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Methamphetamine (meth) dependence is often characterized by persistent 

and chronic relapse (i.e., return to drug use). There is growing pre-clinical and 

human evidence suggesting females are at greater risk to relapse. The set of 

studies presented in this dissertation extended this limited evidence by 

identifying sex-dependent neural substrates correlated with meth-triggered 

reinstatement (Experiment 1) and by examining sex-differences in reinstatement 

triggered by drugs of abuse that are commonly co-abused with meth (Experiment 

2).  Female and male rats were trained to self-administer meth, received 

subsequent extinction sessions, and then tested for reinstatement. In Experiment 

1, rats were perfused following reinstatement testing and c-Fos activity was 

examined as a measure of neural activation. Meth triggered reinstatement in both 

sexes and this effect was more robust in females compared to males. In the 

females, c-Fos activity  was significantly increased following meth-primed 

reinstatement in the cingulate cortex area 1, lateral orbitofrontal cortex, 

prelimbic cortex, caudate-putamen, nucleus accumbens core and shell, and 

central nucleus of the amygdala. In males, there were no significant differences 

following meth-primed reinstatement.  In Experiment 2, nicotine and cocaine 

were utilized as drug primes to determine if administration of these drugs could 



 
 

trigger meth-seeking behavior. Nicotine and cocaine reinstated meth-seeking 

behavior in male and female rats with no difference between the sexes. Females 

were more sensitive to reinstatement triggered with the original self-

administration drug and this effect may not generalize to priming with other 

drugs of abuse.  
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CHAPTER 1 

GENERAL INTRODUCTION 

Methamphetamine Use and Dependence  

 Methamphetamine (meth) use and dependence is a serious public health 

concern. The consequences of meth abuse on an individual are quite grave. Long-

term abuse can result in severe dental problems, malnutrition, damage to the 

cardiovascular system, memory loss, psychotic behavior (including paranoia, 

visual and auditory hallucinations, and delusions), anxiety, confusion, insomnia, 

mood disturbances, and violent behavior (National Institute on Drug Abuse, 

2013). These health problems can last for months and years following cessation 

of meth use (Volkow et al., 2001). Despite the well-documented dangers of meth, 

over 12 million people (4.7% of the population) report using meth at least once 

(Substance Abuse and Mental Health Services, 2013) and 1.2 million people 

report using in the past year (Substance Abuse and Mental Health Services, 

2013). Hospital emergency departments reported over 102,000 cases in which 

patients were admitted for meth-related issues, representing 8.2% of all 

emergency room visits for illicit drugs (Center for Behavioral Health Statistics 

and Quality, 2013). 

In addition to the high cost of meth to the health of the user, the economic 

burden of meth to society is also substantial. The RAND Corporation estimates 

the cost to the United States could be as high as $48.3 billion (Nicosia et al., 

2009). The cost of meth to society includes premature death, drug treatment, lost 

worker productivity, crime and criminal justice, health care, production and 
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environmental hazards, and child endangerment. The dire health consequences, 

in conjunction with the high economic strain to society, make the search for 

effective meth cessation strategies a priority (Brackins et al., 2011).  

Imagine for a minute a meth user. A 26 year old, single, mother of 2 

children; ages 3 and 5. Following a routine traffic stop, several grams of meth are 

confiscated and our user is arrested. With no prior convictions and a minimal 

amount of meth seized, she is eligible for drug court. She receives inpatient drug 

treatment for 90 days. During that time her children are removed from their 

home and remain wards of the state until her graduation from adult criminal 

drug court. Our exemplar makes excellent progress in the program. During her 

abstinence, she recovers her health that has deteriorated from years of meth use, 

vows to stay clean, and eventually regains primary custody of her two children. 

Three months later, however, she fails a court-mandated random drug test and is 

assigned to the county jail, forfeiting her freedom, as well as the custody of her 

young children. A return to drug use with so much to lose is quite disheartening, 

and unfortunately, all too common. The majority of addicts return to use within 6 

months of treatment (Brackins et al., 2011; Brecht et al., 2004), highlighting the 

inadequacy of behavioral and pharmacological treatments, as well as 

demonstrating the impediment that relapse serves to treating meth use disorder.    

Reinstatement: A Pre-clinical Model of Relapse 

Relapse, or a return to drug use following a prolonged period of drug 

abstinence, can occur months and even years after drug cessation (Baicy and 

London 2007; Bamford et al., 2008). A significant body of research has been 
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dedicated to elucidating factors that may play a role in the re-initiation of drug 

use after “getting clean”.  An intense urge or desire to use a drug is often referred 

to as drug craving. Human studies often utilize subjective reports and 

physiological responses (e.g., heart rate, skin conductance) to investigate drug 

craving and the factors that may influence a return to drug use (Breiter et al., 

1997; Carter and Tiffany, 1999; de Wit, 1996; Katz and Higgins, 2003; Rosenberg, 

2009; Self, 1998; Self and Nestler, 1998; Walsh et al., 2000; Wexler et al., 2001). 

Clinical studies have shown that cravings can be precipitated by drug-associated 

cues, by stress, and, the focus of this dissertation, by a priming injection of the 

drug itself (Blum et al., 2009; Carter and Tiffany, 1999; Chornock et al., 1992; 

Kaplan et al., 1985; Katz and Higgins, 2003; Preston et al., 1992; Self, 1998; Self 

and Nestler, 1998; Stockwell et al., 1982; Walsh et al., 2000; Jaffe et al., 1989). In 

a seminal study, Ludwig et al. (1974) demonstrated this drug-primed effect with 

alcohol. During abstinence, alcoholics were given ethanol and then craving was 

measured by subjective rating, as well as the number of times participants 

pressed a button to obtain more ethanol. Treatment with ethanol increased 

craving ratings and the number of button presses for ethanol (Ludwig et al., 

1974). In the ensuing decades, this priming effect has been replicated in alcohol 

and extended to other drugs of abuse (Hodgson et al., 1979; Meyer and Mirin, 

1979; Jaffe et al., 1989; Stockwell et al., 1982; Preston et al., 1992; Chornock et 

al., 1992). 

In preclinical models, reinstatement is used as a model of relapse. There 

are several phases to the reinstatement model; the first of which is self-
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administration. In intravenous self-administration, an indwelling jugular 

catheter is surgically implanted into a rat. An access port on the catheter is then 

connected to a drug-syringe pump. Rats then receive drug infusions contingent 

on manipulation of an active operandum that activates the drug pump. An 

inactive operandum is often included to compare response rates. Self-

administration is typically defined as more responding on the active compared to 

the inactive manipulandum. Self-administration is the archetypal paradigm to 

assess the primary reinforcing effects of a drug. The list of drugs that maintain 

self-administration responding is extensive, including cocaine (Ciccocioppo et al., 

2000; Mello et al., 2014; Gould et al., 2011; Guillem and Peoples, 2010; 

Montanair et al., 2015, Neisewander et al., 2000; Thomas et al., 2001), heroin 

(Bossert et al., Montanair et al., 2015; Sedki et al., 2015), alcohol (oral rather than 

IV self-administration; Ginsburg and Lamb, 2013; Funk et al., 2015; Scuppa et 

al., 2015; Steensland et al., 2007; Wouda et al., 2011), and pertinent to the studies 

presented here, methamphetamine (Beardsley et al., 2010; Cornish et al., 2012; 

Cox et al., 2013; Holtz et al., 2012; Hofford et al., 2014; Reichel et al., 2012; Roth 

and Carroll, 2004; Rubio et al., 2015; Shepard et al., 2004; Sobieraj et al., 2016). 

Our lab has refined the meth self-administration procedures and has multiple 

publications on the subject (Charntikov et al., 2015; Pittenger et al., 2016; Reichel 

et al., 2008; Reichel et al., 2009).   

Following the self-administration component, the second phase of a 

standard reinstatement paradigm is extinction. Extinction sessions are similar to 

those of self-administration except the drug that previously was received 
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following requisite operant responding is no longer available. Removal of the 

drug reinforcer results in significantly attenuated responding on the previously 

active manipulandum. Research has revealed that extinction represents new 

learning, rather than forgetting or destruction of the original learning (Bouton 

and King, 1983; Pavlov, 1927; Rescorla, 2004). In the reinstatement paradigm, 

extinction training often lasts long enough for responding on the active lever to 

diminish to consistently less than 50% of self-administration responding. 

Previous work in our lab shows this typically occurs between 12 and 15 sessions 

(Charntikov et al., 2015; Pittenger et al., 2016). 

Following extinction, reinstatement testing is the final phase of the 

reinstatement paradigm. Animals receive the reinstatement trigger and then 

responding is typically measured in the drug-taking context in the absence of 

available drug. This approach allows for measurement of drug-seeking behavior 

rather than drug-taking behavior. Notably, factors that precipitate relapse in 

human subjects also trigger reinstatement responding in pre-clinical models 

(Epstein et al., 2006; Katz and Higgins, 2003; Kufahl and Olive, 2011; Shaham et 

al., 2003). These factors include drug-associated cues, stress, and priming 

injections of the drug. A study by Hofford et al., (2014) provides an apt example 

of meth reinstatement with drug-associated cues. Following surgery to implant 

an indwelling jugular catheter and subsequent recovery, rats were trained to self-

administer meth during daily sessions. Requisite lever pressing on the active 

lever was followed by a 0.1 mg/kg meth infusion and illumination of cue lights for 

20-sec. Extinction followed self-administration. Extinction sessions were similar 
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to self-administration, however responding on the active lever no longer resulted 

in drug infusion or cue-light illumination. On the day after the last extinction 

session, cue-induced reinstatement was tested by reintroducing the cue light 

(contingent on requisite responding), while meth was still not available. This 

experiment did not have a no-cue control group, so lever pressing in the cue-

induced reinstatement session was compared to the last extinction session. 

Responding was significantly increased in the reinstatement session compared to 

the last extinction session without the cues available (Hofford et al., 2014). This 

increase in responding is interpreted as cue-induced reinstatement of meth-

seeking.  

 Stress-induced reinstatement of meth-seeking can be achieved by 

physiological or pharmacological stressor. A study by Beardsley et al. (2010) 

trained rats to self-administer meth, extinguished the responding and then 

utilized stress-induced reinstatement with a physiological stressor. During the 15 

min immediately prior to a reinstatement session (meth unavailable), rats 

received intermittent foot-shock administered at 0.63 mA for 0.5 sec with an 

average inter-shock interval of 40 s. Active lever pressing during the subsequent 

reinstatement session was then compared to the last extinction session. 

Following the foot-shock, rats significantly increased meth-seeking behavior, 

successfully demonstrating stress-induced reinstatement with a physiological 

stressor (Beardsley et al., 2010). 

Stress-induced reinstatement with a pharmacological stressor was nicely 

demonstrated by Shepard et al. (2004). Rats were again trained in a self-
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administration procedure, followed by extinction training. Prior to reinstatement 

tests (meth unavailable), rats were given either saline, 1.25, or 2.5 mg/kg of 

yohimbine in a within-subjects design. Yohimbine is a α-2 adrenoceptor 

antagonist that functions as an anxiogenic in humans (Bremner et al., 1996a; 

Charney et al., 1983; Holmberg and Gershon, 1961) and non-human subjects 

(Davis et al., 1979; Bremner et al., 1996b). Active lever responding following 

yohimbine injection was compared to levels following saline administration. Both 

the 1.25 and 2.5 mg/kg doses successfully increased lever presses, demonstrating 

stress-induced reinstatement with a pharmacological stressor (Shepard et al., 

2004). 

 Consistent with a drug prime precipitating drug relapse in humans, 

priming injections result in robust reinstatement in pre-clinical models. Our lab 

has an extensive record utilizing this particular reinstatement model. For 

example, Pittenger et al. (2016) clearly demonstrates meth primed reinstatement 

of meth-seeking behavior. In that study, rats were implanted with indwelling 

jugular catheters and trained to self-administer 0.05 mg/kg meth or saline with 

timeout cues. Rats in the meth group responded significantly more than rats in 

the saline group. Rats then received extinction without meth or saline infusions 

available and the timeout cues intact. Rats in the meth group attenuated active 

lever pressing to levels that were equivalent to the saline group. After the last 

extinction session, all rats received a meth (0.3 mg/kg SC) injection 15 min prior 

to the start of a reinstatement session with timeout cues but without meth or 

saline infusions available. These procedures allowed for meth-induced 
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reinstatement of meth-seeking behavior to be determined based on the 

comparison between active lever responding in the meth vs saline group; recall 

responding was equivalent at the end of extinction. A meth-trigger produced 

robust reinstatement of meth-seeking. The studies presented herein utilize this 

drug-trigger reinstatement paradigm.  

Sex Differences in Methamphetamine Dependence 

Numerous differences between males and females in meth addiction have 

been documented. These discrepancies range from differences in human patterns 

of meth use to differences in meth intake in pre-clinical models. In humans, 

differences between males and females arise as early as the reported motivation 

for the initiation of meth use. Brecht et al. (2004) interviewed 350 individuals 

who were treated for meth use disorder in a treatment center regarding their 

meth behavior. The motivation for initial meth use varied between the sexes; 

women start using to control weight and increase energy, whereas more men 

report being motivated by the desire to work more hours (Brecht et al., 2004). 

Brecht et al. (2004), as well as several other studies (Dluzen and Liu, 2008; Hser 

et al., 2005; Lin et al., 2004; Westermeyer and Boedicker, 2000; Wu et al., 

2007), also found that women initiate use at a younger age than men. Once meth 

use is initiated, women also tend to transition to regular use more quickly than 

men (1.6 years for females vs 2.56 years for males; Brecht et al., 2004; Rawson et 

al., 2005).  

While women appear to be more vulnerable to meth use, they are also 

more likely to identify and acknowledge their own meth dependence and seek 
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treatment (Dluzen & Liu, 2008; Kim & Fendrich, 2002). Additionally, women 

may be more responsive to meth treatment (Hser et al., 2005). Hser and 

colleagues (2005) used the Addiction Severity Index (ASI; McLellan et al., 1992) 

to assess problem severity in alcohol use, drug use, employment, family and 

social relationships, legal, psychological and medical status among 1073 meth-

abusing patients from 32 treatment centers.  Data was collected before and 9 

months after treatment admission. Hser and colleagues (2005) found that 

treatment successfully reduced severity in all 7 problem areas in both sexes. 

Women had greater changes pre- to post-treatment in ASI scores on family/social 

relationships and medical status (sexes comparable on the other measures). 

Notably, these greater reductions reflected higher pre-treatment scores in the 

females and not lower post-treatment scores. Following treatment, women still 

had higher severity scores in drug use, employment, psychological status, and 

medical status than their male counterparts, the sexes were comparable on the 

other 3 measures. Even with treatment having a greater effect in females, the 

enduring elevated severity scores may mean that the women were still at greater 

risk for relapse (Hser et al., 2005). 

Despite this converging evidence that women may be more susceptible to 

meth dependence, animal models rarely use female subjects. This leaves a critical 

need for empirical research on meth-taking/seeking in preclinical models 

employing females. The limited animal research that has investigated sex 

differences in meth drug models is consistent with work in humans. That is, 

research shows females may be more vulnerable to meth-abuse disorder. The 
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meth locomotor activity literature is concordant with this notion. Locomotor 

activity following drug administration has long been employed to measure both 

the activating effects, as well as sensitization to drugs of abuse. While meth 

administration, both acute and chronic, increases locomotor activity in both 

sexes, female rats are more sensitive to this activating effect of meth (Mattei and 

Carlini, 1996; Milesi-Halle et al., 2007; Schindler et al., 2002). Schindler et al. 

(2002) provided support for this notion in 2 separate experiments. In the first 

experiment, rats received 10 habituation days during which rats were 

administered saline prior to placement in a locomotor chamber (a 16 x 16 

infrared photocell array measured activity). A range of meth doses (saline, 0.1, 

0.3, 1.0, 3.0 mg/kg) was then tested. Rats received administration of assigned 

dose prior to placement into the locomotor chamber. Rats did not differ in 

locomotor activity following the saline injection, but did differ following 

administration of the higher doses of meth (0.3, 1.0, and 3.0 mg/kg) with females 

showing more meth activation than the males. In the second study, rats were 

repeatedly administered 0.3 mg/kg meth on 4 test days prior to placement in the 

locomotor chamber. Each test day was separated by 2 intervening days. 

Consistent with the finding with acute meth, females continued to show more 

locomotion following repeated administration (Schindler et al., 2002).    

Meth sex differences are also found when a self-administration model is 

utilized. Roth and Carroll (2004) found that a greater percentage of female rats 

self-administered a low dose of meth (0.02 mg/kg/inf) during 6 h self-

administration sessions (fixed-ratio 1 schedule: FR1) and females acquired meth 
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self-administration quicker than their male counterparts. They also found that 

when rats were switched to a progressive ratio (PR) schedule, female rats 

responded more across a range of meth doses (0.01, 0.02, 0.04, 0.08 mg/kg/inf) 

during 6 h self-administration sessions (Roth and Carroll, 2004). These sex 

differences in meth self-administration are not universal and appear to be 

dependent on the parameters used in the study (i.e., meth dose, session duration, 

reinforcement schedule, etc.). For example, Reichel et al. (2012) found that sex 

differences were apparent in meth-intake (females more than males) and 

escalation of intake (females faster than males) when self-administration sessions 

were 6 h, but did not find differences between the sexes with 1-h self-

administration sessions (Reichel et al., 2012).   

Given these varied findings, we conducted a preliminary study to 

investigate possible sex differences using the self-administration procedures that 

are utilized in our lab. Male and female rats (n=24) were trained to self-

administer meth (0.05 mg/kg/infusion) by pressing an active lever on a variable 

ratio (VR) 3 schedule in our lab’s standard protocol (for details see General 

Methods).  
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Figure 1. 

 

Males and females displayed robust self-administration and 

discrimination between the two levers (Figure 1; VR3 Methamphetamine), and 

there was not a significant difference in meth intake between the sexes. This 

outcome was not surprising as our procedures use 2-h sessions, rather than a 

more extended access duration.  

Following self-administration, we wished to further explore potential sex 

differences using our procedures by utilizing the meth-primed reinstatement 

model detailed earlier. To do so, rats entered an extinction phase, where meth 

was no longer available. Responding on the active lever decreased across sessions 

in both sexes (Figure 1; Extinction). Although there was a tendency for male 

responding to be lower in the early extinction sessions, there was not a 

statistically significant sex difference and the lower levels in males did not persist 

later in extinction. Differences in resistance to extinction following self-
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administration have been noted in previous sex differences work (Cox et al., 

2013). In a study by Cox et al. (2013), females, on average, required more 

extinction sessions to meet an extinction criteria of <25% baseline responding; 

baseline was calculated from the end of meth self-administration. This finding is 

not ubiquitous. Others have not reported a sex difference in extinction (Reichel et 

al., 2012; Holtz et al., 2012).  

Following extinction, rats received meth-primed reinstatement testing. 

For reinstatement, rats were injected intraperitoneally (IP) with 0.3 mg/kg of 

meth and placed in the conditioning chamber. Female rats responded on the 

active lever (reinstated) significantly more than males (Figure 1; Meth-Primed 

Reinstatement). This finding is concordant with similar studies that also found 

greater reinstatement induced by a meth-priming injection in females compared 

to males (Cox et al., 2013; Holtz et al., 2012; Reichel et al., 2012). Replication of 

this finding using our procedures allowed for the detailed exploration of sex 

differences in meth-primed reinstatement that are presented in this dissertation. 

The reinstatement protocol for the set of dissertation experiments reported 

herein matched this preliminary work. 

Dissertation Aims 

Human and preclinical research indicates that females are more 

vulnerable to meth addiction and relapse (Brecht et al., 2004; Carroll and Anker, 

2010; Cox et al., 2013; Dluzen and Liu, 2008; Holtz et al., 2012; Hser et al., 2005; 

Lin et al., 2004; Mattei and Carlini, 1996; Rawson et al., 2005; Reichel et al., 

2012; Schindler et al., 2002; Westermeyer and Boedicker, 2000; Wu et al., 
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2007). However, the neurobiological and behavioral factors that contribute to 

this increased vulnerability remains understudied. The goal of the present 

research was to begin to fill a paucity of preclinical studies investigating sex 

differences in meth-taking. To do so, we completed 2 separate studies. In 

Experiment 1, we used immunohistochemistry to identify sex-dependent neural 

substrates correlated with meth-triggered reinstatement; thereby identifying 

brain regions that may be targeted for functional analysis in future meth-

triggered reinstatement studies. In Experiment 2, we sought to programmatically 

investigate if the sex difference found with meth-triggered reinstatement extends 

to meth reinstatement triggered by other drugs of abuse that have high 

comorbidity with meth abuse disorder (i.e., nicotine and cocaine; Brecht et al., 

2004). Relapse, or a return to meth use following abstinence, is a hallmark of 

meth addiction. The increased vulnerability to reinstatement found in females is 

of particular interest and further investigation of the behavioral and neural 

factors that contribute to sex difference is warranted. 
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CHAPTER 2 

GENERAL METHODS 

Subjects 

Sprague-Dawley rats were purchased from Harlan Laboratories 

(Indianapolis, IN, USA) at approximately 9 weeks of age (total n=165). Rats were 

housed individually in clear polycarbonate cages (35.5 × 32 × 18 cm; length × 

width × depth) with TEK-Fresh® cellulose bedding. The colony room was 

temperature- and humidity-controlled and maintained a 6:00 AM light/6:00 PM 

dark cycle. Rats were allowed to acclimate to the colony room for 3 days. At that 

time, 90% free-feeding weights were calculated and maintained for the duration 

of the experiment. Rats received ad libitum access to water in the home cages. All 

experimental procedures were conducted during light phase of the cycle. 

Protocols were approved by the University of Nebraska-Lincoln Institutional 

Animal Care and Use Committee.  

Apparatus 

Behavioral testing was conducted in conditioning chambers purchased 

from Med Associates (ENV-008CT; Georgia, VT, USA). Each chamber measured 

30.5 × 24.1 × 21 cm and was enclosed in a sound-attenuating cubicle. A variable-

speed syringe pump (PMH-100VS; Med-Associates) was located outside each 

cubicle. Tygon® tubing was threaded from the pump syringe, through a leash, 

into the chamber to be attached to the catheter port that exited below the scapula 

of the rat. A recessed receptacle (5.2×5.2×3.8 cm) was centered on 1 sidewall of 
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each chamber. A dipper arm, when raised, provided access to 0.1 ml of 26% (w/v) 

sucrose in this recessed receptacle. A retractable lever was located on each side of 

the receptacle. A white cue-light (2.54 cm diameter; 28V, 100-mA) was mounted 

7 cm above each lever. A house-light (two white 28V, 100-mA lamps) was located 

in the cubicle, 10 cm above the Perspex chamber ceiling.  

Drugs 

(+)-Methamphetamine hydrochloride (Sigma-Aldrich, St. Louis, MO) was 

dissolved in sterile saline. Meth was infused IV at a volume of 35.74 μl over 1 sec 

at 0.05 mg/kg/infusion for Experiment 1 and 0.05 mg/infusion for a 250 g rat in 

Experiment 2 (see Experiment 2 Self-administration Methods for details). For 

reinstatement, meth was injected IP at 1 ml/kg. Meth doses are reported in salt 

form.  (–)-Nicotine hydrogen tartrate was purchased from Sigma-Aldrich (St. 

Louis, MO, USA). Nicotine was dissolved in 0.9% sterile saline and adjusted to a 

pH of 7.0 ± 0.2 using a dilute NaOH solution. Nicotine doses are reported as the 

base form. Injections of nicotine were subcutaneous (SC) at 1 ml/kg. (–)-Cocaine 

hydrochloride was purchased from Sigma-Aldrich (St. Louis, MO, USA), 

dissolved in 0.9% sterile saline, and injected IP at 1 ml/kg (salt form).  

 

GENERAL PROCEDURES 

Preliminary lever training 

Following acclimation to the colony room and food restriction to maintain 

90% of free-feeding weight, rats were trained to lever press, on both levers, in our 
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lab’s standard procedure (Charntikov et al., 2015; Charntikov et al., 2013; 

Pittenger et al., 2016). The start of each session was signaled by illumination of 

the house light and insertion of a randomly selected lever (right or left). A lever 

press or a lapse of 15 sec resulted in 4-sec access to sucrose, retraction of the 

lever, and commencement of a timeout (average=60 sec; range=30 to 89 sec). 

Following the timeout, a randomly selected lever was again inserted with the 

condition that the same lever could not be presented more than twice in a row. 

This protocol was repeated for 60 sucrose deliveries. Daily sessions range from 

65 to 80 min depending on individual performance. Training continued until a 

lever press was made on at least 80% of the lever insertions for two consecutive 

days. All rats met criterion between sessions 3 to 5. This autoshaping protocol 

ensured rats were pressing at relatively robust levels. 

Catheter Surgery and Recovery 

Indwelling jugular catheters were implanted using our standard protocol 

(previously described in Charntikov et al., 2015; Charntikov et al., 2013; Pittenger 

et al., 2016). Rats were anesthetized with a 2:1 ketamine HCl (100 mg/kg; MWI, 

Boise, ID) plus xylazine HCl (20 mg/kg; MWI, Boise, ID) cocktail (intramuscular; 

IM). The neck and back were then shaved and cleaned with isopropyl alcohol and 

betadine. Mineral oil was applied to the rat’s eyes and their nails were clipped to 

prevent eye dryness and scratching of the wound, respectively. Three incisions 

were then made, two in the back and one in the right side of the neck. The 

catheter (pictured in Graphic 1) was then placed under the skin with the base 
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mount setting flat on the back, the cannula access port sticking through the skin, 

and the catheter tubing threaded under the skin to the neck incision.  

Graphic 1. 

 

The right jugular vein was then isolated and partially cut in order to gently 

guide the end of the catheter tubing into the jugular vein. Once completed, the 

tubing was fixed inside the vein by suturing the vein, tubing, and surrounding 

tissue together. Rats were then thoroughly cleaned with hydrogen peroxide and 

the incisions were sutured closed. Following surgery, rats were administered 

buprenorphine (0.1 mg/kg, SC; MWI, Boise, ID) for pain management and 

atipamezole (0.5 mg/kg, IM; MWI, Boise, ID) to terminate anesthesia. 

Buprenorphine was again administered 24 h post-surgery. Rats were allowed to 

recover for 7 days. During recovery, they remained in their home cages and 

catheters were flushed daily with a cocktail of 0.2-ml baytril (5.0 mg/ml; MWI, 

Boise, ID) to treat and prevent infections and heparin (30 Units/ml; MWI, Boise, 

ID) to prevent catheter non-patency as a result of blood clotting and blocking 

fluid flow. Catheter patency was checked on the last day of recovery by IV 

infusion of 0.05-ml xylazine (20 mg/ml). Rats that displayed motor ataxia within 
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20 sec were considered patent (Charntikov et al., 2015; Charntikov et al., 2013; 

Reichel et al., 2008; Pittenger et al., 2016). Patency was again checked upon the 

completion of the self-administration phase; rats were excluded from the study if 

catheters were not patent.  

Post-surgery Lever Training 

Following recovery, rats were place on a variable ratio 3 (VR3) schedule of 

sucrose reinforcement. Under the VR3 schedule, on average every 3rd lever press 

(range 1 to 5) was followed by 4-sec access to sucrose. Levers were again inserted 

individually with the condition that the same lever was not inserted more than 2 

times in a row. These procedures ensured robust responding with both levers 

having a similar reinforcement history (Charntikov et al., 2015; Charntikov et al., 

2013; Pittenger et al., 2016). This training lasted for 3 daily 1-h sessions 

conducted on consecutive days. On session 3, all rats earned more than 71% 

(range of 43-55) of the 60 possible sucrose deliveries. 

Self-administration 

Rats then began the self-administration phase of the experiment. Drug 

(meth or saline) was available on a VR3 schedule of reinforcement. During 

training, two levers were present, active and inactive. Rats were randomly 

assigned which of the two levers served as the active (meth or saline infusion) vs 

inactive lever. Sessions were 120 min and conducted daily, 7 days per week. 

Before a rat was attached to the leash/tubing at the start of each session, the 

catheter was flushed with 0.2-ml heparin (30 Units/ml) in sterile saline. The 

session commenced with insertion of both levers and priming of the catheter with 
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meth or saline [ca. 31 µl (90% of internal catheter volume)]. Requisite VR3 

responding on the active lever initiated an infusion of meth or saline, retraction 

of both levers, and illumination of the house light for a 20-sec timeout. Following 

the timeout, both levers were extended and the house light was terminated. 

Responding on the inactive lever was recorded but had no programed outcome. 

After each session, the catheter was flushed with a cocktail of 0.2 ml-baytril (5.0 

mg/ml) and heparin (30 Units/ml) in sterile saline. 

Extinction 

Extinction sessions commenced 24 h after the last self-administration 

session. Extinction sessions were identical to self-administration sessions except 

drug was no longer infused. Requisite VR3 responding on the active lever still 

produced the same cues and the timeout. Responding on the inactive lever was 

recorded but held no programed consequence. Sessions were 120 min and 

conducted daily, 7 days per week. 

Reinstatement 

Twenty-four hours after the last extinction session, rats began 

reinstatement testing. Drug-primes were administered prior to the reinstatement 

sessions. Reinstatement sessions were identical to extinction sessions (i.e., drug 

not available). Requisite VR3 responding on the active lever still produced the 

same cues and the timeout. Responding on the inactive lever was recorded but 

held no programed consequence. See Experiment 1 Methods and Experiment 2 

Methods for detailed accounts of reinstatement testing, as they differed between 

experiments.  
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CHAPTER 3 

EXPERIMENT 1 

IDENTIFICATION OF SEX-DEPENDENT NEURAL SUBSTRATES 

CORRELATED WITH METH-TRIGGERED REINSTATEMENT 

Introduction 

Neurobiology of Methamphetamine-Primed Reinstatement 

 Our preliminary study demonstrated behavioral sex differences in meth-

primed reinstatement. Consistent with previous studies, females reinstate lever 

pressing significantly more than their male counterparts (Cox et al., 2013; Holtz 

et al., 2012; Reichel et al., 2012). While these behavioral differences have been 

reliably found, little is known regarding the neurobiology of these differences. 

The aim of Experiment 1 was to identify potential neural correlates that show 

differential activation between the sexes following meth-primed reinstatement. 

The goal of this study was to be the initial experiment in a programmatic line of 

study investigating the neurobiology of meth-primed reinstatement and 

associated sex differences. To this end, 20 brain regions were examined for 

differential expression of c-Fos following reinstatement testing. c-Fos is an early 

immediate gene that has long been used as a marker for neuronal activation 

(Curran and Morgan, 1985; Curran and Morgan, 1995; Kovacs, 1998; Greenberg 

and Ziff, 1984). c-Fos is critical in the formation of a transcription factor known 

as activator protein-1. c-Fos is commonly utilized as a marker for 2 major 
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reasons; there are low levels of c-Fos transcription under basal conditions and it 

is readily activated in response to various stimuli throughout the brain (Kovacs, 

1998). The c-Fos immunohistochemical approach has the advantage that it allows 

for examination of a number of brain regions. While determining the 

functionality of identified regions using ablation, chemogenetic, and optogenetic 

techniques is a long-term goal of the programmatic line of research referenced 

above, the first step is identification of regions of interest.  

 The brain regions examined in this study were the cingulate cortex area 1 

and 2 (Cg1; Cg2), prelimbic cortex (PrL), infralimbic cortex (IL), lateral orbital 

cortex (LO), dorsal medial caudate-putamen (dmCPu), dorsal lateral caudate-

putamen (dlCPu), ventral medial caudate-putamen (vmCPu), ventral lateral 

caudate-putamen, (vlCPu), nucleus accumbens core (NAcC), nucleus accumbens 

shell (NAcSh), hippocampus proper (CA1; CA2; and CA3) and ventral subiculum 

(VS), amygdala [central (CEA); basolateral (BLA)], lateral hypothalamus (LH), 

ventral tegmental area (VTA), and substantia nigra (SNR). Given the importance 

of relapse in drug abuse disorder, a number of studies have examined the 

neurobiology of reinstatement. The 20 brain areas examined in this study were 

carefully selected based on prior research implicating these regions in the 

reinstatement process (detailed below), however, there are lacunae in our 

understanding on the specificity to meth and drug-primed reinstatement. Much 

of what we know has been inferred from general reinstatement circuitry, 

although several recent studies that begin to fill this gap are noted. 



23 
 

Given the importance of the prefrontal cortex in decision making and 

executive function, several regions of the cortex were examined. The cingulate 

cortex (Cg) was of interest as it has been implicated in both drug- and cue- 

induced reinstatement (Breiter et al., 1997; Childress et al., 1999; Ciccocioppo et 

al., 2001; Neisewander et al., 2000; Thomas and Everitt, 2001; Wexler et al., 

2001). Following self-administration and extinction, Neisewander et al. (2000) 

examined c-Fos expression after cocaine- or cue-induced reinstatement in a pre-

clinical model. Male rats were trained to self-administer cocaine or saline. 

Extinction training then occurred, followed by reinstatement testing (controls did 

not receive cues or a cocaine injection) and brain extraction. Reinstatement 

behavior (both cue- and cocaine-induced) was detected in the rats that had 

received self-administration with cocaine. In the Cg, c-Fos expression was higher 

in the groups that received the reinstatement triggers compared to controls 

(Neisewander et al., 2000). These results have been replicated in cocaine 

reinstatement (Kufahl et al., 2009a; 2009b) and extended to meth-primed 

reinstatement (Recinto et al., 2012). However, females were not examined in 

these studies. When females were examined in a cue-induced cocaine seeking 

paradigm, the Gg did indeed show increases in c-Fos expression (Zhou et al., 

2014). This increase in activation in females and possible sex differences has yet 

to be determined in a meth-primed model.  

The medial prefrontal areas, including the PrL and IL, are abundantly 

interconnected with other regions that mediate the reinforcing effects of 

psychostimulants including the VTA, striatum, and amygdala (Aoki and Pickel, 
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1989; Murase et al., 1993; Sesack and Pickel, 1992; Taber and Fibiger, 1995). 

These areas have been implicated in aspects of addictive behavior in work by 

Weissenborn et al. (1997) that utilized ablation to show these medial prefrontal 

cortical regions mediate the ability of drug-associated cues to induce cocaine-

seeking behavior. This outcome has been supported by additional work showing 

the medial prefrontal cortex is critical to the expression of reinstatement 

behavior induced by cues and drug prime (Fuchs et al., 2005; McFarland and 

Kavivas, 2001; McLaughlin and See, 2003). Parsegian and See (2014) 

demonstrated that during cue- and meth-primed reinstatement the dorsal medial 

prefrontal cortex (defined by their methods as containing regions of the Cg1 and 

PrL) had increased efflux of dopamine and glutamate, implicating transmission 

of these neurotransmitters in these regions in the meth reinstatement process.  

Additionally, Kufahl et al. (2009) showed that the PrL and IL had 

increased c-Fos activation following reinstatement of cocaine seeking behavior by 

cues previously paired with drug. This effect was replicated in a meth 

reinstatement procedure (Recinto et al., 2012). Recinto et al. (2012) found 

increased c-Fos activation following meth-primed reinstatement in the medial 

prefrontal cortex, however no distinction was made in this latter study between 

the CG, PrL, and IL and this effect was only examine in male rats. The lack of 

differentiation between regions is notable, as Rocha and Kalivas (2010) found 

differential involvement of the PrL and IL in meth reinstatement induced by cues 

or meth-prime. That is, inactivation of the PrL eliminated both cue- and meth-

induced reinstatement behavior, but inactivation of the IL only inhibited cue-
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induced reinstatement; suggesting dissociable control of behavior in the regions 

(Rocha and Kalivas, 2010). Further, some work actually shows the IL is a primary 

site of the inhibition of behavior produced by extinction. Reinstatement of 

cocaine seeking triggered by a cocaine prime was blocked by increased neuronal 

activity induced by a direct glutamate agonist microinjection into the IL and 

reinstatement was enhanced by inhibition with GABA agonists in the IL (Peters 

et al., 2007; Peters et al., 2008). Examining these areas in a meth-primed 

paradigm was warranted.  

The LO was also examined. The LO shares significant neuroanatomic 

connections with the mesolimbic reward pathway and is crucial in processing 

reward salience (Schoenbaum et al., 2006). In humans, the LO is hypermetabolic 

in cocaine abusers reporting intense craving (Bonson et al., 2002; Volkow et al., 

1991, Volkow et al., 1999). In rats, ablation of the LO results in the inability to use 

outcome expectancies to guide behavior (Gallagher et al., 1999; Izquierdo et al., 

2004). Kufahl et al. (2009) also showed that in male rats, the LO had a higher 

number of c-Fos-positive nuclei following cocaine reinstatement induced by cues. 

The study presented herein examined if and how activation of these cortical areas 

was differential in males and females following meth-primed reinstatement.  

The caudate-putamen, part of the dorsal striatum and basal ganglia 

macrocircuit, serves as a critical structure in the neurobiology of drug addiction 

(Volkow et al., 2006). In humans addicts, a cocaine prime activates the caudate-

putamen (Breiter et al., 1997) and previously paired drug-cues elicit dopamine 

increases in the caudate-putamen with the magnitude of this increase positively 
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correlated with self-reports of craving (Garavan et al., 2000; Volkow et al., 

2006,). Neutral stimuli repeatedly paired with a rewarding drug will acquire the 

ability to increase dopamine in the caudate-putamen, facilitating drug-seeking 

behavior in pre-clinical models (Ito et al., 2002; Vanderschuren et al., 2005). 

Additionally, pre-clinical work with male rats has shown that cocaine-priming 

injections enhance c-Fos expression in the caudate-putamen (Neisewander et al., 

2000). The role of the caudate-putamen in mediating the habitual nature of 

compulsive drug seeking (Robbins and Everitt, 1999; Tiffany, 1990) makes it a 

prime target for investigation of potential sex differences in drug-primed 

reinstatement. Previous work has found a significant effect of sex in c-Fos 

activation of the caudate-putamen in one particular reinstatement model (Zhou 

et al., 2014). Females showed significantly more positively labeled c-Fos in the 

dmCPu following cue-induced reinstatement of cocaine seeking, but no other 

caudate-putamen region. In one of the few studies that has examined neuronal 

activation during meth reinstatement, Rubio et al. (2015) found significant c-Fos 

activation in the dorsal medial and dorsal lateral caudate-putamen following 

reinstatement induced by re-exposure to a meth-taking context (i.e., one form of 

cue-induced reinstatement). This meth-reinstatement effect was only examined 

in male rats (Rubio et al., 2015). Given the size of the caudate-putamen and 

findings that different subregions may have different functions (Charntikov et al., 

2012; Fuchs et al., 2006; Zhou et al., 2014), sex differences in c-Fos activation 

following meth-primed reinstatement were examined in 4 different regions of 

interest; dlCPu. dmCPu, vlCPu, and vmCPu.   
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The nucleus accumbens was of particular interest as a key structure in the 

mesolimbic pathway. The mesolimbic pathway serves as the brain’s primary 

reward circuitry (Hyman et al., 2006; Kalivas and Volkow, 2005; Robison and 

Nestler, 2011). The reinforcing effects for drugs of abuse, as well as natural 

rewards (e.g., food and sex) are largely mediated by dopaminergic 

neurotransmission projecting from the VTA to the nucleus accumbens, caudate-

putamen, amygdala, hippocampus, and prefrontal cortex (Hyman et al., 2006; 

Kiyatkin and Stein, 1996; Koob and Simon, 2009; Phillips et al., 2003; Robison 

and Nestler, 2011).  

In addition to dopaminergic transmission, glutamatergic 

neurotransmission in the mesolimbic pathway is also a key component in the 

expression of drug-seeking behavior (for a review see Kalivas and Volkow, 2005). 

For example, Parsegian and See (2014) found increased glutamate levels during 

both cue- and meth-triggered reinstatement of meth-seeking behavior. Di Ciano 

and Everitt (2001) also showed that NMDA receptor antagonists microinjected 

into the NAcC and NAcSh decreased cocaine-seeking and cocaine-taking 

respectively, demonstrating a dissociation of the two areas. Differential 

conditioned dopamine release in the core and shell further supports dissociation 

in these regions of the nucleus accumbens. Ito and colleagues (2000) showed 

that while dopamine increased in both areas during cocaine self-administration, 

only in the NAcC was dopamine elevated by non-contingent presentations of a 

cocaine paired cue; indicating that the NAcC may be particularly important in 

mediating responding to drug-associated stimuli. Parkinson et al. (2000b) also 
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determined that the core plays a more prominent role in reward-related learning 

compared to the shell by demonstrating that lesions of the core, but not shell, 

impaired acquisition of a Pavlovian conditioning in an autoshaping procedure.  

These nucleus accumbens subregion specific lesion effects were also found 

using a meth reinstatement procedure. Rocha and Kalivas (2010) found that 

inactivation of the NAcC reduced cue- and meth-primed reinstatement, while 

inactivation of the NAcSh reduced neither reinstatement type. Further, Kufahl et 

al. (2009) established that c-Fos activation was increased by cue-induced 

reinstatement of cocaine seeking in the NAcC and NAcSh. However, this effect 

was more robust in the core compared to the shell (i.e., differences were only 

detected in the shell by an uncorrected t-test comparing cue group to no-cue 

control group). Curiously, this c-Fos increase following cue-induced 

reinstatement in the shell and core of the nucleus accumbens has not been 

universally found. On the contrary, Zhou et al. (2014) found that c-Fos expression 

was actually deceased in the core and shell in male and female rats following cue-

induced reinstatement of cocaine seeking. Additionally, the main effect of sex was 

significant in the shell, but not in the core, with females showing more activation 

than the males (Zhou et al., 2014). Further examination of these sex differences 

and determining if these findings replicate in a different reinstatement model 

(i.e., drug-primed) with a different drug (i.e., meth) was one of the goals of this 

study.        

The hippocampus is a brain structure vital to memory and learning 

functions (Squire, 1992). As memory and learning are central components in the 
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reinstatement of drug-seeking following extinction, the hippocampus was 

carefully examined in Experiment 1. The ventral subiculum, as well as 3 separate 

loci in the hippocampus proper (CA1, CA2, and CA3) were investigated. The 

ventral subiculum of the hippocampus was examined based on work identifying it 

as an important interface between the hippocampus proper and brain reward 

circuitry including the nucleus accumbens and prefrontal cortex (for a review see 

Cooper et al., 2006). Taepavarapruk and Phillips (2003) provided support for the 

VS’s role in reinstatement by demonstrating that electrical stimulation of the VS 

reinstated pressing on a D-amphetamine paired lever and induced an increase of 

dopamine efflux in the nucleus accumbens measured by in vivo microdialysis. 

The finding that VS stimulation increased both drug-seeking behavior and 

accumbal dopamine levels has also been demonstrated with cocaine (Vorel et al., 

2001). Accordantly, inhibition of the VS via temporary inactivation by local 

bilateral microinjections of lidocaine decreased cocaine-induced reinstatement 

compared to saline microinjections (Sun and Rebec, 2003). These decreases 

following VS inactivation were specific to drug-seeking behavior; lidocaine 

injections had no effect on cocaine self-administration (Sun and Rebec, 2003). 

Zhou et al. (2014) found that increases in c-Fos expression in the VS correlated 

with drug seeking in male and female rats, replicating previous work using only 

male rats (Kufahl et al., 2009). Zhou et al. (2014) utilized cocaine as the drug in 

question and reinstatement was induced by cues. Under these parameters, 

females showed more c-Fos immunoreactivity in the VS than the males (Zhou et 

al., 2014).  
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Regions of the hippocampus proper were included as previous work has 

shown differential activation of these 3 regions. All 3 regions have been shown to 

be more active during cue-induced reinstatement (Kufahl et al., 2009; 

Neisewander et al., 2000; Zhou et al., 2014). However, females when tested 

showed more neuronal activation in the CA1 and CA3 regions (Zhou et al., 2014). 

While the role of the hippocampus in certain reinstatement models has been 

established, possible differential activation between the sexes in a meth-primed 

reinstatement model need to be determined.  

The amygdala is a key component of the limbic system mediating 

motivated behavior. Human studies have found cues previously paired with drug 

induce changes in amygdala metabolic activation and these increases are 

correlated with craving in addicts (Bonson et al., 2002; Childress et al., 1999; 

Grant et al., 1996; Kilts et al., 2001). In preclinical studies, inactivation of the  

BLA via dopamine antagonism or ablation can reduce reward-seeking behavior 

(Di Ciano and Everitt 2004; Fuchs et al., 2005; McLaughlin and See, 2003; See et 

al., 2001; Whitelaw et al., 1996). The CEA also plays a role in the addiction 

process with research showing that inactivation of this area reduces the activating 

effects of psychostimulants, and may play a role in certain types of reward-related 

learning (Gallagher et al., 1990; Parkinson et al., 2000a; Robledo et al., 1996). 

Kufahl et al. (2009) found that there may be differential activation between the 

two areas during reinstatement induced by previously paired cues. c-Fos 

activation in the BLA was significantly increased in the group that received cue-

induced reinstatement, however, this increase was not found the CEA (Kufahl et 
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al., 2009). Neisewander et al. (2000) also found exposure to a drug-paired cue 

enhanced c-Fos expression in the BLA, but not the CEA. Notably, cocaine 

administration increased c-Fos in the CEA but not the BLA. However this 

increase was observed in rats that received cocaine self-administration and saline 

self-administration (Neisewander et al., 2000). That is, the cocaine increased c-

Fos in the CEA expression when it was functioning as a drug-trigger in 

reinstatement of cocaine-seeking behavior and upon acute administration 

independent of prior drug learning. Further examination of possible differences 

in neuronal activation between a drug-prime and acute drug injection, as well as 

identification of regions differentially altered between the sexes, was completed 

by Experiment 1. 

As mentioned above, dopaminergic projections from the VTA to the 

nucleus accumbens, caudate-putamen, amygdala, hippocampus, and prefrontal 

cortex serves as the brain’s primary reward circuitry and the reinforcing 

properties of drugs of abuse are mediated through this system (Hyman et al., 

2006; Kalivas and Volkow, 2005; Robison and Nestler, 2011). As expected, the 

VTA has been implicated in drug reinstatement and shows increased activation 

following a cocaine prime in cocaine-dependent subjects (Breiter et al., 1997). 

Morphine, known to activate mesolimbic dopamine neurons, directly 

microinjected into the VTA produces drug-primed reinstatement in cocaine or 

heroin self-administration trained rats (Stewart, 1984). Accordingly, transient 

VTA inhibition by direct microinjection reduces cocaine-induced reinstatement 

of cocaine-seeking behavior (McFarland and Kalivas, 2001). Examination of 
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neuronal activation of the VTA revealed that it did show increased c-Fos 

expression during cocaine reinstatement (Neisewander et al., 2000). 

Additionally, there appear to be sex differences in c-Fos immunoreactivity in the 

VTA. Zhou et al. (2014) found that females had higher levels of c-Fos activation in 

this area. However, this effect was found in the group that received cue-induced 

reinstatement of drug-seeking and a control group that did not receive cue-

induced reinstatement, suggesting basal differences (Zhou et al., 2014). 

Determining basal neuronal activation in male and female rats following our 

basic protocol (i.e., saline self-administration and saline reinstatement trigger) 

was one goal of this study.  

The LH is a central structure the hypothalamic-pituitary-adrenal (HPA) 

axis. The HPA axis functions as the primary stress system; mediating a litany of 

bodily processes in response to a physical or psychological stressor (de Kloet et 

al., 2005). Additionally, this circuitry shows significant dysregulation following 

drug intake (for reviews see Becker-Krail and McClung 2016; Fosnocht and 

Brand, 2016). As discussed earlier, stress readily reinstates meth-seeking 

behavior (Beardsley et al., 2010; Shepard et al., 2004). While the procedures 

used in this set of studies did not explicitly use a pharmacological or physical 

stressor, stress may have still played a role. The restraint and administration of a 

subcutaneous injection that is necessary in the drug priming procedure, may 

have served as a stressor in itself. Also, the drug seeking induced by a meth-

trigger without the subsequent outcome of meth infusion may be a stressful event 

(recall that meth is unavailable in the reinstatement session). When neuronal 
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activation in the LH was investigated in cocaine seeking induced by a cocaine 

paired cue, females tended to show more c-Fos positive cells (Zhou et al., 2014). 

Although this effect did not reach significance, this tendency may have been due 

to the limited n of 7 per group (Zhou et al., 2014). With this in mind, the LH was 

included as a locus of interest. 

Finally, the SN was also examined for c-Fos activation following meth-

primed reinstatement. The SN is a key component of the basal ganglia and key 

source of dopaminergic projections to the striatum (Nicola et al., 2000). This 

circuit is often referred to as the nigrostriatal system and, similar to the 

mesolimbic system, plays an important role in drug addiction (Jasinska et al., 

2014; Ikemoto et al., 2015; Wise, 2009). The substantia nigra, specifically, has 

been implicated by work that shows that activation of dopaminergic neurons in 

this region is highly rewarding (Ilango et al., 2014; Rossi et al., 2013). In fact, rats 

responded at similar rates to deliver photostimulation of dopamine neurons in 

the SN and the VTA (Ilango et al., 2014). When neuronal activation was 

examined in cue- and cocaine-induced cocaine-seeking reinstatement 

procedures, there was significant increase in the SN (Kufahl et al., 2009; 

Neisewander et al., 2000). Determining if this finding is replicated with our meth 

procedures and examining possible sex differences was one goal of Experiment 1.      

As detailed above, while significant progress has been made in elucidating 

the neurobiological circuitry that underlies drug relapse, there remains a 

significant paucity in our understanding. With females rarely utilized, the gap is 

particularly glaring with regard to identification of brain areas that may differ 
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between the sexes. Experiment 1 began to fill this gap by identifying sex-

dependent neural substrates correlated with meth-triggered reinstatement of 

meth-seeking behavior. 

Design 

Graphic 2. 

 

Experiment 1 utilized a 2 x 2 x 2 factorial design with sex (male or female), 

self-administration drug (saline or meth), and drug-trigger (saline or meth) as 

between-subjects factors (Graphic 2). This design resulted in 4 separate groups 

for each sex (SalineSA/SalineT, SalineSA/MethT, MethSA/SalineT, 

MethSA/MethT) allowing for careful investigation of brain regions correlated 

with meth-triggered reinstatement. The first part of each name indicates the drug 

each group self-administered (saline or meth) and the second part of each name 

indicates the drug that “triggered” reinstatement (Saline or Meth; n=14 per 

group; see Graphic 2). Each group provided us with vital information regarding 

the activation of brain regions associated with reinstatement. The 

SalineSA/SalineT group provided baseline c-Fos activation for both sexes in the 
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absence of meth self-administration or an acute meth injection. The 

MethSA/SalineT groups allowed for examination of c-Fos activation that is 

correlated with an extinction (i.e., drug abstinent) period following self-

administration of meth. The SalineSA/MethT groups was used to detect neural 

substrates correlated with acute meth injection while controlling for exposure to 

chambers, handling, etc. Finally, the MethSA/MethT groups allowed us to 

identify sex-dependent neural substrates correlated with meth-triggered 

reinstatement following meth self-administration. Given the number of animals 

included in this project (n=112) and the time consuming nature of self-

administration experiments, 4 replications were required (rep 1: n=25, rep 2: 

n=29, rep 3: n=29, rep 4: n=29) to complete this experiment. Each replication 

contained all 8 groups.  

Procedures 

Graphic 3. 
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Preliminaries and Surgery 

Following acclimation to the colony room and food restriction to maintain 

90% of free-feeding weight, rats received preliminary lever training (see 

GENERAL PROCEDURES for details). Indwelling jugular catheters were then 

implanted using our standard protocol (see GENERAL PROCEDURES) and rats 

were allowed to recover for 7 days. Following recovery, rats were placed on a 

variable ratio 3 (VR3) schedule of sucrose reinforcement in standard post-

surgery lever training (see GENERAL PROCEDURES).  

Self-administration 

Following these preliminaries, male and female rats were separated into 2 

self-administration conditions: MethSA or SalineSA. Rats in the MethSA 

conditions began self-administration of meth during daily 2 h sessions. Rats in 
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the SalineSA condition began daily 2 h sessions identical to those received by the 

MethSA condition except saline was available in lieu of meth. Self-administration 

continued for 21 days (see GENERAL PROCEDURES for details).  

Extinction 

In Experiment 1, extinction sessions commenced 24 h after the last self-

administration sessions. Extinction sessions were identical to self-administration 

sessions except meth and saline were no longer infused. Requisite VR3 

responding on the active lever still produced the same cues and the timeout. 

Extinction was conducted daily for 12 consecutive sessions. 

Reinstatement 

At the end of extinction, the MethSA and SalineSA conditions were split 

further into 2 different reinstatement-trigger groups: SalineT or MethT. Rats 

were pseudo-randomly assigned with the caveat that the groups did not differ 

statistically in responding at the end of extinction. This created 4 groups of males 

and 4 groups of females: SalineSA/SalineT, SalineSA/MethT, MethSA/SalineT, 

MethSA/MethT. Rats in the MethT groups were administered a 0.3 mg/kg 

injection of meth (IP) 15 min before a 70-min reinstatement session, whereas the 

SalineT groups received a saline injection (IP) 15 min before their 70-min 

reinstatement session. The reinstatement session was identical to extinction 

sessions (i.e., no available infusions) except for the truncated time; decreased 

from 120 to 70 min. The session length was shortened due to preliminary data 

revealing that lever pressing peaked during the first 10 min of reinstatement 

sessions. c-Fos is primarily expressed approximately 60-90 min after neuronal 
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activation (Kovacs, 1998). Limiting the reinstatement session to 70 min allowed 

for sufficient time to gather the crucial behavioral data, as well as identify brain 

regions correlated with the meth trigger and the reinstatement behavior.       

Perfusion and Brain Extraction 

Immediately following the reinstatement session, rats were deeply 

anesthetized by injection with Fatal-Plus (25 mg/kg; MWI, Boise, ID).  Rats were 

then transcardially perfused with 200 ml of ice cold 0.9% saline followed by 200 

ml of ice cold 4% paraformaldehyde. Brains were rapidly removed and post-fixed 

in 4% paraformaldehyde for 24 h at 4°C. Brains were then cryoprotected in 30% 

sucrose for 72 h at 4° C. Following cryoprotection, brains were frozen on dry ice 

and stored at -80° C until all 4 replications of the experiment were completed.  

Histology 

Table 1. 
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Following the 4th and final replication, brains were pseudo-randomly 

assigned, controlling for group type, to 1 of 10 batches (see Table 1). Psuedo-

random assignment was to control for slightly variations in the staining process 
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across batches (Rhodes et al., 2005).  Brain slices were cut at 40 µm on a freezing 

microtome. Brain regions were identified according to the atlas of Paxinos and 

Watson (2007). Coronal sections were collected at 3.24 mm bregma to assess the 

Cg1, PrL, IL, and LO (see Graphic 4). Coronal slices at 1.80 mm bregma were 

used to examine the Cg2, dmCPu, dlCPu, vmCPu, vlCPu, NAcC, and NAcSh 

(Graphic 4). Regions of the hippocampus (CA1; CA2; and CA3), amygdala (CEA; 

BLA) and LH were identified on sections collected at -2.64 mm bregma (Graphic 

4). Finally, sections at -5.88 mm bregma contained the VTA, SNR, and VS 

(Graphic 4). Each area of interest was examined in a single hemisphere from 3 

separate tissue sections per rat (cf. Zhao and Li, 2010).  

Graphic 4.  
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c-Fos Immunohistochemistry 

Following sectioning, brain slices were stored for no more than 48 h in a 

0.02 M phosphate buffered saline (PBS): 0.1% sodium azide solution. For c-Fos 

immunohistochemistry, brain sections incubated on ice for 1 h in blocking 

solution [10% normal goat serum (NGS): 0.3% Triton X-100: 0.02 M PBS]. 

Sections were then washed 3 times in wash buffer (0.3% Triton X-100: 0.05% 

NGS: 0.02 M PBS) for 10 min per wash. Washing was proceeded by incubation in 

1.5% hydrogen peroxide: 50% methanol for 30 min on ice. This was followed by 

another round of 3 washes with wash buffer (10 min per wash). Sections were 

then incubated with c-Fos primary antibody (Santa Cruz Biotechnology, Dallas, 

TX, USA; 1:3000 dilution) in 0.3% Triton X-100:1% NGS: 1% blocking 

reagent:0.02 M PBS for 48 h at 4°C. Following incubation with the primary 

antibody, sections were washed 3 times for 10 min per wash with wash buffer. 

Then sections were incubated with biotinylated goat anti-rabbit secondary 

antibody (Vector Labs, Burlingame, CA, USA; 1:200 dilution) in 1% NGS:0.02 M 

PBS for 2 h on ice. This was followed by 3 washes (10 min per wash) with 0.02 M 

PBS. Sections were then incubated with horseradish peroxide avidin-biotin 

complex (Vectastain Elite ABC Kit, Vector Labs, Burlingame, CA, USA: 1:200 

dilution) in 0.02 M sodium azide- free PBS. This was followed by 3 washes with 

0.05 Tris-HCl. Sections were then incubated for 5 min in diaminobenzidine-

based peroxide substrate (DAB Substrate Kit, Vector Labs, Burlingame, CA, USA) 

to aid in protein visualization. Brain slices were then mounted on gelatin-coated 
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slides and allowed to air-dry at room temperature. They were then dehydrated in 

ascending alcohol concentrations, cleared in xylene and cover slipped with 

mounting medium (Permount, Fisher Scientific, Suwanee GA, USA).         

c-Fos Imaging and Quantification 

 A digital image (20x objective lens magnification; 490 μm2) was captured 

from each region of interest from anatomically matched sections (1 image from 

each tissue section x 3 tissue sections per area for each rat) using a light 

microscope (Olympus CX41RF, Tokyo, Japan) fitted with a digital camera 

(Infinity Lite, Ottawa, ON, Canada). For each image, c-Fos immunoreactivity was 

automatically identified and counted using NIH ImageJ software (Abramoff et 

al., 2004; Charntikov et al., 2012). Sample photomicrographs of c-Fos expression 

are provided in Graphic 5. Imaging and immunoreactivity quantification using 

ImageJ were performed blind to the treatment status of the sections.  
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Graphic 5. 

 

Dependent Measures 

 Lever-pressing was the primary dependent measure during the behavioral 

phases of the experiment. To show inactive lever responding relative to active 

lever responding during self-administration, a discrimination index was 
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calculated using the following formula: Discrimination Index = [Active Lever 

Presses/ (Inactive Lever Presses + Active Lever Presses)]. A Discrimination Index 

value of 0.5 indicates equal responding on the active and inactive lever (i.e., no 

discrimination between levers); a value >0.5 indicates more pressing on the 

active lever. Lever pressing on the inactive lever was near zero following early 

acquisition and remained for the rest of the experiment (data not displayed). 

Positively identified c-Fos cells in each brain region was the primary dependent 

measure used for neuronal activation. For each rat, the number of positively 

labeled nuclei was averaged between the 3 tissue sections in each region and used 

as a unit of measurement (cf. Charntikov et al., 2012; Zhao and Li, 2010 and 

Shram et al., 2007).     

Statistical Analyses 

Active lever responding in acquisition and extinction were analyzed by 

separate 3-way mixed measures analysis of variance (ANOVA; Type III Sum of 

Squares) with Sex (Female vs Male) and Group (MethSA vs SalineSA) as 

between-subjects factors and Session as a within-subjects factor. This same 

ANOVA was also utilized to examine the discrimination index. Active lever 

responding in reinstatement was analyzed by a 3-way ANOVA with Sex (Female 

vs Male) and Self-Administration Drug (Meth vs Saline) and Reinstatement Drug 

(Meth vs Saline as between-subjects factors). Three-way ANOVAs with Sex, Self-

Administration Drug, and Reinstatement Drug as between-subjects factors were 

also used to analyze regional c-Fos activation following reinstatement testing. 

Post-hoc analyses were conducted on significant interactions and on planned 



45 
 

comparisons in reinstatement behavior and c-Fos activation. The complete list of 

a priori comparisons can be found in Table 2. To adjust for multiple 

comparisons, Tukey HSDs were utilized for post-hoc analysis of behavioral data. 

Statistical significance was declared at p<0.05.  

Table 2. 

 

Results 

Self-administration 

 

 

 

Within Females

1 MethSA/MethT vs MethSA/SalineT

2 MethSA/MethT vs SalineSA/MethT

3 MethSA/MethT vs SalineSA/SalineT

4 MethSA/Saline T vs SalineSA/MethT

5 MethSA/Saline T vs SalineSA/SalineT

6 SalineSA/Meth T vs SalineSA/SalineT

Within Males

7 MethSA/MethT vs MethSA/SalineT

8 MethSA/MethT vs SalineSA/MethT

9 MethSA/MethT vs SalineSA/SalineT

10 MethSA/Saline T vs SalineSA/MethT

11 MethSA/Saline T vs SalineSA/SalineT

12 SalineSA/Meth T vs SalineSA/SalineT

Between Sex

13 Female MethSA/MethT vs Male MethSA/MethT

14 Female MethSA/SalineT vs Male MethSA/SalineT

15 Female SalineSA/MethT vs Male SalineSA/MethT

16 Female SalineSA/SalineT vs Male SalineSA/SalineT

Planned Comparisons 
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Figure 2. 

 

 Rats in the meth groups demonstrated robust active lever pressing (Figure 

2). Analysis of active lever pressing revealed significant main effects of Group 
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[F(1,108)=240.338; p<0.001], Session [F(20,2160)=10.655; p<0.001], and a 

Group x Session interaction [F(20,2160)=14.467; p<0.001]. Rats responded 

significantly more for meth compared to saline in all 21 self-administration 

sessions. Lever pressing in the meth groups escalated slightly as early self-

administration responding was slightly lower than subsequent responding, 

demonstrated by numerous significant post-hocs during sessions 1-9 compared 

to sessions 15-21. Lever pressing in the saline groups was quickly attenuated 

(bottom panel of figure 2). Active lever presses on session 1 were significantly 

higher than presses recorded on the subsequent 20 sessions, with no other 

significant post-hoc tests. This finding was not surprising given the preliminary 

training with food. Females and males responded similarly on the active lever as 

neither the main effect of Sex (F<1; p=0.982), the Sex x Group interaction 

[F(1,108)=2.838; p=0.095], the Sex x Session interaction [F(20,2160)=1.012; 

p=0.443], nor the Sex x Group x Session interaction [F(20,2160)=1.329; 

p=0.159] was significant.  
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Figure 3. 

Males and females displayed clear discrimination between the active and 

inactive lever in the meth and the saline conditions (Inset Figure 3; 

Discrimination Index well above 0.5). Analysis of the discrimination index did 

reveal significant main effects of Group [F(1,108)=74.728, p<0.001] and Session 
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[F(20,2160)=20.749, p<0.001], as well as significant Sex x Group [F(1, 

108)=8.713, p=0.004] and Group x Session [F(20,2160)=1.759, p=0.020] 

interactions. Rats displayed better discrimination when receiving meth vs saline 

infusions. Lever discrimination increased in the meth and saline conditions, 

however it increased more quickly in the meth infusions condition. Notably, in 

the saline condition, females showed statistically better discrimination compared 

to the males. In the meth condition, however, this effect was reversed, with males 

tending to show better discrimination than their female counterparts, although 

this effect did not reach significance (p=0.074). The Sex x Group x Session 

[F(20,2160)=1.256, p=0.198] and Sex x Session [F<1, p=0.926] interactions were 

not significant.     

Extinction 
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Figure 4. 

 Active lever pressing in the meth condition was attenuated during the 

extinction phase of this experiment (Figure 4). Analysis of active lever pressing 

during extinction revealed significant main effects of Group [F(1,108)=64.885; 

p<0.001] and Session [F(11,1188)=45.431; p<0.001], as well as a significant 

Group x Session interaction [F(11,1188)=53.318; p<0.001]. Responding in the 

meth condition was elevated compared to saline responding for the first 11 

sessions, but was reduced to saline levels by session 12. Responding in the meth 

condition was higher during initial extinction sessions compared to the later 

extinction sessions, while responding in the saline condition remained stable 

throughout extinction. This outcome was expected, given that extinction sessions 

contained the timeout cues that were presumably maintaining a modest levels of 
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responding in the saline condition. Responding was again similar between males 

and females. The main effect of Sex (F(1,108)=1.255 p=0.265), the Sex x Group 

interaction (F<1; p=0.506), the Sex x Session interaction (F<1; p=0.5), and the 

Sex x Group x Session interaction (F<1; p=0.957) were not significant.     

Reinstatement 

Figure 5. 

 Analysis of active lever pressing during the reinstatement test (Figure 5) 

revealed significant main effects of Sex [F(1,104)=12.569; p<0.001], Self-

Administration Drug [F(1,104)=57.931; p<0.001], and Reinstatement Drug 

[F(1,104)=59.43; p<0.001]. The Sex x Reinstatement Drug interaction 

[F(1,104)=6.665; p=0.012] and the Self Administration Drug x Reinstatement 

Drug interaction [F(1,104)=25.297; p<0.001] were both significant. The overall 
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3-way Sex x Self-Administration Drug x Reinstatement Drug interaction just 

missed significance [F(1,104)=3.879; p=0.051]. The Sex x Self-Administration 

Drug interaction was also not significant [F(1,104)=1.347; p=0.248].  

Post-hoc tests on the planned comparisons revealed several interesting 

findings. In both sexes, the groups that received meth during self-administration 

and received meth as a trigger (MethSA/MethT) showed more reinstatement 

than the groups receiving meth in self-administration and not receiving a drug 

prime (MethSA/SalineT), receiving a meth trigger without prior meth experience 

(SalineSA/MethT), or the groups that never got meth at any point 

(SalineSA/SalineT). The females and males responded similarly when compared 

between sex in the MethSA/SalineT, SalineSA/MethT, and SalineSA/SalineSA 

groups. Notably, the only difference between the males and females was in the 

groups that received meth-primed reinstatement following meth self-

administration. Females in this MethSA/MethT group responded significantly 

more than their male counterparts. The significance of these findings is quite 

clear, the differences in reinstatement behavior between the sexes were not a 

result of general differences following long-term meth self-administration 

(MethSA/SalineT), acute meth administration (SalineSA/MethT), nor basal 

behavioral differences (SalineSA/SalineT). Females only responded more during 

meth-primed reinstatement of meth-seeking (MethSA/MethT).  

c-Fos Immunohistochemistry 

Global Activation 
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Figure 6. 

 

To assess global neuronal activation, the 20 brain areas were collapsed to 

provide a single measure of c-Fos activation for each rat (Figure 6). Examination 

of this data revealed that global c-Fos activation showed a somewhat similar 

pattern to the behavioral result during reinstatement (see Figure 5). There was a 

main effect of Sex [F(1,104)=7.002, p=0.009] with more activation in females 

and a main effect of Reinstatement Drug [F(1,104)=18.677, p<0.001] with meth 

inducing more neuronal activity. The 3-way Sex x Self-Administration Drug x 

Reinstatement Drug interaction (F<1, p=0.566) and the Sex x Self-

Administration Drug interaction (F<1, p=0.771) were not significant. The main 

effect of Self-Administration Drug (F<1, p=0.773), the Sex x Reinstatement Drug 
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[F(1,104)=2.604; p=0.110], and the Self-Administration x Reinstatement Drug 

[F(1,104)=2.024; p=0.158] were also not significant.  

There were significant group differences (Figure 6) in the planned 

comparisons. In the females, a meth prime following meth self-administration 

(MethSA/MethT) increased neuronal activation compared to the saline trigger 

groups (MethSA/SalineT, SalineSA/SalineT). Additionally, acute meth injection 

(SalineSA/MethT) in the females actually increased activation when compared to 

the long-term self-administration followed by abstinence group 

(MethSA/SalineT). In fact, although not statistically significant, visual inspection 

of the data reveals that the group that received meth self-administration, but was 

drug free during reinstatement and brain extraction, actually had the lowest 

amount of neuronal activation in both the females and males. This tendency 

could possibly be a sign of neuronal hypofunction following long-term drug 

taking. While no group differences reached significance in the males, visual 

inspection does show the groups that received a meth trigger in reinstatement 

were higher than the groups that received saline (i.e., no drug prime). Notably, 

the only difference between the sexes was that females that received a meth 

trigger following meth self-administration (MethSA/MethT) show more neuronal 

activation than males in the MethSA/MethT group. This finding corresponds 

nicely with the behavioral result found during reinstatement with increased 

meth-seeking in the Female MethSA/MethT compared to Male MethSA/MethT 

(cf. Figures 5 and 6).        

Cortical Regions 
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Cg1 

Figure 7. 

 In the Cg1 (Figure 7), there were main effects of Sex [F(1,104)=11.199; 

p=0.001] and Reinstatement Drug [F(1,104)=17.923; p<0.001], with a significant 

Sex x Reinstatement Drug interaction [F(1,104)=5.061, p=0.027]. The main effect 

of Self-Administration Drug (F<1, p=0.341), Sex x Self-Administration Drug x 

Reinstatement Drug interaction (F<1, p=0.433), Sex x Self-Administration 

interaction [F(1,104)=1.531; p=0.219], and Self-Administration Drug x 

Reinstatement Drug Interaction [F(1,104)=1.428; p=0.235] were not significant. 

In the planned comparisons, female rats that received meth during reinstatement 

had more c-Fos activation than the rats that received saline during reinstatement 

(see Figure 7 for details on significant group comparisons). These group 
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differences were not detected in the males. Additionally, the females the received 

meth-primed reinstatement were higher than the males that received meth-

primed reinstatement (MethSA/MethT). This data pattern was very similar 

compared to the reinstatement behavioral data.   

Cg2 

Figure 8. 

  

There were no significant main effects [Sex: F(1,104)=2.230, p=0.138; 

Self-Administration Drug: F<1, p=0.618; Reinstatement Drug F(1,104)=3.232, 

p=0.075], nor significant interactions [Sex x Self-Administration Drug x 

Reinstatement Drug interaction: F<1, p=0.832; Sex x Self-Administration 

interaction: F<1, p=0.521; Sex x Reinstatement Drug: F(1,104)=1.591, p<0.210; 

Self-Administration Drug x Reinstatement Drug Interaction: F<1, p=0.579] in c-

Fos activation in the Cg2 (Figure 8). None of the planned comparisons were 

significant.   
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IL 

Figure 9. 

 For the IL (Figure 9), there were no significant main effects [Sex: F<1, 

p=0.423; Self-Administration Drug: F(1,104), p=0.302; Reinstatement Drug 

F(1,104)=2.156, p=0.145], nor significant interactions [Sex x Self-Administration 

Drug x Reinstatement Drug interaction: F<1, p=0.826; Sex x Self-Administration 

interaction: F<1, p=0.357; Sex x Reinstatement Drug: F<1, p=0.962; Self-

Administration Drug x Reinstatement Drug Interaction: F(1,104)=1.613, 

p=0.207]. Post-hoc tests on the planned comparisons were not significant. 

LO 
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Figure 10. 

  

For the LO (Figure 10), there were main effects of Sex [F(1,104)=17.256; 

p=0.001] and Reinstatement Drug [F(1,104)=7.231;p=0.008], as well as a 

significant Sex x Reinstatement Drug interaction [F(1,104)=4.415; p=0.038]. The 

main effect of Self-Administration Drug (F<1, p=0.361), Sex x Self-

Administration Drug x Reinstatement Drug interaction (F<1, p=0.352), Sex x 

Self-Administration interaction [F<1, p=0.337], and Self-Administration Drug x 

Reinstatement Drug Interaction [F(1,104)=1.250; p=0.266] were not significant. 

In the planned comparisons, the female group that received the meth trigger 

following meth self-administration had higher neuronal activation than the 

groups that received saline in reinstatement. Interestingly, the female group that 

received acute meth did not show activation levels that were significantly 

different than the saline groups. That is, the c-Fos activation induced by meth 
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was only higher when females had a previous history with meth. There was no 

significant group difference detected in the males. Additionally, both of the 

female groups that received meth during reinstatement showed more c-Fos 

activation than their male counterparts, suggesting amplified neuronal activation 

induced by meth injection in the females.  

PrL 

Figure 11. 

  

In examination of activation in the PrL (Figure 11), there was a main effect 

of Reinstatement Drug [F(1,104)=8.392, p=0.004] and a significant Self-

administration Drug x Reinstatement Drug Interaction [F(1,104)=4.729, 

p=0.0319]. The main effects of Sex [F(1,104)=1.456, p=0.230] and Self-

Administration Drug [F(1,104)=2.558, p=0.112] were not significant. Nor were 

the Sex x Self-Administration Drug x Reinstatement Drug interaction 

[F(1,104)=2.108, p= 0.150], the Sex x Self-Administration Interaction (F<1, 
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p=0.543), and the Sex x Reinstatement Drug interaction (F<1, p=0.716). 

Interestingly, the only significant group difference was between the female group 

that received meth self-administration and a meth trigger and the female group 

that received meth self-administration and then did not receive a meth injection 

(Figure 11). Visual inspection of the data again hints that this may be because the 

female group that is in meth abstinence (MethSA/SalineT) was showing neuronal 

hypofunctioning. This difference was not seen in the males.                      

Caudate-Putamen Regions 

dlCPu 

Figure 12. 

 

In the dlCPu (Figure 12), there were main effects of Sex [F(104)=6.001, 

p=0.016] and Reinstatement Drug [F(104)=9.377, p=0.002]. The main effect of 

Self-Administration Drug was not significant (F<1, p=0.946) and none of the 
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interactions reached significance [Sex x Self-Administration Drug x 

Reinstatement Drug interaction: F<1, p=0.527; Sex x Self-Administration 

interaction: F<1, p=0.603; Sex x Reinstatement Drug: F(1,104)=2.042, p=0.156; 

Self-Administration Drug x Reinstatement Drug Interaction: F(1,104)=1.978, 

p=0.163]. For the planned comparisons, the females that received meth injection 

for reinstatement following meth self-administration had more activation than 

the meth self-administration group that was in abstinence (Figure 12). Again, the 

pattern points to hypofunction in the abstinence group. This MethSA/MethT 

group of females was also higher than their male counterparts, suggesting 

increased activation in the females when meth is administered following meth 

self-administration.   

dmCPu 

Figure 13. 
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In the dmCPu (Figure 13), there was a significant main effect of 

Reinstatement Drug [F(1,104)=16.082, p<0.001]. The Sex [F(1,104)=1.359, 

p=0.246] and Self-Administration Drug (F<1, p=0.377) main effects were not 

significant. The interactions were also not significant [Sex x Self-Administration 

Drug x Reinstatement Drug interaction: F<1, p=0.662; Sex x Self-Administration 

interaction: F<1, p=0.677; Sex x Reinstatement Drug: F<1, p=0.343; Self-

Administration Drug x Reinstatement Drug Interaction: F(1,104)=2.748, 

p=0.100]. In the females, the group that received meth self-administration and a 

meth-prime had more c-Fos activation than the female groups that received a 

saline injection before reinstatement.  

vlCPu 

Figure 14. 
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In the vlCPu (Figure 14), there were significant main effects of Sex 

[F(1,104)=5.605, p=0.020] and Reinstatement Drug [F(1,104)=8.816, p=0.005]. 

The main effect of Self-Administration Drug [F(1,104)=2.647, p=0.107] and the 

interactions were not significant [Sex x Self-Administration Drug x 

Reinstatement Drug interaction: F(1,104)=1.088, p=0.299; Sex x Self-

Administration interaction: F(1,104)=2.095, p=0.151; Sex x Reinstatement Drug: 

F(1,104)=3.511, p=0.064; Self-Administration Drug x Reinstatement Drug 

Interaction: F(1,104)=1.088, p=0.299]. Curiously, the female group that received 

an acute meth injection showed more activation than the saline reinstatement 

groups. This group of females also responded more than their male counterparts. 

This finding may imply in the vlCPu, an acute injection of meth robustly activates 

c-Fos; even more than meth following meth self-administration. However, 

analysis of the data revealed that this effect was driven by one SalineSA/MethT 

female rat that had an average vlCPu c-Fos score of 23.66. This is more than 3 

standard deviations from the mean (group mean= 4.643, SD= 6.310), so caution 

may be warranted when evaluating this finding.      
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vmCPu   

Figure 15. 

  

In the vmCPu (Figure 15), there were main effects of Sex [F(1,104)=5.408, 

p=0.022] and Reinstatement Drug [F(1,104)=10.978, p=0.001], as well as a 

significant Sex x Reinstatement Drug interaction [F(1,104)=4.185, p=0.043]. The 

main effect of Self-Administration Drug (F<1, p=0.734), Sex x Self-

Administration Drug x Reinstatement Drug interaction (F<1, p=0.974), Sex x 

Self-Administration interaction [F<1, p=0.878], and Self-Administration Drug x 

Reinstatement Drug Interaction [F(1,104)=1.764; p=0.187] were not significant. 

Post-hocs on the planned comparisons revealed findings that again correspond 

with the activation in other brain regions and the behavioral results. Females in 

the MethSA/MethT group showed more activation than the female groups that 

did not receive a meth injection. There were no group differences in the males. 
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Additionally, both female groups that received meth during reinstatement 

showed more activation than their male counterparts. This outcome suggests that 

females show greater activation by a meth injection and the female group that 

received a meth injection following meth self-administration show the greatest 

activation.    

Nucleus Accumbens Regions 

NAcC 

Figure 16.  

  

For c-Fos activation in the NAcC (figure 16), there were main effects of Sex 

[F(1,104)=7.917, p=0.005] and Reinstatement Drug [F(1,104)=15.737, p<0.001], 

as well as a significant Sex x Reinstatement Drug interaction [F(1,104)=9.755, 

p=0.002]. The main effect of Self-Administration Drug (F<1, p=0.541) and other 
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interactions were not significant [Sex x Self-Administration Drug x 

Reinstatement Drug interaction (F<1, p=0.996); Sex x Self-Administration 

interaction [F<1, p=0.894]; Self-Administration Drug x Reinstatement Drug 

Interaction [F<1, p=0.562]. In the females, both groups that received a meth 

injection during reinstatement showed more activation than either of the groups 

that received saline during reinstatement. These differences were again not found 

in the males. Females that received meth in reinstatement had higher c-Fos 

amounts than their male counter parts in the NAcC (Figure 16).  

NAcSh 

Figure 17. 

  

In the NAcSh (Figure 17), there was a main effect of Reinstatement Drug 

[F(1,104)=6.787, p=0.011] and a significant Sex x Reinstatement Drug interaction 

[F(1,104)=5.189, p=0.025]. The main effects of Sex [F(1,104)=2.752, p=0.100] 
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and Self-Administration Drug (F=1.901, p=0.170) were not significant. Nor were 

the other interactions [Sex x Self-Administration Drug x Reinstatement Drug 

interaction (F<1, p=0.985); Sex x Self-Administration interaction (F<1, p=0.559); 

Self-Administration Drug x Reinstatement Drug Interaction (F<1, p=0.362)]. In 

the females, the group that received a meth injection following meth self-

administration showed more activation than the groups that did not receive meth 

during reinstatement. No differences were again found in the males. Notably, the 

females that received an acute injection of meth, responded more than the males 

that received meth for the first time during reinstatement. This pattern suggests 

that there may be sex differences in NAcSh activation with injection of meth, but 

only during initial administration.  

Hippocampal Regions 

CA1 

Figure 18. 

  

Neuronal activation in the CA1 was nearly non-existent (Figure 18). 

Despite the nearly non-existent activation, a main effect of Reinstatement Drug 
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was found (F=6.156, p=0.015), with rats that received meth reinstatement higher 

than animals that received saline during reinstatement. There were no other 

significant main effects [Sex: F(1,104)=3.476, p=0.065; Self-Administration 

Drug: F<1, p=0.353;], nor significant interactions [Sex x Self-Administration 

Drug x Reinstatement Drug interaction: F<1, p=0.355; Sex x Self-Administration 

interaction: F<1, p=0.535; Sex x Reinstatement Drug: F<1, p=0.355; Self-

Administration Drug x Reinstatement Drug Interaction: F(1,104)=1.537, 

p=0.217]. Additionally, there were no group differences in the planned 

comparisons. 

CA2 

 c-Fos activation was also near zero levels in the CA2 (Figure 18). There 

were no significant main effects [Sex: F<1, p=0.450; Self-Administration Drug: 

F(1,104)=2.970, p=0.088; Reinstatement Drug F(1,104)=1.49, p=0.225] and the 

Sex x Self-Administration Drug x Reinstatement Drug interaction (F<1, p=0.811), 

Sex x Self-Administration interaction (F<1, p=0.460), Sex x Reinstatement Drug 

interaction (F<1, p=0.811) were also not significant. There was a Self-

Administration Drug x Reinstatement Drug Interaction [F(1,104)=4.85, 

p=0.030], however none of the post-hoc tests reached significance.  
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CA3 

Figure 19. 

 

In the CA3 (Figure 19), there were no significant main effects [Sex: 

F(1,104)=1.932, p=0.168; Self-Administration Drug: F<1, p=0.883; 

Reinstatement Drug F(1,104)=2.861, p=0.094] nor significant interactions in c-

Fos activation [Sex x Self-Administration Drug x Reinstatement Drug interaction: 

F(1,104)=1.109, p=0.295; Sex x Self-Administration interaction: F<1, p=0.902; 

Sex x Reinstatement Drug: F(1,104)=1.211, p=0.273; Self-Administration Drug x 

Reinstatement Drug Interaction: F(1,104)=1.851, p=0.177]. Similar to other 

regions of the hippocampus, there were no significant differences in the planned 

comparisons.  
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VS 

Figure 20. 

  

There were no significant main effects [Sex: F(1,104)=1.492, p=0.224; 

Self-Administration Drug: F<1, p=0.639; Reinstatement Drug F<1, p=0.383] nor 

significant interactions [Sex x Self-Administration Drug x Reinstatement Drug 

interaction: F<1, p=0.894; Sex x Self-Administration interaction: F<1, p=0.612; 

Sex x Reinstatement Drug: F(1,104)=1.069, p=0.304; Self-Administration Drug x 

Reinstatement Drug Interaction: F(1,104)=2.911, p=0.091] in c-Fos activation in 

the VS (Figure 20). There were again no group differences in the planned 

comparisons.  
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Amygdala Regions  

BLA 

Figure 21. 

  

In the BLA (Figure 21), there was a main effect of Reinstatement Drug 

[F(1,102)=4.478, p=0.036], with the rats that received saline in reinstatement 

lower than the animals that received meth. This effect was largely driven by low 

activation in the meth abstinence rats (MethSA/SalineT), again, possibly 

suggesting hypofunction in this condition. Despite the main effect, none of the 

post-hoc tests reached significance. Additionally, the main effects of Sex (F<1, 

p=0.600) and Self-Administration Drug [F(1,102)=2.621, p=0.109] were not 

significant. None of the interactions were significant [Sex x Self-Administration 

Drug x Reinstatement Drug Interaction: F<1, p=0.605; Sex x Self-Administration 

Interaction: F(1,102)=1.360, p=0.246; Sex x Reinstatement Drug: F<1, p=0.814; 
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Self-Administration Drug x Reinstatement Drug Interaction: F(1,102)=2.045, 

p=0.156].  

CEA 

Figure 22. 

  

In the CEA (Figure 22), there was a significant main effect of 

Reinstatement Drug [F(1,102)=32.584, p<0.001]. The other main effects [Sex: 

F(1,102)=1.751, p=0.189; Self-Administration Drug: F(1,104)=1.417, p=0.237] 

and all of the interactions [Sex x Self-Administration Drug x Reinstatement Drug 

interaction: F<1, p=0.451; Sex x Self-Administration Interaction: F(1,102)=2.589, 

p=0.111; Sex x Reinstatement Drug: F(1,102)=1.689, p=0.197; Self-
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Administration Drug x Reinstatement Drug Interaction: F<1, p=0.975] were not 

significant. For the females, both groups that received meth during reinstatement 

showed more activation than the 2 groups that received saline during 

reinstatement (Figure 22). The CEA was the only region examined that had 

significant group differences in the males with the group that received an acute 

injection of meth higher than the group that was given meth self-administration, 

but was in abstinence (MethSA/SalineT). The lower activation in the 

MethSA/SalineT group suggests possible neuronal hypofunction following self-

administration in the absence of a drug prime. Additionally, the female 

MethSA/MethT group was higher than their male counterparts in this region as 

well.   

Other Regions  

LH 

Figure 23. 

  

In the LH (Figure 23), there was a main effect of Reinstatement Drug 

[F(1,104)=6.378, p=0.013] with rats receiving meth showing more activation 
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compared to saline rats. The main effects of Sex [F(1,104)=3.417, p=0.067] and 

Self-Administration Drug [F(1,104)=1.024, p=0.314] were not significant, nor 

were any of the interactions (all Fs<1). Additionally, none of the post-hoc tests 

reached significance. 

SNR 

Figure 24. 

  

In the analyses of c-Fos levels in the SNR (Figure 24), there were no 

significant main effects [Sex: F(1,103)=2.696, p=0.104; Self-Administration 

Drug: F<1, p=0.888; Reinstatement Drug F<1 p=0.648] nor significant 

interactions [Sex x Self-Administration Drug x Reinstatement Drug: F<1, 

p=0.998; Sex x Self-Administration: F<1, p=0.727; Sex x Reinstatement Drug: 

F<1, p=0.757; Self-Administration Drug x Reinstatement Drug: F(1,103)=1.099, 

p=0.297]. None of the planned comparisons were significant.  
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VTA 

Figure 25. 

  

In the VTA (Figure 25) there were no significant main effects [Sex: 

F(1,103)=1.890, p=0.172; Self-Administration Drug: F<1, p=0.676; 

Reinstatement Drug F<1, p=0.601]. There were also no significant interactions 

(all Fs<1) and no significant planned comparisons.  

Summary 

Using the standard procedures in our lab, female and male rats self-

administered meth. Active lever responding was also maintained by saline with 

timeout cues, albeit at levels significantly lower than that maintained by meth. 

Females and males did not differ in active lever responding in the self-

administration phase. When meth was removed in the extinction phase, 

responding was attenuated to saline levels. An unsurprising finding, given that 

extinction sessions contained the timeout cues that were presumably maintaining 

the modest levels of responding in the saline groups. Responding during 
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extinction was again similar between males and females. Meth-primed 

reinstatement of meth-seeking behavior was found in both males and females, 

although this effect was potentiated in females. 

Investigation of c-Fos activation in the brain following reinstatement 

showed several notable findings. Generally speaking, the pattern of activation 

was in the same direction as the behavioral responding during reinstatement, 

with c-Fos activation more prevalent in the brains of the females that received a 

meth-prime following meth self-administration. More specifically, the most 

common differences in the planned comparisons were found between the females 

that received a meth trigger following self-administration (MethSA/MethT) and 

the females that had received long-term meth self-administration and did not 

receive a meth-prime (i.e., were in a period of abstinence from meth; 

MethSA/SalineT). This was largely a product of the high levels of c-Fos activation 

in the MethSA/MethT group and the low levels of activation in the 

MethSA/SalineT group. This MethSA/SalineT group often trended lower than the 

baseline group that never received meth (SalineSA/SalineT), although these 

differences did not reach statistical significance.  

In the female rats, the MethSA/MethT group showed more activation than 

the MethSA/SalineT group in the Cg1, LO, PrL, dlCPu, dmCPu, vmCPu, NacC, 

NAcSh, and CEA (see Graphic 6). The group that received acute meth exposure 

(SalineSA/MethT) also showed higher c-Fos activation levels compared to the 

long-term self-administration with no prime group in several regions. These 

regions were the Cg1, vlCPu, NAcC, and CEA (Graphic 6). With the exception of 
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the vlCPu, the activation following an acute meth injection was less robust than 

the activation in the group that received a meth injection following a self-

administration history with meth. This data pattern suggests that the learning 

history with meth self-administration further potentiated neural activity 

correlated with meth administration, except in the vlCPu which shows more 

activation following acute meth administration (see Graphic 6; region identified 

in yellow). Differences in the females between the baseline group 

(SalineSA/SalineT) and the reinstatement group (MethSA/MethT) were found in 

the Gg1, LO, dmCPu, vmCPu, NAcC, NAcS, and CEA (Graphic 7), while 

differences between the baseline group and an acute meth injection group were 

only detected in the Cg1, vlCPu, NAcC, and CEA (Graphic 7).  
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Graphic 6. 
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Graphic 7.  

There were substantially fewer differences between the male groups. In 

fact, the only significant difference in the males was found in the CEA with the 

group that received acute meth injection showing higher c-Fos activation than the 

group that was drug free following long-term self-administration 

(SalineSA/MethT>MethSA/SalineT; see Graphic 8).  
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Graphic 8.

 

There were also significant differences detected in the planned 

comparisons between sexes. Females in the reinstatement group 

(MethSA/MethT) had higher c-Fos activation than their male counterparts in the 

Gg1, LO, dlCPu, vmCPu, NAcC, and CEA (Graphic 9). There were also differences 

between males and females following acute meth administration 

(SalineSA/MethT). Females had more c-Fos immunoreactivity following acute 

meth in the LO, vlCPu, vmCPU, NAcC, NAcSh, and CEA (Graphic 9). 
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Graphic 9. 
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CHAPTER 4 

EXPERIMENT 2 

INVESTIGATION OF SEX DIFFERENCE IN NICOTINE- AND COCAINE-

TRIGGERED METH REINSTATEMENT 

Introduction 

Drug-primed Reinstatement with Alternate Drug Type 

The majority of meth-dependent individuals that seek drug treatment 

return to meth use within 6 months of treatment (Brackins et al., 2011; Brecht et 

al., 2004). These individuals are presumably motivated to stop meth dependence, 

report a strong desire to quit, but return to use regardless. The inability to 

maintain meth cessation following treatment highlights the insufficiency of 

current behavioral and pharmacological interventions. Understanding the factors 

that may influence a return to drug use following cessation (i.e., relapse) is 

crucial to increasing the efficacy of current interventions. To this end, 

Experiment 2 examined sex differences in an innovative relapse model: meth 

reinstatement triggered by alternative drugs that show high comorbidity with 

meth use (i.e., nicotine and cocaine).  

Experiment 2 was precipitated by notable findings from several novel 

studies; one of which was conducted in our lab. Pittenger et al. (females 

published in 2016; males In Preparation) used our standard meth self-

administration procedures to train male and female rats to self-administer meth. 

This training was followed by extinction and then meth-primed reinstatement. 
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The primary goal of the study was to examine the effects of varenicline 

(Chantix®), a partial α4β2 and full α7 nicotinic acetylcholine receptor (nAChR) 

agonist (Coe et al., 2005a; Coe et al., 2005b; Gonzales et al., 2006; Mihalak et al., 

2006; Smith et al., 2007), on meth self-administration and reinstatement in male 

and female rats. Varenicline has been suggested as a potential meth abuse 

disorder pharmacotherapy (Verrico et al., 2014; Zorick et al., 2010). Of relevance 

to this report was the reinstatement testing. Rats received IP varenicline 

administration (0, 0.3, 1.0, 3.0 mg/kg) prior to meth-primed reinstatement. 

Notably, and contrary to speculation that suggest the effective use of varenicline 

in the treatment of meth dependence, the lower doses of meth (0.3 and 1.0 

mg/kg) actually increased drug seeking behavior during meth-primed 

reinstatement, but only in the females (Pittenger et al., 2016; Pittenger et al., In 

Preperation).  

This finding engendered further inquiry on drug-induced reinstatement. If 

varenicline could increase meth-induced drug seeking, could nicotine, also a 

nicotinic acetylcholine receptor agonist, alter meth drug seeking? Further, could 

nicotine alter meth reinstatement on its own? While the drug-primed model of 

reinstatement does serve as a useful tool for the evaluation of behavioral and 

pharmacological intervention, as well identification of the neurobiology 

underlying relapse, it does have a limitation. If an individual administers a small 

amount of meth, it can be argued that relapse has already occurred. Therefore we 

would be studying the behavior and mechanisms following a relapse and not 
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precipitating it. This notion may make the investigation of other drugs that 

facilitate relapse to meth more translationally relevant.  

Nicotine is of particular interest given its legality, availability, and social 

acceptance. Recall our meth addict from the General Introduction and imagine in 

addition to abusing meth, she is also a smoker; not hard, as 97% of meth addicts 

also smoke (Brecht et al., 2004). While attempting to abstain from meth use 

following treatment, she continues smoking cigarettes. Under the right 

circumstances, could the nicotine found in cigarettes be serving as a drug prime, 

triggering the persistent and chronic relapse she is suffering? This was the central 

question of interest in Experiment 2.  

Research suggests that under certain parameters nicotine can indeed 

trigger meth reinstatement. In a study conducted by Neugebauer et al. (2010), 

male rats were repeatedly injected with nicotine or saline, unpaired (temporally 

separate) from meth self-administration sessions. Rats then underwent 

extinction of meth-maintained lever pressing followed by reinstatement testing. 

Rats were administered nicotine before the reinstatement session (no meth 

available). Interestingly, rats that had a prior history with repeated nicotine 

administration demonstrated meth-seeking behavior (lever pressing on the 

previously meth-maintained lever). Reinstatement was not triggered in male rats 

that had no previous experience with nicotine (Neugebauer et al., 2010). 

However, others have found acute nicotine can induce meth reinstatement 

(Hiranita et al., 2006). These findings clearly demonstrate that nicotine can serve 

as a trigger for meth reinstatement in male rats. 
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The effect of acute and repeated nicotine on reinstatement in female rats 

has not been studied. This is quite surprising given the high comorbidity of meth 

and nicotine dependence and robust sex differences associated with pre-clinical 

models of nicotine addiction (Caldarone et al., 2008; Chaudhri et al., 2005; 

Gentile et al., 2011; Hamilton et al., 2009; Harrod et al., 2004; Kanyt et al., 1999; 

Rhodes et al., 2004; Rhodes et al., 2001; Torres et al., 2013, Torres et al., 2015). 

For example, Caldarone et al. (2008) found that anxiety-like behaviors were 

increased in female, but not male mice following chronic exposure to nicotine. 

Other studies also suggest that female rats have greater withdrawal symptoms 

from nicotine than males (Gentile et al., 2011; Torres et al., 2013; Torres et al., 

2015), show greater stress response following acute nicotine administration 

(Gentile et al., 2011), and show more nicotine sensitization (Harrod et al., 2004; 

Kanyt et al., 1999). 

 Studies have also demonstrated that nicotine differentially alters 

dopaminergic systems in female and male rats (Dluzen and Anderson, 1997; 

Harrod et al., 2004; Pittenger et al., 2016; Pogun, 2001). For example, Dluzen 

and Anderson (1997) showed that peak nicotine-evoked (10 μM in vitro infusion 

of nicotine) dopamine release tended to be lower in striatal regions of 

ovariectomized females compared to castrated male rats. Estrogen treatment 

resulted in differential effects, increasing nicotine-evoked dopamine release in 

the females and decreasing release in the males. Additionally, extracellular 

dopamine concentrations in the nucleus accumbens have also been reported to be 

higher in female rats compared to male rats following systemic nicotine 
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injections (Pogun, 2001). Harrod and colleagues (2004) found that females 

exhibited an increase in the number of dopamine transporters in the NAcC 

following 21 days of nicotine infusions (50 μg/kg/ml). Finally, some research 

shows that nicotine does trigger reinstatement of nicotine seeking differentially 

between the sexes (Swalve et al., 2016). These reinstatement effects, however, are 

not ubiquitous with others finding no differences between the sexes in nicotine-

triggered reinstatement of nicotine seeking (Feltenstien et al., 2012).  

Given the robust sex differences in nicotine sensitivity highlighted above 

and the increased vulnerability to reinstatement found in females detailed in the 

General Discussion, determining if nicotine could differentially reinstate meth 

drug-seeking in males and females was the primary goal of Experiment 2. 

Additionally, we wanted to examine the generality of drug-primed reinstatement 

using alternative drugs as triggers, namely cocaine. That is, using the procedures 

detailed below, can other drugs of abuse (i.e., cocaine) also function as a drug 

trigger for meth-seeking behavior, or is this an effect specific to nicotine?  

Cocaine in particular was interesting in that it activates similar brain regions 

during drug-primed reinstatement (cf. Experiment 1 Results and Neisewander et 

al., 2000). This experiment begins to fill a gap in the literature regarding sex 

differences in a novel behavioral model of relapse by examining if females are 

more sensitive to both acute and repeated nicotine-triggered meth reinstatement, 

as well as cocaine-triggered meth reinstatement.      
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Design 

Graphic 10. 

 

Experiment 2 used a 2 x 2 x 3 mixed factorial design with sex (male or 

female) and nicotine condition (acute or repeated) as between-subjects variables 

and nicotine reinstatement dose (0.0 [saline], 0.2 , and 0.4 mg/kg) as a within-

subjects factor (see Graphic 10). Additionally, to assess if a different drug of 

abuse (cocaine) could trigger meth reinstatement, a separate 2 x 2 x 3 mixed 

factorial design with sex (male or female) and nicotine condition (acute or 

repeated) as between-subjects variables and cocaine reinstatement dose (0.0 

[saline], 5 mg/kg , and 10 mg/kg) as a within-subjects factor was also used. The 

design of this experiment allowed for the examination of sex differences in 

nicotine-triggered reinstatement over multiple doses of nicotine in rats 
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repeatedly administered nicotine (repeated condition) or were first injected with 

nicotine during the reinstatement tests (acute condition). The follow-up 

investigation of cocaine assessed the generality of drug-primed reinstatement. 

Procedures 

Graphic 11. 

 

Preliminaries and Surgery 

Rats received preliminary lever training following acclimation to the 

colony room and food restriction to maintain 90% of free-feeding weight. 

Indwelling jugular catheters were then implanted using our standard protocol 

and rats were allowed to recover for 7 days. Rats were then place on a variable 

ratio 3 (VR3) schedule of sucrose reinforcement in standard post-surgery lever 

training (refer to GENERAL PROCEDURES for details). 
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Self-administration 

Following preliminary training and surgery, male and female rats were 

split into 2 nicotine treatment conditons prior to meth self-administration: 

repeated or acute (Female Repeated: n=14; Female Acute: n=14; Male Repeated: 

n=12; Male Acute: n=13). Rats in the repeated condition received nicotine 

injections (SC; 0.4 mg/kg) 4 h after their daily meth self-administration session 

(cf. Neugebauer et al., 2010). This temporal arrangement was selected so that the 

nicotine stimulus could not serve as a drug-context that may have induced 

reinstatement later in the experiment. Previous research suggests that nicotine 

can serve as a reinstatement trigger through non-associative mechanisms in male 

rats. That is, repeated nicotine administration does not need to co-occur with the 

self-administration session (Neugebauer et al., 2010). Rats in the acute condition 

received saline injections 4 h after their self-administration sessions. Meth self-

administration sessions and assigned injections continued for 21 days (see 

General Procedures for details). 

Experiment 2 utilized a new MedPC program to administer meth. The 

program was designed to use a stock dose of meth (0.05 mg/kg/infusion) and 

alter the volume infused to account for slight differences in body weight using the 

equation Meth Dose = [1-sec*(Current Weight/ Average Weight Used to Calculate 

Meth Stock)]. While the program worked, the infusion pumps were not set for a 

variable infusion time, so all rats received a 1-sec infusion of the stock dose. The 

outcome of this oversight was that females with a slightly lower body weight than 
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males received an average meth dose of 0.059 mg/kg/infusion; the males 

received an average meth dose of 0.042 mg/kg/infusion. 

Extinction 

Extinction sessions commenced 24 h after the last self-administration 

session. Extinction sessions were identical to self-administration sessions except 

meth was no longer infused. Requisite VR3 responding on the active lever still 

produced the same cues and the timeout. To match the procedures of 

Neugebauer and colleagues (2010), all injections administered following the 

sessions were saline (i.e., nicotine was no longer administered). Extinction was 

conducted daily for 14 sessions.  

Nicotine-Triggered Reinstatement 

Twenty-four hours after the last extinction session, rats began nicotine-

triggered reinstatement testing. Reinstatement testing proceeded over 3 days. 

Reinstatement sessions were identical to extinction sessions (i.e., meth not 

available). Five min prior to reinstatement sessions, rats were administered 0.0 

(saline), 0.2, or 0.4 mg/kg nicotine. Random assignment for each rat was used to 

construct the order in which each dose was tested.  

Re-Extinction 

 Three additional days of extinction were then given. These re-extinction 

sessions were identical to earlier extinction sessions and occurred across 

consecutive days.  

Cocaine-Triggered Reinstatement 
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Following re-extinction, rats began cocaine-triggered reinstatement 

testing. Similar to reinstatement with nicotine, testing proceeded over 3 days. 

Reinstatement sessions were identical to extinction sessions (i.e., meth not 

available). Fifteen min prior to reinstatement sessions, rats were administered 

0.0 (saline), 5, or 10 mg/kg cocaine IP. Random assignment for each rat was 

again used to construct the order in which the doses were tested.  

Dependent Measures 

 While lever-Pressing was the primary dependent measure during the 

behavioral phases of Experiment 1, the small difference in dose (recall 

Experiment 2 Self-administration Procedures) created a situation where this 

measure may not be optimal. That is, the females that received a slightly higher 

meth dose (0.059 mg/kg) titrated meth intake with fewer lever presses than the 

males that received a lower meth dose (0.042 mg/kg). Accordingly, a better 

measure for acquisition may be meth intake. Intake was calculated for each rat in 

each self-administration session using the equation Drug Received = [((Average 

Weight Used to Calculate Meth Stock/Current Weight)*Stock Meth 

Dose)*Infusions Earned]. The amount of drug received then served as the 

primary dependent measure during acquisition. Active lever presses served as the 

primary dependent measure when meth was not available (i.e., extinction, 

nicotine- and cocaine- induced reinstatement). To show inactive lever responding 

relative to active lever responding during self-administration, a discrimination 

index was again calculated using the following formula: Discrimination Index = 

[Active Lever Presses/ (Inactive Lever Presses + Active Lever Presses)]. A 
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Discrimination Index value of 0.5 indicates equal responding on the active and 

inactive lever (i.e., no discrimination between levers); a value >0.5 indicates 

more pressing on the active lever. Lever pressing on the inactive lever was near 

zero following early acquisition and remained for the rest of the experiment (data 

not displayed). 

Statistical Analyses 

Active lever responding, drug intake, and discrimination index in 

acquisition were analyzed by 2 separate 3-way mixed measures analysis of 

variance (ANOVA) with Sex (Female vs Male) and Nicotine Treatment (Acute vs 

Repeated) as between-subjects factors and Session as a within-subjects factor. 

Active lever responding in extinction and re-extinction were analyzed by the 

same 3-way mixed measures. Nicotine- and cocaine-primed reinstatement were 

analyzed by 2 separate 3-way mixed measures ANOVA with Sex (Female vs Male) 

and Nicotine Treatment Group (Acute vs Repeated) as between-subjects factors 

and Reinstatement Dose [0 (saline), 0.2 , 0.4 mg/kg for nicotine reinstatement; o  

(saline), 5, 10 mg/kg for cocaine reinstatement] as a within-subjects factor. To 

adjust for multiple comparisons, Tukey HSDs were utilized for post-hoc analysis 

of behavioral data. Statistical significance was declared at p<0.05.  

Results 

Self-Administration  
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Figure 26. 

 Rats again showed robust active lever responding (Figure 26A). Analysis of 

active lever pressing, unsurprisingly given females received a larger meth dose, 

had a significant main effect of Sex [F(1, 49)=4.057; p=0.049] with females 

responding less than the males (Figure 26A). There was also a main effect of 

Session [F(20, 980)=3.670; p<0.001] with responding escalating during the 

phase. The main effect of Nicotine Treatment (F<1; p=0.464) and all of the 

interactions (all Fs<1) were not significant. To account for the difference in meth 
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dose between the sexes (detailed in Self-Administration Procedures) analysis of 

the drug intake in acquisition was conducted (Figure 26B). There was no longer a 

main effect of Sex (F<1, p=0.727). That is, females and males titrated 

consumption of meth to similar levels. There was again a main effect of Session 

[F(20, 980)=2.073; p=0.025] with drug intake at the end of self-administration 

higher than levels in early sessions. Nicotine treatment 4 h after each session did 

not alter the amount of meth received (F<1, p=0.499) and again none of the 

interactions were significant (Fs<1).  

Rats quickly discriminated between the active and inactive lever (Figure 

26C) showing better discrimination as self-administration progressed [main 

effect of Session: F(20,980)=13.500, p<0.001]. There was a main effect of Sex 

[F(1,49)=7.745, p=0.007] and a significant Sex x Session interaction 

[F(20,980)=1.810, p=0.016]. The females showed statistically lower lever 

discrimination during initial self-administration sessions; females reached male 

levels consistently by session 12. This finding parallels the findings of Experiment 

1, that also showed a trend (correct p=0.074) for male lever discrimination to be 

better. Nicotine treatment did not have a significant effect on the discrimination 

index [F<1, p=0.441] and there were no other significant interactions [Sex x 

Nicotine Treatment Group x Session: F<1, p=0.609; Sex x Nicotine Treatment 

Group: F<1, p=0.497; Nicotine Treatment Group x Session F(20,980)=1.401, 

p=0.112].  

Extinction and Re-extinction 
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Figure 27.  

Active lever pressing was attenuated in extinction (Figure 27). There was a 

significant main effect of Session [F(13,637)=38.783, p<0.001], with responding 

in the early sessions significantly higher than responding in the subsequent 

session. Notably, there was a significant main effect of Nicotine Treatment 

[F(1,49)=6.959, p=0.011]. Rats that received nicotine repeatedly throughout the 

self-administration phase of the experiment responded less than rats treated with 

saline. Extinction in females and males was similar with no main effect of Sex 

[F(1,49)=1.559, p=0.217]. In re-extinction (Figure 27), the main effect of Sex 

(F<1, p=0.479) and group [F(1,49)=2.170, p=0.147] were not significant, but 

there was an effect of session [F(1,98)=3.826, p=0.0251]. Session 2 was slightly 

lower than session 3, with no other differences in re-extinction sessions. Visual 
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inspection revealed this variation was quite small, and as groups did not differ, 

not a major concern.   

Nicotine-Triggered Reinstatement 

Figure 28. 

 Overall, nicotine reinstated robust meth-seeking behavior (Figure 28). 

Analysis of nicotine-induced reinstatement of meth-seeking revealed a main 

effect of Reinstatement Dose [F(2, 98)=38.311, p<0.001], with no significant 

effect of Sex or Nicotine Treatment Group (Fs<1). Notably, there was a significant 

Nicotine Treatment x Reinstatement Dose interaction [F(2,98)=5.691, p=0.005. 

In the Nicotine Repeated and Nicotine Acute groups, 0.2 mg/kg and 0.4 mg/kg 
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nicotine administration induced more active lever pressing compared to no 

nicotine injection (Saline). However, reinstatement following a 0.4 mg/kg 

administration was potentiated in rats that had received nicotine repeatedly 

during self-administration when compared to rats that had no previous 

experience with nicotine (Acute groups). That is, when nicotine was previously 

experienced more reinstatement of meth-seeking was induced by 0.4 mg/kg 

nicotine. There were no other significant interactions (Fs<1). 

Cocaine-Triggered Reinstatement 

Figure 29. 
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 During cocaine-triggered reinstatement of meth-seeking (Figure 29) there 

was a significant main effect of Reinstatement Dose [F(2,980=45.753, p<0.001]. 

Cocaine robustly induced meth-seeking behavior. A dose effect was determined 

with 10 mg/kg cocaine inducing the most reinstatement responding, 5 mg/kg 

triggering an intermediate amount. The main effect of Sex and Nicotine 

Treatment were not significant (Fs<1). Additionally, none of the interactions 

were significant [Sex x Nicotine Treatment Group x Reinstatement Dose: F<1, 

p=0.901; Sex x Nicotine Treatment Group: F<1, p=0.574; Sex x Reinstatement 

Dose: F(2,98)=2.531, p=0.085; Group x Reinstatement Dose: F(2,98)=1.114, 

p=0.333].   

Summary 

Under our procedures, females and males readily self-administered meth. 

While females did press the active lever less than males (females<males) during 

acquisition, the lower responding in the females was likely an effect of the slightly 

greater meth dose (0.059 mg/kg/inf for females vs 0.042 mg/kg/inf for males). 

Females and males administrated equivalent amounts of meth, accordant with 

the self-administration results of Experiment 1. Males discriminated between the 

active and inactive lever sooner than the females, matching a similar trend that 

did not reach significance in Experiment 1. Repeated, unpaired nicotine 

administration did not affect meth self-administration.  

Extinction attenuated active lever pressing. Males and females decreased 

responding during extinction similarly. Interestingly, rats that were repeatedly 



99 
 

treated with nicotine during the self-administration phase showed more 

persistent active lever responding in the face of non-reinforcement.  

Nicotine reinstated meth-seeking behavior in male and female rats with no 

difference between the sexes. While 0.2 and 0.4 mg/kg nicotine induced 

reinstatement in both nicotine treatments (i.e., acute and repeated), a prior 

history of nicotine administration did potentiate this effect even further. Cocaine 

also reinstated meth-seeking behavior. This effect was again similar in males and 

females. A significant dose effect was detected with 5 mg/kg triggering more 

responding than 0 (saline) and 10 mg/kg triggering more than 5 mg/kg. Nicotine 

treatment during self-administration did not alter cocaine-primed meth-seeking.   
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CHAPTER 5 

DISCUSSION 

Experiment 1 

In Experiment 1, rats readily self-administered meth. This matches the 

preliminary experiment conducted as the basis of this work, previous work in our 

lab (Charntikov et al.,2015; Pittenger et al., 2016; Reichel et al., 2008; Reichel et 

al., 2009), and the findings of other labs (Beardsley et al., 2010; Cornish et al., 

2012; Cox et al., 2013; Holtz et al., 2012; Hofford et al., 2014; Reichel et al., 2012; 

Roth and Carroll, 2004; Rubio et al., 2015; Shepard et al., 2004; Sobieraj et al., 

2016). Females and males robustly administered meth and no difference in meth 

taking was detected. This lack of sex difference during self-administration is 

common, but not ubiquitous. Differences in sex, with females taking more than 

males, are often established when self-administration sessions are longer in 

duration than the 2 h protocol used in this study (Roth and Carroll, 2004; Reichel 

et al., 2012). The lack of difference in our procedures can be viewed as a strength 

of this study. As meth intake was similar during this study, we are not concerned 

with differential intake complicating interpretation of the sex differences found 

during the subsequent reinstatement phase.  

The inclusion of the saline self-administration conditions was primarily to 

assure equivalent learning histories in the conditions that would receive acute 

meth administration (SalineSA/MethT) and the baseline conditions (Saline 

SA/SalineT) with the meth self-administration conditions. Their use also served 

as a methodological strength of Experiment 1. Recall that the only difference 
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between the meth condition and the saline condition is the type of infusion (meth 

or saline); pre-training, infusion/timeout cues, progression through the study, 

etc. were similar. Thus, this saline benchmark allowed for not only the detection 

of c-Fos differences specific to drug type in self-administration, but also careful 

analysis of the behavior controlled by meth compared to that controlled by the 

weak reinforcing effects of infusion cues (Caggiula et al., 2009; Chaudhri et al., 

2006b; Palmatier et al., 2006). Indeed, the groups that received saline during 

self-administration differentially responded on the active vs inactive lever. 

However, this responding was significantly lower than responding for meth. This 

finding supports the notion that the timeout cues (i.e., light illumination and 

lever extraction for 20 sec) have weak reinforcing value that maintains modest 

levels of responding (Caggiula et al., 2009; Chaudhri et al., 2006b; Palmatier et 

al., 2006).  

In extinction, responding in the meth groups was attenuated to levels 

comparable to the saline benchmarks, an expected outcome, as extinction 

sessions included the timeout cues that were presumably maintaining the low 

levels of responding in the saline groups. Responding during extinction was 

similar between females and males. While some work has found females may be 

more resistant to extinction of meth self-administration [e.g. our preliminary 

experiment and Cox et al., (2013)], the current finding matches others that do not 

report differences in extinction (Reichel et al., 2012; Holtz et al., 2012). The 

discrepancy between this work and our preliminary study was somewhat 

surprising and the cause of this variation remains unknown. However, the lack of 
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sex differences in extinction allowed the assessment of possible sex differences in 

subsequent reinstatement. 

Males and females showed significant meth-seeking behavior following a 

meth-prime injection. Responding in the male and female groups that had a 

learning history with meth and received a meth trigger (MethSA/MethT) was 

higher than the group that had a learning history with meth and did not receive a 

meth prime (MethSA/SalineT), the group that received an acute injection of meth 

(SalineSA/MethT), and the group that never received meth. Notably, this meth-

primed reinstatement effect was potentiated in the females. Responding in the 

Female MethSA/MethT group was significantly higher than responding in the 

Male MethSA/MethT group; this was the only group that differed between males 

and females. The difference in these groups alone suggests that differences in 

reinstatement behavior between the sexes were not a result of general differences 

following long-term meth self-administration, acute meth administration, nor 

basal behavioral differences. Females only responded more during meth-primed 

reinstatement of meth-seeking. This finding is accordant with our preliminary 

experiment, as well as work by others that also show amplified reinstatement 

behavior (Cox et al., 2013; Holtz et al., 2012; Reichel et al., 2012).  

There were numerous exciting findings in the examination of c-Fos as a 

marker of neuronal activation (Curran and Morgan, 1985; Curran and Morgan, 

1995; Kovacs, 1998; Greenberg and Ziff, 1984). Generally speaking, c-Fos 

immunoreactivity showed a similar pattern to the behavioral reinstatement data, 

particularly in females. c-Fos was higher in females with a learning history with 
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meth and received a meth-prime compared to females that received long-term 

meth self-administration and no prime in the Cg1, LO, PrL, dlCPu, dmCPu, 

vmCPu, NacC, NAcSh, and CEA (refer Graphic 6). These differences were a result 

of both the high activation levels following a prime and lower levels following 

long-term meth self-administration (i.e., levels in the MethSA/SalineT group 

were marginally lower than even the baseline SalineSA/SalineT group). These 

results suggest that hyperactivation was prevalent after a meth prime in females 

and, notably, there may be hypofunctioning in the female rat brain following 

long-term meth self-administration and extinction. As extinction and 

reinstatement in the MethSA/SalineT groups were conducted drug free, this 

could be conceptualized as a withdrawal period. Accordantly, some work does 

show hypofunction in critical areas associated with drug addiction during 

withdrawal (Parsegian and See, 2014). With research suggesting females show 

heightened sensitivity to withdrawal symptoms in some drug paradigms (for a 

review see O’Dell and Torres, 2014), future work using female subjects to 

examine not only the hyperfunction found during reinstatement, but also 

possible hypofunction during meth withdrawal will be of interest.  

The increased c-Fos expression in the females in cortical, striatal, and 

amygdala regions during reinstatement is concordant with several studies 

investigating c-Fos expression during reinstatement (Bossert et al., 2012; 

Ciccocioppo et al., 2000; Cornish et al., 2012; Hamlin et al., 2008; Kufahl et al., 

2009; Miller et al., 2005; Neisewander et al., 2012; Recinto et al., 2012; Zavala et 

al., 2007). These increases in c-Fos during drug-seeking paradigms are not 
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universal (Sobieraj et al., 2016; Zahm et al., 2010; Zhou et al., 2014). In fact, the 

only other study to examine possible sex dependent neural correlates in 

reinstatement actually found c-Fos expression in the NAcC and NAcSh lower in 

reinstating male and female rats compared to control animals that did not receive 

reinstatement. These discrepancies in neuronal activation have been explained by 

inhibitory GABAergic and dopaminergic neurotransmission in these regions, as 

well as significant differences between the studies in self-administration drug and 

reinstatement trigger (Sobieraj et al., 2016; Zahm et al., 2010; Zhou et al., 2014). 

The increased neuronal activation in both the NAcC and NAcSh of reinstating 

females reported herein is supported by work specific to methamphetamine-

triggered reinstatement. Parsegian and See (2014) reported that meth self-

administration reduced basal levels of glutamate in cortical regions, as well as the 

nucleus accumbens. Notably, meth-primed reinstatement reversed this effect, 

increasing glutamate efflux in these regions. Dopamine was increased in the 

dorsal medial prefrontal cortex, but not in the nucleus accumbens (Parsegian and 

See, 2014).  

Albeit speculative, our findings are consistent with decreased 

glutamatergic action following long-term self-administration and amplified 

glutamatergic neurotransmission during reinstatement in females. That is, 

glutamate is reduced following long term self-administration, possibly by 

opponent-process neuroadaptations (Koob and Le Moal, 2001; Parsegian and 

See, 2014). This results in marginally reduced neuroactivity in regions central to 

mediating the effects of the drug, including areas of the cortex, striatum, and 



105 
 

amygdala. When a drug-trigger is delivered, these brain structures, which are in a 

state of reduced basal activity, become hyperactive; thus mediating the resulting 

robust reinstatement behavior. An important note is that the study reported 

herein only examined the neural correlates of meth-primed reinstatement. 

Additionally, the current study did not utilize double-staining techniques to 

identify the specificity of neuronal activation. Future research will be crucial to 

test this glutamatergic account of reinstatement behavior in females. Functional 

examination of the regions that were identified to play a role in female meth-

primed reinstatement via selective inactivation, as well as chemo- and 

optogenetics are in the queue.  

While the mechanisms involved will need further inquiry, we successfully 

identified sex-dependent neural correlates of meth-primed reinstatement (refer 

Graphic 9). In fact, when the male groups were compared within sex, there was 

only one significant difference in a single area. Activation following acute meth 

(SalineSA/MethT) in the CEA was higher than activation in the group that 

received self-administration and then no meth (MethSA/SalineT). The 

significantly higher activation in the acute group, but not the meth-trigger group 

(MethSA/MethT), compared to the MethSA/SalineT group suggests that acute 

meth injection may be correlated with more activation than meth serving as a 

reinstatement trigger. Although there was no significant difference between the 

male SalineSA/MethT and MethSA/MethT groups when directly compared, 

visual inspection of the CEA data does suggest that the group that received acute 

meth does indeed show more activation than the group that received meth 
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injection and had a history of meth self-administration. While speculative, given 

that functionality was not examined in this study, the ability of meth to activate 

the CEA may actually decrease in males following a learning history with the 

drug.     

We did find that in the males there were no detected differences in any 

regions following meth-triggered reinstatement of meth-seeking 

(MethSA/MethT) and any other group. Sobieraj et al. (2016) found similar null 

results in one of the few other examinations of the neural correlates of meth-

reinstatement. Following meth self-administration and extinction, no c-Fos 

differences were detected following drug paired cue-induced reinstatement in the 

medial prefrontal cortex, VTA, or nucleus accumbens (Sobieraj et al., 2016). 

These null effects in meth reinstatement are not always found, as others did find 

differences in males in the medial prefrontal cortex (Recinto et al., 2012) and LH 

(Cornsh et al., 2012). While no difference reached significance in the male meth 

reinstatement group, it should be stated that visual inspection of the data does 

show patterns that match the females in a couple brain regions (e.g., see PrL and 

dmCPu). Although discussion of data patterns revealed by ocular inspection 

should certainly be limited, these patterns may suggest that the underlying 

neurobiology mediating meth-triggered reinstatement in males and females 

overlap in these areas. 

Significant findings were found in group comparisons between the sexes. 

Females in the reinstatement group (MethSA/MethT) had higher c-Fos activation 

than their male counterparts in the Gg1, LO, dlCPu, vmCPu, NAcC, and, CEA. 
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There were also differences between males and females following acute meth 

administration (SalineSA/MethT). Females had greater c-Fos immunoreactivity 

following acute meth in the LO, vlCPu, vmCPu, NAcC, NAcSh, and CEA. This 

significant overlap in neural activation when meth was administered, regardless 

of self-administration drug type, suggests that many of the differences between 

the sexes may be a result of initial meth administration and not necessarily in 

differences in meth as a drug trigger for reinstatement of meth-seeking. The two 

exceptions to this notion were the Cg1 and dlCPu. The Cg1 is particularly 

significant as previous work suggests this region is of particular importance in 

multiple forms of reinstatement (Breiter et al., 1997; Childress et al., 1999; 

Ciccocioppo et al., 2001; Neisewander et al., 2000; Thomas and Everitt, 2001; 

Wexler et al., 2001). In fact, Neisewander et al. (2000) determined that the 

cingulate cortex was the sole region that was activated by a cocaine prime 

triggering reinstatement. Recinto et al. (2012) extended this work to a meth-

prime model, also determining the cingulate cortex was integral in reinstatement. 

Given the accumulating data showing the Cg1 plays a central role in meth-primed 

reinstatement, this area will likely serve as the first region of interest for 

subsequent study. 

Experiment 2 

Experiment 2 was designed to extend behavioral reinstatement differences 

in meth-primed reinstatement to a novel model. Concordant with Experiment 1, 

males and females robustly self-administered meth. Differences in active lever 

pressing were detected, however these were likely due to the slight difference in 
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meth dose. When meth intake was adjusted for body weight, males and females 

did not differ. The lack of difference in meth intake between the sexes was similar 

to the findings from Experiment 1, as well as previous work in limited access self-

administration sessions (Cox et al., 2013; Reichel et al., 2012). Repeated nicotine 

administration did not alter meth self-administration. This was not surprising as 

nicotine was explicitly unpaired with from the self-administration session 

(injected 4 h after). These findings replicate previous work with repeated nicotine 

unpaired from meth self-administration in males and extends them to females 

(Neugebauer et al., 2012).  

In extinction, no differences were detected between males and female, 

again matching the findings from Experiment 1. This finding supports the notion 

that although responding was different due to the slight difference in meth dose 

in acquisition, these differences did not persist during non-reinforcement. Given 

that the reinstatement tests are non-reinforced, this is an important finding that 

allows comparison of the sexes without accounting for differences in responding 

during acquisition. Some consideration was given to evaluating reinstatement 

responding as measured by a percentage of responding at the end of acquisition. 

However, given comparable responding in extinction, similar levels of meth 

intake, and the lack of differences also in Experiment 1, we determined a 

percentage of acquisition responding measure was not necessary. 

In extinction an interesting effect of nicotine was seen with the group that 

received nicotine during the self-administration phase (recall nicotine was not 

given during extinction) demonstrating increased extinction. That is, responding 
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in the repeated nicotine group was lower compared to responding in the group 

that had not received nicotine. One possible explanation for this effect is that 

nicotine enhanced learning during the extinction phase. Previous work does 

suggest that nicotine can function as a cognitive enhancer, augmenting learning, 

memory, and attention (Couey et al., 2007; Levin et al., 2006; Mansvelder et al., 

2006; Newhouse et al., 2004) with effects demonstrated in extinction (Elias et 

al., 2010; Kaplan et al., 2011). As extinction is new learning (Bouton, 2004; 

Bouton and King, 1983, Rescorla, 2004), the nicotine treatment may be 

enhancing this learning.  

This explanation does have a major issue; the enhancement of learning 

associated with nicotine is found when nicotine is administered concurrently 

with the learning (Tian et al., 2008; Elias et al., 2010; Gould and Higgins, 2003; 

Gould and Wehner, 1999). In the present report, nicotine was administered 

during the self-administration phase and halted prior to the extinction phase. 

Thus, nicotine would not be expected to enhance learning in this phase. This lack 

of enhanced extinction learning was found in previous work with nicotine 

administration during the acquisition of both meth self-administration and meth 

conditioned place preference (Berry et al., 2012; Neugebauer et al, 2010). The 

divergent findings reported here may reflect between study differences, including 

the drug addiction model (Berry et al., 2012) or reinforcement schedule 

(Neugebauer et al., 2010). Future work investigating if nicotine administered 

concurrently with extinction in a meth self-administration paradigm further 

facilitates learning will be of interest. 
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Nicotine successfully induced meth reinstatement in females and males. 

Reinstatement was induced by 0.2 and 0.4 mg/kg in the acute and repeated 

nicotine groups. However, reinstatement was potentiated following the 0.4 

mg/kg dose in the group that had a prior history with nicotine. Meth 

reinstatement induced by acute nicotine did not align with the result of 

Neugebauer et al. (2012), but do match those of Hiranita et al. (2006). The 

potentiated ability of nicotine to reinstate meth-seeking following repeated 

administration is quite interesting. This effect may be a result of neurochemical 

sensitization following repeated nicotine administration. Repeated nicotine 

administration can increase reactivity in response to nicotine in overlapping 

neural circuitry known to play a role in the expression of meth-seeking behavior 

[for a review see Vezina et al. (2007)]. We hypothesize that this amplified 

reactivity following nicotine sensitization results in the modest meth-seeking 

reinstatement induced by acute nicotine and the robust meth-seeking 

reinstatement induced by repeated nicotine administration demonstrated herein 

and in other studies (Neugebauer et al., 2012; Hiranita et al., 2006).  

Cocaine also successfully reinstated meth-seeking and no differences were 

detected between sexes. This finding suggests that nicotine is not unique in its 

ability to reinstate meth-seeking. The ability of nicotine and cocaine to serve as 

triggers for meth-seeking may be a result of their overlapping interoceptive 

stimulus effects with meth. As discussed, it is well established that a meth 

injection can reinstate meth-seeking behavior. While nicotine and meth, as well 

as cocaine and meth differ in biological mechanism, they also share significant 
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overlap. In fact, nicotine and cocaine can substitute for meth in a 2-lever 

discrimination task. In a 2-lever discrimination task, responding on 1 of 2 levers 

is reinforced on saline sessions. On intermixed drug sessions, the opposite lever 

is reinforced. Eventually, the majority of pressing is on the drug or no-drug 

appropriate lever depending on the injected solution (Meltzer et al., 1980; 

Stolerman, 1989; Stolerman et al., 1984). Stimulus similarity is then typically 

assessed by administration of a test ligand prior to a brief test [e.g., 5 min 

(Stolerman, 1989)] with the reinforcer unavailable. The greater the proportion of 

pressing on the drug-appropriate lever the more similar the substitution ligand is 

said to be. Under these test conditions, full substitution (>80% responding on the 

drug-appropriate lever) is found when nicotine (Desai et al., 2010a; Gatch et al., 

2008) and cocaine (Czoty et al., 2004; Dasai et al., 2010b) were substituted for 

meth. Although the 2-lever discrimination paradigm can be limited by 

abbreviated test durations or cumulative dose procedures (see Reichel et al., 

2012; Bevins et al., 2011), these findings do suggest that nicotine and cocaine may 

initially be perceived as the meth, thus inducing reinstatement behavior. While 

future work will be needed to elucidate the precise mechanisms by which nicotine 

and cocaine trigger meth reinstatement, Experiment 2 clearly shows that nicotine 

and cocaine induce meth-seeking in both females and males, yet the sex 

difference observed when meth served as the trigger was not seen with these 

other drug triggers. These findings implies that females are more sensitive to 

reinstatement when the original drug is used as a drug-trigger, but this amplified 

sensitivity does not remain when a different drug is used as a prime. Future work 

examining if this effect is specific to meth as a primary drug, or if this effect 
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generalizes to other drugs of abuse that are readily self-administered will be of 

interest.     

General Discussion 

The experiments reported herein did not examine gonadal hormone levels. 

However, previous work does show they likely play a role in the amplified 

vulnerability to drug addiction found in females. In humans, the positive 

subjective measures following administration of psychostimulants are increased 

during the follicular phases of the menstrual cycle compared to the luteal phase 

(Justice and de Wit, 1999; White et al., 2002). Namely, when estrogen levels are 

elevated and progesterone levels are low, the positive subjective effects are 

enhanced (Evans et al., 2007; Justice and de Wit, 1999; Justice and de Wit, 

2000; White et al., 2002). These hormonal fluctuations also affect drug craving. 

Sinha et al. (2007) found that craving induced by stress or cue was lower when 

progesterone was elevated in cocaine-dependent women. Preclinical work 

parallels the human findings. In general, estrogen enhances and progesterone 

inhibits acquisition and escalation of self-administration, resistance to extinction, 

and reinstatement of drug-seeking (for a review see Anker and Carroll, 2011).  

Specific to drug-primed reinstatement, multiple studies have shown that 

estrogen treatment enhanced cocaine-primed reinstatement in ovariectomized 

rats (Anker et al., 2007; Larson and Carroll 2007; Larson et al., 2005). Estrogen 

enhancement of reinstatement may involve activation of estrogen β receptors 

(ER- β). Larson and Carroll (2007) demonstrated that administration of 

diarylpropionitrile, an ER- β agonist, during cocaine-primed reinstatement 
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enhances responding; a notable finding as ER-β is found on striatal dopamine 

neurons and is known to influence dopamine neurotransmission (Laflamee et al., 

1998; Morissette et al., 2008).   

Conversely, progesterone, or its metabolite, allopregnanolone attenuates 

drug-primed reinstatement (Feltenstein and See, 2007; Anker et al., 2007). The 

metabolism of progesterone to allopregnanolone may be essential for this 

attenuation. When progesterone was administered with a 5-α reducatase 

inhibitor that prevents metabolism of progesterone to allopregnanolone, 

progesterone no longer attenuated cocaine-prime reinstatement (Anker et al., 

2009). Congruently, depletion of allopregnanolone has been shown to potentiate 

increases in dopamine induced by stress (Dazzi et al., 2002), suggesting the 

inhibiting effects of allopregnanolone in reinstatement may be a result of 

dopaminergic inhibition.  

The preclinical work specifically with meth reinstatement is not nearly as 

extensive as that with cocaine. With meth, studies have not detected differences 

in reinstatement based on phase of estrous cycle (Ruda-Kucerova et al., 2015; 

Cox et al., 2012). However, allopregnanolone does reduce meth-primed 

reinstatement in female, but not male rats, suggesting gonadal hormones may be 

a factor. Future work further elucidating the precise brain areas involved in these 

hormonal effects on meth-primed reinstatement will be useful. That is, does 

direct microinjections of estrogen and progesterone/allopregnanolone into the 

Cg1, LO, PrL, dlCPu, dmCPu, vmCPu, NacC, NAcSh, or CEA enhance or inhibit 

meth-primed reinstatement in female and male rats.   
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In addition to possible differences in meth pharmacodynamics as a result 

of gonadal hormones, differences in meth pharmacokinetics between the sexes 

have also been reported. Milesi-Halle et al. (2005) examined the 

pharmacokinetic profile of a range of experimenter delivered meth doses in 

female and male Sprague-Dawley rats. Significantly slower meth clearance and 

attenuated meth metabolism was found in females compared with males (Milesi-

Halle et al., 2005). That is, meth remained in an unaltered form for longer in 

females. In a follow-up study, Milesi-Halle and colleagues (2015) replicated these 

results in a meth self-administration paradigm; finding decreased clearance and 

higher than expected serum concentration levels in females. These 

pharmacokinetic sex differences may contribute to differences in meth behavior 

in females and males (Milesi-Halle et al., 2005; Milesi-Halle et al., 2015.   

As mentioned throughout this dissertation, the findings from the set of 

studies reported herein start to fill in gaps in the literature and reveal a bevy of 

follow-up studies that are of great interest. Successful identification of sex-

dependent neural correlates associated with meth-primed reinstatement will 

allow a targeted approach for the utilization of cutting edge neuronal 

manipulation techniques (e.g., chemo- and opto-genetics) to further characterize 

possible sex differences in the cortex, striatum, and amygdala. Additionally, given 

the translational relevance of alternative drug-triggered reinstatement, this 

paradigm deserves further examination with both behavioral (e.g., altering self-

administration drug types) and neurobiological techniques (e.g., identification of 

neural correlates). While these studies opened an abundance of additional 
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questions, they do significantly contribute to our understanding of meth 

reinstatement. Females and males differ in the neural correlates associated with 

meth-primed reinstatement and both females and males can have reinstatement 

triggered by alternate drug priming.  
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