYE (1)) (n(1)— No (1)) +Goa?e e d oM BE(1) g2 (1)?

+200”e e DTN BE (1) (1) (n(1) — Na(1))

Gt MV P (1) (1) — Ny(1)?

Next, t =3

0c(3) = m0c(2) + 6104(2) = 6105(2)
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07(3) = 1205 (2) + Qe W BTN 67 (2) — 2¢ e e MBI R (2)y7(2)

—2Gae  CERTEN @ (9)(5(2) — No(2)) - Gae e R ENI) P (2)0%(2)
_}_Qa2€—2ue—a(Ng(2)e*“+N,§(2))Plawz(2)2
26 a%e e GO PE ()5 (2)(5(2) — Na(2))
Gt o NEDTIENLED) Pe(2) (5(2) — N, (2))?
= 1p0°(2) + gle—a(N§(2)e‘“+Ni(2))0ls(2) _ 2(1ae‘“e‘a(Ng(2)8_”+N5(2))¢f(2)¢§(2)
—2Gae” N EDTTINRE YR (2)(5(2) — No(2)) + Gate e W @TTHNE) pryg(2)2
+2(rale e NO@IETENED PE(2) 45 (2) (1(2) — Na(2))

_'_C1a267a(N§(2)6_“+N5(2))F)ls(2)(,'7(2) _ Nn(2>)2

05(3) = 1105(2) + (e Mo @ NI 5E(2) — 205ae e NERET NI e (2)) 2 (2)

_QCZQG—a(NS(2)6*“+NZ(2))¢ZE(2))((n(g)_Nn(g))+C2&2e—2ue a(N5(2)e ™ +N (2 )pl( )1/,6( )
+200’e e N R ENRR) PE(2) 4 (2) (n(2) — Na(2))
_Qaewew(l\’i(2)6“‘+N5(2))pf(g)ag(2)

FGoatem e MERT N PE(9) (5(2) — N,(2)?

= 110,(2) + Gee W BTN 67 (2) — 2¢pae e N DTNy (2))y5 (2)



82
—2@046’0‘(]\@(2)6_”+N5(2))¢f(2))((n(2)—Nn(2))+(2a26*2“e*a(N5(2)6_“]\’5(2))Pf(2)w§(2)2
+2¢a’e e AN TIENIE) Pe(2)95(2) (n(2) — Na(2))

+<2a2€—a(N§(2)6*“+N,§(2))Pla(2) (77(2) _ Nn(2))2

04(3) = 1203,(2) + 020,(2)

a

05(3) =e*oi(2) =0.

For these terms we can note some similarities and differences to the Basic Model
proof for Theorem [2.3.3] We will use U< and ¢ to denote the Basic model sensitivities
and derivatives of sensitivities. For this comparison note that the difference of N¢ and
N + N; in the exponents will not affect the pattern of our formulation we found in
the Basic model for proving o > 0, hence we will use ~ to associated similar terms
in the model. We have then that WS ~ 2, ¥ ~ v, Xf =~ o, and X5 ~ 0. Note we

have ¢5(t + 1) = 0. Consider:

YE(t+ 1) = U5 (t 4 1) — Gae He W@ TNt ye (1) P (¢)

Yyt +1) = Wit + 1) — Gae e ORI S() P (2)

Uolt+ 1) =5 (t)e™ + (n(t) = Na(t)) = Y _ e #“(nt — ¢) = Nalt — ¢))
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of (t+1) ~= S{(t + 1) — 2C e e N NI Y2 (1) (1)
_Cmewe*a(NS(t)e‘“+N5(t))pf(t)ai(t)
+C1a2€—2,u€—a(N E(t)e M+NE (¢ P%E( ) —|—2C10426_“€ a(NE(t)e H+NE(t)) PE( )¢€( )( ( ) Nn(t))

~ i (t 4 1) — 2Gae e WO NIy (1) g (1)

+Gate e NN PEyS (1)242¢ a?e e NN P (49 (1) (n (1) — No(1))

az(t +1) ~ zz(t +1) — 2{2046_“6_0‘(1\’6( eTHENE( wa( NUE ()
_’_<2062672,u67a(N§(t)6_“+N5 )Ps( £)05(¢)?2
+2Gp0e e RO PE (1) g7 (1) (n(1)— N (£)) —Goae e N P (1) 1)
R g (tH1) = 2Gae e MO YE () )2 (1) + Gate e e DTN BE (1)) (1)

+2¢0%e e WA OTHNAO) PE ()5 (8) (n (1) — Na(t)).

Since most of this follows the Basic model proof in Theorem [2.3.3, the only

difference is in:

YF(t41) = U5 (t+ 1) — Gae He@WNo e+ NL( [Ze He(n(t —1—¢) — Nu(t — 1 —¢))| Pf(t)

Yot +1) = ot +1) — Coae P NG (e +NL (1)) [Z etmit—1—c)=Ny(t—1-0¢)| P (t)

of(t4+1) = X5 (t 4+ 1) — 2¢ e He @ N (e N D)2 (¢ [Z e Fmit—1—¢c) = Np(t—1-— c))]
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+Cra2e e (NS (e N (1) pe

+2<10426_“e a(Ng (e " +N, (¢

op(t+1)~=X5(t+1) — 2pae e @ WNa (e N () e (1) lZe Fept—1—c¢) = Ny(t—1— c))]

2

+C2042€ —a(NZ(t)e " +N7( t))Ps Ze—u c t —1— C) Nn(t _1— C)) +
t—1
+2(p0Pe e NSO ENI O P (1) |3 et — 1 - ¢) — No(t — 1 c>>] (n(t) — Na(1))
c=0

Considering the terms in 97, vy, o7, 0, other than the basic model terms, which we
know will combine, we can note a construction similar to the Basic model. The terms
assocaietd with summations are similar across multiple terms and we expect these
to combine, resulting in the summations of (n(i) — N(i)) squared. These patterns
and similar factors will result in a formulation for o7 (¢) which is the summations of
(n(i) — N(i)) squared with associated parameters, and thus resulting in o} (t) > 0 for
all t.

Therefore, we have that 2” 2612 of () PF(t) + 5 (t)*] > 0, and we have

uniqueness by convexity of z.
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Chapter 4

Case Study: Diaprepes abbreviatus

4.1 Introduction

We will investigate the invasive species Diaprepes abbreviatus(DRW). DRW originated
in the Caribbean and was transported to the central and southern regions of Florida
around 1964 [EGCO04]. The introduction of DRW was not intentional, and in the past
50 years DRW have proven to be a troublesome invasive species, spreading throughout
Florida and eventually to California in 2005 [EGC04. [JG09b]. DRW infests citrus
groves along with other plants, causing the most damage during the larva stage to
the roots [MSDNOQ]. For the DRW dynamics we have a matrix model from the
paper Contributions of demography and dispersal parameters to the spatial spread of a
stage-structured insect invasion by Miller and Tenhumberg [MT10]. In past studies
of DRW it has been found that the larva stage feeds upon the roots causing severe
problem for the citrus plants. Furthermore, most monitoring is done with traps at the

adult stage, since there is no effective method to monitor larva[LDG16]. It has also
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been found that pesticides are not useful in management of DRW larva [CHEBD15].
DRW can be controlled using entomopathohenic nematodes [BPK99, [Gau02]. We use
the previous models to determine a management plan specifying timing and amount of
entomopathohenic nematodes, while also considering the cost of applying nematodes

and cost of DRW damage to the farmer.

4.2 Parameter Values

4.2.1 Values for Martrix - DRW Life Cycle

For the DRW life cycles and dynamics, I reduced the 6 x 6 matrix from a paper by
Tom E. Miller and Brigitte Tenhumberg [MT10], to a 4 x 4 matrix using Hooley’s
algorithm [SP10]. We reduced to a 4 stage matrix to account for the 4 major stages

in most insect life cycles: egg, larva, pupa, and adults.

Hooley’s Algorithm To reduce a stage structure matrix 4 we find the correspond-
ing eigenvalues and eigenvectors. Next, we identify the largest eigenvalues and the corre-
sponding eigenvector. In our case the largest eigenvalue is 1.42271091 and the eigenvec-
toris T = [0.812321361, 0.433821424, 0.388876952, 0.025331093, 0.006721562, 0.004566305.

In order to do any reduction we need to alter T,

T
sum(Y)

Uy =

= [0.485943142, 0.2595186540.232632179, 0.015153450, 0.004020942, 0.002731634]
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0.305 0 0 0  25.692 161.045
0.530 0.43 0 0 0 0
0 043 0943 0 0 0
A=
0 0 0.0420 0.778 0 0
0 0 0 0.202 0.662 0
0 0 0 0 0.313  0.962

We want to go from a 6 x 6 matrix to a 4 x 4, specifically we combine the two larva
stages into one larva stage and the two adults stages into one adult stage. Meaning
we need to combine the second and third rows into one and the fifth and sixth rows
into one, to do this we use a matrix P, and for reducing the same columns we use @)

which is constructed using uy. The formulations of P and () come from [SP10)].

1 0000O
011000

P =
000100
000O0T11
1 0 0 0 1 0 0 0
uy|2]
0 m 0 0 0 0.5273153 0 0
uy[3]
oo |0 wHm 0 |0 oar2esam 0 0
0 0 1 0 0 0 1 0
uy[5]
0 0 0 bl 0 0 0 05954679
uy[6]
0 0 0 ol o 0 0 04045321 |

Now, using P and @ we will reduce A to A, by P- A-Q = A.
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i mw 0 0 6 ] | 0.3048413 0 0 80.446501 ]
Ao Yo ¢ 0 O B 0.5301587 0.89923928 0 0
- 0 G 1 0 - 0 0.01984631 0.7781462 0

I 0 0 vy 0y | I 0 0 0.2018538 0.969731 |

By using this method we have that the eigenvalue of A is 1.422711, the same as A.
The reduced 4 x 4 matrix takes into account the DRW eggs (P.), larva (F,), pupa

(P,), and adults (F,). The values are scaled to consider a one week time step.

4.2.2 Values for Initial Conditions

There are infinitely many possible distributions; we choose the stable stage distribution
(SSD) as a starting point. This way we minimize the effect of transients on our control.
Note, the methods would work with any other initial distribution which could be used
if the farmer has information. Since the DRW is at SSD, the initial conditions for the
DRW are derived from the eigenvector associated with the largest eigenvector of A.

Note that we can scale the initial values by any constant to reflect number of DRW in

a hectare.
P.(0) be 0.485943142
P (0) o) 0.492150833
P,(0) bp 0.015153450
P,(0) bq 0.006752576

4.2.3 Values for the search efficiency, o

We could not find an estimate of a in the literature. Therefore, we made the assumption

that the recommended number of nematodes per hectare would result in a negative
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population growth rate, and iteratively searched for « values that produced a decreasing
population size if the recommended nematode density was applied.

First we calculated the suggested number of nematodes per hectare, Ng [Gau02].
Then we fixed N(t) = Ng in the A(t) matrix, resulting in a linear system. We choose
an « such that the DRW population decays at a slow rate, to be conservative. Hence,
we varied « until we found a value of o which produces the eigenvalue of A more than
1. Recall this is the asymptotic population growth rate for linear PPMs. We choose «
so that the eigenvalue was close to 1, meaning that an increase in nematode density
would speed up population decline. Note the model never predicts extinction, and
farmers rarely succeed in driving a pest extinct

The recommended nematode density is 22 nematodes per cm?, and 1 cm?=1 x 1078

hecatre.

22 nematodes lem? B 22 nematodes

X =
cm? 10-8 hectare 10-8 hectare

= 22 x 10 per hectare

We iteratively found a value of o which with N(t)=22 x 10® per hectare produces

a largest eigenvalue of A; close to 1.
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« Largest eigenvalue
0.00000001 1.0622
0.000000015 1.009835
0.000000016 1.003221
0.0000000165 1.000286
0.00000001655 1.000005
0.000000016551 0.9999996
0.0000000166 0.9997267
0.000000017 0.9975792
0.00000002 0.9853918

0.0000001 0.97
0.0000005 0.97

When a = 0.00000001655, A; has an eigenvalue slightly larger than 1, meaning
the DRW would just persist.

Note invasive behavior refers to population growth in the absence of control.
Our choice of a means that the recommended dose according to the manufacture
specifications is not sufficient to produce population decline. Hence, we would expect
that our model predicts higher than recommended nematode applications. We expect
a nematode manufacture to suggest applying too many nematodes as a safety net in
case nematodes don’t work as well as expected; or, nematodes may die because of

unfavorable environmental conditions.
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4.2.4 Values for the Cost Function

Now that we have the values for the parameters in the dynamic system we need to
assign values to the cost function variables. To find the values of the cost function,
Cost at time t == (1 P,(t)?+ S2N(t), from the objective functional we will investigate

the two parameters separately.

Cost of DRW - 3;  For DRW cost, a literature review did not provide any estimate
on how much damage a single DRW larvae causes in terms of loss in harvest. We
did find in the literature an estimation for the number of weevils present at halfway
to full infestation in a hectare [MSNO3|. Additionally, we found how much farmers
expect to make per hectare for citrus, and then divided this by the 52 weeks in a year,
finding the cost of harvest [Gau02]. Therefore, we estimated a value for the DRW cost
as the loss of harvest due to the feeding activity of the larvae.

Combining the above information we have that estimation that 8; = 7.9515 x 10712,

Cost of Nematodes - 3, Nematodes can be purchased at 22 nematodes per
cm? for $62 per hectare [Gau02]. Hence we have that the cost of Nematodes, N -
$62/22/(1/108) per hectare per nematode = fs.

Note, while we have configured the cost to be per one Nematodes, typically
Nematodes are purchases in bulk. For instance you can purchase for your personal
use 50 million nematodes for about ninety dollars [PR12].

So the total cost for any time is cost of diaprepes weevil damage, 3, P, (t)?, plus

cost of purchasing nematodes, SN (t).

Cost at time t = By P(t)* + B2 N (t)

where 3; = 7.9515 x 1072 and /3, = 2.8182 x 1078,
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4.3 Basic Model with Parameter Values

Recall, our goal is to minimize the objective functional:
T-1

J(N) =Y BiP(t) + BN(1)

k=0

subject to:

Pe<t+1) :71Pe(t)+elpa<t) Pe(o) :¢e
Pt +1) = nP.(t) + Ge *NOP(t)  B(0) = ¢
Pyt +1) = Ge NOP () +unP,(t) P,(0) =9,

P,(t+ 1) = 1o P,(t) + 02 P, (1) P,(0) = ¢a.

We additionally need N (k) > 0, because nematode densities cannot be negative.

From the previous sections we have that

0 if 22 > Pi(k) (Gt + 1)+ GAp(t + 1))
N(t) = .

W[ E N+ 1) + At + 1)) i 22 < B()(Qlt + 1) + GAp(t + 1))

1
a

For the following simulations we will consider 52 weeks of application, so T" = 52

with time steps of one week.

4.3.1 Forward-Backward Sweep (FBS)

An algorithm typically used to find an estimation for the solution to an Optimal

Control problem is the forward-backward sweep|LWQT7]. The algorithm utilizes the
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pest dynamics and the adjoints to find a solution for how many nematodes to apply.

The process is described in general by:

1. Let N = 0 and use this to calculate F., B, F,, P, using the initial conditions

¢e7 (bla ¢p7 (ba-

2. Now calculate A, \j, \,, A, using the terminal condition A\ (7)) = 0, \(T") =

0, \,(T) =0,X(T) = 0.
3. Using the calculations in 1 and 2 find N.

4. Check if the differences between the newly calculated P., P, P,, P, Ae, A, Ap, g,
and N are within an acceptable error, d. If so, stop, since you have your value

for the optimal control. If not use the N in 3 and repeat the process.

In the above description of the FBS we mention the acceptable error §. Figures
and [4.2] varying ¢, we decided to use ¢ = 0.1 due to the speed of computation and

the accuracy of answer.
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Basic Model: Vary delta

6 %108
1
o 009°°%%00000,,, : 0.5
°® ®%00e ooe 0.3
5L 0200000000000000000°9 o 0.2
e e 0.1
(4]
e
-
(D)
Q_3 |
(7]
(O
©
"9 (1 LIJITTYY
T2l 000 ©0008083500,
E |o 0 d :C.:.‘.‘
S . O.Q'::“..
= 8 0'39
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5000
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Figure 4.1: Using the Forward-Backward Sweep we calculate the number of nematodes
to apply for initial populations 1100000 for various values of . Note how once we
start using 0.5 we get a close estimate to 0.1.
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Basic Model: Vary delta
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Figure 4.2: Using the Forward-Backward Sweep we calculate the number of nematodes
to apply for initial populations 1100000 for various values of §. Note how all the
curves practically overlap.

4.3.1.1 Varying Initial Population

Using the FBS we varied the initial population to see the change in number of

nematodes to apply and the corresponding DRW larvae population.
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_.»Basic Model: Nematode Application
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Figure 4.3: Using the Forward-Backward Sweep we calculate the number of nematodes
to apply for various initial populations: 2000, 20000, 200000, 1100000, 1500000,
1700000, 2000000
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Basic Model: DRW Larva
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Figure 4.4: The corresponding DRW larva populations for the nematode application
in Figure for various initial populations: 2000, 20000, 200000, 1100000, 1500000,
1700000, 2000000

4.3.1.2 Varying Search Efficiency, o

In section we calculated the value for a. Now we will vary the search efficiency by
various percent changes for the initial population 1100000. The results for the initial
population 1100000 in Figures [.3] and [4.4] are similar to the other initial populations

we considered.
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FBS: Percent Change to alpha for Initial Population 1100000
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Figure 4.5: For initial population 1100000 we vary the value of a by the percents -15,
-10, -8, -5, -3, 0, 3, 5, 8, 10, 15. In the figure we focus on 10 to 40 weeks of the 52
week simulation to see the variance with the percentage change.
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Figure 4.6: For initial population 1100000 we vary the value of a by the percents -15,
-10, -8, -5, -3, 0, 3, 5, 8, 10, 15. In the figure we display the Total Cost.
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4.3.1.3 Varying Cost Associated with Loss of Harvest, [;

In section 4.2.4] we calculated the value for 8;. Now we will vary the cost associated
with loss of harvest by various percent changes for the initial population 1100000. The

results for the initial population 1100000 in Figures [4.3] and [4.4] are similar to the

other initial populations we considered.

. FBS: Percent Change to beta1 for Initial Population 1100000
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Figure 4.7: For initial population 1100000 we vary the value of 5; by the percents -15,
-10, -8, -5, -3, 0, 3, 5, 8, 10, 15. In the figure we focus on 10 to 40 weeks of the 52
week simulation to see the variance with the percentage change.
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Total Cost Varying Pest Cost Parameter, betat
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Figure 4.8: For initial population 1100000 we vary the value of ; by the percents -15,
-10, -8, -5, -3, 0, 3, 5, 8, 10, 15. In the figure we display the Total Cost.

4.3.1.4 Varying Cost Associated with the Purchase of Nematodes, (3,

In section 4.2.4 we calculated the value for f;. Now we will vary the cost associated
with the purchase of nematodes by various percent changes for the initial population
1100000. The results for the initial population 1100000 in Figures and [£.4] are

similar to the other initial populations we considered.
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o FBS: Percent Change to beta2 for Initial Population 1100000
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Figure 4.9: For initial population 1100000 we vary the value of 5 by the percents -15,
-10, -8, -5, -3, 0, 3, 5, 8, 10, 15. In the figure we focus on 10 to 40 weeks of the 52
week simulation to see the variance with the percentage change.
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Figure 4.10: For initial population 1100000 we vary the value of S5 by the percents
-15, -10, -8, -5, -3, 0, 3, 5, 8, 10, 15. In the figure we display the Total Cost.
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4.3.1.5 Varying Search Efficiency, Control Cost, and Pest Cost

Parameter, o, (3, and [,

In order to compare the difference in percent changes for o, 31, and B we combine

the results of Figures [4.0] and [£.10]

_Total Cost Varying Parameters: alpha, beta1, beta 2
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Figure 4.11: For initial population 1100000 we vary the value of o, 1, and S5 by the
percents -15, -10, -8, -5, -3, 0, 3, 5, 8, 10, 15. In the figure we display the Total Cost,
combining Figures [4.6] [4.8 and [4.9

4.3.2 MultiStart

Another method to find the number of Nematodes to apply is implementing the
MultiStart Algorithm in MATLAB. The algorithm implements the fmincon function,
which given a starting point will search for nearby local minimum. The issue is that
fmincon cannot definitively say whether the point is a global minimum. To search for
the global minimum we use MultiStart which allows you to input how many randomly

generated points you would like MATLAB to run through fmincon. For instance, if
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you choose 100 then fmincon will be run on 100 different randomly selected points,
and MultiStart will output the best possible option for the global minimum. As with
fmincon, the output of MultiStart might not be the global minimum but it allows us
to approximate and with more inputs for randomly generated points we can get a
better approximation.

In this case, we can use MultiStart to compare with the results of Forward-Backward
Sweep to approximate the global minimum by comparing the two algorithms outcomes.
For MultiStart, we used the Holland Computing Center to run more inputs for

MultiStart; specifically the results we display had 500,000 randomly chosen points.

4.3.2.1 Varying Initial Density

Using MultiStart we varied the initial population to see the change in number of
nematodes to apply. We found that the results in MultiStart were seemingly converging
to the same constant value of Nematodes to apply for approximately weeks from 6 to
46, see Figure [1.12] So we we graphed the average number of nematodes Multistart

instructs to apply from weeks 6 to 46.



_.Basic Model: Nematode Application

4
. o o R e 2000
o "o 0% o o ® e 20000
351 eee ° ©000%¢ 0 o °® Coo 200000
® PYTS e 1100000
o _ ee, » 1500000
3 o ® 00000000000000000000000000° 0"0“ oo ) 1700000
° o%%, ooo0e, o°° ¢ *| e 2000000
9 o5l 8 oo °,° °® CQO.. ..00. o %0
WA % °
— ® ®oge
O ®
q) [ ] [ ]
c 2fF :
E N > o
Q. st %
H* . ®
0000g0000000000000000500000000000000000909000
® o
1F ... .......Q'...‘.... ..‘.....'..‘..'.C.... ...
® 0...
0.5F
°
o Py 1 1 1 1 1 9 1
0 10 20 40 50 60

104

30
Weeks

Figure 4.12: Using MultiStart we calculate the number of nematodes to apply for
various initial populations: 2000, 20000, 200000, 1100000, 1500000, 1700000, 2000000
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_-Basic Model: Nematode Average Application
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Figure 4.13: In Figure we can note that the applications seem to stabilize
somewhat after 6 weeks until 46 weeks. We took the average value for each initial
population of nematodes application between 6 and 46 weeks and plotted them above.

4.3.2.2 Varying Cost Associated with the Purchase of Nematodes, (3

Similar to Section we will vary the cost associated with the purchase of
nematodes. We plot the number of nematodes to apply for initial population 200000
for various percent changes of 35. Also, we look again at the average value of nematodes
to apply for weeks 6 through 46 and the total cost associated with the nematode

application. Varying « and [3; the results are similar to that in the FBS.
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Figure 4.14: For initial population 200000 we vary the value of 5 by the percents -15,
-10, -8, -5, -3, 0, 3, 5, 8, 10, 15. Note that for certain percentage differences we do not
have very linear curves from time 6 to 46 weeks.
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Figure 4.15: For initial population 200000 we vary the value of 5 by the percents -15,
-10, -8, -5, -3, 0, 3, 5, 8, 10, 15. As in Figure took the average value for each
initial population of nematodes application between 6 and 46 weeks. Note issues arise
due to the curves erratic behavior for certain percents in Figure |4.14
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) MultiStart: Percent Change to beta2 for Initial Population 200000
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Figure 4.16: For initial population 200000 we vary the value of 85 by the percents
-15, -10, -8, -5, -3, 0, 3, 5, 8, 10, 15. The figure shows the different total costs for the
nematodes applied in [£.14]

4.3.3 Discussion/Summary

First we will consider the results from the FBS algorithm. Looking at Figure 4.3| we
can see the FBS algorithm is outputting the expected biological response, the larger
the initial population the more nematodes must be applied. The shape of the FBS
curves of nematode application are all similar with bumps for the first few weeks
at the start and end, which is natural with Optimal Control. Recall in our optimal
control problem we are only worrying about the cost of the 52 weeks of application,
and not afterwards, which explains the bumps at beginning and end. Now considering
4.4l we can see at low initial populations, there are not many nematodes applied and
hence the DRW larvae are persisting and starting to grow. This is because the cost of
DRW larvae damage does not yet outweigh the cost of purchasing nematodes. When
we start with an initial population of 1100000 and more of DRW larvae, we can see in

Figure and that there more nematodes applied to combat the DRW larvae.
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Specifically, we can see the nematodes are starting to eliminate the DRW larvae at
1700000, with the curve reaching a peak in [4.4] and then decreasing before the last few
weeks, which is again the nature of an Optimal Control problem.

When we vary the parameters «, 51, and [y the results align with what we expect
biologically. If we reduce the search efficiency, «, then we increase the number of
nematodes we must apply and total cost, see Figures and [4.6] Biologically this
makes sense, since the worse nematodes are at finding the DRW larvae the more
nematodes we must apply to the system and the larger the total cost. Meanwhile
for cost associated with loss of harvest, 81, and cost associated with the purchase of
nematodes, [, if either increases the total cost increases as well, see Figures [4.7] [1.8]
(4.9, and [£.10] Again, this makes biological sense, if we increase the cost of nematodes
we still need to apply nematodes so the total cost increase. Similarly, if we increases
the cost associated with loss of harvest, then we need to control the DRW larvae
more and will result in a higher total cost. Looking at Figure 4.11] we can see the
resulting total costs associated with changing «, 1, and (5. Note the greater change
in the curve associated with « and the difference in the curves associated with 5; and
Ba. Recalling where these parameters are applied in the Optimal Control problem
in Section we see the curves in Figure makes biological sense. Since search
efficiency, «, is applied to the start variables through an exponential term, it makes
sense changing o will more drastically effect the total cost. Comparing 5; and Sy,
since (3, is associated with a linear term we see a more dramatic change of the total
cost. Additionally, we can note that the fluctuation of total cost is at most 120 dollars,
which is not too great considering we are varying parameters by possible 15% and our
total cost without varying parameters is around 650 dollars per hectare.

We notice similar behavior in the MultiStart method with Figure and

with a more approximate nature. We used MultiStart in this case to compare with
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Forward-Backward Sweep. In Figure 4.17 we compare the Total Cost, J, of the
two methods. We can note that the Forward-Backward Sweep always has a lower
cost than the MultiStart, and the MultiStart seems to be converging, possibly to
the Forward-Backward Sweep. Note there is a difference in the outputs of the FBS
and MultiStart. Recall, the main part is Multistart is searching for the best choice
by picking 500,000 random possibilities for the nematode vector and then running
fmincon for these. Therefore, the comparison in Figure of FBS and MultiStart
makes more sense. For the smaller initial population, the curves seem closer for the
two algorithms. For both initial populations we are still allowing MultiStart the
same number of start points, so it makes sense that at smaller population would
produce a closer approximation to the optimal FBS solution. Therefore, if we could
run MultiStart for more start points we could find a less approximate solution in

MultiStart.
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Basic Model: Total Cost
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Figure 4.17: The Total Cost, or value of J, which corresponds to all the initial
populations and nematodes applications from Figure for Forward-Backward Sweep
(FBS) and Figure for MultiStart.



111

Compare Basic Model FBS and MultiStart
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Figure 4.18: Displaying the number of nematodes to apply for initial populations
200000 and 1700000 for both FBS and MultiStart.

Additionally, we have simulations looking at varying the parameter 5. Comparing
Figures and we can see how issues can arise with MultiStart. In the FBS
case of Figure we can see the smooth transitions with varying the percentages
of B3. Meanwhile, in Figure 4.14] we have issues and there does not seem to be the
similar smooth transition, which is further highlighted in Figure [£.15] However, note
in Figure the total cost is increasing in MultiStart as we would expect with the
varying percentages of 55. Hence, while MultiStart might be giving an approximate
number of Nematodes to apply, the total cost of the system still make biological sense.
To increase our understanding we need more starting points for MultiStart to see

more exact solutions.
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FBS: Percent Change to beta2 for Initial Population 200000
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Figure 4.19: For initial population 200000 we vary the value of 85 by the percents -15,
-10, -8, -5, -3, 0, 3, 5, 8, 10, 15. In the figure we focus on 10 to 40 weeks of the 52
week simulation to see the variance with the percentage change.

For the next model we cannot use FBS, so by comparing the two methods for this
Basic model we get insight into how the algorithms compare. While MultiStart might
not find the optimal solution it does come close to the FBS for application purposes to
eradicate DRW without incurring too much additional cost, Figure [£.17 Addtionally,
MultiStart does find solutions whose total cost increase with initial populations, even

with associated nematode applications that seem erratic.

4.4 Persist Model with Parameter Values

Our goal is to minimize the objective functional:

TN = 3 BB + BaNa()

subject to:
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Pe(t+1) :lee(t) +‘91Pa<t) Pe<0) = ¢e

Pt +1) = 7Pe(t) + Qe @O OB () B(0) = ¢

Pyt 4 1) = Ge oo SN B (1) 4 By (t)  Po(0) = &,

P,(t +1) = 1 P,(t) + 02 P,(t) P,(0) = ¢,

No(t+1) = Ny(t)e ™ + Ny(t) N,(0) = 0.

We additionally need N, (t) > 0 because nematode densities cannot be negative. Note
that this also bounds N, (t) > 0.

From the previous proofs we have that

e aN, (e ™ o P () [Ai(t+1)C14+Ap (t41)Co]
N (t) _ 0 lf € ( ) > B2+)\o(t+1)
n - .
APy (B[ A (- 1)C1 A, (E4+1 _ e aNu (et — aP O E+HDC A (1
%ln[ 1 (8)[ lfgzik)f(ltil)(H )Cz]] — Ny(t)e if eaNo(H)e™ < (8 Iézih)f(ltil)(“r )Ga]

4.4.1 Forward-Backward Sweep

Unlike in the Basic Model we cannot use the Forward-Backward Sweep to find the
number of Nematodes to apply for many options of u. After running simulations
we noted that the FBS was always outputting that the number of Nematodes to
apply was zero. This can be explained as follows. Looking back at the equation for

nematodes, N:
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: No(t)e aP (1) [N (t+1)¢i+Ap (t41)¢o]

Na(t) = " if en o0 > Bat o (1)
Ly e PO (1) 4 A (1)) b e aNu(et — aPODH)G A (1G]
= In[~ ’,(32+/\0(t+1) 2] — No(t)e if e@No() < oh le+>\o(t+1) 2

Note that for N(t) > 0 we need that

aNy(t)e ¥ < aﬂ(t) [)\l(t + ]')Cl + /\P(t + 1)C2]
B Ba 4 Aot +1) '

e

Now we know that 1 < e*™®e™ gince N,(t)e ™ > 0, so aPl(t)[Alﬁ(zﬁ\)féi’l\§'(t+l)@] will

need to be positive. We have that aP(t)[A\(t + 1)¢ + A, (t + 1)) > 0. We also need

to consider By + A, (t + 1). Recall that

Ao(t) = —alie "N (k + 1) @We®e +Na (k) D, (k)
—aGae " Ap(k + 1)e N HNND, (k) 4 2, (k + 1)e ™.

Since \,(T') = 0, we have that A\,(¢) < 0 for all ¢, which means for 55 + A\, (t+ 1) to
be positive we need that 5y > A\, (t+ 1), as (5 is a positive constant. In our case study
of DRW, B, = 2.8182 x 1078, After running simulations we found that for DRW, the
only cases when the FBS is converging is if ;1 — 0o, meaning we choose large values
for © to mimic the Basic model. Meanwhile, for cases with p as a fraction it is not
possible to have B > A\, (t + 1), so the Forward-Backward Sweep was always assigning
N(t) = 0 or having issues with convergence for the entire time frame.

Thus, for the Nematodes Persist Model, we must use the MultiStart algorithm
to find approximations of the amount of nematodes to apply for various choices of
considering nematodes survive for longer lengths of time. Figure shows varying pu

for initial population 1100000 and how issues occur for smaller values of p but larger
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values converge to the Basic model results.

Compare Basic Model (BM) and Persist Model (PM) at Initial Population 1100000
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Figure 4.20: We have initial population of 1100000 and compare the Basic Model with
the Persist Model with ¢ = 1,10, 100.

4.4.2 Multistep

4.4.2.1 Varying Initial Population and Survival per Time Step

Parameter,

Using MultiStart we first varied the initial population with value p = In(2) to see
the change in number of nematodes to apply. Again, we found that the results in
MultiStart were seemingly converging to the same constant value of Nematodes to
apply for approximately weeks from 6 to 46, see Figure So we we graphed the
average number of nematodes Multistart instructs to apply from weeks 6 to 46 for
varying both initial population and values of p. Additionally we graphed the total

cost associated with varying both initial population and values of .
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Persistence Model: mu=In(2)
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Figure 4.21: Vary initial populations 200000, 1100000, 1500000, 1700000, 2000000
with p = In(2).
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Persistence Model
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Figure 4.22: Similar to in Figure we took the average value for each initial
population of nematodes application between 6 and 46 weeks and plotted them above
for the Persist case various p (mu) values.
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Persistence Model
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Figure 4.23: The Total Cost, or value of J, which corresponds to all the initial
populations, p values and nematodes applications from Figure [4.22]

4.4.2.2 Varying Nematode Cost Parameter, (5,

We varied the cost associated with the purchase of nematodes. We plot the number of
nematodes to apply for initial population 1100000 for various percent changes of (.
Also, we look again at the average value of nematodes to apply for weeks 6 through

46 and the total cost associated with the nematode application.
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Initial Population 1100000: Vary beta2
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Figure 4.24: For initial population 1100000 we vary the value of 5 by the percents
-15, -10, -8, -5, -3, 0, 3, 5, 8, 10, 15 and u by In(2),1/2,1/3,1/10. We plot the Total
Cost.
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Figure 4.25: For initial population 200000 and In(2) we vary the value of 5 by the
percents -15, -10, -8, -5, -3, 0, 3, 5, 8, 10, 15.
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o MultiStart: Percent Change to beta2 for Initial Population 200000
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Figure 4.26: For initial population 200000 and In(2) we vary the value of 5 by the
percents -15, -10, -8, -5, -3, 0, 3, 5, 8, 10, 15. As in Figure [4.13 took the average value
for each initial population of nematodes application between 6 and 46 weeks. Note
issues arise due to the curves erratic behavior for certain percents in Figure [4.25

*MultiStart: Percent Change to beta2 for Initial Population 200000
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Figure 4.27: For initial population 200000 and In(2) we vary the value of 5 by the
percents -15, -10, -8, -5, -3, 0, 3, 5, 8, 10, 15. The figure shows the different total costs
for the nematodes applied in [4.25
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4.4.2.3 Basic Model Comparison

We compare the total costs for various initial populations from the Basic Model FBS

and MultiStart methods with the Persist model varying the value of p.

Compare Basic and Persistence

1400 —

e Basic FBS

» Basic MultiStart
Pesist mu=In(2)

e Persist mu=1/2

1200 {— e Persist mu=1/3
Persist mu=1/10

e Persist mu=1/26

1000 [~

800 (—

Total Cost

600 (—

400 —

2005

°
ot 1 1 1 1 1 1 1 1 1 |

0.8 1 1.2
Initial Total Population *10°

Figure 4.28: Vary initial populations 2000, 20000, 200000, 1100000, 1500000, 1700000,
2000000 for Basic FBS, Basic MultiStart, and the DRW Persistence Model for p =
In(2),1/2,1/3,1/10,1/26. We map the Total Cost.

4.4.3 Nematodes Persist Discussion/Summary

We consider fractional values for p since it is the survival per time step parameter,
and for fractional values we have higher percents of nematodes survive per week.
Specifically recall if ;1 = In(2), then half the nematodes survive one week. In Figure
we start as we did in the Basic model by varying the initial population for

i =1n(2). As with the basic model lower initial density requires less nematodes, and
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we can note in general less nematodes are required since 50% survive.

Since it is likely that some nematodes survive from one week to the next, we vary
1 to see how different survival percentages affect the number of nematodes we apply
and the total cost. In Figures and we plot the average number of nematodes
to apply each week for varying values of p and initial populations. As expected if p
is decreased, so the percent of nematodes that survive the week increases, then we
decrease the nematode application and total cost. The total cost curves in Figure |4.23
seem to be linear and have an even spread, while Figure are less linear due to the
nature of MultiStart, which is reflected in [4.21]

As with the Basic model we varied other parameters in the model, specifically
shown in Figure [4.24] we vary S5, the nematode cost parameter, for initial population
1100000 and various values of y. As we would expect when we decrease 35 the total
cost decreases, and the various p values also correspond as we saw in previous analysis
without varying (5. In Figure [4.25 we plot the number of nematodes to apply every
week with initial population 2000 for various percent changes of B5. Note again we are
using MultiStart, so the erratic behavior is not surprising and reflected in Figure
for the average nematode application. If we look at Figure [4.27 we can see that even
though the nematode application seems erratic, we still have a close to linear growth
in the total cost with varying S which does correspond to smaller S5 means smaller
cost. We have similar results when varying 5, and « as we did in the Basic model,
with expected decreases in nematode application and total cost when we incorporate
nematode survival, .

In Figure we compare the total cost for the Basic and Persist models at
various initial total populations. Specifically we have the total cost of the FBS
and MultiStart of the Basic model as in Figure 4.17, and the Persist model for

w=1n(2),1/2,1/3,1/10,1/26. We can note that the Basic model incurs a higher
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total cost, since no nematodes survive one week. Meanwhile, we can see the drop in
the total cost when we utilize ;1 = In(2), 50% of nematodes survive, for some initial
populations a reduction of over $100 dollars as initial populations increase. As the
value of p drops so does the total cost.

From the Persist model we have learned that if nematodes can survive for more
than a week we can reduce the total cost, and ensure we do not over apply nematodes
to the system. We do have similar behavior results when varying «, 1, and fs as in

the Basic model, with natural changes when we vary pu.
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Part 11

Optimal Control of Invasive

Species with Spatial Dispersal
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Chapter 5

Introduction

5.1 Spatial Spread

Since invasive species often spread spatially, it is often incorporated into models. In
1937 the first mathematical spatial spread ecology models were developed by Fisher.
These early models used partial differential equations, with an aim to derive conclusions
relating to asymptotic rate of spread [Fis37, [HCD™05].

An important area of studying spatial spread is Metapopulation Ecology, see the
book and articles by Ilkka Hanski [Han94, [Han98|, [Han99].

5.2 Overview

Our plan is to explore management of a spreading invasive species using optimal
control theory. In Part IT we will consider a multiple patch model.

In Chapter 6, we will introduce a two patch model which uses the basic model
from Part 1 but allow movement between two patches. We will explore adult pests

movement between the two patches. Furthermore we will prove existence, necessary
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conditions, and uniqueness for the optimal control.

In Chapter 7, we will introduce a four patch model which uses the basic model
from Part 1 but allows movement between four patches. We will consider two ways
that adult pests can dispersal between the four patches. As in part 1, we will consider
the models for the case study investigating Diaprepes abbreviatus, DRW, and run

simulations.



5.3 Reference Chart

Notation Description
P Number of eggs in patch ¢
Pest P Number of larvae in patch ¢
Vector P, Number of pupae in patch 4
P, Number of adults in patch 4
Pest 01 Fecundity rate of female Pest adults
Matrix 0;: Pest adult survival in specific patches
Changes 0; Pest adult survival in different patches
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Chapter 6

Two Patches - Adults Spread

6.1 Model Formulation

128

In this section we consider a population that has as its habitat two patches. We be

using the Basic model on two patches, so no control agent persistence. Additionally,

we will consider that the adult pest can fly and travel between patches, so our new

matrix for the pest dynamics will be as follows:

Ay = | R T

7 0
Y2 G
0 ¢
0 0
0 O
0 0
0 0
0 0

0

0

6,10 0
00 0
0:0 O
6.0 0
0O :m O
0372 G1
010 G
b 0 0

0 0
0 0
0 0
0 0y
0 6
0 0
vy O
1) 92,2

This model uses two copies of A for the two patches, but rather than 6y for adult

survival we have 6;; and 6,5 specifying how many adults survive and remain in their
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original patch. Meanwhile, 6; 5, and 05, are how many adults survive and transition
to the other patch, for instance 6; 5 are adults from patch 1 which travel to patch 2.
Below is the formulation of the pest dynamics for the two patch model. Note this

does not include the biological control in the larva stage.

Pro(k+1) v 00 6 0 0 0 0 Pro(k)
Pk +1) v G 0O 0 0 0 0 0 Pyy(k)
Pyy(k+1) 0 Gw 0 0 0 0 0 Py, (k)
Pia(k+1) | | 0 0w 6ix 0 0 0 6oy || Pra(k)
Pth+)| |0 00 0 % 0 0 6 Py.o(k)
Pyy(k +1) 00 0 0 7% G 0 0 Py (k)
Pyy(k+1) 000 0 0 G un O Py (k)
| Poa(k+1) | [0 0 0 612 0 0 vy 6oy | | Poalk) |

Cost in Two Patches Since we are considering two independent patches, the cost
in each patch would be the same formula as the cost in our Basic model. So, if we
consider the total cost in two patches we combine the cost in each these two isolated

patches,

COSt Two Patches = ﬁlplyl(t)2ﬁ2N1(t) + 61P2,l(t)2 -+ /BQNQ(t)

6.2 Optimal Control Problem

The set-up for our Optimal Control Problem is to minimize the objective functional

T-1

J(N1, N2) = > Bi[Pri(t)® + Poa(t)’] + Ba[ N1 (t) + Na(t)]

t=0
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subject to

Pl,e(t + 1) = 71P1,e(t) + elpl,a(t) Pl,e(o) = ¢1,6

P (t+1) =P (t)+ ClB_QNl(t)Pl,z(t) Py (0) = ¢y

Pl,p(t + 1) = Cge_aNl(t)PLl(t) + U1P1’p(t) Pl’p(O) = Qﬁl,p

Pio(t+1) =P p(t) + 611P1a(t) + 091 Pau(t) Pra(0) = @14
(6.1)

Poc(t +1) = 11 Poe(t) + 01Po (1) P o(0) = o

Pyt +1) =P (t) + Cle_o‘NQ(t)Pzz(t) P5,(0) = ¢y

Pyt +1) = Ge™ MO Py (1) + v Py (1) P, ,(0) = ¢o,

Pro(t+1) = 15Ps,(t) + 022P (1) + 01 2P 4(t) P24(0) = ¢,

where Ni, Ny e N ={N:{1,...,T} = {z € R|0 < z(t) < Npaa, t = 1,2,...., T}}.

Now we will prove the existence and uniqueness of the optimal control, which we
denote N7 and N,. Additionally, we will prove necessary conditions for the optimal
control A7 and N;. The proofs roughly follow the proofs in Theorems [2.3.1]
2.5.9]

Note in the following proofs each Pi ¢, P11, Pip, Pias Pae, Poi, Pop, P2 is a func-
tion of N} and Ny. Similarly each P, P5,, Pi,, Pi . Ps.; Py, Ps, Ps, is a function

of Nl + me and NQ + 12€.
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6.2.1 Existence

Theorem 6.2.1. There exists N1, No € N which minimizes J(Ny, Na).

Proof. We have that each P, ., Py, Pip, P1a, Pae, Pay, Poyp, Ps 4 is continuous as a func-
tion of Ny, N at every time step by Equation [6.1] Define BT = {(N(1),..N(T))|N €
N}. We note that there is a natural isomorphism between N x N and Bt x
B*. Considering J : N x N < B"™ x Bt — R, we see that J is continuous as
a function of N; and N,. We have that Bt is a compact subset of R in the
standard Euclidean topology. Thus, N inf J(Ny, Ny) exists. Hence, we have se-

1,N2eN

quences Ny, Ny, € N such that lim J(Ny,, Ny, ) = inf J(Ny, Ny), with corre-
k—oc0 N1,NoeN

sponding Py, Pii,, Pips Proag, Poews Poiys Popys Poa, Sequences. Thus we can find

subsequences lej , Ngkj , Plvekj , Ple]- , Pkaj , Plyakj , ngekj , P27lkj , Pvak]- , Pgﬂkj, such that

hIIl J(le',N2k1> = inf J(Nl,N2> andconvergeto]\/lk‘ _>N17N2k, _>N27P1,ek, —

Jj—00 7 J N1,NoeN J J J

Pl,eapl,lkj — Pl,l,Pl,pkj — Pl,papl,akj — Pl,mpz,ekj — P2,67P2,lkj — 732,17P2,p,€j —

P ps PQ,akj — Pa 4. Therefore, there exists Ni, Ny € N which minimizes J(Ny, Na).
]

6.2.2 Necessary Conditions

Adjoint System: Define the following terminal value system:

Ae(t) = Are(t + D)y + At + 1)y
M) = 281Pra(t) + At + 1)Ge MO 1\ (4 1) e oM ®)
Ap(t) = Mp(t+ Dy + Mot + 1y
AMa(t) = Ae(t+ 100 + Aot +1)011 + Aot + 1)01 2
Ao e(t) = Aae(t + D)yr + Mgyt + 1)y

)\2»l<t> = 2B1P2,l<t) + /\27l(t + 1)(16_‘1N2(t) + )\27p(t + 1)(26—04\/2(7&)
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>\27p(t) = /\27p<t + 1)1/1 + )\2,a<t + 1)1/2

Aa(t) = Aae(t +1)01 + Ao o(t 4+ 1)0a0 + A ot + 1)024

Ae(T) =0, Ay(T) = 0, Ap(T) = 0, Mo(T) = 0, Ago(T) = 0, Aoy (T) = 0, Ao (T) =
0, A.o(T) = 0.

Theorem 6.2.2. If there exist optimal controls N7 and N3, then there exists adjoint
system and

0 f B2 ¢
Ny = if 7= > &i(t)
T[] if 2 <a
0 f B2 t
N(t) = if 7= > &(t) |
T[£6(0)]  if 2 <&(1)
with
§1(t) = GALI(t + 1)Pra(t) + QArp(t + 1)Pr(?)
and

Ea(t) = QA (t + 1)Pay(t) + GoXop(t 4+ 1)Pay(t)

Proof. Since we have that N and Ny minimize J(Ny, Ny); for all ny,m, € {n =
(1), ....,n(T))|n(t) < 1,t =1,....,T} we have that J(N] + me, Na + o) > J(N1, N3)
for all sufficiently small € > 0. Now we will take a directional derivative of functional
T

J; so for the directional derivative in direction of n = [ny,n2]" with sufficiently small

e>0and 0 <N +me =N5, s+ e = N5 € N, we have that:

0< lim 1[J(Nl + e, Na +1mg) — J(N1, Ny)]

e—0t &
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. 1 - I3 2 13 2 € €
= lim =) AP (1) + P5(t)?) + B(NF (D) + N5 (1))
t=0

— lim — Zﬁl Pt 24 732,[(?5)2) + Ba(Ni(t) + Na(t))

e—0t &

M’ﬂ

Pri(t)? = Pri(t)? Psy(t)? — Pau(t)?
=0 511>I(r)l+( g + g >
— Nit) | N5 (1) = Mot
+Zﬁ?§f§+< ()6 (t) ()6 ())

T-1
Z B12P1i()Y1(t) + Br2Pai(t) 2, (t) + Bamn (t) + Bama(t).
=0

We define the sensitivities, 11 ¢(t), ¥1,(t), V1,5(t), Y1.a(t), Ya.e(t), Y2, (t), Yo (t), Yaa(t)

as:
ro(t) _?%7’16( ) : ,Ple(t)7 ) —113%73”( ) : Pu(t)7
ipl) = lim Pip(t) : Piall) )y = i Pia(t) - Pralt).
nelt) = Iy Pie(t) : Pee®) 1) OP;l( ) : Paslt)
aa0) = ity Pip(t) : Paplt) Uralt) = liy Ps..(1) : Paalt)
where

Y1.(0) =0, ¥1,(0) = 0, ¥1,(0) = 0, ¥1,4(0) = 0,%2,(0) =0, ¥,(0) =

7702717(0) - 07 ¢2,a(0) = 0.

We have that the limits exists from Miller and Lenhart [LW07].



Hence, we can write:

Vre(t +1) = 71001.0(t) + O1901(t)

Yra(t+1) = 1atre(t) + Gem MOy (1) — Gae M OPy () (1)
Y1 p(t 4+ 1) = 01 (1) + Gee™ MOy (1) = Gae M OPy () (t)
Vralt + 1) = varp(t) + 01,1910 (1) + 02,1002, (t)

Voot + 1) = 1t (t) + 0194 (t)

Yot + 1) = atbe(t) + Gre™ Wiy (t) — Guae V2P, (t)a (1)
Yo p(t+ 1) = v1tha () + Gee™ 200y (1) — Gae™ NPy (1) (8)

Yoa(t+ 1) = va1ha p(t) + 022124 () + 01291,4(1).

Now, returning to

0< lim 1[J(M +ne, N+ ne) — J(N1, N2)]

e—0t €

~
L

B12P1a(t)h1,(t) + B12Pay () 1)2,(t) + Bomu (L) + Bama(l),

t

I
<)
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to remove the sensitivities 11 ;(t),19,;(t) we will manipulate the sensitivities and

adjoints equations.

We have that:
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Vre(t+1) Yr.e(1) 0
Yot +1) Y1,(t) —Gae N OPy () (t)
Y1p(t+1) Y1p(t) —CGoae™NOPy () ()
Yra(t+1) | B Y1a(t) _ 0
Vae(t + 1) Pae(t) 0
ot +1) V(1) —Grae 20Dy (H)ny(t)
Yot +1) Y2,(t) —Goae NPy () (t)
| oa(t+1) | aa(t) || 0 |
[, 0 0 6, 0 0 0 0 |
o Ge®M® o 0 0 0 0 0
0 Ge Mk 0 0 0 0 0
hore B — 0 0 vy 611 0 0 0 6oy
0 0 0 0 0 0 6
0 0 0 0 v CGe 0 o 0
0 0 0 0 0 Ge Nk 0
|0 0 0 6o O 0 vy baz |

Now we have that:
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Now combining everything we have that:

0 < Tim S[J(N + ne, Ny + ng) — TN AG)]

e—0t €

T—
Z B12P1(t)hr(t) + B12Pay(t) o (t) + Bami(t) 4 Pana(t)
=0

-1

At + )G+ Ayt + 1G] [—ae M OPy () (1))

’ﬂ

w
I
)

F 2t + )G 4 Aap(t + 1G] [—ae™ N0y (1) (1))]

e N OP ()Mt + 1)+ Ayt + 1)G] + Be]

M’ﬂ

t=0

+7]2(t) [—OéeiaNﬂt)'Pg,l(t) [/\271(75 + 1)(1 + /\27p(t -+ 1)C2] -+ 52} .

Considering the previous equation with equality
T-1
0="> m(t) [~ae M OP ) At + 1) + Myt + 1G] + Bo]

t=0

+772(t) [—OéeiaNQ(t),PQJ(t) [/\271@ + 1)(1 + )\27p<t -+ 1)<2] -+ ﬂg} .

Since this must hold for all 7; and 7,, we have that for all ¢,

0= —ae M OP (O[AL(t + 1)C1 + Ayt + 1G] + Bo

and
0= —ae ™ NOP, () Mgyt + 1) 4 Aap(t + 1)Co] + Po.



Solution for N, :  We will consider

0= —Oée_aNl(t)Pl,l(t) At + )G+ Mp(t+ 1G] + o,

then:

e_aNl(t)PLl(t)[)\Ll(t + 1)C1 + )\171,(15 + 1)62] = & <

(8%
—aNi(t) _ B2
¢ PO+ DG+ Mo 1G]
—aMNi(t) =1n [ b } =
aPri(t) At + 1)+ Ap(t + 1)¢]

N (1) = In {oﬂ?l,z(t)[Al,l(t + 15):“1 + At + 1)@,]} |

Note o > 0. We need that NVi(t) > 0, so

In laﬂ,l(t) ALt +1)G + A p(t + 1)(2]] >0
IG5 -

meaning
aPl,l<t>[)\1,l<t + 1)<1 + )\17p<t + 1)<2] >
Ba -

1.

Hence when

22 < Pu®Maalt + )G+ Arglt + 1)

and we have

1 o

NM(t) = — ln(ﬂ—PLl(t) At + )G+ Mt 4+ 1D)G)).

« 2
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Now we will consider if

% > 7)1,[<t)[)\1,l<t + 1)C1 + )\LP(t + 1)C2],

then we have:
T—1

0="> m(t) [—ae *MOP ()Mt + DG + Myt + 1)) + 5]

t=0

‘H?Q(t) [—Oée_aNz(t)'Pg,l(t)[)\Q,l(t + 1)<1 + )\27p(t + 1)C2] + 52}

S
_

= m (t) [—Oée_aNl(t),PLl(t) [)\171(75 + 1)(1 + )\171,(?5 + 1)<2] + 52] + 772(t) -0

t

Il
=)

T-1 8
<> m() [—ozecwl(t) (ﬁ) + 62}
=0
T-1 T—1
= 30 [N 4 5] = 3 (1) [e O 1],
t=0 t=0

If Ni(t) > 0 we have that By(—e *N® 4-1) < 0, which is a contradiction. Thus, if
B2
= > Pu®Pit +1)¢ + Ayt + 1)G

we must have that A7(t) = 0. Set

§1(t) = Pra(®)[Ma(t + )G+ At + 1),

SO

0 if 22 t
Ni(t) = 1 > & (t)

shfga@] i F<a)



Solution for N, :  We consider
0 = —Oée_aNz(t)PQ,l(t) [)\Q’l(t —+ 1)C1 + )\2’;,,(75 —+ 1)(2] + B27

then:

6704/\[2()5)7)2,[@)[)\27[@ -+ 1)C1 + )\27p<t + 1)C2] = % <

—aNa(t) _ Ba
‘ o Pos() st + )G+ Aapt+ DG

Ba
ap27l<t)[)\27l<t —|— 1)(1 —f- )\271)(15 + 1)C2]

Oépgjl(t) [)\le(t + 1)@1 + )\ij(t + 1)<2]:|
Ba '

—aNs(t) =1n [ } —

alNy(t) = In [

Note a > 0. We need that N5(t) > 0, so

ln |:Oé73271(t) [)\271(15 + 1B)<1 + )\ij(t -+ 1)<2]:| Z 0
2

meaning
aPoi(t)[Aoa(t + 1) + Aot + 1)Co] S

B =L

Hence when

22 < Poat)doalt + 1) + ot + 1)G

and we have

Na(t) = éln(%Pz,l(t) Ao (t+1)C + Agp(t + 1))

It

% > Poi(t)[Aaa(t + 1)1+ Aoyt + 1)C),
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then we have:
T—1

0= Z’fh (t) [—Oée—aNl(t)PLl(t) [/\171(75 + 1)(1 + /\17p(t + 1)(2] + 62]

t=0

+12(t) [—ae M OPy (1) [ Aot + )G + Aoyt + 1G] + Bo]

T-1
= () 0+ na(t) [—ae N OPy (1) Aoyt + 1)+ Aop(t + 1G] + B

t=0

T-1 ﬁ
<> m(t) {—ae“wﬂﬂ (f) - 62}
t=0
T-1 T_1
= 3" () [ 4 ] = S ma(t) [—e N0 4 1],

t

I
=)

t=0

If NV3(t) > 0 we have that By(—e *2(®) 4 1) < 0 contradiction. Thus, if

2 o POt + 1161+ Aoyt + 1)

we must have that N3(t) = 0. Set

E2(t) = Pog(t) Ao (t + 1)C 4+ Ao p(t + 1) ().

0 if 22> &t
Ng(t) _ = 52( )

s[geM)] i Z <o)

6.2.3 Uniqueness

Theorem 6.2.3. If the optimal controls N1 and Ny exist, then they are unique.
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Proof. In order to show N; and N, are unique we will show that J(Ny, Ny) =

L Bu[Pra(t)® + Poy(t)?] + Ba[ N1 (t) 4+ Nay(t)] is strictly convex. Recall if a function is
strictly convex then there exists a unique minimum such that J(N7,Ns) < J(Ny, No)
for all Ny, Ny € N\ {N7, N2}, To show J is strictly convex we will look at J along a
line from N = [Ny, No]? to n = [n1,m2]" by defining 2(g) = J((1 — &) Ny +eny, (1 —
g)No+eny) = J(Ni+e(n —Ny), No+e(ng— N3)) for Ny, No,my,me € Nyand 0 < e < 1.
Note that if z, a one dimensional function, is convex in every possible direction then
J will be convex. To establish convexity we will show that 2”(¢) > 0. First take the

derivative of z:

Z(e) =

— lim (J[Nl + (T +8)(m — Ni), Nz + (7 + &) (m2 = Na)] = J[N1 + e(n — Na), Ny + e(g2 — N2>]>

7—0 T
— B B
= lim > 5[ P12 = P (02 + 2 (Vi (8)+ (7 + ) (i () = N ()] = N1 (1) -2 () = My ()]
t=0
— 8 B
+lim > P07 = Py + 2 (INa(0) + (r+-2) (12 (8) = Na(t))] = [Na(£) +(ma(t) = Na(1))])
=0
[P -PL()? Pyit(h)? - Piy(1)?
:;ﬁl Thi% 1,0 - l +l1£ﬂo 2,1 - l ]
4B, {lim 7(n1(t) — N1(2)) 4 lim 7(n2(t) — N2(t))}
T—0 T T7—0 T

-1

=> B

t=

PIE()? — Pry(t)? Pye(t)? — Ps(t)?
lim — ’ + lim —= :

7—0 T 7—0

+B2(m (t) = N1(t))+ B2 (n2(t) — Na(t)).

By The Chain Rule:

T-1

2(e) =) 2P (W, () + Bi2Ps (095, (8) + Ba(m () — Nu(8) + Ba(a() — Na(t)).



Note we define sensitivities similar to in Theorem [6.2.2}

wie(t + 1) - ’quvz)ie(t) + 911?3(1(75)

U5t + 1) = e (8) + Qe MTOw (1) — Gae MO P () (i (1) — Ni(1))

VEp(t+ 1) = mf ,(8) + Gem M OYg (1) — Gae MO P (1) (m(t) — Ni(1))

¢i,a(t + 1) - V2wi,p(t) + 0171770?,0,(25) + 82,1¢§,a(t)

w;,e(t + ]‘) - ’quvz)g,e(t) + 91¢§,a(t)

W5t + 1) = 7205 (8) + e ™05, (8) — Gae MO P () (12(t) — Na(1))

Vs p(t + 1) = 0115, (8) + Geem M 0Y5 (1) — Guae MO By (1) (ma(t) — Na(t))

¢§,a(t + 1) - V2¢§,p(t) + 0272770;,0,(25) + 81,2¢i,a(t)
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where ¢1(0) = 0, ¢91,(0) = 0, 91,(0) = 0,914(0) = 0,¢(0) = 0, ¢(0) =
0, ¢2,(0) =0, 14,(0) = 0.

In order to continue we must define derivatives for the sensitivities, o1 (t), o1,(%),

Ul,p(t)a O-l,a(t>, 02,e(t>7 UQ,I(t)a 0-2,p<t>7 U2,a<t) as:

T+ 1) =5 (t+1) T*E(t + 1) — s, (t+1)
€ — i ,€ e 1 1,
01 (t+1) = 112% - , oq(t+l) = }_ILI(I) . ,
YTt +1) — 5, (t+ 1) Tt 4+1) =5, (t+1)
£ I P 151 13 a4
o1 ,(t+1) = P—m - , 05 (tHL) = llg(l) -
se (t+1) =95 (t+1) T+5(t+ 1) — s, (t+1)
£ . ,€ 5 I s
75,6(141) = lim - » og(t41) = lim - ,
VIEE(t+ 1) — 5, (t+ 1) T+ 1) — Y5, (t+1)
15 . K P € S K ;@
05,p(1+1) = lim . » 03,4(tH1) = lim - -

Hence, we can write:

Y1) — YL+ ) (1) — Yi(t)
ofe(t+1) = iy e =l = —
TEE) — s (¢
1o 1 PO = 41,0
7—0 T

= ﬁYlo-ie(t) + Hlaia(t>

T*a(t +1) =i (t+1)

014t +1) = lim

7—0 T
T+e e (¢ T+e ) — e (¢ T+€ £) — e (¢
= 1y lim 1/} ( ) l,p( ) + 614 lim l,a ( ) 1/’1,a( ) i 0271 lim 29 ( ) wz,a( )
70 T 7—0 T 70 T

= 1207 ,(t) + 01,107 (1) + 02,105 ,(1)
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’7’+6t+1_ 5 t+1 T+6t_ € (¢
ot (t—{— 1) — lim 2,e ( ) ¢2,e( ) = lim 2,e ( ) 77Z)2,e( )
2e 70 T 7—0 T
T+e t _ £ t
+0; lim —2° () = ¥5a()
70 T

= M05. (1) + 6105,(1)

s (t+1) =5, (t+1)
T

o5a(t+1) = lim

Vi, () — 95, (t) Fa (1) = ¥5,(t) Ta () = ¥5,(1)

. 2.a . 1,a
+ 032 lim + 6012 lim
=0 =0

= 1y lim

T—0 T T T

= 1505 ,(t) + 02205 (1) + 01207 ,(1).
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(T +7)% Lo ogmdwoo 4 om ‘moN

(DW= (D)D) () 13022 + (DN — (U (1) S 1020198 — (1)1 305y 10219 + (1) 205 =

(D13 (1) 1020 (DI = (1) + (D1 ) 10 2(D W = () T)O1 = ()W — (DU (D) I () 170701 = ()T 105 10210 + (1) LT =

:va N — va ﬁ?vsvﬁwﬂmgmﬁzao\wé — vaﬁwx\sﬁvmﬁzwc\w:ﬁv I — va ﬁ?v@ﬁu — :va IN — va HQVABNMQ@QVMZd\wé _ vaﬁwbﬂwvmﬁZd\& HV + vamhwbm\ﬁ _

L 0L L 02 7 0t
1 I' bl Amwv N va Htvéﬁv N 't 1T wry HV + T o7 oseg| oL =
(D'3d () 102 — B oLid (), Ino-2 (M gy 1no-2 = (D):LiRG),, 1302 ()7L — (3).07
L s
F » > ‘ g - wi =
(TN — D) (3) 5 (10201 + ()T 52y 10219 — ()7 505 — ()TN — D)W LA () 102019 — ()21 M) o9 + (1),7 00
L 02

- » —— iy = (T +7)!'o
(T+p! I —(1+2)-10

‘(T 4+ 2)! Lo ognduron {im om ‘moN
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0=1?

(DN — (D) + (DWW — (D1W)2d + () er(®) Eaetd + D Inm aey = ()2
TI—L

sy,

.NAA@NZ - vaNQXBﬁM&Q%ZdI@N@mV + AA@NZ - vamtvﬁvﬁmﬁﬁvwz“olmdmvm - vaﬁwb@vadlmmv + Gv%wbﬁh =

_ : T
(1+0)%% — (1+2).%%0

(DN = D) (D)'E () 20250 + (DN = (DA (D) UR 5y 2020198 — (1180 ;) 50219 + (1) 207 =

L 0+ A " vﬁm
= 7 n E: = ._” 7 0
(T+1)"%h—(1+17).1%

1)eT[) OARY] oM AJIR[IUIIG

(DW= DU DI () 10-220% + (W = WU DI ) 10-20%98 — ()10 1300 + (1) Tol1 =

()™ = DWW ) 1020 = (DI ) 10-21 (D)W = (1)10)0%) = [(D'N = (D)) (D)) 1070 = ()04 10-2]7 + (1) Lot =

= = Ty = (1 + )10
T+ —(1+9). 500
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0=1
T+ (D% (1) %ole™d + [N 5+ () g () iolgty =
-7
0=1
L 0+ L 02
= : : F —— W] + —— : ﬁ — wif | glg =
DT — (1) L) g B a — ) Liem) . ta TM

(12N — (D)2 + ()W — () H)eg + (D) Zr (1) Zaetd + () Tn(n) Iaete]—

0+

0=17
+H(W)N — (D) + ()N — (DU)2g + (1)L 50 (1) Zaetd + (1)L In) . Lty ” g =
I—L
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We now need to show that

T-1

(&) =) Bi2lof () PF, (1) + ¢5,(1)%] + Bi2los, (6 P5, () + 45,(6)] > 0.

t=0

Specifically we will show that of,(t) > 0 and o35,(t) > 0

We start by calculating the terms for ¢t = 1,2, 3.

We have that ¢5,(0) = 0,¢7,(0) = 0,%§,(0) = 0, ¢5,(0) = 0,95,.(0) =
0, 1/’5,1(0) =0, ¢§,p(0) =0, 1/157(1(0) =0, so fort=1:

05,(1) = 107, (0) + 6,05 ,(0) = 0

V5(1) = 729 (0) + Ce™ M Of (0) — Guae™ M Py (0) (1 (0) — N1(0))

= —Cloze’“Nf(O)Pf,z(O)(m(0) - Nl(o))

Vi p(1) = 1195, (0) + e M Oy5 (0) — Goae MO Py (0) (m (0) — N1(0))

= —CQOZ(B_QNIE(O)Pf,z(O)(nl(o) - Nl(o))

wia<1> = 1/21/}‘;’])(0) + 91,11?3(1(0) + 6271w§,a(0> =0

w;,e(l) = 712/};,@(()) + elwg,a(o) =0



W5.(1) = 725, (0) + Cue™ ¥ Oys (0) — Guae™ M5 B (0) (m2(0) — N2 (0))

= —Clae_aNg(O)PQE,z(O)(W(O) - N2(0))

U5,(1) = 1195 ,(0) + Gee™ M O5 ,(0) — Gae MO Py (0)(n2(0) — No(0))

= —Cgae_o‘Ng(O)Pza,z(0)(772(0) — N2(0))

V5 4(1) = vath5 ,(0) + 022955 ,(0) + 61 297 ,(0) = 0.

Next, for t =2

wie(z) = P)/lwie<1> + elwia(l) =0

10(2) = 920 (1) + Gem MWy (1) = Gae MO PE (1) (1 (1) — Ni(1))

= GeMWyg (1) = Gae MU PE (1) (m (1) — Ny (1))

Vi p(2) = i, (1) + Qe Mg (1) = Gae ™MW P (1) (m (1) — Ni(1))
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U1a(2) = 1207, (1) + 01297 4 (1) + 02295 ,(1) = 1297 , (1)

U5,0(2) = 05, (1) + 6105,,(1) = 0

V5.(2) = 7205, (1) + Cem M Wys (1) — Gae W By (1) (ma(1) — Na(1))

= Gre M Wys (1) — Gae WP (1) (no(1) — No(1))

U5,p(2) = 1195, (1) + e MW ys (1) — Gae ™ W By (1) (ma(1) — Na(1))

w;,a(2> = V2¢§,p(1) + 92,21/};@(1) + 61,2wi,a(1) = Vng,p<1>'

Lastly, for t = 3

U1 e(3) = MWL e(2) + 010 4(2) = Orayi (1) <0

V5(3) = 7290 (2) + Cem NP (2) = Qae NP P (2)(m(2) - N1(2))

= GemM®YL(2) — Gae M PE (2)(m(2) — Ni(2))
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Vip(3) = 197, (2) + Gem NP (2) — Gae M Py (2) (m(2) — Ni(2))

U1a(3) = 120 5 (2) + 01,197 4(2) + 02,105 4(2)

V5.6(3) = 113,0(2) + 01103 ,(2) = G195 (1)

V5.(3) = 7205,.(2) + Cem @5 (2) — Qae P By (2) (ma(2) — Na(2))

= Ge M Py5 (2) — Gae MO B (2)(n2(2) — Na(2))

V5,p(3) = 1195,(2) + Goem P y5 (2) — Gae P By (2) (ma(2) — Na(2))

V5.4(3) = vt ,(2) + Oa015 ,(2) + 01295 ,(2).

We have that:

01 e(t +1) =m0 (1) + 0107 ,(1)

ot + 1) =205 (t) + G Wai (1) — 2Giae” N Wyg (1) (m () — N1 (1)

+¢ae NI PE (8) (m(t) — N1 (8))?



156

05 ot + 1) = 1107 , () + Goe™ M Wof () — 2ae™ MOy () (1 (1) — Na(#))

+(aale MW P () (n1(8) — Ni(t))?

07 ot +1) = 1907 (1) + 01,107 ,(t) + 02103 ,(t)

O—S,e(t + 1) = ’Ylo—g,e(t) + algg,a(t)

05,(t+1) = 7205 (1) + ™M Wa () — 2C1ae” MOy (8) (na(t) — Na(t))

+Cra?e MO P (8) (ma(t) — Na(t))?

05 p(t + 1) = 1105 , () + Goe™ Mo () — 2Gaae™ N Wy (8) (na(t) — Na(t))

+Goale MBS (1) (ma(t) — Na(t))?

05,4t +1) = 1205 ,(t) + 62,205 ,(t) + 01,207 4(1).
Recall that Uie(O)7 Uil<0)’ Uip(O)a O'iQ(O), 0'576(0), O-S,l(O)? J;,p(0)7 O-S,a(o) = 0. Con-
sider t = 1:
O-ie(l) = ’leie(O) + 910‘%,0,(0) =0
o1 1(1) = 71205(0) + Gre N O a5 1(0) — 2¢ae™ MOy (0)(11(0) — N1(0))

+(rae” MO PE (0)(m(0) — N1(0))?

= Gia®e MO P (0)(m (0) — N1(0))?
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o5 ,(1) = 1105 ,(0) + C2e N1 055 (0) — 22N Oy5 (0)(n1(0) — N1(0))
+Gae MO P (0)(11(0) — N1(0))?

= (a®e MOV PF 1 (0) (1 (0) — N1(0))?

07,4(1) = 1907 ,(0) + 01107 ,(0) + 02,105 ,(0) =0

Ug,e(l) = WIUS,e(O) + 910;,0,(0) =0

5.(1) = 7205(0) + C1e= N g5 (0) — 2¢ e N2 D5 ,(0) (n2(0) — N2(0))
+C1042€_&N§(0)P2€,1(O)(W(O) — N»(0))?

= Gia®e MO Py (0)(12(0) — N2(0))?

05.,(1) = 1105 ,(0) + C2e N2 D55 (0) — 2¢2ae N2 (5 (0)(n2(0) — N2(0))
+Ga?e N2 O PS5 (0)(12(0) — N2(0))?

= (a®e MOV P51 (0)(112(0) — Na(0))?

05.4(1) = 1205 ,(0) + 02,205 ,(0) + 61 207 ,(0) = 0.

Next, t = 2

07,e(2) =mo7 (1) + 6107 ,(1) =0

01,(2) = 7205 (1) + e M Wof (1) = 2Gae™ M Wyg (1) (m (1) = Ni(1))
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+Gia2e NP (1) (ni(1) - Ny (1))

05 5(2) = 1107 (1) + Ge™ N Wof (1) = 2¢ae™*N Wy (1) (m (1) = N (1))

+C2042€_QN15(1)P1671(1)(771(1) — Ny(1))?

07,4(2) = 1907 ,(1) + 01107 ,(1) + 62105 ,(1)

0;,6(2) = 'YlUS@(l) + 910;,0,(1) =0

05.4(2) = 7205 (1) + Grem* N Wag (1) — 2Gae ™MWy (1) (n2(1) — Na(1))

+C1042€_&N§(1)P2€,1(1)(772(1) — Ny(1))?

05 p(2) = 1105 (1) + Goe™ N Wag ) (1) = 26ae™*N Wy (1) (na(1) — Na(1))

+Gaa’e WP (1) (12(1) — Na(1))?

05.4(2) = 1205 (1) + 02,205 ,(1) + 01 207 ,(1).

Next, t =3

Uie(g) = ’ylaie<2) + 910‘3@(2)

01.4(3) = 7202(2) + G M ®of 1(2) — 2Gae T MY (2) (1 (2) - N1 (2))

+aPe ML (2)(m(2) — N1 (2))?
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01 ,(3) = 1101 ,(2) + e N Pof 1 (2) — 2Gae” Ny (2)(11(2) — Ni(2))

+Geale MBI PE(2) (1 (2) — N1(2))

07 4(3) = 1207 ,(2) + 01,107 ,(2) + 02,105 ,(2)

O—S,e(g) = ’710575(2) + 010;,(1(2)

05.1(3) = 7205(2) + e o5 1 (2) — 2Gae” M By (2)(n2(2) — Na(2))

+a?e MG P52 (112(2) — N2 (2))

05.(3) = 1105 ,(2) + Ge” NP5 ) (2) — 2Gae” NEDY5 1 (2)(12(2) — Na(2))

+Gale MO P](2)(112(2) — N2 (2))

05.4(3) = 1205 (1) + 02,205 , (1) + 01 207 ,(1).

The proof is similar to that in the Basic Model proof of Theorem [2.3.3] We
can see similarities and differences between the previously calculated terms and the
terms in Theorem If we consider the patches individually we have the Basic
Model. Therefore, we will consider the differences that arise when the adults can

travel between patches. The terms which will differ from Theorem [2.3.3] are:

Lot +1) = w7 (1) + 01297 () + 02195 (1)
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01t + 1) = 1207 ,(t) + 01107 () + 02105 ,(t)

w;,a(t + 1) = VQQ/]S,p(t) + 927277Z);,a(t) + 01,22/}?7(1(15)

054(t + 1) = 1205 (1) + 02205 () + 01207 ,(2).

These equations are similar to the Basic case, but each patch now has some adults
from the other patch traveling inward and adults leaving. This won’t cause an issue
since in each patch we have the same parameter on the term and have both the v ,(¢)
and o5 ,(t). As we have seen in the basic case we can manipulate these two terms to
create a summation of (n(i) — N, (i)) which are squared and multiplied by parameters.
Due to the model design, and relation to the Basic model, we can expand our previous

finding and will have that both of (¢) > 0 and o3,(t) > 0 for all ¢.
-1
Thus, we have that 2"(e) = Zﬂﬂ[ail(t)Pf’l(t) + wil(t)z] + B12[o5, (1) P, (t) +
=0

¥5,(t)%] > 0, and we have uniqueness by convexity of z.

]
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Chapter 7

Four Patches

7.1 Four Connected Patches

Now, we will consider using four neighboring connected patches, aka connected patches.
As before adults can travel between patches, and we will assume patches are arranged

as in Figure [7.1]

| fl
u

I i

Figure 7.1: Four Connected Patches: Note any patch is connected to the patches
next to it. Specifically consider patch F; which is connected to patch F5. Note the
black arrows from F; demonstrate how the adult pest can disperse from the patch,
specifically the pest adult can only spread to Fy and to none of the other patches.
Meanwhile, Fj is attached to Fy and Fy and the pest adults in F3 can spread to F,
and Fj along the white arrows but not to F;. Note that F;, spreads to F; and Fj,
while F} only spreads to Fj3, these patches arrows are not show in the figure.




Then the resulting matrix for our pest dynamics will be as follows:

84!

V2

0

0

0

0

0

e}

0

0

0

0 0
0 010
0 010
0 0 0
0 0 0
0 010
0 010
0 Gy 0
0 6 :0
0 010
w00
vy b33 0
0 0 'm
0 0
0 010
0 B340

77777777777777777777777777777777777777777777777777777777777777777777777777777777777777777

77777777777777777777777777777777777777777777777777777777777777777777777777777777777777777

77777777777777777777777777777777777777777777777777777777777777777777777777777777777777777

Vo 94,4
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Note this matrix, Ay, is very similar to Ay for the two patch model since we

have 4 copies of the basic matrix A and pest adults travelling between neighboring

patches. The parameters 6, 1,605,053, 044 relate to pest adults which survive and

remain in their original patch. Meanwhile, 0, 9,051,053, 032,054,043 relate to pest

adults which survive and move to a neighboring patch. Below is the formulation of

the pest dynamics for the four patch model. Note this does not include the biological

control in the larva stage.
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Cost in Four Patches Since we are considering four independent patches, the cost
in each patch would be the same formula as the cost in our Basic model. So, if we
consider the total cost of four patches we combine the cost in each these four isolated

patches, Cost at time t is

51P1,z(t)2 + o N1 (t) +51P2,l(t)2 + B2 No(t) +51P3,l(t)2 + B2 N3(t) +B1P4,l(t)2 + BaNa(t).

7.1.1 Optimal Control Problem Formulation

The goal for our Optimal Control Problem is to minimize the objective functional

-1
J(N1, No, N3, Ny) = Z BilPri(t)? + Pou(t)* + Pay(t)® + Puu(t)’]

t=0

+02[N1(t) + Na(t) + N3(t) + Na(t)]

subject to



Pro(t+1)=7Pe(t) + 61 Po(t)

Pri(t+1) = y2Pr o(t) + Ge MO Py (1)

Pl,p(t + 1) = <2e—0tN1(t)P1’l(t) + Z/1P1,p(t)

P o(t+1)=1vaP p(t) +01,1P1,0(t) + 021 P2a(t)

nge(t + 1) = 71P275(t) + elpgya(t)

Pyy(t+1) = 2P o(t) + Gre N2 Py (¢)

Pg’p(t + 1) = CzeiaNQ(t)Pz’l(t) + leg’p(t)

Pg’a(t + 1) = V2P27p(t) + 92’2P2’a(t) + 91’2P1’a(t) + 93,2P3’a(t)

P3 (t+1) =71P3c(t) + 61 P34(t)

Pyt +1) = 72 P o (t) + Cre= N Py (t)

Pg,p(t + 1) = Cge_aNs(t)Pg,l(t) + Z/1P3,p(t)

Pg,a(t + 1) = I/2P37p(t) + 9373P37a(t) + 9273P2,a(t) + 04,3P47a(t)

P4,e(t + 1) = '71P4,e(t) + 01P47a(t)

Pyi(t+1) = v2Pyc(t) + Ge NPy (1)

P4’p(t + 1) = CzefaN‘l(t)Pz;’l(t) + I/1P4’p(t)

P4’a(t + 1) = V2P4’p(t) + 94’4P4$a(t) + 93$4P3,a(t)

Ple()

Py(0) =

Pl,p(o)

Pla()

PZ?()

Py (0) =

PQp( )

P2a()

PSG()

Pyy(0) =

P37p(0)

P3,a(0)

P4e()

Py(0) =

P4p( )

P4a()

(bla

1,1

=¢1p

d’la

¢2€

¢2l

¢2p

¢2a

¢3e

@3,

= ¢3p

= ¢3,a

¢4e

P4

¢4p

¢4a
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where Ny, Ny, N3, Ny € N = {N : {1,...,T} — {x € R|0 < z(t) < Npaz,t =
1,2,...,T}}.

7.1.2 Optimal Control Problem

Now we will prove the existence and uniqueness of the optimal control, which we
denote N, Ny, N3 and N,. Additionally, we will prove necessary conditions for the

optimal control NV, N5, N3, and Ny. The proofs roughly follow the proofs of Theorems

7.1.2.1 Existence
Theorem 7.1.1. There exists N1, No, N3, Ny € N which minimizes J(Ny, Na, N3, Ny).

Proof. We have that each Pi., Pij, Pip, Pia, Poe, Pot, Pop, Pog, Pse, Py, Psyp, P,
Pyc, Pyy, Pyyp, Pyo is continuous as a function of Ny, Ny, N3, Ny at every time step
by Equation [7.1 Define BT = {(N(1),...N(T))|N € N}. We note that there is a
natural isomorphism between N x N x N x N and Bt x B x BT x BT. Considering
J:NxNxNxN <+ BT x Bt x Bt x Bt — R, we see that .J is continuous as a
function of Ny, Ny, N3 and N,. We have that Bt is a compact subset of R” in the
standard Euclidean topology. Therefore, Nl,Ng,iJ{flgf, NieN J(Ny, Ny, N3, Ny) exists. Hence,
we have sequences Ny, , Ny, , N3, , Ny, € N such that kh_g)lo J(N1,, Ny, N3, , Ny,) =
NLNQ’i]{fle’MeN J(N1, No, N3, Ny), with corresponding Py, Piy, Pip,, Prags Poeys Pou, s
Pys Poars Paews Paitys Poprs Paary Paeys Pajys Pipys Pra, sequences. Thus we can find
subsequences lej , Ngkj , N3kj , N4kj, Pl,ekj , Pl,lkj , Pl,pkj , PLakj, ngekj , P2,lkj , P27pkj , ngakj,
P37ekj , P3,lkj , P37pkj , Pg’akj’ P4,ekj : P4,lkj , P4,pkj , P47akj, such that lim J(lej , Ngkj , Ngkj , N4kj)

J—00

= ian17N27N37N4EN J(Nl, NQ,N37N4> and converge to lej — Nl,Nij — N27N3kj —
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-/v?nN4kj — Mapl,ekj — Pl,eapl,lkj — 731,17P1,pkj — Pl,p,Pl,akj — Pl,a7P2,ekj —
PQ,eaPZ,lkj — P2,Z7P2,pk]. — P2,pap2,ak]. — PQ,a>P3,ekj — 733,e,P3,zk]. — 733,17P3,pk]. —
P3,pa PS,akj — PB,aa P4,ekj — P4,ea P4,lkj — 7D4,la P4,pkj — 734,]:)7 P4,akj — P4,a‘ Therefore7

there exists N1, No, N3, Ny € N which minimizes J(Ny, Ny, N3, Ny).

7.1.2.2 Necessary Conditions

Adjoint System: Define the following terminal value system:

Me(t) =Mt + Dy + At + 1Dy
Aa(t) = 281Pug () + At + 1) Ge MO 4 Xy (4 1) e M ®
AMp(t) = Aip(t + D+ Aot + 1)1
Ma(t) = Ae(t+ 1) + M a(t 4+ 1)011 + Aau(t + 1)01 5
A2e(t) = Aae(t + )71 + Aoyt + 1)
Aoa(t) = 281 Poy(t) + Aot + 1)Gre N0 4 (£ 4 1) e M)
Aop(t) = Xop(t + D)vg + Agu(t + 1)1
Aa(t) = Aoe(t+1)01 + Ao o(t+1)029 + A o(t +1)021 + A3 0(t + 1)023
A3e(t) = Ase(t + 1)yi + Agg(t+ 1)y
Asa(t) = 281 Psy(t) + Aga(t + 1)Gre MO 4 A3, (¢ + 1) aem Mo
A3 p(t) = Asp(t + Doy + Ag ot + 1D
A3a(t) = Age(t+1)01 + A3 o(t+1)035 + Aao(t + 1)052 + Aot +1)034
Me(t) = Aot + Dy + Mgyt + Dy
Aag(t) = 261 Pas(t) 4 Aag(t + 1)Cre M@ 1 X, (¢ + 1) e N
Aap(t) = Aap(t+ Dy + Ago(t + 1D

Ma(t) = Ae(t+1)01 + Ay o(t+1)0s4 + A3a(t + 1)04s3
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>\16(T) - 0, )\l,l(T) - 0, )\1,p<T) - O, /\17a(T) - 0, )\Q’Q(T) - O, )\Q’Z(T) - 0, )\Q’p(T) -
07 )\2,a(T) = 07 >\3,6<T) = 07 )\S,I(T) = 07 )\3,p(T) = Oa /\3,a(T) = 07 )\4,5(T) =
0, A\ (T) =0, A47P(T) =0, M\ o(T) =0.

Theorem 7.1.2. If there exists optimal controls N1, Nao, N3 and Ny, then there exists
adjoint system and

0 if 2> &(t)
L&) i 2 <)

for j =1,2,3,4 we have that §;(t) = G Aji(t + 1)Pju(t) + G (t + 1)Pja(t)

N;(t) =

Proof. The proof is similar to that of Theorem [6.2.2]
Since we have that N7, N2, N3 and N, minimize J(Ny, Ny, N3, Ny); for all suffi-

ciently small € > 0 and for all

M, M2, M3, 74 S {77 = (U(l), 777(T))’77(t) S 1>t = 1a ?T}
we have that
J(M + 77157-/\[2 + 77287-/\[3 + 77367-/\[4 + 7746) 2 J(Nlaj\/’QaN37N4)'

Similar to Theorem [6.2.2) we will take the directional derivative with N +mn;e = N5 €

N. Then we have that:

0< Tim L[V; 4+ me, No + mes Ny + e N+ 1) — NG Aoy Ny )]

e—0t &

~
L

Br2[Pra(t)11,4(t) + Poy(t)hai(t) 4+ Psy(t) s (t) + Paa(t)ha,(t)]

~+
Il
o)
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+Ba2[m(t) + n2(t) + n3(t) + na(t)].
Additionally we define the sensitivities, 1 .(t), ¥;(t), ¥;,(t), 1;q(t) for j = 1,2,3,4
similar to as in Theorem [6.2.2]
Now, returning to

0< lim ~[(Ni +mes No + 12, Ns + 15 N + mae) — TN, Noy Ny AD))

e—0t &

~
L

Br2[Pra(t)1,(t) + Poy(t)hai(t) 4+ Psi(t) s (t) + Paa(t)ha(t)]

~+
Il
()

+Ba[m () + na(t) +n3(t) + na(t)].

To remove the sensitivities ¢n ;(t), ¥2,(t), ¥3(t), ¥4,(t) we will manipulate the sensi-
tivities and adjoints equations as in Theorem [6.2.2] The process of switching limits of

summation and using properties of matrices and vectors results in:

0 < lim 1[(/\/1 + me, No + 1o, N5 + nse, Ny + mae) — J (N1, No, N3, Ny)]

e—0t €

N
_

m (t) [—O&@iaNl(t),PLl(t) [/\171@ + 1)C1 + /\Lp(t -+ 1)C2] + /82}

t

+1a(t) [—CM@_O‘Nz(t)le(t)[)\2,1(75 + 1)C A+ Aop(t + 1)G) + Ba)

Il
o

+773(t) [—OéeiaN?’(t),ngl(t) [)\371(15 + 1){1 + )\37p(t + 1)C2] + 52}
+n4(t) [—oce*aN“(t)Pu(t) Mgt + 1)+ Aap(t+ 1) G + 62] = X4

Consider the previous equation with equality, 0 = x4. Since this must hold for all n,
12, n3 and 7, we can find the solutions to Ny, Ns, N3, N similar to the process in

0.2.2)
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7.1.2.3 Uniqueness

Theorem 7.1.3. If the optimal controls Ni, Na, N3 and N, exist, then they are

unique.
Proof. In order to show N7, Ns, N5 and N are unique we will show that

T-1

J(N1, Nay Ny, Nu) =~ BilPri(t)? + Poy(t)? + Py (t)® + Pay(t)’]

t=0

+02[N1(t) + Na(t) + N3(t) + Na(t)]

is strictly convex. To show that .J is strictly convex we use a method similar to Theorem
[6.2.3| by defining z(¢) = J((1—&)N1+em, (1—e)No+en, (1—e)N3+ens, (1—&) Ny+en,)
for Ny, No, N3, Ngym1,m2,m3,m4 € N, and 0 < € < 1. Note that if z, a one dimensional
function, is convex for every choice of n then J will be convex. To establish convexity

of z we will show that z”(¢) > 0. First take the derivative of z, as in Theorem [6.2.3}

#(e) = i P2 Pr (5, (8) + Py ()95, (1) + Py y(0)y5,(8) + Pry(t)vi, (1))

+02[(m(t) = Nu(1)) + (2(t) = Na(t)) + (ns(t) — Na(t)) + (1a(t) — Na(2))]-

We define derivatives of sensitivities, 0;.(t), 0:(t), 0;,(t), 0j4(t), for 7 =1,2,3,4
as in Theorem with ¢ (f+ 1), 95, (6 +1),¢5,(t +1),41,(t + 1).
Thus,

T-1

Z'(e) = Z Bi2[of,(t) Pry(t) + ¢il(t)2 + 05, (1) Py () + ¢§,l(t)2 +035,(t) P, (t) + 43, (t)?
=0
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+0o5,(t) Pr(t) + wi,l(t)2]-

T—1
Weneed 2"(e) = Y B12[05 (1) P (6)+07 1(6) 05, (1) P5, (8) +5,(8)*+05 () P, () +
V5, ()7 + o5y (t)le(g):O%— ¥5,(t)’] > 0, meaning we need to bound o¢,(t) > 0. The
argument o5 (t) > 0 for all ¢ is similar to that in Theorem [6.2.3]
Therefore, we have that 2”(e) = TZfﬂﬂ[ail(t)PfJ(t) + Q/Jil@)2 + 05,(t) P, (t) +
t=0

ng,l(t)? +05,(t) P35, (t) + ¢§7l(t)2 + 05, (t)Pyy(t) + wi’l(tf] > 0, and we have uniqueness

by convexity of z.

7.1.3 Parameters

While most of the parameters are the same as in Part 1, we do need to consider the
new 0 parameters which characterize adult dispersal. To start define 8;;, = p-60,, where
p is the percent of pest adults which do not travel.

Suppose there is equal probability that the pests will travel east, west, north, and

south as seem in Figure . So we have 6; ; = % - B3, where ¢ # j. Then we have:

91,1 = 92,2 = 93,3 = 94,4 =p-0,

1—
91,2 = 92,1 = 92,3 = 93,2 = 93,4 = 94,3 = Tp ' 62~

Later we will vary the value p for a specific case study.
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7N
D C—
)
\

&

Figure 7.2: Four Isolated Patches: We have any patch is connected to any other patch.
Specifically consider patch F; which is connected to patch Fj, F3, and F) by the black
arrows. Note the black arrows from F; demonstrate how the adult pest can disperse
from the patch, specifically the pest adult can spread to any of the other patches.
Similarly, F3 the white arrows from F3 demonstrate how the adult pest can spread
from the patch, specifically the pest adult can spread to any of the other patches.
Note that F, and Fj also spread to all other patches, these patches arrows are not
show in the figure.

7.2 Four Isolated Patches

Now, we will consider using four isolated patches. Again adults can travel between
patches, and we will assume patches are arranged as the Figure suggests.

The resulting matrix for out pest dynamics will be as follows:
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7100913000 010 0 0 03000 0
Y% G 0 0:0 0 0 0:0 00 0:0 0 0 0
Gwv 0.0 00 0000 0:000 0
0 vy G120 0 0 61 0 0 0 2.0 0 0 6ay

77777777777777777777777777777777777777777777777777777777777777777777777777777777777777777

| |
I I I
| | |
A b | b | K | b
e e e e R e
4s i i i
| | |
I I

77777777777777777777777777777777777777777777777777777777777777777777777777777777777777777

0 0 6140 0 624l 0 0 0 6540 0 1y Ouy

Note that the matrix, A4, is very similar to A4.. Again we have the parameters
011,022,033, 044 relate to pest adults which survive and remain in their original patch.
Meanwhile, 01 2,021,023, 052,034,043 relate to pest adults which survive and move
to a neighboring patch. However in Ay, we also have 031,601 3,041,01 4,042,024 for
pest adult movement between the other patches. Below is the formulation of the pest
dynamics for the four patch model, note this does not include the biological control in

the larva stage.
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Cost in Four Patches As in the Four Connected Patches we are considering four

independent patches, so Cost at time ¢ is

BiPyi(t)? + BaNy(t) + B1Poy(t)? + BaNo(t) + 1 Pay(t)? + BaN3(t) + B Pag(t)? + B2 Na(t).

7.2.1 Optimal Control Problem Formulation

The set-up for our Optimal Control Problem is to minimize the objective functional

T-1
J(N1, N, N3, Ny) = Z BilPri(t)? + Poy(t)* + Pay(t)? + Pua(t)?]

t=0

+B2[N1(t) + Na(t) + N5(t) + Na(t)]

subject to



Pl,e(t =+ 1) = 'Ylpl,e(t) + 91P1,a(t)

Pri(t+1) = 2P c(t) + Ge MO Py (1)

Pl,p(t —+ 1) = CgeiaNl(t)PLl(t) + I/1P17p(t)

Pro(t+1) =1vaPip(t) +011P1o(t) + 021 o(t) + 031P3 o(t) + 04,1 P q(t)

PZ,e(t + ]-) = '71P2,e(t) + 01P2,a(t)

Poy(t+1) = 12 Py c(t) + Cre= N2 Py (1)

Pap(t+1) = e NPy () + 11 Py p(t)

Py o(t+1) =vaPsy(t) + 022P2 4(t) + 601,2P1 o(t) + 03 2P5 o (t) + 04,2Py 4(t)

P3 (t+1) =7v1P3c(t) + 61 P34(t)

Pyt +1) = 72Ps(t) + Ge NPy (1)

P37p(t + 1) = CgeiaNS'(t)Pg’l(t) + I/1P37p(t)

P (t+1) =1vaPs(t) +033P34(t) + 023 o(t) + 043Ps o(t) + 01,3P1,4(t)

P4ye(t + ].) = ’71P4ye(t) + 01P47a(t)

Pyi(t+1) = 4o Pyo(t) + Ce= N0 Py (1)

Pyp(t+1) = e *NaW Py (t) 4+ v1 Py p(t)

P47a(t + 1) = 1/2P47p(t) ‘|‘ 94)4P47a(t) + 9374P3,a(t) + 9174P1)a(t) ‘|‘ 92’4P27a(t)

Pre(0) = ¢
Py1i(0) = o1,
Pyp(0) = ¢1p
P1a(0) = 14
Pye(0) = ¢2c
P,1(0) = @2,
P2p(0) = @2,
P3.4(0) = $2,0
P5c(0) = ¢3.e
Py y(0) = ¢34
P3p(0) = ¢3,p
P3.4(0) = ¢34
Pue(0) = ¢ae
Py(0) = day
Pip(0) = ¢up
Pya(0) = daa

176
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where Ny (t), No(t), N3(t), Ny(t) > 0 for all t and Ny, No, N3, Ny e N={N : {1,....T} —
{r e R|0 < z(t) < Npaa, t = 1,2,...,T}}.

7.2.2 Optimal Control Problem

Now we will prove the existence and uniqueness of the optimal control N7, Ny, N

and Nj. Additionally, we will prove necessary conditions for the optimal control N7,

Nz, N3, and Njy. The proofs roughly follow the proofs in Theorems [7.1.1] [7.1.2] and
7. 1.3

7.2.2.1 Existence
Theorem 7.2.1. There exists N1, No, N3, Ny € N which minimizes J(Ny, Na, N3, Ny).

Proof. This theorem is analogous to Theorem since Py, P1j, P1p,Pia, Poe, Pay,
Py Pog, Pae, Py, Py, Pa g, Pye, Pyy, Pyp, Pyg are all continuous with respect to Ny,
Ny, N3, N, by Equations [7.2] Additionally, we have J is continuous as a function of
Ni, Ny, N3, Ny and BT is a compact subset of R”, so inf J(Ni, Ny, N3, Ny)

Ni1,N2,N3,NseN

exists.

7.2.2.2 Necessary Conditions

Adjoint System: Consider the following terminal value system:

Ae(t) = Ae(t + D)y + Ag(t + D)o
M) = 281Pra(t) + At + 1)Ce MO 4\ (8 + 1) e oM ®)
AMp(t) = Ap(t + D + Aot + e

Ma(t) =M+ D)0 + Mot +1)011 + Aoo(t+1)0104+ Aga(t+1)01 3+ Aot +1)014
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Aae(t) = Aae(t + 1)y + Aoyt + 1)y
Aot (t) = 281 Pay(t) + Aot + 1)Cre N2 4 \g (8 4 1) e N2 ®)
Aop(t) = Aap(t + D)y + Agu(t + 1)1
Aoa(t) = Aot +1)01 + Ao ot +1)020 + A1 o(t 4+ 1)021 + A3 a(t +1)023 + Ay o(t +1)024
Ase(t) = Ase(t + 1)y + gyt + 1)y
Asi(t) = 261P3(t) 4+ Asa(t 4+ 1)Gre N30 + X (8 + 1) e M)
Asp(t) = Asp(t + D)v1 + Asalt +1)v2
A3a(t) = A3e(t +1)01 + A3.0(t + 1)033 + Aopa(t +1)032 + Aao(t +1)034 + Aot +1)034
Ae(t) = Ae(t + 1)y + At + 1)
Agg(t) = 2B1Pag(t) + Aag(t + 1)Ge MO 4 3, (¢ + 1) e oM
Mp(t) = Aap(t+ Vg + Aga(t + 1)1

Ma(t) = Aae(t+1)01 + Mgo(t+1)05a+ A3 0(t +1)043 4+ M a(t +1)0s1 + Aoo(t +1)040

Me(T) = 0, M(T) = 0, M1,(T) = 0, Mo(T) = 0, Xoe(T) = 0, X\ (T) =
0, Aap(T) = 0, Moo (T) = 0, X3(T) = 0, Ag,(T) = 0, A3 ,(T)) = 0, A\3.(T) = 0,
Ae(T) =0, My(T) =0, Ay ,(T) =0, Mo (T) = 0.

Theorem 7.2.2. If there exists optimal controls N1, Na, N3 and Ny, then there exists
adjoint system and

0 if 2> ¢(t)

s[ggO] i 2 <g)

N;(t) =

for j =1,2,3,4 we have that ;(t) = G (t+ 1)Pju(t) + GAjp(t + 1)P;(t)

Proof. The proof is similar to that of Theorem [7.1.2] The difference comes in the
additional terms in the adjoint and sensitivity equations for the adults. The change

does not alter the proof process, since the directional derivative will be the same, and
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the difference arises in the manipulation of sensitivities to adjoints. Hence we find the
same equation for the directional derivative and thus the formulas of Ny, N, N5, N,

are as in Theorem [T.1.2]

7.2.2.3 Uniqueness

Theorem 7.2.3. If the optimal controls Nv, Na, N3 and N, exist, then they are

unique.

Proof. The proof is similar to that of Theorem [7.1.3] Again the difference comes in
the additional terms in the adjoint, sensitivity, and ¢ equations for the adults. The

change does not alter the proof process, the terms are incorporated with the same

method as in the proof of Theorem [6.2.3] and [7.1.3] Then we have that
T-1
Z'(e) = ZﬁlQ[Ui,l(t)Pf,z(t) + U1, ()7 + 05, (8) Pay(t) + 95,(8)* + 05, (1) P5,(t) +
t=0

U5 ()7 + 05 (£ PE (1) + 05 ()

and o%,(t) > 0.

T-1

Therefore, we have that z”(e) = 2512[031@) () U5 ()7 + 05, () Py (1) +
=0

1/15’1(15)2 +05,(t) Ps,(t) + w;l(t)Q + 05, (t) Py, (t) + wil(t)2] > 0, and we have uniqueness

by convexity of z.

7.2.3 Parameters

Most of the parameters are the same as in Part 1, and we do need to consider the
new 6 parameters which characterize adult spread. As in the four connected patches

case define 0, ; = p - 02, where p is the percent of pest adults which do not travel.
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Unlike the four connected patches case there is equal probability that the weevils will
travel between the three other patches as seen in Figure So we have 0, ; = % -0y

when i # 7. Then we have:

91,1 = 92,2 = 6)3,3 = 94,4 =p- 0y

tho=0h3=01a=0s1 =023 ="004=031=030="034=041="040=043=

Later we will vary the value p for a specific case study.
Since these patches are not adjacent in space it is possible that some of the pest

adults will die along the trip, so later we will incorporate a mortality factor.

7.3 Case Study: DRW

Once again we will use the Diaprepes abbreviatus as a case study, making most of the
parameters the same as in Part 1. The only new parameter is p, the percent of DRW
adults which do not travel. We have that DRW adult can fly an average dispersal
distance is less than 0.03 hectares[TJWJKI16]. For an estimation of p we must also
include the possibility that wind and human interaction allow the DRW adults to

spread further [JGT09a].

7.3.1 Four Connected Patches Simulations

We will use the Forward-Backward Sweep to estimate for the four patches how many

nematodes to use and when and where to use them. Since we have spreading to
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neighboring patches, if the infestation starts everywhere, when the DRW spread patch
1 and 4 look alike and patch 2 and 3 look alike.
We will explore the behavior of this model more by varying p and where the

infestation starts.

Nematodes Percent Stay 100%

\ Patch 1 \ Patch 2

4 210 ° 4 x10
%)
S asle * 200000 Sasle = 200000
S o2 oo 1100000 P 1100000
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Figure 7.3: Using the Forward-Backward Sweep we calculate the number of nematodes
to apply for various initial populations: 200000, 1100000, 1500000, 1700000, 2000000.
Here we have all DRW stay in their original patch.

In Figure we show the FBS for various initial populations without any spread.
Each individual patch looks the same as that in the Basic model, Figure When
we start to run simulations varying p and where the infestation starts we run into
issues with the number of runs the simulation needs to perform due to the choice of 4.
Due to computational restraints we reexamine Figures [4.1) and [£.2] We will now shift
our choice of § to be from 0.2 up to 1, allowing for computational ease and answer

accuracy.
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7.3.1.1 Varying Initial Population and Percent of DRW Adults which

Remain, p

We will vary the initial population and consider various percentages for how many

adult DRW will remain in their patches.
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Figure 7.4: Using the Forward-Backward Sweep we calculate the number of nematodes
to apply when p = .5, so 50% leave, for various initial populations: 200000, 1100000,
1500000, 1700000, 2000000. Notice the that all but 200000 makes sense for the
spreading of 50% since patches 1 and 4 would be the same and patches 3 and 4 would
be the same. Note § = 0.3.
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Nematodes Percent Stay 75%
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Figure 7.5: sing the Forward-Backward Sweep we calculate the number of nematodes
to apply when p = .75, so 75% leave, for various initial populations: 200000, 1100000,
1700000. Notice the that all but 200000 makes sense for the spreading of 75% since
patches 1 and 4 would be the same and patches 3 and 4 would be the same. Note
0 =0.75.

7.3.1.2 Starts in Patch 1

We start the infestation in patch one with 50% of adults remaining in their patches,

and we vary the initial population for the infestation.
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Figure 7.6: Using the Forward-Backward Sweep we calculate the number of nematodes
to apply when 6 = .99 and initial populations 200000 for p = .5.
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Figure 7.7: Number of DRW larvae to apply when § = .99 and initial populations
200000 for p = .5, associated with figure [7.6
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Figure 7.9: Using the Forward-Backward Sweep we calculate the Total Cost when
0 = 1 and initial populations 200000 for p = .0.1,0.25,0.5,0.75,0.9.
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Figure 7.10: Using the Forward-Backward Sweep we calculate the number of nematodes
to apply when 6 = .9999 and initial populations 1100000 for p = .5.
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Figure 7.12: Using the Forward-Backward Sweep we calculate the number of nematodes
to apply when 6 = .9999999999999 and initial populations 1700000 for p = .5.
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7.3.1.3 Starts in Patch 2

We start the infestation in patch two with 50% of adults remaining in their patches,

and we have initial population of 200000.
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Figure 7.14: Using the Forward-Backward Sweep we calculate the number of nematodes
to apply when 6 = .99 and initial populations 200000 for p = .5.
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Figure 7.15: Logarithm of number of DRW larvae to apply when § = .99 and initial
populations 200000 for p = .5, associated with figure
7.3.1.4 Starts in Patch 1 and 3

We start the infestation in patches one and three with 50% of adults remaining in

their patches, and we have initial population of 200000.
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Figure 7.16: Using the Forward-Backward Sweep we calculate the number of nematodes
to apply when § = .85 and initial populations 200000 for p = .5.
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Logarithm of number of DRW larvae to apply when 6 = .85 and initial
200000 for p = .5, associated with figure [7.16
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7.3.1.5 Starts in Patch 1 and 4

We start the infestation in patches one and four with 50% of adults remaining in their

patches, and we have initial population of 200000.
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Figure 7.18: Using the Forward-Backward Sweep we calculate the number of nematodes
to apply when 6 = .99 and initial populations 200000 for p = .5.
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Figure 7.19: Logarithm of number of DRW larvae to apply when § = .99 and initial
populations 200000 for p = .5, associated with figure [7.18]
7.3.1.6 Starts in Patch 2 and 3

We start the infestation in patches two and three with 50% of adults remaining in

their patches, and we have initial population of 200000.
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Figure 7.20: Using the Forward-Backward Sweep we calculate the number of nematodes
to apply when 6 = .9 and initial populations 200000 for p = .5.
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7.3.1.7 Starts in Patch 1, 2, and 3

We start the infestation in patches one, two, and three with 50% of adults remaining

in their patches, and we have initial population of 200000.
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Figure 7.22: Using the Forward-Backward Sweep we calculate the number of nematodes
to apply when 0 = .8 and initial populations 200000 for p = .5.
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Figure 7.23: Logarithm of number of DRW larvae to apply when § = .8 and initial
populations 200000 for p = .5, associated with figure
7.3.1.8 Starts in Patch 1, 2, and 4

We start the infestation in patches one, two, and four with 50% of adults remaining

in their patches, and we have initial population of 200000.
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Figure 7.24: Using the Forward-Backward Sweep we calculate the number of nematodes
to apply when 6 = .9 and initial populations 200000 for p = .5.
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Figure 7.25: Logarithm of number of DRW larvae to apply when § = .9 and initial
populations 200000 for p = .5, associated with figure
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7.3.2 Discussion and Results

To start with we vary the values of DRW adults that remain in the original patch with
infestation starting in all patches. In Figures and we vary initial populations
for 50% remain and 75% remain respectively. In both cases the first and fourth patch
have the same nematode application and the second and third patch have the same
nematode application. This makes sense since the DRW dynamics are the same in
the first and fourth patches, and similarly the same for second and third. So if we
start the infestation equally in every patch the first and fourth will be the same and
require less nematodes than the second and fourth, since the first patch only receives
DRW adults from patch 2 but still loses DRW adults in all four directions. We can
also note that the amount of nematodes required is less with a smaller percent that
remain, p, since if more DRW adults remain we don’t lose as many to the surrounding
area through at least north and south travel.

Next we varied where the infestation would start in the four patches. If we start
in patch one, it is the same as starting in patch 4 by the DRW dynamics, similarly for
starting in patch 2 or 3. By using this knowledge we were able to run simulations for
all possibilities without redundancy.

To start with we look at the infestation starting in patch one with 50% of the
adults remaining so 50% leave their original patches. If we have initial population
200000, the Figure demonstrates how many nematodes to apply in each patch. We
note how the DRW spread between the patches in Figure [7.7] Meanwhile, in Figure
7.8 we took the logarithm of Figure [7.7] and can see that changes in the DRW in
the patches. Specifically, how the DRW start in patch one and spread to the other
three patches in order. Then since patch 2 and 3 are similar, both in receiving more

adults and losing less to the enviroment, the DRW grow quickly and the two patches
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seem to over take patch 1 at the end. Meanwhile, patch 4 mimics patch one will a
slower rise since it is furthest from the initial infestation and only receives from patch
3. In Figure we consider varying the values of adults that remain during a patch 1
infestation and note that the larger the percent of adults that remain the larger the
cost since less adults are lost to the surrounding system. For Figures [7.10] and
we plot how many nematodes to apply for initial populations 1100000 and 1700000
for 50% remain. We can note how there is a similar pattern for the application of
nematodes, and in Figures and we have the logarithm of how many DRW
larvae correspond with the nematode application. As in the Basic model with higher
initial populations we apply more nematodes, and at 1700000 there is a larger initial
population and we apply enough nematodes to reduce the DRW larvae.

Next, we start the infestation in patch two, again in 50% of adults remaining and
initial population 200000. Figure plots nematode application and we can note
the differences to the patch one infestation case in Figure [7.6] for instance in patch 1
where the number of nematodes required is a different shape and less in the second
patch infestation. Meanwhile in Figure is the logarithm of how many DRW larvae
are associated with the nematodes applied. Note how again patch four is below the
other and seems similar to patch one, but patch one, two, and three are all increasing
rapidly. The reverse would be true for patch one and four if the infestation started in
patch 3. Now that we have explored the possibilities of starting the infestation in one
patch we will consider the possibilities for the infestation starting in two patches.

We considered the possible combinations for the infestation starting in two patches.
In each case we plot nematode application for the four patches and the logarithm of
how many DRW larvae are associated with the nematodes applied. First in patches

one and three, with Figures and [7.17. Then in patches one and four, with Figures
and [7.19] Lastly, in patches two and three, with Figures and [7.21] The case
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of patch one and three is different than the other two, as expected from the DRW
dynamics. As we see in Figure [7.17] the three patches seem to move almost in unison,
but are all separate in the amount of DRW larvae. Meanwhile in the cases of patches
one and four and patches two and three, the DRW larvae results are very close, with
slight deviation in case on patches two and three.

Lastly we explore the possible combinations for the infestation starting in three
patches. In each case we plot nematode application for the four patches and the
logarithm of how many DRW larvae are associated with the nematodes applied. First
in patches one, two, and three, with Figures and Then in patches one, two,
and four, with Figures[7.24] and [7.25] The difference in the DRW graphs is interesting,
with a steeper increase when the infestation doesn’t start with two and three utilized.

From these simulations we can see how drastically the origins of the infestation
can affect the amount of nematodes required. We also have application methods for
the various infestation starting points. Overall, the fact that we lose adult DRW to
the surrounding environment affects the simulations, especially when more adults
travel. Therefore, how our patches are situated in space has an affect on our nematode
application and total cost. We will explore this more by looking at the Isolated model,

which has a different organization of the patches.

7.3.3 Four Isolated Patches Simulations

Note when none of the DRW spread we have the same Figure [7.3]

7.3.4 Vary Percent of DRW Adults which Remain, p

We explore the behavior of the model by varying p. Note, if all patches are infested

then no matter the value of p we will have the same cost; since all that leave also
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return, see Figure [7.26] Specifically, if p = 40%, then 60% of adults leave a patch one
but 20% of adults from the other three patches travel to patch one, resulting in 60%
traveling to patch one. Therefore, we maintain the same amount of DRW adults in

every patch. Hence, we need to look at varying where the infestation start and then

vary p.
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Figure 7.26: Using the Forward-Backward Sweep we calculate the number of nematodes
to apply when p = .5, so 50% leave, for various initial populations:200000, 1100000,
1500000, 1700000, 2000000. Notice how all the patches are still the same since we
have equal spread between patches. Note 6 = 0.1

7.3.4.1 Starts in Patch 1

We start the infestation in patch one with 50% of adults remaining in their patches,

and we have initial population of 200000.
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Figure 7.27: Using the Forward-Backward Sweep we calculate the number of nematodes
to apply when 0 = .9999 and initial populations 200000 for p = .5.
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As more stay less other patches to treat so lower cost.

7.3.4.2 Starts in Patch 1 and 2

We start the infestation in patches one and two with 50% of adults remaining in their

patches, and we have initial population of 200000.
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Figure 7.31: Using the Forward-Backward Sweep we calculate the number of nematodes
to apply when ¢ = .999 and initial populations 200000 for p = .5.
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Figure 7.32: Logarithm of number of DRW larvae to apply when ¢ = .999 and initial
populations 200000 for p = .5, associated with figure [7.31
7.3.4.3 Starts in Patch 1, 2, and 3

We start the infestation in patches one, two, and three with 50% of adults remaining

in their patches, and we have initial population of 200000.
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Figure 7.33: Using the Forward-Backward Sweep we calculate the number of nematodes
to apply when ¢ = .999 and initial populations 200000 for p = .5.
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7.3.5 Discussion and Summary

As we stated earlier with Figure [7.26], if the infestation starts in all patches, then no
matter the value of the DRW adults that remain, p, we will have the same results.
This is because all adults only travel equally between the three patches, so no matter
the percent that leave that same percent will return from the other three patches.

Next, we consider if the infestation starts in a single patch, and due to the DRW
dynamics we can consider starting in any patch, so we chose patch one. We will use
initial population 200000. Unlike the Connected model, there is equal spread and
the other three patches look identical in Figures [7.27] [7.28] and [7.29] For instance in
Figure [7.28 the number of DRW larvae looks almost identical, which is also visible in
the logarithm of DRW graph, with all four the same after about time step 20 weeks. In
Figure [7.30] we plot various percentages for how many adult DRW remain. At higher
percentages the DRW do not distribute between the patches, so there is a higher cost
to treat a larger infestation in one patch rather than a smaller cost to treat smaller
infestations in four patches.

Now, we consider the infestation starting in two patches, we picked patches one
and two. We plot nematode application for the four patches, [7.31] and the logarithm
of how many DRW larvae are associated with the nematodes applied, [7.32] As with
the single patch the DRW spread evenly and the result happens in a similar amount
of time.

Next, we consider the infestation starting in three patches, we picked patches one,
two, and three. We plot nematode application for the four patches, [7.33] and the
logarithm of how many DRW larvae are associated with the nematodes applied,
As with the two patch the DRW spread evenly and the result happens in a similar

amount of time.
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We note the general similarities between the infestation starting one, two, and
three patch, which is a result of the four patches having the same DRW dynamics and
spread. This means all patches are likely equidistant and so far we have assumed all
adults that leave a patch reach another patch. The next step is to consider a mortality

rate.

7.3.5.1 Mortality Rate

Our next step with the Four Patch Isolated Model is to include a mortality rate, taking
into consideration the possibility some adult DRW will not reach another patch. If we
apply the mortality rate, m, to the adults that leave patches we would have:

1—
Gi,j:Tp-Hym

While this would reduce the amount of DRW in the system, results with this
model would be similar to those above. Suppose the infestation starts in all patches.
If we have 60% of DRW adults travel, then each patch loses 60% of DRW adults and
received 60% - m adults from the other patches combined. Hence, we will have less
DRW and require less nematodes, but the distribution of the four patches will be the
same. To allow for varying patch distances and possible mortality rates during travel,

we could need to introduce different mortality rates for the patches.
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Part 111

Future Work



Chapter 8
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Discrete Time Step 4 weeks

Parts 1 and 2 explored discrete models that implemented a one week time step. In

some cases it is not practical for farmers to apply control every week. Therefore we

will consider a discrete model which has a 4 week time step.

8.1 Basic Model

Recall that in the Basic model we had a matrix A which characterized the pest

dynamics for a one week time step. The resulting matrix for our pest dynamics with

a four week time step will be as follows:

Y1

T V2

V3

Ya

G4
G
G2
G3

V3

Vy

151

Vo

02

Below is the formulation of the pest dynamics for the basic model with a four week

time step, note this does not include the biological control in the larva stage.



e+ oo oa ] B3
Blk+1) | | 7% G n b Py(k)
Pkt | | & om 6| | P
P | [ G 6| | PR

Cost of Basic Model We will need to update the cost of pests, so

Cost = ﬁg.Pl(t)Q + /BQNl(t)

8.1.1 Optimal Control Problem
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The set-up for our Optimal Control Problem is to minimize the objective functional

T-1
J(N) =" BsPi(t)* + B2Ni(t)
t=0
subject to
P.(t+ 1) = 11 P.(t) + e *NO B (t) + 13 P, (t) + 0, P,(t)  P.(0) = @,
Pyt +1) = 2Pu(t) + Ge VO R(t) + vaPy(t) + 63 FPu(t)  P(0) = P
Pyt +1) = 1 P.(t) + e *NOP(t) + 11 Py (t) + 0,P.(t) P,(0) = ®,

Po(t+1) = 1Pe(t) + Ge *VOR(t) + 10 P(t) + 02 Fu(t)  Fa(0) = @,

where N e N={N:{1,...,T} - {x € RI0 < 2(t) < Npas, t =1,2,.... T}}.

(8.1)
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Again we will prove the existence of the optimal control A. In the future, we will

prove necessary conditions and uniqueness for the optimal control N.

8.1.2 Existence

Theorem 8.1.1. There exists N € N which minimizes J(N).

Proof. This theorem is analogous to Theorem since P, B}, P, P, are all contin-
uous with respect to N by Equation 8.1} Additionally, we have J is continuous as a

function of N and B* is a compact subset of R so ]\lfan J(N) exists.
€

8.2 Four Connected Patch Model

Recall in the Basic model we had a matrix A4. which characterized the pest dynamics
for a one week time step. The resulting matrix for our pest dynamics with a four week

time step will be as follows:



4 _
A4c_

0

0

0

0

0

0

0

0

173

03,4 V4

C3

151

V2

77777777777777777777777777777777777777777777777777777777777777777777777777777777777777777

—————————————————————————————————————————————————————————————————————————————————————————

77777777777777777777777777777777777777777777777777777777777777777777777777777777777777777
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Below is the formulation of the pest dynamics for the four patch model with four

week time step, note this does not include the biological control in the larva stage.
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Note, as in Part 2, we have 9171 = 02’2 = 93?3 = 9474 = p* 92 and 9172 = 02’1 = 92,3 =
O30 =034 =043 = % x Oy, where p is the percent of adult pests which remain in the
original patch.

In the future we will vary the value p for a specific case study.

Cost of Four Patches Same as in the Four Connected Patches case we are consid-
ering four independent patches, and using the basic model with a four week time step

we have

Cost = B3P 1(t)*+ B2 N1 (t)+ B3 Pay(t)*+ B2 No(t)+ 83 Py 1 (t)*+Ba N3 (t)+ B3 Puy(t)*+ B2 Na(t).

8.2.1 Optimal Control Problem Formulation
The set-up for our Optimal Control Problem is to minimize the objective functional

T-1

J(N1, Nay Ny, Nu) =~ Bs[Pra(t)? + Po(t)? + Py () + Pag(t)’]

t=0

+02[N1(t) + Na(t) + N3(t) + Na(t)]

subject to
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diAv — AOVGFNm dehmmwrm% + de#ﬁNwJ% + vadhmmmhmm + Qv%mmmh + va thmﬁvmzyu\mmv + vawvmﬁNw\ﬁ — Aﬁ + wvdhmm

Tep = (0)"eq

reg = (0)'ed

2t = (0)7%d
"Tp = (0)"d
g = (0)"d
e = (0)1d
7o = (0)"d

(H)7ed79 + (D)Ved '+ (DI (o2 + (1) gt = (1 +9)9eq

("% + () %"+ ()1 gego-2" + ()7 = (149"

BP9+ (D) Veg i+ ()1 yapo_27 + ()7 g = (1 +4)°%d

(N7 o9 + ()"0 + (DTS + (D (1502 + ()71 = (1+9)"1d

M7+ DT+ (D gy iyo—22 + ()7 = (1+ )7

W70 + DT+ D (o2 + ()7 = T+ )1

D"+ (D8 + (DI (w27 + W) = (1+2)7d
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"TH = (0)"Td  (NELVE+ (DL + (DT + (DT (yrgo—2) + (1) TR = (1 +9)"7d

1 = (0)"7d (DT + (DT + (DI (o029 + ()T = (T4 9)77g
v = (0)!17d (DT + (DT + (DT )02 + (1)°Td o = (1 +9)17d
°TH = onu:vﬁN vas:vmam + vaa:vmmh + vaﬁwmﬁvw\/ﬁolwu@ + vam:vﬁﬂﬁ\ﬁ =(1+ wvm:vm

PEH = (0)"%T  (H7TIET)+ (DI + ()T + (D) VETY A+ (DI (o280 + (1)L = (T +9)"8

Tep = (0)"E (D779 + (D YeT 1+ (DI ey + (1) ET e = (T +9)Veg

"6 = (0)"''d (D7 EE9 + (DT + (DI o021 + ()78 = (T+ D)

ep = (0)”%d (D0 + (D8 + (DT (oyo-2" + (D7 E ™ = (1 +19)7d
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where Ny, No, N3, N, € N = {N : {1,..,T} = {z € R|0 < z(t) < Npaz,t =
1,2,...,T}}.

8.2.2 Proofs

Again we will prove the existence of the optimal control Ny, Ns, N3, Ny. In the future,

we will prove necessary conditions and uniqueness for the optimal control.

8.2.2.1 Existence

Theorem 8.2.1. There exists N' € N which minimizes J(N).

Proof. This theorem is analogous to Theorem since P, P}, P, P, are all contin-
uous with respect to Ny, No, N3, Ny by the equations in Section [8.2.1] Additionally,
we have J is continuous as a function of Ny, Ny, N3, N, and B™ is a compact subset

of RT, so inf J(Ny, Na, N3, N,) exists.
N1,N2,N3,NseN

8.3 Case Study: DRW

We will establish parameter values using the basic model for a four week time step and
then expand these to the four connected patch model. Note most of the parameters
will be the same in both models, the notable difference will be in the four connected

patch model having the additional p parameter.

8.3.1 Values for DRW Dynamics

Using the original matrix A from above, we transition to time steps of 4 weeks rather

than a week.



71

U 2

V3

V4

8.3.2 Initial Conditions

Ca
G
G2
G3

V3

V4

151

Vg

6
03
04
02

0.1795
0.5755
0.0286

0.0063

0.9513 47.5175 105.9500
0.8247 25.4132 140.0478

0.0471  0.5375
0.0188 0.5454

2.4986
1.0552
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Similar to Part 1, we assume for any field the DRW are at SSD. Meaning we have the

same initial conditions as in Part 1.

8.3.3 Cost Function

Cost of Nematodes

0.485943142
0.492150833
0.015153450

0.006752576

The cost of nematodes does not depend on the length of

time step so we still have that, Cost of Nematodes N - $62/22/(1/108) per hectare

per nematode = 5.

Cost of DRW Recall that §; was dependent on one week as a time step, so we

know have Cost of DRW P, - 83 = 31 * 4 = 3.1806 x 10! per hectare per 4 weeks.

So we have the cost for any time is cost of diaprepes weevil damage, 83F;(t)?, plus

cost of using nematodes, SN ().

Cost = B3Pi(t)* + B2 N (t)

where 33 = 3.1806 x 10~ and 3, = 2.8182 x 1078,
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Chapter 9

Future Work

9.1 Different Biological Approaches

There are various ways we can explore how changing more biological components
changes the model and the dynamics. For instance, we could consider applying the
control to a different stage in the matrix. Alternatively, we could change the model to
consider a predator prey component.

Additionally with our current or these new models we can consider an integrodiffer-
ence model for continuous time, using a dispersal kennel and model longer spreading

for the population.

9.2 Robustness

I intend to study the robustness of my Optimal Control management solutions.
Optimal Control is not designed to be robust to uncertainties, parameter drift, or
unmodeled dynamics, since it doesn’t respond to new information. Specifically, I will

be testing how well the optimal control management solutions fare when uncertainties
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and parameter drift are incorporated. It is not only important to find a solution that
minimizes the cost to the farmers but also accounts for the possibility that changes

might occur and a slight perturbation should not result in great loss to the farmer.

9.3 Stochasticity

Currently we are using a deterministic matrix model for the pest dynamics and in
the future I would like formulate a stochastic model. This will allow for the natural

changes in the environment to be reflected in the model.

9.4 Collaboration

My work on using Optimal Control theory to aid population management for DRW
is part of a collaboration that started in May 2014 with Richard Rebarber, Brigitte
Tenhumberg, Yu Jin (University of Nebraska-Lincoln),Chris Guiver, Stuart Townley
(University of Exeter - Cornwall), and Jim Powell (Utah State University), and has
since grown to include and Stephanie Lloyd (Exeter). We consider different control
theory approaches resulting in management methods which we will compare. Since the
initial meeting I have been working on an Optimal Control theory approach, while other
members have been working on feedback control methods such as adaptive control.
A paper by Chris Guiver is published in the STAM Journal on Applied Mathematics
(SIAP), “Simple adaptive control for positive linear systems with applications to pest
management.” [GEJT16].

Our plan is to compare the various control theory methods by cost, reduction of
DRW, and robustness. Feedback controls are known to be more robust, but require

monitoring of the system. Meanwhile Optimal Control is known to minimize the
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cost, but requires initial data. Hence, we will be looking closely at the robustness
of Optimal Control and the cost efficiency of feedback control. Once we have done
the initial comparison, we can extend the research to other systems deducing which

method of control theory outputs the best result for different purposes.
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