
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Computer Science and Engineering: Theses,
Dissertations, and Student Research Computer Science and Engineering, Department of

7-2016

SECURE AND LIGHTWEIGHT HARDWARE
AUTHENTICATION USING ISOLATED
PHYSICAL UNCLONABLE FUNCTION
Mehrdad Zaker Shahrak
University of Nebraska-Lincoln, zaker.mehrdad@gmail.com

Follow this and additional works at: http://digitalcommons.unl.edu/computerscidiss

Part of the Computer Engineering Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Zaker Shahrak, Mehrdad, "SECURE AND LIGHTWEIGHT HARDWARE AUTHENTICATION USING ISOLATED PHYSICAL
UNCLONABLE FUNCTION" (2016). Computer Science and Engineering: Theses, Dissertations, and Student Research. 105.
http://digitalcommons.unl.edu/computerscidiss/105

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss/105?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages

SECURE AND LIGHTWEIGHT HARDWARE AUTHENTICATION USING
ISOLATED PHYSICAL UNCLONABLE FUNCTIONS

by

Mehrdad Zaker Shahrak

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professor Sheng Wei

Lincoln, Nebraska

July, 2016

SECURE AND LIGHTWEIGHT HARDWARE AUTHENTICATION USING

ISOLATED PHYSICAL UNCLONABLE FUNCTIONS

Mehrdad Zaker Shahrak, M. S.

University of Nebraska, 2016

Adviser: Sheng Wei

As embedded computers become ubiquitous, mobile and more integrated in con-

nectivity, user dependence on integrated circuits (ICs) increases massively for han-

dling security sensitive tasks as well as processing sensitive information. During this

process, hardware authentication is important to prevent unauthorized users or de-

vices from gaining access to secret information. An effective method for hardware

authentication is by using physical unclonable function (PUF), which is a hardware

design that leverages intrinsic unique physical characteristics of an IC, such as prop-

agation delay, for security authentication in real time. However, PUF is vulnerable

to modeling attacks, as one can design an algorithm to imitate PUF functionality at

the software level given a sufficient set of challenge-response pairs (CRPs).

To address the problem, we employ hardware isolation primitives (e.g., ARM

TrustZone) to protect PUF. The key idea is to physically isolate the system resources

that handle security-sensitive information from the regular ones. This technique

can be implemented by isolating and strictly controlling any connection between the

secure and normal resources. We design and implement a ring oscillator (RO)-based

PUF with hardware isolation protection using ARM TrustZone. Our PUF design

heavily limits the number of CRPs a potential attacker has access to. Therefore, the

modeling attack cannot be performed accurately enough to guess the response of the

PUF to a challenge.

Furthermore, we develop and demonstrate a brand new application for the de-

signed PUF, namely multimedia authentication, which is an integral part of multi-

media signal processing in many real-time and security sensitive applications. We

show that the PUF-based hardware security approach is capable of accomplishing

the authentication for both the hardware device and the multimedia stream while

introducing minimum overhead.

Finally, we evaluate the hardware-isolated PUF design using a prototype imple-

mentation on a Xilinx system on chip (SoC). Particularly, we conduct functional

evaluation (i.e., randomness, uniqueness, and correctness), security analysis against

modeling attacks, as well as performance and overhead evaluation (i.e., response time

and resource usages). Our experimental results on the real hardware demonstrate the

high security and low overhead of the PUF in real time authentication.

iv

DEDICATION

To my Father, Dr.Ali Asghar Zaker Shahrak, who always reminded me to believe in

my abilities, never afraid of challenges and work hard.

To my Mother, Dr.Mehr Azam Jamali who loved me more than anything in this world.

All that I am, or hope to be I owe it to my angel mother.

To my lovely sisters, Dr.Mehrsa Zaker Shahrak and Dr.(to be) Mehrnaz Zaker Shahrak,

I might be separated from them by distance, but they are always joined to my heart by

love.

v

ACKNOWLEDGMENTS

I would like to specially thank my advisor, Sheng Wei. I appreciate his guidance

and patience while I worked on this thesis. Also, I thank Sheng for supporting me

throughout all ups and downs of my thesis. I have learned from him that nobody is

perfect. Every one slides here and there, but when they are down, that is not the

time to step all over them.

I especially want to thank Jeremiah Goerdt, Mitchel Gerrard and Mikaela Cash-

man for staying by my side and supporting me through the harshest season of my

life.

I want to thank my colleague and friend Mengmei Ye for all of her technical

suggestions and her ingenious point of view.

vi

Contents

Contents vi

List of Figures viii

List of Tables ix

1 Introduction 1

2 Background & Related Work 5

2.1 PUF Taxonomy . 5

2.1.1 Strong PUFs . 5

2.1.2 Weak PUF . 6

2.1.3 PUF Examples . 6

2.1.3.1 Ring Oscillator PUF 6

2.1.3.2 Arbiter PUF . 8

2.2 PUF Threat Models . 9

2.3 Hardware Isolation . 10

2.4 Thesis Overview . 11

3 Design and Implementation of Ring Oscillator PUF 12

3.1 Design Elaboration of RO PUF . 12

vii

3.2 Addressing The Design Challenges 13

3.2.1 Solving RO Delay Problem . 13

3.2.2 Design of Multiplexers and Counters 14

3.2.3 Configuring Inner and Outer Clocks 15

3.3 PUF Implementation on SoC . 15

3.3.1 Settings and Configuration Strategies 18

3.3.2 Test Benches . 18

3.3.3 ZedBoard Programming . 19

4 Protecting PUF using Hardware Isolation 21

5 Two-Way Real Time Multimedia Stream Authentication Using

Physical Unclonable Functions 24

5.1 Overview of Multimedia Authentication 24

5.2 PUF-based Multimedia Authentication Protocol 27

5.2.1 Device Authentication . 27

5.2.2 Multimedia Stream Authentication 28

6 Experimental Results 30

6.1 Security Analysis of the Isolated PUF 30

6.2 Functional Evaluation . 31

6.2.1 Randomness Test . 31

6.2.2 Hamming Distance Test . 32

6.3 Performance & Overhead Evaluation 33

7 Conclusions and Future Work 36

Bibliography 37

viii

List of Figures

2.1 Ring Oscillator PUF [27] . 7

2.2 Schematic of Arbiter PUF [27] . 8

3.1 Post-Synthesis Timing Simulation . 13

3.2 Xilinx ZedBoard (Zynq 7000) Development Board 16

3.3 Elaborated Design of Ring Oscillator PUF 17

3.4 Block Diagram and Custom IP Connection Using Xilinx Vivado Toolchain. 17

3.5 Adress Map Created for ARM Cortex 9 Processor 20

3.6 Connection Settings to Serial Port of Zedboard 20

4.1 Using TrustZone to Protect PUF . 22

5.1 Flow of The Device Authentication Protocol. 28

5.2 Flow of The Chaining-based Signature Scheme for Multimedia Authenti-

cation [7]. 29

6.1 Probability of 0s in Each Position of The Response 32

6.2 Histogram of Hamming Distance Between Pairs 33

6.3 PUF Timing Evaluation Results . 34

ix

List of Tables

3.1 Synthesis Strategy . 18

6.1 NIST Statistical Test . 31

6.2 Resource Usage of The Isolated PUF Design 35

1

Chapter 1

Introduction

As embedded devices expand in our everyday life and their cost gets lower, there is

more demand of having a lightweight authentication method that can be implemented

on a prevalent device with little cost [19]. The authentication method should be

resistant against interference as the attacker has full physical access to the device

most of the time. Furthermore, any authentication procedure adds a processing

delay and overhead to the routine performance of the system, which may not meet

the requirement of the applications.

One of the approaches of hardware authentication is using a widely distributed

public key to encrypt sensitive data and program a secret key into non volatile memory

such as EEPROM, and then use cryptographic procedures such as digital signature

to authenticate a device [27]. There are several problems with this approach. First,

with symmetric key applications, universal devices need to store sensitive information

which might be compromised with security attacks. Second, each time an authentica-

tion occurs, there is a large number of logical blocks that need to engage in the process

of authentication, which makes this procedure vulnerable to side channel attacks as

it empties lots of power out of the device. Third, programming device-specific secrets

2

in memories are very expensive since the designer has to keep record of the specific

private keys generated for each device.

To address the problems of the secret key-based approach, researchers have pro-

posed physical unclonable function (PUF) as a powerful hardware authentication

mechanism. A PUF is a hardware equivalent of a mathematical injective function

where it is impossible to reverse engineer the input (challenge) based on the output

(response) [5]. The asymmetry PUF creates is one of the most important security

feature in real-world: it should be convenient for an authenticated user to use the sys-

tem while it is impractical for an adversary to counteract it [21]. Therefore, PUF can

serve as a biometric signature used for hardware authentication in security sensitive

applications.

A PUF is a function in which (1) if we give the same input over and over to it, it

replies with the same output repeatedly. (2) Any input results in a unique output. In

other words, one can not generate the same output by giving the PUF two different

inputs. (3) Changing one bit in input and giving it to PUF, we expect to get a very

different output comparing to the previous one. A PUF implementation on hardware

is a very useful tool in many ways. First, it presents a way to authenticate a device

uniquely. This is useful in applications that need chip authentication or protection of

Intellectual Properties (IPs). Second, since PUF is essentially based on randomness,

it could be used as a Random Number Generator (RNG). Most importantly, a PUF

provides the aforementioned functionalities without storing any secret information

on the chip. An ideal PUF relies on specifications of chip itself and, therefore, it is

considered impossible to be duplicated [16].

PUF applications can be categorized in three divisions: system authentication,

secret key generation, and hardware involved cryptography. For system authentica-

tion, PUF can be used for anti-counterfeiting or hardware binding. For secret key

3

generation, PUF can be used for initiating a secret key where the key is embedded

in the form of physical characteristics of an IC, such as propagation delay. For hard-

ware cryptography, PUF can be used to generate a digital signature where secret

parameters depend on device physical characteristics [15].

Despite many of the security benefits provided by PUF, it is vulnerable to mod-

eling attacks. In a modeling attack, the adversary tries to achieve sufficiently large

number of challenge-response pairs (CRPs) to gain a numerical software model on

the PUF with lowest error possible so that one can generate the PUF responses with-

out physically possessing the hardware PUF[23]. Another vulnerability of PUF is

that one can launch a Denial of Service (DoS) attack on PUF by sending too many

challenges to it and blocking the PUF to serve other requests.

To address the aforementioned vulnerability of PUF, the proposed solution in this

work is to isolate the input and output of PUF from the outside world and, therefore, it

is impossible for the attacker to obtain enough data and derive a model for generating

PUF responses to arbitrary challenges. In particular, we embed the hardware PUF

in a physically isolated secure zone enabled by hardware isolation technologies, such

as ARM TrustZone. Our hardware isolation-based method ensures that the access to

challenges and responses of PUF cannot be granted unless it passes a strict security

verification. More specifically, we track all the authentication requests and keep

the history of the user who issued the requests, as well as the time and number of

challenges requested. We reject those requests that ask for too many challenges, or if

one user issues requests too frequently in a short period of time.

Furthermore, we develop and demonstrate a brand new application for the de-

signed PUF, namely multimedia authentication, which is an integral part of multi-

media signal processing in many real-time and security sensitive applications. We

show that the PUF-based hardware security approach is capable of accomplishing

4

the authentication for both the hardware device and the multimedia stream while

introducing minimum overhead.

Finally, we evaluate the hardware-isolated PUF design using a prototype imple-

mentation on a Xilinx system on chip (SoC). Particularly, we conduct functional eval-

uation (i.e., randomness and uniqueness) security analysis against modeling attacks,

as well as performance and overhead evaluation (i.e., response time and resource us-

ages). Our experimental results on the real hardware demonstrate the high security

and low overhead of the PUF in real time authentication.

5

Chapter 2

Background & Related Work

2.1 PUF Taxonomy

PUFs are physical systems that generate unique and unpredictable responses for given

challenges. More precisely, they can be referred to as hardware implementations of

secure one-way functions. There are various types of PUFs, each of which has its own

security applications and features [23]. The two main categories of PUFs well adopted

by the hardware security community are Strong PUFs and Weak PUFs [21, 5, 4].

2.1.1 Strong PUFs

Strong PUFs are those that have numerous CRPs, so each time the authentication

procedure can require new CRPs that have not been used before. As a result, a

potential attacker cannot perform a replay attack by recording and applying the

CRPs already used in previous authentications.

Although it can prevent replay attacks, the strong PUF is still vulnerable to

modeling attacks where the attackers attempt to collect a large number of CRPs and

build a software model to emulate the PUF behavior. Typically there is no built-in

6

protection mechanism to restrict the access to responses created by strong PUFs.

Also, most electrical strong PUFs operate at low frequencies [14] and, consequently,

even short time access to the system enables reading a large number of CRPs.

2.1.2 Weak PUF

Weak PUFs are a special case of saving keys to non-volatile memory. It has only

a small number of challenges. The response of a weak PUF is used to derive a

cryptographic embedded system and, therefore, the output available to the outside

world is an indirect response to the original challenge given to the PUF [23]. Examples

of weak PUF include SRAM PUF [11], Butterfly PUF [13], and Coating PUF [29].

One of the advantages of the weak PUF is that it is harder for an adversary to

obtain CRPs. Also, the error correction process is done internally with the error

correcting helper data stored in non-volatile memory, which ensures security. On

the other hand, strong PUFs have the error-correction process handled by external

blocks, which have access to the responses.

2.1.3 PUF Examples

The basic concept of the PUF design, which was also introduced in [5][6], is to create

a number of delayed path elements and use them randomly to generate random and

unique responses. In the following sections we are going to see two examples of PUF

designs on FPGA.

2.1.3.1 Ring Oscillator PUF

One of the most lightweight designs that can be implemented effectively on FPGA is

Ring Oscillator (RO) PUF (refer to chapter 3). RO leverages delay loops that each

7

Figure 2.1: Ring Oscillator PUF [27]

oscillates at a specific frequency [27]. Figure 2.1 shows an example of RO PUF. The

idea is to make exactly similar paths of ROs and select one of them based on the

challenge given to the PUF as input. Then, the selected path will be used as counter

clock. Since each path has a unique frequency, the clock works on a unique clock

speed and generates the results on a inimitable pace which is leveraged to generate

the response based on each challenge. In a RO PUF, all delay loops are identical

in theory but, due to the random variations in manufacturing, each loop creates a

particular frequency that is slightly different from other loops. Loops are connected

to multiplexers where input challenge is being used as selector to connect one input

delay loop to a counter. Each multiplexer’s output serves as counter clock which in

turn propagates a signal to a number of flip flops. As a result, it produces unique

response bits to a given input challenge. In this case, the counter produces the results

sooner, i.e., the one with faster frequency, is responsible for generating the response.

A RO PUF has lots of benefits comparing to other kinds of PUF. First, RO is

8

Figure 2.2: Schematic of Arbiter PUF [27]

sensitive to process variations and, as a result, it is extensively used in modeling

process variations[18, 20, 26]. Second, the hard-macro technique makes it simpler to

design several identical RO paths [16].

2.1.3.2 Arbiter PUF

Arbiter PUF uses delay elements in series, where each element is connected to a

multiplexer that chooses a path by using the input challenge. In this scenario, the

challenge is being used as multiplexers selectors as it is shown in Figure 2.2. The

response of the arbiter PUF depends on which path has the fastest signal propagation.

The arbiter performs as a referee to tell which path gets to D flip-flop faster and

consequently the fastest path will be connected to output Y. Although the Arbiter

PUF is fast, it has two main disadvantages. First, it requires symmetrical routing at

each stage, otherwise the unity of responses are not guaranteed [17]. This makes the

FPGA implementation difficult. Second, Arbiter PUF is prone to modeling attack

[23].

Compared to Arbiter PUF, RO PUF is easier to implement on FPGA which is

9

why we chose RO PUF in this thesis for the prototype implementation.

2.2 PUF Threat Models

Although PUF is a powerful hardware security primitive for authentication, it is vul-

nerable to various attacks. Most of the security attacks against PUF focus on reverse

engineering the internal structure of the PUF, so that one can clone and emulate the

PUF behavior using a software model [31][23]. Since it is very expensive if not impos-

sible to physically reverse engineer and clone a PUF, most of the existing methods

have focused on software model building attacks in the following ways: (1) Collect

a sufficiently large set of CRPs and employ machine learning techniques to build a

software model for the PUF [23]; or (2) Use side channel signals to obtain information

on how the authentication works and build a software emulator to generate the same

PUF response [31].

In addition, PUF is vulnerable to denial of service (DoS) attacks, which happens

when the attacker succeeds in feeding the inputs of circuit beyond the requests that the

PUF can handle. Therefore, the PUF is not only incapable of responding to requests

already fed to it, but also cannot handle requests of other users/applications.

There are several PUF protection schemes that have been proposed to prevent

model building attacks. Most of the existing approaches focus on how to maximize the

randomness of PUF and minimize the correlation between challenges and responses, so

that the attackers have to collect an extremely large number of CRPs for the modeling

attacks to succeed. For example, XOR-mixed PUF design [27] mixes the responses

of arbiter-based PUFs using a certain number of XOR gates in order to obfuscate

the PUF design from machine learning-based modeling. Majzoobi et al. design a

slender PUF [22] that minimizes the exposure of PUF responses to attackers by

10

conducting substring matching, which significantly increases the difficulty of modeling

attack. Controlled PUF design [4] adopts random hashing to the PUF challenges and

responses to hide the actual CRPs from the attackers.

The existing PUF security mechanisms provide strong protection against model-

ing attacks. However, almost all of them require modifications of the existing PUF

architecture or the protocol, which not only complicates the implementation and

deployment of PUF but also potentially increases the performance overhead. We

develop a new hardware isolation-based PUF protection framework to address these

issues.

2.3 Hardware Isolation

Hardware isolation techniques, such as ARM TrustZone [1] and Intel SGX [10], create

a physically separated runtime environment to protect secret data and other resources

on the target system. Since the isolation is implemented at the physical bus level,

hardware isolation provides a fundamental security guarantee, which is significantly

more robust than software or virtual machine (VM) based solutions. Until now,

hardware isolation techniques have been adopted by many software applications, such

as protecting the OS kernel [2], language runtime [25], mobile computing [28], and

cloud computing [3]. However, it has not been considered in protecting hardware

resources. Given the physical level isolation it provides, we regard hardware isolation

as a promising method of protecting hardware IP cores, such as the PUF, which are

otherwise vulnerable to a variety of attacks. Therefore, in this work, we for the first

time develop a hardware isolation-based PUF design for enhanced security.

11

2.4 Thesis Overview

The rest of this thesis first discusses design specifics and implementation details of RO

PUF in Chapter 3, and then describes protecting the design using hardware isolation,

namely TrustZone in Chapter 4. Chapter 5 presents a new application of PUF in

multimedia authentication. Chapter 6 evaluates the security and performance of the

PUF design. Chapter 7 presents our conclusions and describes possible future work.

12

Chapter 3

Design and Implementation of

Ring Oscillator PUF

In this chapter, we present our design of RO PUF on FPGAs. There are different

ways to generate the random responses in real hardware, such as using arbiters [6],

ring oscillators (ROs) [27], and SRAM [11]. In this work, we employ the RO-based

PUF in our design and experiments considering its ease of implementation on FPGAs.

However, the hardware isolation-based PUF protection approach does not rely on the

specific implementation of PUF and, therefore, other types of PUF designs can be

applied as well as long as they conform with the security requirements of PUFs [5].

3.1 Design Elaboration of RO PUF

Our RO PUF is based on the basic design proposed by Suh et al. [27]. To create an

8-bit PUF, we use two 16-input multiplexers, with each taking a 4-bit challenge as the

selector1. One input from each multiplexer is selected to be used as the clock signal

1In this design, while there are maximally 32 ROs that can be connected to the two multiplexers,
we use 16 ROs and allow sharing ROs between the two multiplexers to control the area and power

13

Figure 3.1: Post-Synthesis Timing Simulation

for the counter. Once a valid clock signal is received by the counter, it starts to count

with positive edge of its clock until it overflows (i.e., obtaining all 1’s in the output

and restarts again). Based on the unique frequency of each clock, one of the counters

overflows sooner than others, which contributes to and generates the response bits.

The result of post synthesis implementation using Xilinx Vivado toolchain is shown

in Figure 3.1.

3.2 Addressing The Design Challenges

3.2.1 Solving RO Delay Problem

The main challenge in designing RO PUF is to create identical RO paths and leverage

the process variations to make the difference between paths. Since all FPGAs use

resource optimization techniques, the similar paths going to be merged into one due

to the similarity to save resources of board. This is an unwanted scenario because we

overhead caused by the ROs. Obviously the reuse of ROs may affect the randomness of the PUF.
We use the number of ROs as a configurable parameter to control the tradeoff between security and
area/power overhead.

14

want to leverage the intrinsic fabrication variances.

To solve this problem, we create a custom strategy for synthesis, which flattens

the hierarchy during LUT mapping (rebuilt) and keeps equivalent registers. This

approach solves the problem for implementing the design on real FPGA. However,

when simulating the implementation in software, since the software does not reflect

the physical fabrication differences, we cannot expect to leverage intrinsic process

variations. To solve this problem, we hardcode different delays into the RO paths to

make them nonidentical for the software simulation phase. To make this nonidentical

paths realistic, we use a model of the delay variances due to fabrication technol-

ogy. For instance, the same transistor standard on different boards have ±5% delay.

Therefore, by having the delay value of that standard, we can make different delays

in the ±5% range. Table 3.1 shows the the implementation settings in detail.

3.2.2 Design of Multiplexers and Counters

In our PUF design, we use two 16-bit multiplexers, each with a 4-bit selector, which

create a PUF with 8-bit CRPs. Also, we use four 4-bit multiplexers to implement

each 16-bit multiplexer in the FPGA design.

The counters are both 4-bit counters. Each starts based on its unique clock

frequency and stops and generates an output when it overflows. The reason why we

select 4-bit counters is that for higher bit counters, it takes longer time to overflow,

which causes longer delay and, as a result, the PUF would respond 0 to an arbitrary

challenge. On the other hand, for lower bit counters the overflow happens faster than

the latches could handle.

15

3.2.3 Configuring Inner and Outer Clocks

Our RO PUF has two different clocks which need to work and be configured together.

The inner clock controls the flip-flops and D-latches outputs, which is the response

to the corresponding challenge. The outer clock in turn controls the RO paths being

loaded and connected to multiplexers within every positive edge. Therefore, the outer

clock should be long enough to cover the frequency of all RO paths. On the other

hand, the inner clock should be long enough to let the D-latches transfer their input

to the output before they restart, and it should be short enough to clear the latches

from all previous values before a new RO path causes a counter to overflow.

As a result, the inner and outer clocks both are responsible for generating the

results, and they affect the response time of PUF to a challenge.

3.3 PUF Implementation on SoC

We implement the RO PUF on Xilinx ZedBoard as shown in Figure 3.2, using the

Vivado toolchain. The ZedBoard has both programmable logic (PL) and a processing

system (PS) with ARM processor. Our PUF design is based on a modified version of

the implementation presented in [12]. Figure 3.3 shows our detailed block implemen-

tation.

Also, we package the PUF design as a custom Intellectual Property (IP) and

connect it to the Xilinx Zynq processing system using an AXI interconnection, as

shown in Figure 3.4. Then, a hardware implementation is created from the design

and, at the end, the bitstream is generated and downloaded to the board.

The design creates an address map for the ZedBoard processor, which provides

necessary addresses to load different registers and memories. To evaluate the PUF

performance, we feed the base address of AXI with a PUF challenge, which can be

16

Figure 3.2: Xilinx ZedBoard (Zynq 7000) Development Board

stored into the first slave register of AXI and in turn connects to the PUF input.

The response of the PUF is being stored in the second slave register of AXI, which

is accessed by the base address plus an offset. Therefore, by printing the second

slave register to the terminal, we can see the response of PUF to each corresponding

challenge.

By generating the bit stream, the design must pass synthesis and implementation

processes. The bitstream is used to program the target FPGA. The generated bit

stream is used to be exported to SDK which contains Xilinx device configuration.

17

Figure 3.3: Elaborated Design of Ring Oscillator PUF

Figure 3.4: Block Diagram and Custom IP Connection Using Xilinx Vivado
Toolchain.

18

Table 3.1: Synthesis Strategy

Name of property Mode
Flatten hierarchy rebuilt

Keep equivalent registers checked
Resource sharing off

Control set opt threshold 0
No LC checked

More Options -mode out of context

3.3.1 Settings and Configuration Strategies

To synthesize the PUF design the resource optimization should be turned off. This

requires defining custom synthesis and implementation strategies for Xilinx Vivado,

as shown in Table 3.1.

As a result of turning off resource optimization, in the simulation phase, there

could be some errors generated by Vivado that are due to the creation of the same

logic block or path multiple times. To address this simulation issue, we downgrade the

level of optimization errors to warnings in Vivado. Therefore, although this solution

is against resource optimization, but it continues to simulation phase anyway.

3.3.2 Test Benches

In this study we develop two different groups of test benches. First, we create 5000

random challenges and feed them to the design, from which we receive 5000 pairs

of responses. Second, we create 5000 pairs of random challenges (10000 challenges

total), where in each pair there is only one bit difference ranging from bit 1 to bit 8

(in a 8 bit CRP) randomly.

For the first test bench, we will check the probability distribution of 0 and 1 in

each position of response. The expected result is that the distribution should be

very similar to the distribution of challenges. In that case, we can conclude that the

19

PUF is random and the probability of each combination to happen is equal to other

combinations (in this case the probability of a combination to happen is (1
2
)8). Also,

we checked the randomness of this test set using NIST statistical package.

For the second test bench, we aim to check whether our design is immune to

modeling attacks. In this case, the testing scenario is to change one bit, feed it to

PUF and compare both of CRPs. If the response after one bit change is too much

different (half of the challenge length or more) it means that the PUF functionality is

too complex to be imitated and, therefore, the proposed PUF design cannot be easily

modeled.

3.3.3 ZedBoard Programming

To program the board we must load the address map and the configurations created

by generating the bitstream to the target board. An example of address map shown in

Figure 3.5. We use the standard JTAG interface to program and debug the ZebBoard.

Then, we connect Xilinx SDK to the UART port of the board to observe the output

(responses). The settings to connect to the UART are shown in Figure 3.6.

20

Figure 3.5: Adress Map Created for ARM Cortex 9 Processor

Figure 3.6: Connection Settings to Serial Port of Zedboard

21

Chapter 4

Protecting PUF using Hardware

Isolation

In this chapter, we present our hardware isolation-based approach to protect PUF

from modeling attacks. As we introduced in Chapter 2, hardware isolation techniques

provide fundamental protection to the system resources by creating a physically iso-

lated runtime environment. We leverage the security feature of hardware isolation

and, in particular, ARM TrustZone [1] to isolate and strictly control the access to the

PUF. Therefore, it prevents the adversaries from collecting sufficient CRPs at their

choice to issue modeling attacks against the PUF.

Figure 4.1 shows the overall framework of our hardware isolation-based PUF pro-

tection scheme. ARM TrustZone divides the application runtime into a normal world

(NW) and a secure world (SW), where SW has direct access to resources in NW,

but NW cannot directly access SW. Instead, any access to the SW must go through

the secure monitor in the monitor mode via a secure monitor call (SMC). The secure

monitor determines whether to switch the CPU mode to SW and grant access to the

resources in SW by following a access control policy.

22

Figure 4.1: Using TrustZone to Protect PUF

To protect our PUF design, we deploy the PUF as an IP core in the SW and,

therefore, the access to PUF is under the protection of the hardware isolation frame-

work. Algorithm 1 shows the authentication process in our design enabled by the

hardware isolation, which occurs once the secure monitor receives an SMC from the

NW application requesting PUF responses.

Since the system keeps track of users who demand PUF authentication, if the same

user issues too many requests (e.g., beyond a threshold T), the authentication process

will reject its requests. By restricting access to PUF CRPs, a potential attacker can

not get data to train the learning algorithm to imitate PUF. Also, this restriction

prevents the attacker from successfully launches Denial of Service (DoS) attack.

23

Algorithm 1 Device authentication using PUF protected in TrustZone

Create-Memory(M)
Create-Struct(H)
The user in NW side asks for authentication process
M ← K Challenges
Secure-Monitor-Mode()
Monitor-Call()
H (user ID) = Struct-Store(time,K)
if 0 < K ≤ T then

SW takes the next processing cycle
while SW has control do

SW access M
PUF ← K
Shared Memory ← PUF
if K responses generated then

Secure-Monitor-Mode()
Monitor-Call()

end if
end while

end if
NW takes the next processing cycle

24

Chapter 5

Two-Way Real Time Multimedia

Stream Authentication Using

Physical Unclonable Functions

In this chapter, we present a novel application of PUF, namely multimedia stream

authentication, which is an integral part of multimedia signal processing in many

real-time and security sensitive applications, such as video surveillance. We show that

PUF-based security primitive is not only capable of accomplishing the authentication

for both the hardware device and the multimedia stream but, more importantly,

introduce minimum performance, resource, and power overhead.

5.1 Overview of Multimedia Authentication

Real time multimedia streaming systems, such as video surveillance systems, are

gaining an increasing level of applications especially in the era of fast evolving internet

of things (IoTs). For example, more and more video surveillance systems have been

25

installed to monitor the real time security status of private residences, banks, highway

traffic, etc. Since many of these systems are deployed for remote security monitoring,

the video must be streamed to the monitoring portal (i.e., the remote receiving end)

via network communications. In this case, the security and integrity of the multimedia

stream become critical.

There are typically two potential threats that may compromise the surveillance

video stream. First, it is possible for an adversary to switch the source of the stream

or partially modify the video stream content before it is delivered to the receiver.

Second, an unauthorized viewer may receive and watch the video stream that he/she

is not supposed to view. The first threat may seriously compromise the security and

thus the entire purpose of deploying such a surveillance system, and the second threat

may raise privacy concerns for the objects being monitored.

The aforementioned threats raise two design goals for real time multimedia au-

thentication, which we focus on in this chaper: (1) Multimedia Authentication, which

verifies whether the multimedia content could have been modified before playback at

the receiver end; and (2) Device Authentication, which examines whether the receiver

has the permission to play the streamed multimedia content. While both threats can

be well addressed by employing a full-fledged video digital rights management (DRM)

scheme widely used by Internet entertainment video streaming [30], it requires video

encryption and thus sophisticated license and key management strategies that are too

heavy weight for the real time video surveillance.

Therefore, most of the existing approaches have focused on non-encryption and

non-DRM based video authentication solutions, such as signature-based [9][7][8] ap-

proaches, where the sender signs the stream using a public key and the receiver verifies

it using the corresponding private key. There are many research efforts that focus on

how to reduce the overhead of signing and verifying the stream by using a variety of

26

ways for hash chaining [7][8][33][32]. However, the existing multimedia authentication

approaches appear to be on another extreme compared to full DRM, as they lack the

support of device authentication and thus have no control over who can view the con-

tent. This situation may be fine in a small constrained network. However, with the

widespread IoT deployment, privacy issues have drawn significantly more attention

than ever before, and it becomes necessary to deploy a lightweight device or user au-

thentication scheme for the video surveillance scenario. In addition, the performance

of the signature and the overhead of the authentication information exchange can still

be improved.

We develop a two-way real time multimedia authentication scheme that covers

both device and multimedia content authentications. As different from the existing

approaches, our idea is to employ PUF to achieve the authentication goals. In partic-

ular, we employ the unique CRPs corresponding to the hardware PUF to authenticate

the receiver device. Also, we adopt the hardware accelerated one-way function en-

abled by PUF to improve the existing hash chaining-based method in multimedia

authentication. To the best of our knowledge, this is the first use case of hardware

security primitives in real time multimedia authentication, and we expect the cur-

rent and the continuing work could provide a new direction for improving the quality

of experience (QoE) in multimedia authentication. Real time multimedia streaming

systems, such as video surveillance systems, are gaining an increasing level of appli-

cations especially in the era of fast evolving internet of things (IoTs). For example,

more and more video surveillance systems have been installed to monitor the real time

security status of private residences, banks, highway traffic, etc. Since many of these

systems are deployed for remote security monitoring, the video must be streamed to

the monitoring portal (i.e., the remote receiving end) via network communications.

In this case, the security and integrity of the multimedia stream become critical.

27

5.2 PUF-based Multimedia Authentication

Protocol

In this section, we discuss the details of the multimedia authentication protocol based

on the PUF, which authenticates both the device and the multimedia stream in a

surveillance video streaming scenario.

5.2.1 Device Authentication

In device authentication our goal is to let the sender determine whether the receiver

device, which is requesting the video stream, is a registered device that has permission

to view the surveillance video. Figure 5.1 illustrates the authentication protocol to

achieve the goal leveraging PUFs. There is one PUF involved for each pair of sender

and receiver, and the PUF is physically possessed by the receiver. The sender hosts a

secure database that contains a sufficient set of CRPs corresponding to the receiver’s

PUF. There are several ways in which the sender could initialize the CRP database.

For example, the sender can collect a large set of CRPs from the actual PUF before

delivering it to the receiver, or the sender can maintain a software model of the

PUF, obtained from the manufacturer, and generate the CRP in the real time. For

the discussion of the device authentication protocol, we do not differentiate these

detailed CRP generation mechanisms.

In an authentication session, the sender randomly picks K CRPs from the database,

where K is a parameter determined by the sender for different levels of security, and

sends only the challenges to the receiver. Upon receiving the challenges, the receiver

applies them one by one to the hardware PUF, collects the responses, and sends them

back to the sender. Then, the sender verifies if the received responses match with the

28

Figure 5.1: Flow of The Device Authentication Protocol.

records in the database. If they do, the sender confirms that the device is authenti-

cated and starts the video stream. Otherwise, the sender will claim an authentication

failure and do not initiate the stream.

5.2.2 Multimedia Stream Authentication

For multimedia content authentication, i.e., verifying the integrity of the stream,

we adopt the hash chaining method proposed by Gennaro and Rohatgi [7] with our

improvement based on PUF. We first split the video stream into continuous streams,

which is compliant with the existing HTTP video streaming mechanisms. Then,

for each segment i, [7] proposed to embed a one-time public key and the one-time

signature of itself with respect to the key contained in segment i − 1. In this way,

there will be a chained signing and verifying procedure as shown in Figure 5.2.

Although the chaining-based signature scheme eliminates the need of the whole

stream to verify the signature, it requires storing the one-time public key in each

segment, which increases the segment sizes as well as the complexity for processing.

In our PUF-based scheme, since both the sender and receiver holds either a software

model or hardware PUF, they can both use the PUF to generate the same public key

(e.g., using a hash or a portion of the segment as input challenges) and do not need

29

Figure 5.2: Flow of The Chaining-based Signature Scheme for Multimedia Authenti-
cation [7].

to exchange the key at the runtime.

30

Chapter 6

Experimental Results

In this chapter, we evaluate the hardware-isolated PUF design in terms of function-

ality, security, and performance. Our experiments are based on the real hardware

implementation of the prototype using Xilinx Zedboard, as we presented in Chapter

4.

6.1 Security Analysis of the Isolated PUF

The fundamental security of the isolated PUF is guaranteed by the hardware isolation

technique being used, namely the ARM TrustZone [1], which ensures that the normal

world does not have direct access to the secure world. Also, the isolated PUF is able

to prevent the attackers from obtaining enough data to successfully launch a modeling

attack, as there is a strict access control procedure deployed in the secure world to

handle world switching requests. Furthermore, one cannot mount a DoS attack as

the additional requests will be rejected if the total number of requests goes beyond

the predefined threshold, as enforced by the access control mechanism.

31

Table 6.1: NIST Statistical Test

Name of Test Test No. P-value Results
Frequency (Monobit) Test 1 0.200590

Frequency Test within a Block 2 0.098598
Runs Test 3 0.918913

Test for the Longest Run of Ones in a Block 4 0.679063
Binary Matrix Rank Test 5 0.024298

Discrete Fourier Transform (Spectral) Test 6 0.588255
Non-overlapping Template Matching Test 7 0.655009

Overlapping Template Matching Test 8 0.272950
Maurer’s Universal Statistical Test 9 0.076909

Linear Complexity Test 10 0.904980
Serial Test 11 0.481101

Approximate Entropy Test 12 0.341812
Cumulative Sums (Cusum) Test 13 0.296968

Random Excursions Test 14 0.895151
Random Excursions Variant Test 15 0.8665030

6.2 Functional Evaluation

6.2.1 Randomness Test

We evaluate the randomness of the PUF responses using the NIST statistical test

suite [24], which is a commonly used benchmark for entropy analysis. In particular,

we generate 5000 CRPs from the PUF and run the 15 different NIST tests listed in

Table 6.1. According to NIST, a test is considered as passed if the P-value is greater

than 0.01. As shown in Table 6.1, the results obtained from our PUF experiments

pass all the tests, which indicates that the generated responses closely resemble a

randomly generated set.

We also evaluate the possibilities of 0s and 1s in each bit of the response for the

5000 CRPs. Ideally, the probabilities of 0s and 1s should be 50%. Figure 6.1 shows

the probability of 0s in our evaluation, which is close to the ideal results.

32

Figure 6.1: Probability of 0s in Each Position of The Response

6.2.2 Hamming Distance Test

We further evaluate the PUF design using hamming distance test. We give 5000 pairs

of randomly generated challenges to a single PUF, where each pair has only 1 bit of

difference. For an ideal PUF, we expect to obtain a hamming distance that is 50%

of the total length of the response given the 1-bit difference in the challenges. For

example, the ideal hamming distance for an 8-bit PUF is 4 bits in such a test. This

creates the most challenging situation for an attacker to build an analytical model

and attempt to guess the responses without physically possessing the PUF hardware.

Figure 6.2 shows the frequency distribution of the hamming distances resulted from

the 5000 CRPs. We observe that the most frequent hamming distances are 4, 3, and

33

Figure 6.2: Histogram of Hamming Distance Between Pairs

5, which match with our expectation. In particular, we have 99.6% different responses

once one bit is changed in the input challenge, and only 0.4% of responses are not

different due to the one bit change in input.

6.3 Performance & Overhead Evaluation

We evaluate the performance of the isolated PUF by measuring its response delay

between it receives the input challenge and it generates the output response. To

accommodate for the random noise and possibly different delays in processing differ-

ent input challenges, we run 10 groups of timing experiments using random sets of

34

challenges, the sizes of which range from 10 to 100. Figure 6.3 shows the timing eval-

uation results comparing the isolated PUF with the regular PUF without hardware

isolation1. We observe that the isolated PUF demonstrates only slight performance

overhead as compared to the regular PUF, which is due to the world switching delay

and the load/store operations to access the shared memory.

Figure 6.3: PUF Timing Evaluation Results

Furthermore, Table 6.2 shows the resource usage of the PUF implementation

obtained from the simulation report using the Xilinx Vivado toolchain. We observe

that the PUF uses very small portion of resource, i.e. less than 5% utilization for all

resources on the ZedBoard.

1The timing measurement of the isolated PUF does not include the delay caused by security
verification, as it is customizable based on the security requirements

35

Table 6.2: Resource Usage of The Isolated PUF Design

Resource Type Used Available Utilization

Slice LUTs 530 53200 1.00%

LUT as Logic 462 53200 0.87%

LUT as Memory 68 17400 0.39%

LUT Flip Flop Pairs 728 53200 1.37%

Slice Register 789 106400 0.74%

Register as Flip Flop 789 106400 0.74%

BUFGCTRL 1 32 3.13%

36

Chapter 7

Conclusions and Future Work

In this study, we have developed a hardware isolation-based approach to protect

PUFs from security attacks. In particular, we embedded the target PUF in a phys-

ically isolated secure environment, as enabled by the ARM TrustZone technology,

which prevents the attacker’s direct access to the PUF. Also, we deployed an access

control policy to prevent unauthorized or excessive requests to the PUF, to prevent

modeling and DoS attacks. Furthermore, we showed that PUF as a hardware se-

curity primitive can be used in a multimedia streaming application to provide both

device and multimedia content authentications. Our system implementation and ex-

periments on Xilinx Zedboard verified the security and performance of the proposed

approach.

For the future work, it is very interesting to look into the FPGA fatigue patterns

as it changes the paths of design in passage of time. Therefore, the responses to chal-

lenges might be different from what we currently observe. Also, it will be interesting

to conduct a more intensive study and evaluation on the resilience of PUF against a

broader set of threat models.

37

Bibliography

[1] ARM security technology: Building a secure system using TrustZone technol-

ogy. http://infocenter.arm.com/\\help/index.jsp?topic=/com.arm.doc.

prd29-genc-009492c/index.html. Acessed: 2016-04-23.

[2] A. Azab, K. Swidowski, R. Bhutkar, J. Ma, W. Shen, R. Wang, and P. Ning.

SKEE: A lightweight secure kernel-level execution environment for ARM. The

Network and Distributed System Security Symposium (NDSS), 2016.

[3] D. Evtyushkin, J. Elwell, M. Ozsoy, D. Ponomarev, N. Abu Ghazaleh, and R. Ri-

ley. Iso-X: A flexible architecture for hardware-managed isolated execution. pages

190–202, 2014.

[4] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas. Controlled physical random

functions. Computer Security Applications Conference, pages 149–160, 2002.

[5] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas. Silicon physical random

functions. ACM Conference on Computer and Communications Security (CCS),

pages 148–160, 2002.

[6] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas. Delay-based circuit au-

thentication and applications. ACM symposium on Applied computing (AC),

pages 294–301, 2003.

38

[7] R. Gennaro and P. Rohatgi. How to sign digital streams. Annual International

Cryptology Conference (CRYPTO), pages 180–197, 1997.

[8] P. Golle and N. Modadugu. Authenticating streamed data in the presence of ran-

dom packet loss. Network and Distributed Systems Security Symposium (NDSS),

pages 13–22, 2001.

[9] M. Hefeeda and K. Mokhtarian. Authentication schemes for multimedia streams:

Quantitative analysis and comparison. 6(1):6:1–6:24, 2010.

[10] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. D. Cuvillo. Using inno-

vative instructions to create trustworthy software solutions. International Work-

shop on Hardware and Architectural Support for Security and Privacy (HASP),

Article 11, 2013.

[11] D.E. Holcomb, W.P. Burleson, and K. Fu. Initial SRAM state as a fingerprint

and source of true random numbers for RFID tags. volume 7, 2007.

[12] I. Jimenez. PUF implementation. https://spaces.usu.edu/download/

attachments/53052062/IvanJimenezPUFReport.pdf?version=1. Acessed:

2016-05-11.

[13] J. Guajardo Maes R. Schrijen G.J. Kumar, S.S. and P. Tuyls. The butterfly

puf protecting ip on every fpga. Hardware-Oriented Security and Trust. HOST.

IEEE International Workshop on, pages 67–70, 2008.

[14] J.W. Lee, D. Lim, B. Gassend, G.E. Suh, M. Van Dijk, and S. Devadas. A

technique to build a secret key in integrated circuits for identification and au-

thentication applications. IEEE VLSI Circuits Symposium, pages 176–179, 2004.

39

[15] R. Maes and I. Verbauwhede. Physically unclonable functions: A study on

the state of the art and future research directions. Towards Hardware-Intrinsic

Security (THIS), pages 3–37, 2010.

[16] A. Maiti and P. Schaumont. Improved ring oscillator PUF: an FPGA-friendly

secure primitive. In Journal of cryptology, volume 24, pages 375–397, 2011.

[17] S. Morozov, A. Maiti, and P. Schaumont. An analysis of delay based PUF

implementations on FPGA. Reconfigurable Computing: Architectures, Tools and

Applications, pages 382–387, 2010.

[18] H. Onodera. Variability: Modeling and its impact on design. In IEICE Trans-

actions on Electronics, volume 89, pages 342–348, 2006.

[19] E. Ozturk, G. Hammouri, and B. Sunar. Towards robust low cost authentication

for pervasive devices. IEEE International Conference on Pervasive Computing

and Communications (PerCom), pages 170–178, 2008.

[20] L.T. Pang and B. Nikolic. Measurements and analysis of process variability

in 90 nm CMOS. In IEEE Journal of Solid-State Circuits, volume 44, pages

1655–1663, 2009.

[21] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld. Physical one-way functions.

In American Association for the Advancement of Science (AAAS), volume 297,

pages 2026–2030, 2002.

[22] M. Rostami, M. Majzoobi, F. Koushanfar, D. Wallach, and S. Devadas. Ro-

bust and reverse-engineering resilient PUF authentication and key-exchange by

substring matching. In IEEE Transactions on Emerging Topics in Computing

(ITETC), volume 2, pages 37–49, 2014.

40

[23] U. Ruhrmair, F. Sehnke, J. Solter, G. Dror, S. Devadas, and J. Schmidhuber.

Modeling attacks on physical unclonable functions. ACM Conference on Com-

puter and Communications Security (CCS), pages 237–249, 2010.

[24] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and E. Barker. A statistical

test suite for random and pseudorandom number generators for cryptographic

applications. http://csrc.nist.gov/groups/ST/toolkit/rng/documents/

SP800-22rev1a.pdf. Acessed: 2016-04-23.

[25] N. Santos, H. Raj, S. Saroiu, and A. Wolman. Using ARM TrustZone to build

a trusted language runtime for mobile applications. In International Conference

on Architectural Support for Programming Languages and Operating Systems

(ASPLOS), pages 67–80, 2014.

[26] P. Sedcole and P. Cheung. Within-die delay variability in 90nm FPGAs and be-

yond. IEEE International Conference on Field Programmable Technology (FPT),

pages 97–104, 2006.

[27] G. Edward Suh and Srinivas Devadas. Physical unclonable functions for device

authentication and secret key generation. In Design Automation Conference

(DAC), pages 9–14, 2007.

[28] H. Sun, K. Sun, Y. Wang, and J. Jing. TrustOTP: Transforming smartphones

into secure one-time password tokens. In ACM Conference on Computer and

Communications Security (CCS), pages 976–988, 2015.

[29] P. Tuyls, G.J. Schrijen, B. kori, J. Van Geloven, N. Verhaegh, and R. Wolters.

Read-proof hardware from protective coatings. International Workshop on Cryp-

tographic Hardware and Embedded Systems (CHES), pages 369–383, 2006.

41

[30] R. Wang, Y. Shoshitaishvili, C. Kruegel, and G. Vigna. Steal this movie: Au-

tomatically bypassing drm protection in streaming media services. Presented

as part of the 22nd USENIX Security Symposium (USENIX Security 13), pages

687–702, 2013.

[31] S. Wei, J. Wendt, A. Nahapetian, and M. Potkonjak. Reverse engineering and

prevention techniques for physical unclonable functions using side channels. De-

sign Automation Conference (DAC), pages 1–6, 2014.

[32] C. Wong and S. Lam. Digital signatures for flows and multicasts. In IEEE/ACM

Transactions on Networks, volume 7, pages 502–513, 1999.

[33] Z. Zhang, Q. Sun, W. Wong, and A. Proposal. of butterfly-graph based stream

authentication over lossy networks. In IEEE International Conference on Mul-

timedia and Expo (ICME), pages 784–787, 2005.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	7-2016

	SECURE AND LIGHTWEIGHT HARDWARE AUTHENTICATION USING ISOLATED PHYSICAL UNCLONABLE FUNCTION
	Mehrdad Zaker Shahrak

	tmp.1469452491.pdf.sL_wS

