
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Computer Science and Engineering: Theses,
Dissertations, and Student Research Computer Science and Engineering, Department of

7-2016

Significant Permission Identification for Android
Malware Detection
Lichao Sun
University of Nebraska-Lincoln, james.sun137@gmail.com

Follow this and additional works at: http://digitalcommons.unl.edu/computerscidiss

Part of the Computer Engineering Commons, and the Information Security Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Sun, Lichao, "Significant Permission Identification for Android Malware Detection" (2016). Computer Science and Engineering: Theses,
Dissertations, and Student Research. 104.
http://digitalcommons.unl.edu/computerscidiss/104

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/77934337?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss/104?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages

SIGNIFICANT PERMISSION IDENTIFICATION FOR ANDROID MALWARE

DETECTION

by

Lichao Sun

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professors Witawas Srisa-an and Qiben Yan

Lincoln, Nebraska

August, 2016

SIGNIFICANT PERMISSION IDENTIFICATION FOR ANDROID MALWARE

DETECTION

Lichao Sun, M.S.

University of Nebraska, 2016

Adviser: Witawas Srisa-an, Qiben Yan

A recent report indicates that a newly developed malicious app for Android is

introduced every 11 seconds. To combat this alarming rate of malware creation, we

need a scalable malware detection approach that is effective and efficient. In this thesis,

we introduce SigPID, a malware detection system based on permission analysis to cope

with the rapid increase in the number of Android malware. Instead of analyzing all 135

Android permissions, our approach applies 3-level pruning by mining the permission

data to identify only significant permissions that can be effective in distinguishing

benign and malicious apps. Based on the identified significant permissions, SigPID

utilizes classification algorithms to classify different families of malware and benign

apps. Our evaluation finds that only 25% of permissions (34 out of 135 permissions)

are significant. We then compare the performance of our approach, using only 25%

of all permissions, against a baseline approach that analyzes all permissions. The

results indicate that when Support Vector Machine (SVM) is used as the classifier, we

can achieve over 90% of precision, recall, accuracy, and F-measure, which are about

the same as those produced by the baseline approach. We also show that SigPID is

effective when used with 67 other commonly used supervised learning approaches. We

find that 55 out of 67 algorithms can achieve F-measure of at least 85%, while the

average running time can be reduced by 85.6% compared with the baseline approach.

When we compare the detection effectiveness of SigPID to those of other approaches,

SigPID can detect 96.54% of malware in the data set while other approaches detect

3.99% to 96.41%.

iv

ACKNOWLEDGMENTS

I want to give my thanks to my advisers Dr. Witawas Srisa-an and Dr. Qiben Yan.

When I was an undergraduate student at UNL, I have no ideas about doing research

in Computer Science. Dr. Witty discussed with me and gave me good advice to

start my research at UNL. His kindness and guidance supports my three-year research

study here. In Dr. Witty’s research group, not only I learn tremendous amount of

knowledge about research in security, I also learn other life-long skills such as profound

thinking and interpersonal interactions. I really appreciate his continuous help and

patience during my study, which gives me courage and confidence to conduct research

in areas that I am interested in. At the same time, I also want to give my thanks to

Dr. Qiben Yan. Without his guidance, I may not finish my first paper and my thesis.

I have made a lot of improvement with my writing under his guidance. Under their

supervision, I have a very enjoyable research experience at UNL.

I also want to give my thanks to my parents, who love me, support my choice, and

teach me how to be a good person. Without them, I would not be half the man I am

now. They teach me to find the happiness in my dreams, which is the most important

reason I choose to start my graduate study at UNL and continue this journey towards

my Ph.D.

Last but not the least, I want to give my thanks to my committee members who

spending time, reading this thesis, attending my defense, and providing productive

feedback. I want to give my thanks to the people give me help during my studies at

UNL, such as my courses professors, my classmates and my friends in Lincoln. I also

want to thank CSE, which provides my GTA support and provide their students with

developing professional skills and setting career paths.

I love my life here, and I will remember these wonderful years forever.

v

Contents

Contents v

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Contributions . 3

1.2 Organization . 4

2 Introducing SigPID: Significant Permission Identification for An-

droid Malware Detection 5

2.1 Multi-Level Data Pruning (MLDP) 6

2.1.1 Permission Ranking with Negative Rate 7

2.1.2 Permission Mining with Association Rules 11

2.1.3 Support Based Permission Ranking 12

2.2 Malware Detection using Significant Permissions 13

2.3 Advanced MLDP with Fusion of Multiple Lists and X-value 14

2.3.1 Fusion of Multiple Lists . 14

2.3.2 X-value . 16

vi

3 Evaluation 20

3.1 Data Set . 21

3.2 Evaluating Multi-Level Data Pruning 21

3.2.1 Evaluating Permission Ranking with Negative Rate 22

3.2.2 Evaluating Permission Mining with Association Rules 25

3.2.3 Evaluating Support based Permission Ranking 25

3.3 Evaluating Malware Detection Efficiencies with Different Machine Learn-

ing Algorithms . 26

3.4 Improvement of MLDP . 28

3.4.1 Scalability of MLDP . 28

3.4.2 Algorithm: Fusion of Multiple Lists 31

3.4.3 X-value . 33

3.5 Comparison with Other Approaches 35

4 Related Work 40

5 Conclusion 46

6 Future Work 47

Bibliography 49

vii

List of Figures

2.1 System Overview Process including Three Main Parts:Data Pre-Processing,

Building Detection System, Detection Analysis 6

2.2 Multi-Level Data Pruning . 7

3.1 Malware Classification Performance of Permission Incremental System . . 22

3.2 Standard Deviation with Incremental Number of Permissions 23

3.3 Results with Top 5 Machine Learning Algorithms 26

3.4 Runtime Performance with Top 5 Machine Learning Algorithms 28

3.5 First Step: Malware Classification Performance of PIS in PRNR 29

3.6 Second Step: Malware Classification Performance of PIS in SPR 30

3.7 Frequency of Permissions . 32

3.8 Malware Classification Performance of PIS with FML 32

3.9 X-value in PIS with PRNR . 33

3.10 X-value in PIS with SPR . 34

viii

List of Tables

2.1 Rankings by PRNR . 18

2.2 Rankings by PRNR . 19

3.1 Results with Multi-Level Data Pruning 20

3.2 Results of Using 67 Machine Learning Algorithms 23

3.3 Results with Top 5 Machine Learning Algorithms (Normalized) 26

3.4 Malware Classification Performance of PIS in SPR 30

3.5 Statistics Analysis For Normalized Positive Rate List and Frequency List 31

3.6 RANK1 VS RANK3 . 38

3.7 Detection Rates of SigPID and Anti-Virus Scanners 39

1

Chapter 1

Introduction

Android is currently the most used smart-mobile device platform in the world, occupy-

ing 82.8% of market share [1]. As of now, there are nearly 2 million apps available for

downloading from Google Play, and more than 50 billion downloads to date. Unfortu-

nately, the popularity of Android also creates interests from cyber-criminals who create

malicious apps that can steal sensitive information and compromise systems. Unlike

other competing smart-mobile device platforms, such as iOS, Android allows users to

install applications from unverified sources such as third party stores. This problem

has been so serious that a recent report indicates that 97% of all mobile malware target

Android devices [2]. In 2015 alone, over 2.3 million new malicious apps have been

uncovered. This roughly translates to an introduction of a new malicious Android

app every 11 seconds [3]. These malicious apps are created to perform different types

of attacks in the form of trojans, worms, exploits, and viruses. Each type of malicious

apps has at least 50 variants, which makes it extremely challenging to detect them

all [4].

To address security concerns, researchers have used various approaches including

static and dynamic analyses, machine learning, and data mining to develop malware

2

detection tools. For example, RiskRanker [5] uses static analysis to discover malicious

behaviors in Android apps. Stowaway [6] is another static analysis tool that detects

overprivilege in Android apps. While these approaches can identify potential malicious

code sections, they also tend to produce a large number of false positives. To increase

the analysis precision, researchers have also used dynamic analysis to capture execution

context. For example, TaintDroid [7] dynamically tracks multiple sensitive data

source simultaneously. The weakness of TaintDroid is that manual efforts to traverse

user interfaces are needed to cover dangerous functionality effectively. Dynamic analysis

approaches, in general, also need effective input suites to adequately exercise execution

paths.

As such, work by Petra’s et al. [8] shows that dynamic program analysis alone is

not enough to assure Android security. They present a broad range of anti-analysis

techniques for malware to successfully evade dynamic analysis. Therefore, more efforts

have recently been spent on using machine learning and data mining techniques to

detect Android malware based on permissions. For example, DREBIN [9] combines

static analysis and machine learning techniques to detect Android malware. The

experimental result shows that DREBIN can achieve high detection accuracy by

using as many features as possible to aid detection. However, using more features also

increases the overhead of their system.

In this thesis, we present SigPID, an approach that extracts significant permissions

from apps, and uses the extracted information to effectively detect malware using

supervised learning algorithms. The design objective of SigPID is to detect malware

efficiently and accurately. As stated earlier, the number of newly introduced malware

is growing at an alarming rate. As such, being able to detect malware efficiently

would allow analysts to be more productive in identifying and analyzing them. Our

approach analyzes permissions and then identifies only the ones that are significant

3

in distinguishing between malicious and benign apps. Specifically, we propose a

multi-level data pruning approach including permission ranking with negative rate,

permission mining with association rules and support based permission ranking to

extract significant permissions strategically. Then, classification algorithms are used

to classify different types of malware and benign apps.

The results of our empirical evaluation show that SigPID can cut down the

number of permissions that we need to analyze by 75%, while maintaining over 90%

malware detection accuracy and F-measure when Support Vector Machine (SVM) is

used as the classifier. To show the generality of this approach, we also test SigPID

with 67 commonly used supervised algorithms and find that it maintains very high

accuracy with these algorithms. We also compare the accuracy and running-time

performance of our approach against DREBIN [9], Permission-Induced Risk

Malware Detection [10], and existing virus scanners. We find that our approach

can detect more malware than the other approaches.

1.1 Contributions

1. We develop SigPID, an approach that identifies a subset of permissions (signifi-

cant permissions) that can be used to effectively identify malware. By using our

technique, the number of permissions that needs to be analyzed is reduced by

75%.

2. We evaluate the effectiveness of our approach using only a quarter of the total

number of permissions in Android. We find that SigPID can achieve over 90% in

precision, recall, accuracy, and F-measure. These results compare favorably with

those achieved by an approach that uses all 135 permissions. When we evaluate

the malware detection effectiveness of SigPID, we find that our approach is

4

more effective by detecting 96.54% of malicious apps in the data set while other

approaches including Drebin and commercial virus scanners, can only detect

3.99% to 96.41% of malware.

3. To show that the approach can work generically with other supervised learning

algorithms, we apply SigPID with commonly used 67 supervised learning

algorithms and a much larger dataset (5,494 malicious and 310,926 benign apps).

We find that 55 out of 67 algorithms can achieve F-measure of at least 85%,

while the average running time can be reduced by 85.6% compared with the

baseline approach.

1.2 Organization

The rest of this thesis is organized as follows. Chapter 2 provides the implementation

details of the proposed SigPID. Chapter 3 reports the results of our empirical

evaluations. Chapter 4 compares our work to other related work. The last Chapter

concludes this thesis.

5

Chapter 2

Introducing SigPID: Significant

Permission Identification for Android

Malware Detection

The goal of Significant Permission IDentification (SigPID) system is to achieve high

malware detection accuracy and efficiency while analyzing the smallest number of

permissions. To do so, our system extracts permission lists from application packages

but instead of focusing on all permissions, SigPID mainly focuses on permissions

that can improve the malware detection rate. This, in effect, eliminates the need to

analyze permissions that have little or no significant influence on malware detection

effectiveness. In a nutshell, SigPID prunes permissions that have low impacts on

detection effectiveness using multi-level data pruning, which consists of three major

components: (i) permission ranking with negative rate; (ii) permission mining with

association rules; and (iii) support based permission ranking. After pruning, SigPID

employs supervised machine learning classification methods to identify potential

Android malware. Finally, SigPID reports malware detection summary to the analysts.

6

The complete system architecture of SigPID is shown in Figure 2.1. We then describe

the key components in the remainder of this chapter.

benign apps

malicious apps

1

2

permission matrix
(an app constructs a vector)

3

Multi-Level Data Pruning

4

new permission matrix
(less features after pruning)

Data Pre-Processing

5

Support Vector Machines

Decision Tree

Training & Testing
6

Malware Detection System

Building Detection System

7

Malware Detection Results

Results

Figure 2.1: System Overview Process including Three Main Parts:Data Pre-Processing,
Building Detection System, Detection Analysis

2.1 Multi-Level Data Pruning (MLDP)

A key component of SigPID is the multi-level data pruning process to reduce our

permission dataset. Android apps can have up to 135 permissions in total. Most apps

do not request all 135 permissions. The ones that an app requests are listed in the apk

as part of manifest.xml. When we need to analyze a large number of apps (e.g., several

hundred thousand), the total number of permissions requested by all apps can be

overwhelmingly large, resulting in long analysis time. This high analysis overhead can

negatively affect the malware detection efficiency as it reduces analyst productivity.

To address this problem, we use three levels of data pruning methods to filter out

7

Permission Ranking with Negative Rate
1 2

Permission Mining with Association Rules Support Based Permission Ranking

Figure 2.2: Multi-Level Data Pruning

permissions that contributed little to the malware detection effectiveness. Thus, they

can be safely removed without negatively affecting malware detection accuracy. The

complete procedure is illustrated in Figure 2.2. We then describe each level in the

pruning process.

2.1.1 Permission Ranking with Negative Rate

Each permission describes a particular operation that an app is allowed to perform.

For instance, permission INTERNET indicates whether the app has access to the

Internet. Different types of benign apps and malicious apps may request a variety

of permissions corresponding to their operational needs. For malicious apps, we

hypothesize that their needs may have common subsets. We have seen research efforts

that try to use permissions to detect malware [9] [10]. Thus, if they do indeed fall into

common subsets, we may not need to analyze all 135 permissions to build an effective

malware detection system.

As such, our focus is more on the permissions that create high risk attack sur-

faces and are frequently requested by malware samples. Our pruning also includes

permissions that are rarely requested by the malware so that we can use this informa-

tion to differentiate between malware and benign apps. At the same time, we also

exclude permissions that are commonly used by both benign and malicious apps, as

they introduce ambiguity in the malware detection process. For instance, permission

INTERNET are frequently requested by both malware and benign apps, as almost

all apps will request to access the Internet. Incorporating permission INTERNET

8

for malware detection does not provide any benefits. Therefore, our approach prunes

permission INTERNET.

As the next step, we rank permissions based on how they are used by malicious

and benign apps. Ranking is not a new concept. Prior work have also used generic

permission ranking strategy such as mutual information to identify high risk permis-

sions [10]. However, their approaches tend to only focus on high risk permissions, and

ignore no-risk permissions, which are significant permissions in our approach.

Our approach, referred to as Permission Ranking with Negative Rate or PRNR,

provides a concise ranking and comprehensible results. The approach operates on

two matrices, M and B. M represents a list of permissions used by malware samples

and B represents a list of permissions used by benign apps. Mij represents whether

the jth permission is requested by the ith malware sample, while ‘1’ indicates yes, ‘0’

indicates no. Bij represents whether the jth permission is requested by the ith benign

app sample.

Before computing support of permissions from matrices M and B, we first check

their sizes. Typically, the number of benign apps (over 300,000 in this thesis) tends

to be much larger than the number of malicious apps (5,500 samples in this thesis);

as such, the size of B can be much larger than the size of M . With our ranking

scheme, we prefer the data set on the two matrices to be more balanced. Training over

imbalanced dataset can lead to skewed models [9]. For example, in the case where

the size of matrix M is 10 and the size of matrix B is 1000, after applying supervised

machine learning techniques for classification, the classification models mainly skew

towards capturing the characteristics of matrix B, thereby affecting classification

accuracy.

As a result, we first compute their difference using the equation below:

9

|size(Mj)− size(Bj)|
min(size(Mj), size(Bj))

< ε, (1)

where size(Mj) represents the number of rows in M and size(Bj) represents the

number of rows in B. Variable ε provides the difference in sizes of the two matrices. In

this work, ε is very small due to a much larger number of benign apps. The quantity ε

can be manually set by policies based on different types of the datasets. In this thesis,

we simply set ε to 1.

If we find the difference is smaller than ε (i.e., Eq. 1 holds), PRNR can be

implemented using the following equation:

R(Pj) =

∑
i

Mij −
∑
i

Bij∑
i

Mij +
∑
i

Bij

, (2)

where R(Pj) represents the rate of jth permission used for permission ranking.

If we find the difference is bigger than ε (i.e., Eq. 1 does not hold), we need to first

balance these two matrices. To do so, we offer two policies. We denote the number

of samples in the larger dataset as LN , and the number of samples in the smaller

dataset as SN . The first policy randomly selects SN samples from the larger dataset.

The second policy uses the equation below to calculate the support of each permission

in the larger dataset and then proportionally scales down the corresponding support

to match that of the smaller dataset. This can balance the two matrices in spite of

their difference in sizes. In the equation 3, variable Pj denotes the jth permission in

the case that the number of rows of B is bigger than that of M , we have:

SB(Pj) =

∑
i

Bij

size(Bj)
∗ size(Mj), (3)

SB(Pj) represents the support of jth permission in matrix B.

10

After balancing these two matrices by using eqution 3, PRNR can be implemented

using the following modified equation:

R(Pj) =

∑
i

Mij − SB(Pj)∑
i

Mij + SB(Pj)
(4)

The PRNR algorithm is used to perform ranking of our datasets. In the formula

above, R(Pj) represents the rate of jth permission. The result of R(Pj) has a value

ranging between [-1, 1]. If R(Pj) = 0, this is implies that both benign and malicious

apps equally request Pj. This also means that Pj has very little impact on malware

detection effectiveness. If R(Pj) = 1, this means that permission Pj is only used in

malicious dataset, which is a high risk permission. If R(Pj) = -1, this means that

permission Pj is only used in benign dataset which is a low risk permission. Based on

the rate of permission with PRNR, we can classify the permissions into two lists: a

benign permission list which contains the permissions with negative rates and sorted

from -1 to 0, and a malicious permission list which contains permissions with positive

rates sorted from 1 to 0. We then remove low impact permissions whose R(Pj) are

close to 0.

At this point, we have created two sorted permission lists: a benign permission

list and a malicious permission list through the use of PRNR. Next, we design a

Permission Incremental System (PIS) to incrementally include permissions based

on the order in the two lists. For example, we choose the top permission in the

benign list and the top permission in the malicious list as our input features to build

malware detection. We then evaluate malware detection by using the following metrics:

precision, recall, accuracy, and F-measure. In this thesis, we generate ten sub-datasets

by randomly choosing 5,494 benign apps from 310,926 benign apps, so that we can

calculate the standard deviation of every performance metric. Next, we choose the

11

top three permissions in both lists to build malware detection. Then, we repeat the

process again while increasing the number of top permissions to use for malware

detection. The main goal is to find the smallest number of permissions that yields a

very similar malware detection effectiveness as that of using the entire data set.

In our thesis, we find that using 66 permissions performs nearly as well as using

the whole 135 permissions, as shown in Section 3.2.1. We are able to achieve 91.01%

malware detection accuracy while using only 49% of the permissions. Using all 135

permission yields virtually the same effectiveness (90.80%).

2.1.2 Permission Mining with Association Rules

In this section, we introduce the second pruning process in MLDP. After pruning 69

of 135 permissions by using PRNR and PIS, we want to further explore approaches

that can reduce non-influential permissions even more. By inspecting the reduced

permission list (66 in this case), we find that some permissions always appear together

in an app. For example, permission WRITE_SMS and permission READ_SMS are

always used together. They both also belong to the malicious permission list. As

such, we can associate one, which has higher support, to its partner. This way, one

permission can represent both of them. In this example, we can remove permission

WRITE_SMS. In order to find permissions that occur together, we apply permission

mining with association rules (PMAR).

Data mining with association rules is a method for discovering interesting relations

between variables in large databases. For instance, if A and B always occur together,

this has high confidence which could be interesting for us. In this thesis, we only

consider rules with high confidence, so applying permission mining with association

rules only produces a few rules. We employ Apriori, a commonly used association

12

mining algorithm, to generate the association rules based on our dataset. Apriori [11]

uses a breadth-first search strategy to count the support of itemsets and uses a

candidate generation process, which exploits the downward closure property of the

support. In this case, we only want to generate the association rules with high

confidence even if the permissions have small support values.

Using association rules identified from the permission data, we find 6 rules when

we set 98% minimum confidence and 3% as minimum support with Apriori. We

remove these 6 permissions from the current dataset of 66 permissions in total. With

60 permissions (55.6% reduction in the number of permissions), we achieve 92.06%

detection accuracy, as shown in Section 3.2.2.

2.1.3 Support Based Permission Ranking

At this point, we have reduced the number of permissions needed to perform malware

detection by 55%. To further reduce the number of permissions, we turn our focus

to the support of each permission. Typically, if the support of a permission is too

low, it does not have much impact on malware detection. For instance, we find the

permission BIND_TEXT_SERVIC only in benign apps. As such, we may think that

any app that uses BIND_TEXT_SERVICE is benign. However, this permissions is

used only by one app out of over 300,000 benign apps. As such, only relying on the

rate provided by PRNR is inaccurate. We also need to prune out permissions with

low support.

To prune out permissions with low support, one obvious option is to rank per-

missions based on support and then use PIS to find the least number of permission

that yields high accuracy. However, there is an approach based on using a support

threshold that involves less complexity and can result in shorter analysis time. To

13

do so, we set a support threshold γ, and any support value for a permission that is

smaller than γ would be pruned. A large value of γ would allow us to prune more

permissions, but it also reduces accuracy and F-measure. A small value of γ would

maintain more permissions, resulting in higher runtime overhead. To balance the

accuracy and the efficiency, we experiment with different values and find that 0.5%

yields a good balance, so it is used as the threshold in this thesis.

2.2 Malware Detection using Significant

Permissions

We first use SVM and a small dataset to test our MLDP model from the previous

section. SVM determines a hyperplane that separates both classes with a maximal

margin based on the training dataset that includes benign and malicious application.

In this case, one class is associated with malware, and the other class is associated

with benign apps. Then, we assume the testing data as unknown apps which will

be classified by mapping the data to the vector space to decide whether it is on

the malicious or benign side of the hyperplane. Then, we can compare all analysis

results with their original records to evaluate the malware detection correctness of the

proposed model by using SVM.

In order to show applicability and scalability of MLDP, we employ 67 commonly

known machine learning algorithms and enlarge our dataset. We compare the results

between malware detection rate using all 135 permissions (baseline) and malware

detection using MLDP for each supervised machine learning algorithms, as shown

in Section 3.3. We observe that machine learning algorithms with a tree structure

usually build better malware detection compared to others. However, they also tend to

14

take more time and memory. Consequently, it is more advantageous to use MLDP to

perform malware detection as it can be as effective while conserving time and memory.

We will provide more details in the next section.

2.3 Advanced MLDP with Fusion of Multiple Lists

and X-value

There are two obvious inefficiency of SIGPID when we use MLDP for significant

permissions. First, there are two ranking lists as the system implements two PIS in

MLDP. Processing each PIS can take a significant amount of time. Second, we do

not know the least number of permissions that can help us to build a good malware

detection system when we implement PIS. Finding the least number of permissions

would enable us to build a high performance malware detection system based on PIS.

In order address these two short-comings of MDLP, we introduce a new algorithm

called FML (Fusion of Multiple Lists) and a new attribute called X-value. Next, we

describe them in turn.

2.3.1 Fusion of Multiple Lists

The first algorithm fuses multiple lists into one list before ranking each of them in

MLDP. Fusion of Multiple Lists (FML) allows us to apply PIS only once to the

resulting list instead of twice as in MLDP prior to applying this optimization. Since

processing PIS is a time consuming process, this optimization can make approach

more efficient. The fusion process contains three steps.

Step 1: The algorithm combines the positive rate and negative rate lists. After it

calculates the R(Pj), the rate of each permission falls between -1 and 1. However,

15

both extreme values are significant to classify applications, as such, we can simplify

these values by considering the absolute value of all rates R(Pj) for each permission.

Then, our algorithm calculates the maximum value, minimum value, median value,

mean value, and standard deviation of each list. If it follows the normal distribution

such as the positive-rate list, we prune the dataset in the first step by removing any

permission whose rate is less than mean − standard deviation. If the list does not

follow the normal distribution such as the frequency list, our algorithm removes any

permission, which has no contributions. For example, we have total about 11,000

applications for building malware detection system. If some permissions are used fewer

than 11 times in all apps, whose support is less than 0.1% (α), it should be removed.

Step 2: After data pruning in the first step, we normalize the scores of each list to the

maximum value. This causes each updated score to be in the range of 0 and 1. Next,

the algorithm sorts the remaining permissions alphabetically and put the normalized

scores of each permission on the two lists in a table (e.g., Permission, Normalized

Score from Positive List, Normalized Score from Frequency List).

Step 3: Choose a function for multiple normalized lists. We create a table in Step

2, and each permission has two normalized scores from positive-rate list and frequency

list. In the table, we use S1i represent the normalized score from positive-rate list

for ith permission, and S2i represent the normalized score from frequency list for ith

permission. We need to calculate a new score which can represent two scores and be

used in the fusion list. As a result, here we choose to use math function to calculate a

new score, where Si is a new score for ith permission. There are multiple approaches

to calculate a new score, each way also causes different scores in the new fusion list.

To identify a suitable approach, we experiment with three functions described next.

Si = (S1i + S2i)/2, (5)

16

Function 5 considers the total score of S1i and S2i for ith permission. Although

S1i is a small score, ith permission still can be considered as a significant permission

when S2i is a very large score.

Si = S1i ∗ S2i, (6)

Function 6 considers the multiple score of all normalized score in multiple lists.

For example, when S1i = 1 , S2i = 0.1, S1j = 0.5 and S2i = 0.5, Si is higher than Sj

if we choose to use Function 5 and Sj is higher than Si if we use Function 6.

Si = 1/2 ∗ (S1i + S2i) ∗ (S1i ∗ S2i), (7)

Function 7 combines multiple score and the total score of all normalized scores in

multiple lists produce the best result.

2.3.2 X-value

We introduce X-value to find the the least number of permission for PIS. X-value is

the average distance between recall to f-measure and precision to f-measure which

can help us identify the least number of permissions that returns a high and stable

f-measure.

When we process PIS in the two datasets, it always shows similar precision, recall

and f-measure. Precision initially decreases, and then subsequently increases. Recall

initially increases then decreases. At some point, precision, recall and f-measure are

very close and then f-measure subsequently becomes stable meaning changes occur in

small ranges.

Based on an empirical evaluation, at some point X-value approaches 0, meaning

all three values are almost the same. Thus, we can set a small value β. If X − value

17

is smaller than β, this is a point where f-measure is stable. As such, X-value helps us

to identify the best point to stop PIS and also the least permissions that can be used

for for malware detection.

18

Table 2.1: Rankings by PRNR

Permission Ranking with Negative Rate
Malicious List Top 33 Benign List Top 33

RECEIVE_WAP_PUSH READ_CALL_LOG
WRITE_APN_SETTINGS WRITE_CALL_LOG
WRITE_SMS NFC
READ_SMS SET_ALARM
BROADCAST_WAP_PUSH READ_PROFILE
DELETE_PACKAGES READ_USER_DICTIONARY
BROADCAST_PACKAGE_REMOVED WRITE_USER_DICTIONARY
RECEIVE_MMS SET_TIME
INSTALL_PACKAGES WRITE_PROFILE
BRICK BIND_DEVICE_ADMIN
ADD_SYSTEM_SERVICE SET_PROCESS_FOREGROUND
EXPAND_STATUS_BAR BIND_REMOTEVIEWS
SET_PROCESS_LIMIT BIND_ACCESSIBILITY_SERVICE
RECEIVE_SMS WRITE_SOCIAL_STREAM
SEND_SMS READ_SOCIAL_STREAM
SET_WALLPAPER_HINTS ADD_VOICEMAIL
DISABLE_KEYGUARD BIND_VPN_SERVICE
FACTORY_TEST SET_POINTER_SPEED
RESTART_PACKAGES BIND_TEXT_SERVICE
BIND_APPWIDGET USE_CREDENTIALS
MODIFY_PHONE_STATE MANAGE_ACCOUNTS
INTERNAL_SYSTEM_WINDOW CHANGE_COMPONENT_ENABLED_STATE
DEVICE_POWER ACCESS_MOCK_LOCATION
PERSISTENT_ACTIVITY AUTHENTICATE_ACCOUNTS
WRITE_CONTACTS CAMERA
SET_ALWAYS_FINISH CHANGE_WIFI_MULTICAST_STATE
PROCESS_OUTGOING_CALLS READ_EXTERNAL_STORAGE
CHANGE_WIFI_STATE READ_CALENDAR
BROADCAST_SMS FLASHLIGHT
READ_FRAME_BUFFER READ_SYNC_STATS
READ_LOGS GET_ACCOUNTS
DELETE_CACHE_FILES CLEAR_APP_USER_DATA
STATUS_BAR BROADCAST_STICKY

19

Table 2.2: Rankings by PRNR

Mutual Information
Top 66

READ_SMS WRITE_CALL_LOG
WRITE_SMS VIBRATE
SEND_SMS CHANGE_NETWORK_STATE
WRITE_APN_SETTINGS DEVICE_POWER
RECEIVE_SMS WRITE_SETTINGS
INSTALL_PACKAGES ADD_SYSTEM_SERVICE
READ_PHONE_STATE ACCESS_NETWORK_STATE
READ_EXTERNAL_STORAGE ACCESS_LOCATION_EXTRA_COMMANDS
RESTART_PACKAGES WAKE_LOCK
RECEIVE_BOOT_COMPLETED ACCESS_COARSE_LOCATION
WRITE_CONTACTS GET_ACCOUNTS
READ_CONTACTS BROADCAST_PACKAGE_REMOVED
CHANGE_WIFI_STATE WRITE_OWNER_DATA
ACCESS_WIFI_STATE BROADCAST_WAP_PUSH
DISABLE_KEYGUARD ACCESS_MOCK_LOCATION
DELETE_PACKAGES WRITE_SYNC_SETTINGS
READ_LOGS USE_CREDENTIALS
CALL_PHONE WRITE_SECURE_SETTINGS
RECEIVE_WAP_PUSH DELETE_CACHE_FILES
RECEIVE_MMS READ_CALENDAR
READ_HISTORY_BOOKMARKS PERSISTENT_ACTIVITY
EXPAND_STATUS_BAR GET_PACKAGE_SIZE
PROCESS_OUTGOING_CALLS STATUS_BAR
READ_CALL_LOG BROADCAST_SMS
INTERNET FLASHLIGHT
WRITE_HISTORY_BOOKMARKS BIND_APPWIDGET
GET_TASKS CHANGE_CONFIGURATION
MODIFY_PHONE_STATE INTERNAL_SYSTEM_WINDOW
SET_WALLPAPER_HINTS MANAGE_ACCOUNTS
WRITE_EXTERNAL_STORAGE READ_FRAME_BUFFER
SET_WALLPAPER REORDER_TASKS
CAMERA SET_PROCESS_LIMIT
MOUNT_UNMOUNT_FILESYSTEMS SET_PREFERRED_APPLICATIONS

20

Chapter 3

Evaluation

In this chapter, we evaluate the malware detection effectiveness of the SigPID system.

Our evaluation employs 10,988 apps (5,494 malware, 5,494 benign apps from 310926

benign apps) to build our malware detector. Through pruning, our system identifies

only 34 significant permissions (reduction of 74.8%) and when only these permissions

are used to detect malware, our system achieves 91.9% accuracy. Next, we list the

major results identified through our performance evaluation.

Table 3.1: Results with Multi-Level Data Pruning

Number of Features Status Recall Precision Accuracy F-measure STD
135 Orignial 82.16% 99.33% 90.80% 89.93% 0.008640585
66 PRNR 87.95% 93.93% 91.01% 90.75% 0.012360538
60 PMAR 86.95% 96.93% 92.09% 91.66% 0.008236407
34 FPR 87.67% 95.98% 91.94% 91.59% 0.009718129

1. Multi-Level Data Pruning Effectiveness. Multi-level data pruning consists of

three main components: permission ranking with negative rate, permission

mining with association rules, and support based permission ranking. We

evaluate the malware detection performance by enabling these multiple levels

sequentially to verify the performance improvement contribute by each level of

21

permission mining procedure. In addition, we also evaluate the runtime efficiency

of multi-level data pruning. SVM algorithm is employed to perform malware

detection.

2. Malware Detection Effectiveness with Different Machine Learning Algorithms.

We apply SigPID over multiple machine learning classification algorithms to

validate the wide applicability of SigPID mechanism.

3. Comparison with Other Approaches. We compare the classification effectiveness

of SigPID with results of approaches using other permission ranking methods

such as Mutual Information [10].

3.1 Data Set

In this section, we illustrate the process of building a permission dataset. In total,

we have 5,494 malicious apps and 310,926 benign apps downloaded from Google play

store in June 2013 [9]. The malicious apps are classified into 178 families, and the

benign apps are grouped into a single family. Then, the requested permission list

is built by extracting permission requests from each app listed in AndroidManifest

file. The permission information is translated into a binary format dataset where ‘1’

indicates that the app requests the permission, and ‘0’ indicates the opposite. The

permission lists extracted from malicious apps and benign apps are combined to form

a holistic dataset for data analysis.

3.2 Evaluating Multi-Level Data Pruning

In this section, we report the effectiveness of each component of multi-level data

pruning. First, we evaluate the effectiveness of detection system after enabling

22

permission ranking with negative rate. We also implement another permission ranking

algorithm based on Mutual Information [10]. Second, we evaluate the detection

effectiveness after enabling permission mining with association rules. Last, we evaluate

the detection effectiveness after enabling support based permission ranking. Finally, we

combine all three approaches to evaluate the effectiveness of multi-level data pruning.

3.2.1 Evaluating Permission Ranking with Negative Rate

First, we implement PRNR to derive both the malicious permission ranking list and

benign permission ranking list. Then, we implement the PIS to incrementally include

permissions based on the ranking lists. Two permissions from both lists are added to

the significant permission list for each round, the results of which are illustrated in

the Fig. 3.1 and Fig. 3.2.

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0 10 20 30 40 50 60 70 80

Pe
rc

en
ta

ge

The Number of Permissions

Avg_Recall Avg_Precision Avg_AC Avg_FM

Figure 3.1: Malware Classification Performance of Permission Incremental System

23

0

0.005

0.01

0.015

0.02

0.025

0.03

0 10 20 30 40 50 60 70 80

St
an

da
rd

 D
ev

ia
tio

n

The Number of Permissions

Figure 3.2: Standard Deviation with Incremental Number of Permissions

According to Fig. 3.1 and Fig. 3.2, with an increasing number of permissions, the

classification accuracy, recall and F-measure are improving every round. Meanwhile,

the precision slightly degrades every round, but always stays above 95% as shown in

Fig. 3.1. One keen observation is that the recall, accuracy and F-measure plateau

after the number of permissions reaches 66. Fig. 3.2 also shows that the standard

deviation of F-measure is low when the number of permissions reaches 66, i.e., the

malware detection effectiveness remains the same with different datasets. We take

the standard deviation of F-measure, since F-measure is a more aggregated measure

of both precision and recall, the stabilization of which better represents that of the

detection system.

Table 3.2: Results of Using 67 Machine Learning Algorithms

Number of Precision Recall F_measure ROC Training Testing Total
Features (Seconds)

34 83.10% 95.51% 87.97% 88.83% 0.77 2.05 2.82
135 84.78% 96.70% 89.44% 89.73% 4.16 15.31 19.47

24

Fig 3.1 further shows that, after 66 permissions, recall stays above 87%, and

precision stays over 93%. Our malware detection system can accurately classify both

benign apps and malicious apps well when employing only 66 permissions.

In Table ??, we list the 66 permissions in the malicious permission list and benign

permission list. As a comparison, we also list the top 66 permissions using another

permission ranking method called Mutual Information [10]. Different permission

ranking methods induce different ranking lists. For instance, using PRNR, we drop the

permission INTERNET since it shows that both benign and malicious apps often need

INTERNET. However, mutual information based ranking method keeps the permission

INTERNET in the list as permission INTERNET is frequently requested by all apps.

Therefore, we believe our algorithm can retain more significant permissions by pruning

less important or meaningless permissions compared with other permission ranking

methods.

After applying the PRNR method, we evaluate the model and compare the results

with the model using 135 permissions. In Table 3.1, we can find that both methods

achieve nearly 90% accuracy and F-measure. However, by inspecting the results in

detail, we find that the new malware detection model with 66 permissions has a higher

recall rate, and a lower precision rate than the original detection model with 135

permissions. In other words, the new model detects more malware correctly, but at

the same time, it slightly sacrifices accuracy for classifying benign apps. But in terms

of accuracy and F-measure, the new model presents slightly better results. As such,

the new malware detection model with PRNR ranking method is as effective as the

model that uses all permissions.

25

3.2.2 Evaluating Permission Mining with Association Rules

Next, we implement permission mining with association rules to perform the second

layer of permission mining. Here, we find 6 rules satisfying our associative requirements

when we set our confidence level to 95%. After pruning 6 more permission features

in the dataset, we only retain 60 features. In Table 3.1, we can see that the new

detection model achieves above 90% accuracy and F-measure. Looking into the details,

we observe that higher precision is achieved with the new model employing fewer

permissions. The association rules mining shows that permission WRITE_SMS and

permission READ_SMS have a 99.5907% chance to appear together. Meanwhile,

permission WRITE_SMS is very frequently used in both malware and benign applica-

tions while READ_SMS is used mainly by malware. When we remove the permission

WRITE_SMS, only applications requesting permission READ_SMS are classified as

malware.

3.2.3 Evaluating Support based Permission Ranking

After pruning the dataset with PRNR and PMAR, we continue to improve the

significant ranking list with support based permission ranking (SPR). Support based

permission ranking relies on the fact that some permissions are rarely requested by

apps in the dataset, which can be pruned accordingly. Because different datasets

contain different attributes in terms of permissions, we need to set different thresholds

to prune different datasets. We can implement PIS based on support ranking to find

the least requested permissions that can be used to set the threshold. However, PIS

method brings additional computational overhead. Therefore, here we manually set

the threshold to 0.5%, which is identified based on an empirical evaluation that shows

good results for our dataset.

26

Table 3.3: Results with Top 5 Machine Learning Algorithms (Normalized)

Name of Algorithm Precision Recall F_measure ROC
RandomForest 93.31% 95.63% 94.46% 0.98032402
PART 92.45% 96.54% 94.45% 0.973974003
FT 92.04% 96.78% 94.35% 0.960329922
RandomCommittee 92.73% 95.93% 94.30% 0.979415481
RotationForest 92.03% 96.66% 94.29% 0.978340985

After pruning the dataset with SPR, we only retain 34 significant permission

features based on the dataset. In Table 3.1, we show that the detection model with 34

permissions still achieves above 90% accuracy and F-measure.

Note that the pruning order of MLDP can be rearranged. Based on our results,

we find that both PNRN and SPR can prune more permissions. As such, we can

use these two levels first. After that, we can run the PMAR further to refine the

significant permission list, as it takes more time to build association rules with more

permissions in the dataset.

3.3 Evaluating Malware Detection Efficiencies with

Different Machine Learning Algorithms

90.00%

92.00%

94.00%

96.00%

98.00%

100.00%

RandomForest PART FT RandomCommittee RotationForest

N
or

m
al

iz
ed

 D
et

ec
tio

n
R

at
e

Precision Recall F_measure ROC

Figure 3.3: Results with Top 5 Machine Learning Algorithms

27

In order to show the generality of MLDP, we present different malware detection

models using different machine learning algorithms in Weka [12]. We experiment with

67 different machine learning algorithms with both the original dataset and the dataset

after data pruning using MLDP. We want to evaluate the performance of MLDP in

any general algorithm in terms of detection accuracy and running time performance.

In Table 3.2, we have the average results of different machine learning algorithms using

34 and 135 permissions, respectively. There is only a minor performance difference

between the case with 34 permissions and the case with 135 permissions. However, by

examining the running time, the models with 34 permissions only take 2.8 seconds

on average, compared to 19.46 seconds from the malware detection model using 135

permissions, which translates into an 85.6% improvement. The detection model with

135 permissions takes almost 7 times as long to run compared to the detection model

with MLDP.

Here, we use precision, recall, F-measure and ROC to evaluate the malware

detection model. In Figure 3.3, we normalize the detection results with 34 permissions

by the performance of the model with 135 permissions. We can see that although the

malware detection model with full permission list can achieve better performance than

the detection model with 34 permissions in terms of the precision, recall, F-measure,

and ROC, the difference is very small. Table 3.3 reports the top 5 malware detection

models that achieve above 94% F-measure, and above 92% in other performance

measures, thereby proving the detection model is still capable of classifying the

malware and benign apps with high accuracy.

Figure 3.4 reports the execution time of using 34 permissions, normalized to the

execution time of the model with 135 permissions. The new malware detection model

consumes about half the time of the model with a complete permission list. Meanwhile,

less features in the dataset also can save lots of memory space. Surprisingly, if we use

28

0 0.1 0.2 0.3 0.4 0.5 0.6

RandomForest

PART

FT

RandomCommittee

RotationForest

Normalized Runtime Performance

Training Testing

Figure 3.4: Runtime Performance with Top 5 Machine Learning Algorithms

PART algorithm [13], more than 90% time can be saved comparing to the malware

detection model with the complete permission list.

Based on the tested 67 machine learning algorithms, we also find that the machine

learning methods based on tree structure can produce better results. Among the

top 10 efficient algorithms, 5 are designed with tree structures. The tree structure

based method usually takes a large amount of space and time to run the classification

process, so our MLDP can serve as a solution to help significantly improve running

time efficiency of the malware detection model based on tree structures.

3.4 Improvement of MLDP

3.4.1 Scalability of MLDP

We have shown that MLDP can work well when we used 1,661 malicious apps and a

selection of 1,661 apps from a corpus of 310,926 benign apps. We discovered that 34

out of 135 permissions are significant (a reduction of 74.8%). When we used these 34

permissions to detect malware, our system achieves 91.9% accuracy. Our proposed

29

approach performed better in terms of both f-measure and accuracy than using the

full permission set. In order to show scalability of SIGPID, we enlarge our data set

by roughly 3 times; that is, the new dataset contains 5,494 malicious apps and 5,494

from 310,926 benign apps. Note that we use PIS in both PRNR and SPR.

45.00%

55.00%

65.00%

75.00%

85.00%

95.00%

0 20 40 60 80 100 120

Pe
rc

en
ta

ge

The Number of Permissions

Precision Recall FM AC

Figure 3.5: First Step: Malware Classification Performance of PIS in PRNR

From above Fig. 3.5, at least 90 permissions are needed to build a stable system

based on PRNR. This is different than when we used a dataset containing 1,661

malicious apps. In that scenario, we need only 66 permissions to build a stable system

based on PRNR. This difference is expected as different datasets should result in

different points to stop PIS.

From Fig. 3.6 , the graph becomes stable very soon after we finish the SPR. We

only need 15 permissions to build a stable system. We also provide Table 3.4 to report

f-measure and accuracy in greater details.

We can achieve the best f-measure when we use 25 permission in the second PIS

with SPR. We can also achieve the best accuracy by using 40 permissions with SPR.

Note that when we use threshold ε which use 34 permissions, we get comparable results.

30

45.00%

55.00%

65.00%

75.00%

85.00%

95.00%

0 10 20 30 40 50 60

Pe
rc

en
ta

ge

The Number of Permissions

Precision Recall FM AC

Figure 3.6: Second Step: Malware Classification Performance of PIS in SPR

Table 3.4: Malware Classification Performance of PIS in SPR

Num_of_Feature Precision Recall FM ACC X-value
5 91.29% 83.90% 87.44% 87.94% 0.073838409
10 90.21% 90.24% 90.22% 90.22% 0.000292543
15 90.12% 91.21% 90.66% 90.61% 0.010895847
20 90.47% 91.65% 91.05% 91.00% 0.011831152
25 90.64% 91.77% 91.17% 91.10% 0.01127205
30 91.27% 90.58% 90.82% 90.82% 0.006842435
35 91.83% 90.05% 90.80% 90.86% 0.017821964
40 96.28% 86.19% 90.96% 91.43% 0.100880652
45 96.28% 85.94% 90.82% 91.31% 0.103398698
50 96.34% 85.82% 90.77% 91.28% 0.105208413
55 96.35% 85.80% 90.77% 91.27% 0.105515343
135 98.81% 83.73% 90.65% 91.36% 0.150770346

As such, regardless whether PIS or a threshold is used, the number of significant

permissions is much smaller than 135, which is the total number of permissions.

31

3.4.2 Algorithm: Fusion of Multiple Lists

In our MLDP, we use two rank lists, so we need to apply PIS twice to find the

significant permissions. Because PIS is rather an expensive process, one option, as

described in Chapter 2, is to fuse multiple lists into one list and then apply PIS just

once. Table 3.5 reports the basic statistics of the normalized positive rate list and

frequency list.

Table 3.5: Statistics Analysis For Normalized Positive Rate List and Frequency List

MAX MIN AVG MED STD
Positive Rate 1 0.242818576 0.640458489 0.659144017 0.220992305
Frequency 1 0.001392218 0.084424815 0.025134806 0.154414719

From Table 3.5, after we take the absolute values of values in the negative rate

list, we can remove permissions with low scores. A low score is defined by mean−

standard deviation. The value of the normalized positive list follows the normal

distribution. However, values in the frequency list do not follow the normal distribution.

As shown in Fig 3.7, apps frequently used about 40% of permissions. As such, we

can not use normal distribution to remove insignificant permissions. Instead, we use

a very small threshold as 0.1% to remove the permissions with low usage frequency.

The usage frequency is defined as how many time a permission is used divided by the

number of apps in the corpus.

Next, we need to calculate the new score for each permission. As mentioned earlier,

we experiment with using three functions (Function 5 to Function 7. Table 3.6 reports

the top 40 permissions with RANK1 with function 5, and RANK3 with function 7.

As shown, the rankings are different. Specifically, NFC is considered as the most

significant permission by Function 5. While it has a high positive rate, it also has

a very low frequency (0.15%). This means that is is not significant. This table also

shows that Function 7 produces a more meaningful significant permission list.

32

0

2000

4000

6000

8000

10000

12000

FO
TA
_U
PD
A
TE

SE
T_
PO
IN
TE
R
_S
PE
ED

W
R
IT
E_
SO
C
IA
L_
ST
R
EA
M

SE
T_
PR
O
C
ES
S_
FO
R
EG
R
O
U
N
D

SE
T_
TI
M
E

SE
T_
A
N
IM
A
TI
O
N
_S
C
A
LE

D
IA
G
N
O
ST
IC

SE
T_
A
LW
A
Y
S_
FI
N
IS
H

SE
T_
TI
M
E_
ZO
N
E

W
R
IT
E_
U
SE
R
_D
IC
TI
O
N
A
R
Y

B
R
IC
K

R
EA
D
_U
SE
R
_D
IC
TI
O
N
A
R
Y

M
O
U
N
T_
FO
R
M
A
T_
FI
LE
SY
ST
EM
S

R
EA
D
_S
Y
N
C
_S
TA
TS

A
C
C
O
U
N
T_
M
A
N
A
G
ER

SU
B
SC
R
IB
ED
_F
EE
D
S_
R
EA
D

IN
JE
C
T_
EV
EN
TS
N
FC

A
U
TH
EN
TI
C
A
TE
_A
C
C
O
U
N
TS

A
D
D
_S
Y
ST
EM
_S
ER
V
IC
E

SE
T_
O
R
IE
N
TA
TI
O
N

ST
A
TU
S_
B
A
R

SE
T_
PR
EF
ER
R
ED
_A
PP
LI
C
A
TI
O
N
S

C
O
N
TR
O
L_
LO
C
A
TI
O
N
_U
P
D
A
TE
S

B
A
TT
ER
Y
_S
TA
TS

EX
PA
N
D
_S
TA
TU
S_
B
A
R

D
EL
ET
E_
C
A
C
H
E_
FI
LE
S

R
EA
D
_C
A
LE
N
D
A
R

A
C
C
ES
S_
M
O
C
K
_L
O
C
A
TI
O
N

M
O
D
IF
Y
_A
U
D
IO
_S
ET
TI
N
G
S

SE
T_
A
LA
R
M

W
R
IT
E_
SE
C
U
R
E_
SE
TT
IN
G
S

B
LU
ET
O
O
TH

R
EC
O
R
D
_A
U
D
IO

C
H
A
N
G
E_
N
ET
W
O
R
K
_S
T
A
T
E

R
EA
D
_L
O
G
S

C
A
M
ER
A

R
ES
TA
R
T_
PA
C
K
A
G
ES

W
R
IT
E_
H
IS
TO
R
Y
_B
O
O
K
M
A
R
K
S

C
A
LL
_P
H
O
N
E

R
EA
D
_C
O
N
TA
C
TS

V
IB
R
A
TE

A
C
C
ES
S_
FI
N
E_
LO
C
A
TI
O
N

R
EC
EI
V
E_
B
O
O
T_
C
O
M
PL
ET
E
D

R
EA
D
_P
H
O
N
E_
ST
A
TE

Fr
eq
ue
nc
y

Figure 3.7: Frequency of Permissions

After building a new list, we need to rank permissions by the new scores and try

PIS with the new rank list. Fig 3.8 shows the new results with PIS.

50.00%

55.00%

60.00%

65.00%

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

0 10 20 30 40 50 60 70 80

Pe
rc

en
ta

ge

The Number of Permissions

Precision Recall FM AC

Figure 3.8: Malware Classification Performance of PIS with FML

Fig 3.8 shows that we can build a stable and high performance malware detection

33

system as little as 15 permissions. The PIS stopping point is reached much sooner

than when we use the permission ranking list with negative rates. This can lead to

significant time savings. Also note that with 15 significant permissions, we can achieve

90.67% f-measure, which is higher than 90.65% with using 135 permissions. It also

achieves nearly the same results as using the top 40 permissions, which achieves the

best results in both f-measure(91.12%) and accuracy(91.54%).

3.4.3 X-value

We then introduce X-value as a predictive maeasure to indicate that f-measure is about

to be stable. X-value represents the average distance between precision to f-measure

and recall to f-measure. When X-value is close to 0, it means precision, recall and

f-measure are very close. When they are very close, the PIS stopping point should be

near.

Fig. 3.9 and Fig. 3.10 is the X-values from Fig. 3.5 and Fig. 3.6.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

0 20 40 60 80 100 120

St
an

da
rd

 D
ev

ia
tio

n

The Number of Permissions

x_value

Figure 3.9: X-value in PIS with PRNR

34

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

0 10 20 30 40 50 60

St
an

da
rd

 D
ev

ia
tio

n

The Number of Permissions

x_value

Figure 3.10: X-value in PIS with SPR

From Fig. 3.9, PIS with 85 permission holds lowest X-value. Also shown, f-measure

becomes stable with 90 permissions. From Fig. 3.10, PIS with 10 permission holds

lowest X-value, and the f-measure is stable with least 15 permissions. Then, we can

decide a small threshold β. If X − value smaller than β, we only need to perform

a few more iterations of PIS (usually no more than 3 more iterations), and pick the

biggest f-measure as our best results.

Based on an empirical evaluation, we set the 0.01 as our threshold. For example,

in PIS with SPR, we find the 10 permissions is the stop points. Then we continue

to calculate the models with 15 permissions (first iteration), 20 permissions (second

iteration) and then 25 permissions (third iteration). Then, we find that using 25

permissions returns the best results of 91.05% f-measure and 91.00% accuracy. We

also experiment with using more than three iterations but find no improvements after

three iterations.

35

3.5 Comparison with Other Approaches

In this section, we compare our detection results with other malware detection

approaches, listed as follows:

• Drebin [9] is an approach that uses static analysis to build data set based

on permissions and other features from apps. It then utilizes Support Vector

Machine (SVM) algorithm to classify malware dataset.

• Permission-induced Risk Malware Detection [10] is an approach that

applies permission ranking, such as mutual information. They use the permission

ranking and choose the top 40 risky permissions for malware detection.

The comparison results are shown in Table 3.7. Drebin uses more features than our

SigPID, including API calls and network addresses. As a result, Drebin outperforms

PermissionClassifier in detection accuracy. We also compare the results against

10 existing anti-virus scanners [9].

In addition, we also evaluate the mutual information based permission ranking

method [10]. The malware detection with only Mutual Information, produces 82.08%

recall, 99.53% precision, and around 90% for both accuracy and F-measure. The

mutual information based ranking method only takes risky permissions into account

which might miss some of the important differentiable permissions. In addition, many

insignificant permissions will still be retained for such permission-based malware detec-

tion method. As mentioned previously, permission INTERNET would be considered as

a risky permission in Mutual Information, which is actually an insignificant permission

as shown by our results.

Table 3.7 shows that when we combine SigPID with PART, we can outperform all

other detection tools using only 34 permissions. On the other hand, the permission lists

36

used by Drebin contain many meaningless features, and performance improvements

can be achieved by integrating SigPID with PART into Drebin to improve both

malware detection accuracy and running time performance. We will explore this

integration in our future work.

Discussion. Compared to other permission rankings that only consider risky permis-

sions, SigPID considers a broader criteria that also include non-risky permissions

(e.g., READ_CALL_LOG), which is only used in benign apps and has a high support

of the whole dataset. We call the risky and non-risky permissions with high support

significant permissions, allowing SigPID to be more effective at distinguishing between

malicious and benign apps than results reported by previous work.

We also see that, despite a small number of permissions, our approach outperforms

most of existing malware scanner available today. This is because most of these

techniques rely on signature matchings; so if a type of malware signatures is not

available, the system would not be able to detect that particular type. We also show

that our approach is more effective than DREBIN when we combine our permission

pruning with PART. DREBIN is a more complex malware detection approach that

also uses static program analysis. We plan to also explore a combination of using static

program analysis with SigPID to assess whether we can achieve higher detection

effectiveness.

In this work, we only consider one permission ranking algorithm at a time. It is

possible that a composite ranking schemes that combines two or more algorithms may

provide more power to identify malware while using even fewer significant permissions

without losing its effectiveness. In addition, we observe that permission rankings can

prune more permissions with little negative impacts on malware detection. As such,

we think applying permission rankings before permission mining with association rules

can potentially improve the efficiency. Lastly, it would be quite useful to provide a

37

reporting mechanism so that users can better comprehend the results. An example

may include a report of permission ranking in sorted orders. We plan to explore these

research ideas as part of future work.

38

Table 3.6: RANK1 VS RANK3

RANK1_Avg RANK3_Combined
READ_PHONE_STATE SEND_SMS
SEND_SMS READ_PHONE_STATE
READ_SMS READ_EXTERNAL_STORAGE
READ_EXTERNAL_STORAGE READ_SMS
RECEIVE_SMS RECEIVE_SMS
WRITE_SMS RECEIVE_BOOT_COMPLETED
READ_CALL_LOG WRITE_SMS
WRITE_CALL_LOG ACCESS_WIFI_STATE
WRITE_APN_SETTINGS INSTALL_PACKAGES
INSTALL_PACKAGES READ_HISTORY_BOOKMARKS
SET_ALARM READ_CONTACTS
RECEIVE_WAP_PUSH CHANGE_WIFI_STATE
RECEIVE_BOOT_COMPLETED WRITE_HISTORY_BOOKMARKS
USE_CREDENTIALS WAKE_LOCK
RECEIVE_MMS WRITE_APN_SETTINGS
DELETE_PACKAGES RESTART_PACKAGES
WRITE_SECURE_SETTINGS READ_CALL_LOG
AUTHENTICATE_ACCOUNTS WRITE_SETTINGS
DELETE_CACHE_FILES DISABLE_KEYGUARD
NFC CHANGE_NETWORK_STATE
BROADCAST_WAP_PUSH GET_TASKS
UPDATE_DEVICE_STATS READ_LOGS
SUBSCRIBED_FEEDS_READ DELETE_PACKAGES
GET_PACKAGE_SIZE SYSTEM_ALERT_WINDOW
READ_HISTORY_BOOKMARKS WRITE_SECURE_SETTINGS
ACCESS_WIFI_STATE SET_ALARM
RESTART_PACKAGES WRITE_CALL_LOG
WRITE_HISTORY_BOOKMARKS WRITE_CONTACTS
SET_PREFERRED_APPLICATIONS RECEIVE_MMS
CHANGE_WIFI_STATE RECEIVE_WAP_PUSH
BROADCAST_PACKAGE_REMOVED CAMERA
EXPAND_STATUS_BAR UPDATE_DEVICE_STATS
DISABLE_KEYGUARD SET_WALLPAPER
READ_FRAME_BUFFER PROCESS_OUTGOING_CALLS
CHANGE_WIFI_MULTICAST_STATE DELETE_CACHE_FILES
CLEAR_APP_CACHE ACCESS_LOCATION_EXTRA_COMMANDS
SYSTEM_ALERT_WINDOW GET_PACKAGE_SIZE
ADD_SYSTEM_SERVICE BLUETOOTH_ADMIN
CHANGE_NETWORK_STATE BLUETOOTH
READ_CONTACTS MODIFY_PHONE_STATE

39

Table 3.7: Detection Rates of SigPID and Anti-Virus Scanners

Method Detection Rate
SigPID with PART 96.54
SigPID with SVMs 87.67
Mutual Information 82.08

Drebin 93.9
AV1 96.41
AV2 93.71
AV3 84.66
AV4 84.54
AV5 78.38
AV6 64.16
AV7 48.5
AV8 48.34
AV9 9.84
AV10 3.99

40

Chapter 4

Related Work

In this chapter, we discuss related research efforts in malware detection. While there

are many efforts that use static and dynamic analyses to detect malware, they are not

closely related to this work, which employs machine learning/data mining to perform

malware detection. As such, this chapter only focuses on malware detection efforts

based on machine learning and data mining.

Static analysis provides an efficient way to detect the malware targeting Android

devices. Enck et al. [14] provided a security service called Kirin for Android. This

service certified the applications to mitigate the threats from malware at install

time. Kirin performed a security analysis to produce a set of rules to characterize

malware and these security rules were used to match undesirable security configurations

for applications. They found 5 dangerous applications among 311 most popular

applications from Google Play. The results show that Android security configuration

is helpful to detect malware.

Felt et al. [6] built a static tool called Stowaway, which can be used to detect

overprivilege in Android applications. Stowaway can find what API the application

uses and built a map between each API and the permissions this API needs. It

41

covers 85% of Android APIs and this permission map can help to find overprivilege

in applications. Overprivilege was found in one third of the 940 applications. The

reason is that programmers sometimes follow less privilege strategy and Google dose

not provide enough documentation for permissions.

SCanDroid [15] is a static analysis tool to detect the violations of information flow,

and it recommends that whether an application can be installed without violating

other applications’ permissions. However, source codes of the applications are needed

to do the analysis, which is the weakness of this tool. CHEX [16] is a static analysis

tool to discover permission leakage in Android applications. It can check several types

of vulnerabilities, however, the manifest that is related to the Activity’s exported

attribute is not checked by it. Kantola [17] modifies the configuration semantics to mark

Activity classes as public and uses the heuristic-based approach to fix vulnerabilities.

Grace et al. [5] implemented a system, RiskRanker, which can discover dangerous

behaviors of an app via static analysis. This system reported 3,281 risky apps, among

these apps, 718 are malware samples and 322 of them are zero-day.

DREBIN [9] is a static analysis tool which combines permissions and APIs with

machine learning to detect malware. They embedded features in a vector space,

dicovered patterns of malware from the vector space, and used these patterns to

build the machine learning detection system. Their evaluation results indicate that

their proposed work can achieve high detection accuracy. However, their analysis is

performed on the devices and therefore, it requires that those devices be rooted.

Dynamic analysis approaches, on the other hand, monitor runtime behaviors. They

exercise targeted applications, monitor app activities and collect the relevant data to

help with analysis of runtime behaviors.

TaintDroid [7] is a dynamic taint tracking system for tracking multiple sensitive

data source simultaneously. TaintDroid provides real time analysis by using Android’s

42

virtualized execution environment. 30 popular third-parity applications were monitored

using this tool and 68 misuses of private information were found among 20 applications.

TaintDroid can be used to monitor sensitive data in order to uncover misbehaving

applications.

Zhang et al. presented a framework called VetDroid [18], which is a dynamic

analysis platform to reconstruct sensitive behaviors according to the use of permissions.

These behaviors can show, i.e., how applications access resources, how these resources

are utilized by applications, and analysts can check the sensitive information based on

these behaviors. They applied VetDroid to construct malicious behaviors of malicious

apps in order to ease malware analysis. It can also find more information leaks than

TaintDroid[3]

Zhou et al. [19] proposed a system called DroidRanger, which is a dynamic

permission-based behavioral scheme to detect new malware samples from existing

families. They identified certain inherent malicious behaviors by applying an heuristics-

based strategy. DroidRanger can detect 211 infected applications among 204,040 apps,

and they discovered two zero-day malware.

Yan et al. [20] presented a platform called DroidScope, which reconstructs the

semantics and exports APIs for three levels of Android device: hardware, OS and

Dalvik Virtual Machine. Several analysis tools were also provided to gather instruction

traces, API activities and to track information leakage. DroidScope is an effective

platform for analyzing malware samples.

AppsPlayground [21] is a framework that automatically analyzes Android applica-

tions. It integrates different detection and exploration techniques for the analysis. The

evaluation indicates that AppsPlayground can detect privacy leakages and malware

effectively.

Machine learning and data mining techniques such as SVM, Random Forest,

43

Decision Tree and clustering algorithms, have been used to classify unknown malware

samples into existing families. Researchers have been combining program analysis with

machine learning and data mining techniques in order to improve the performance of

their detection systems. Although there are many malware detection system based

on the signature, applying machine learning and data mining to detect malware

has recently gained popularity including detecting malware in Microsoft Windows

workstations [22].

Previous work has used Android permissions to detect malware. Huang et al. [23]

explored the possibilities of detecting malicious applications based on permissions

using machine learning. They retrieved not only all the permissions, but also several

easy-to-retrieve features from each APK to help detect malware. Four common

machine-learning algorithms, AdaBoost, Naïve Bayes, Decision Tree and SVM, are

employed in their system to evaluate the performance. Experimental results show

that more than 80% of the malicious samples can be detected by the system. Because

the precision is not high, their system can only be used as a first level filter to help

detecting malware. A second pass of analysis is still needed for their system. We can

achieve a much higher detection rate compared to this work.

DREBIN [9] combines static analysis of permissions and APIs with machine

learning to detect malware. They embedded features in a vector space, discovered

patterns of malware from the vector space, and used these patterns to build the machine

learning detection system. Their evaluation results indicate that their proposed work

can achieve high detection accuracy. However, their analysis is performed on the

devices, and therefore requires that those devices be rooted. They extracted as many

features as possible to help improve performance. However, our work only employs

the significant permission features, which reduces the overhead of computation while

retaining a satisfying result.

44

Wang et al. [10] explore the permission-induced risk in Android apps using

data mining. They perform an analysis of individual permission and collaborative

permissions and apply three ranking methods on the permission features. After the

ranking step, they identify risky permission subsets using Sequential Forward Selection

(SFS) and Principal Component Analysis (PCA). They evaluate their approach using

SVM, decision tree and random forest. The result shows that their strategy for

identifying risky permissions can achieve a 94.62% detection rate with a 0.6% false

positive rate. Our work needs less permissions compared to this work, but a high

detection rate can still be achieved.

Schultz et al. [24] use data mining to help with malware detection. They extract

static features from executable binaries and use Naive Bayers to find malware patterns.

Their unsupervised environment makes the validation of the results more difficult than

our supervised approach. Many of these line of work extract features from dynamic

behaviors, which needs more computation and run time information. Nevertheless, our

permission strategy is not only a static analysis based approach, but we also further

reduce the number of permissions needed to make the system more efficient.

FIRMA [25] is a tool that clusters unlabeled malware samples according to network

traces. It produces network signatures for each malware family for detection. Work

by Perdisci et al. [26] introduces a behavioral malware clustering system based on

HTTP traffic. They define a set of similarity metrics of HTTP traces. Their approach

then clusters these traces and generates high-quality malware signatures. Nari et

al. [27] proposes a framework to automatically classify malware into the existing

families. They extract the network behaviors from PCAP files and build a graph

based on network activities and flows. They use the characteristics of this graph such

as vertex out-degree to be features to classify malware. SMASH [28] make use of

HTTP communication to detect attacking campaigns and malicious communication

45

campaigns via a unsupervised data mining approach. Again, these approaches only

utilize a subset of information available in the HTTP header.

46

Chapter 5

Conclusion

In this thesis, we have shown that it is possible to reduce the number of permissions

to be analyzed in mobile malware detection, while maintaining high effectiveness and

accuracy. SigPID has been designed to extract only significant permissions through a

systematic, 3-level pruning approach. Based on our dataset, which includes over 1000

malware, we only need to consider 34 out of 135 permissions to improve the runtime

performance by 85.6% while achieving over 90% detection accuracy. The extracted

significant permissions can also be used by other commonly used supervised learning

algorithms to yield the F-measure of at least 85% in 55 out of 67 tested algorithms.

SigPID is highly effective, when compared to the state of the art malware detection

approaches as well as existing virus scanner. It can detect 96.54% of malware in the

dataset, while other approaches can only detect 3.99% to 96.41%.

47

Chapter 6

Future Work

In this thesis, we introduce SIGPID, a new system to detect malware based on

significant permissions. The evaluation results show that it can work well, with the

malware detection rate of 96% when we use only 34 out of 135 permissions. However,

supervised learning with permissions alone can not solve all major problems in mobile

security. Thus, we need to find other meaningful features that can be used to detect

other types of security vulnerabilities and attacks as part of our future research.

In DREBIN [9], besides permissions, they also collect APIs, network address which

is helpful to detect the malicious apps. After collecting more features, we believe

SIGPID can find other significant patterns from the whole dataset, and build a more

effective malware detection detection system that can be used to detect other forms

of attacks such as collusion.

In this thesis, we also implemented and evaluated 67 supervised learning algorithms.

Different machine learning algorithms are suitable for different datasets. I hope that

we can develop a new machine learning algorithm which is more suitable for classifying

malicious apps in smart-mobile devices. This will undoubtedly require more insights

48

into the behaviors of such malware, profound thinking, and study into the dataset’s

type and structure.

While observing the use of permissions and APIs allow us to identify their usage

frequencies within an app and across a collection of apps, we can still see that there are

some apps that are more sophisticated to simply use this simple observation. Instead,

we may need to include both static program structure information (e.g., static call

graphs and calling context) and runtime information (e.g., dynamic call graphs) to

further classify behavior and pinpoint locations of malicious code. For example, a call

to method M3 by method M0 may not instigate any malicious behavior. However, a

call to M3 by M1 may instigate malicious behavior due to the arguments passed into

M1 by M1. This additional information can help us to classify the apps when they

use same permissions or APIs.

One important trend that has been observed by many security analysts and

researchers is that malware writers tend to use variations of existing known malware.

This provides us with an opportunity to extract code signature (e.g., structure, calling

context, variable usage) as a way to detect variations of the same malware. This can

increase effectiveness of malware detection in the future.

49

Bibliography

[1] I. IDC Research, “Smartphone os market share, 2015 q2,” in IDC Research Report,

2015.

[2] G. Kelly, “Report: 97% of mobile malware is on android. this is the easy way you

stay safe,” in Forbes Tech, 2014.

[3] G. DATA, “At a glance,” in GăDATA MOBILE MALWARE REPORT, 2015.

[4] Symantec, “Latest intelligence for march 2016,” in Symantec Official Blog, 2016.

[5] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskranker: scalable

and accurate zero-day android malware detection,” in Proceedings of the 10th

international conference on Mobile systems, applications, and services. ACM,

2012, pp. 281–294.

[6] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android permissions

demystified,” in Proceedings of the 18th ACM conference on Computer and

communications security. ACM, 2011, pp. 627–638.

[7] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung,

P. McDaniel, and A. N. Sheth, “Taintdroid: an information-flow tracking system

for realtime privacy monitoring on smartphones,” ACM Transactions on Computer

Systems (TOCS), vol. 32, no. 2, p. 5, 2014.

50

[8] T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychronakis, and S. Ioannidis,

“Rage against the virtual machine: hindering dynamic analysis of android malware,”

in Proceedings of the Seventh European Workshop on System Security. ACM,

2014, p. 5.

[9] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, K. Rieck, and C. Siemens,

“Drebin: Effective and explainable detection of android malware in your pocket,”

in Proceedings of the Annual Symposium on Network and Distributed System

Security (NDSS), 2014.

[10] W. Wang, X. Wang, D. Feng, J. Liu, Z. Han, and X. Zhang, “Exploring permission-

induced risk in android applications for malicious application detection,” Informa-

tion Forensics and Security, IEEE Transactions on, vol. 9, no. 11, pp. 1869–1882,

2014.

[11] R. Agrawal, R. Srikant et al., “Fast algorithms for mining association rules,” in

Proc. 20th int. conf. very large data bases, VLDB, vol. 1215, 1994, pp. 487–499.

[12] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Wit-

ten, “The weka data mining software: an update,” ACM SIGKDD explorations

newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[13] E. Frank and I. H. Witten, “Generating accurate rule sets without global opti-

mization,” in ICML, vol. 98, 1998, pp. 144–151.

[14] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile phone application

certification,” in Proceedings of the 16th ACM conference on Computer and

communications security. ACM, 2009, pp. 235–245.

51

[15] A. P. Fuchs, A. Chaudhuri, and J. S. Foster, “Scandroid: Automated security

certification of android,” 2009.

[16] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: statically vetting android

apps for component hijacking vulnerabilities,” in Proceedings of the 2012 ACM

conference on Computer and communications security. ACM, 2012, pp. 229–240.

[17] D. Kantola, E. Chin, W. He, and D. Wagner, “Reducing attack surfaces for

intra-application communication in android,” in Proceedings of the second ACM

workshop on Security and privacy in smartphones and mobile devices. ACM,

2012, pp. 69–80.

[18] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang, and B. Zang,

“Vetting undesirable behaviors in android apps with permission use analysis,” in

Proceedings of the 2013 ACM SIGSAC conference on Computer & communications

security. ACM, 2013, pp. 611–622.

[19] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of my market:

Detecting malicious apps in official and alternative android markets.” in NDSS,

2012.

[20] L. K. Yan and H. Yin, “Droidscope: seamlessly reconstructing the os and dalvik

semantic views for dynamic android malware analysis,” in Presented as part of

the 21st USENIX Security Symposium (USENIX Security 12), 2012, pp. 569–584.

[21] V. Rastogi, Y. Chen, and W. Enck, “Appsplayground: automatic security analysis

of smartphone applications,” in Proceedings of the third ACM conference on Data

and application security and privacy. ACM, 2013, pp. 209–220.

52

[22] M. Siddiqui, M. C. Wang, and J. Lee, “A survey of data mining techniques for

malware detection using file features,” in Proceedings of the 46th annual southeast

regional conference on xx. ACM, 2008, pp. 509–510.

[23] C.-Y. Huang, Y.-T. Tsai, and C.-H. Hsu, “Performance evaluation on permission-

based detection for android malware,” in Advances in Intelligent Systems and

Applications-Volume 2. Springer, 2013, pp. 111–120.

[24] M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo, “Data mining methods for

detection of new malicious executables,” in Security and Privacy, 2001. S&P

2001. Proceedings. 2001 IEEE Symposium on. IEEE, 2001, pp. 38–49.

[25] M. Z. Rafique and J. Caballero, “Firma: Malware clustering and network signature

generation with mixed network behaviors,” in Research in Attacks, Intrusions,

and Defenses. Springer, 2013, pp. 144–163.

[26] R. Perdisci, W. Lee, and N. Feamster, “Behavioral clustering of http-based

malware and signature generation using malicious network traces.” in NSDI, 2010,

pp. 391–404.

[27] S. Nari and A. A. Ghorbani, “Automated malware classification based on net-

work behavior,” in Computing, Networking and Communications (ICNC), 2013

International Conference on. IEEE, 2013, pp. 642–647.

[28] J. Zhang, S. Saha, G. Gu, S.-J. Lee, and M. Mellia, “Systematic mining of

associated server herds for malware campaign discovery,” in Distributed Computing

Systems (ICDCS), 2015 IEEE 35th International Conference on. IEEE, 2015,

pp. 630–641.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	7-2016

	Significant Permission Identification for Android Malware Detection
	Lichao Sun

	Contents
	List of Figures
	List of Tables
	Introduction
	Contributions
	Organization

	Introducing SigPID: Significant Permission Identification for Android Malware Detection
	Multi-Level Data Pruning (MLDP)
	Permission Ranking with Negative Rate
	Permission Mining with Association Rules
	Support Based Permission Ranking

	Malware Detection using Significant Permissions
	Advanced MLDP with Fusion of Multiple Lists and X-value
	Fusion of Multiple Lists
	X-value

	Evaluation
	Data Set
	Evaluating Multi-Level Data Pruning
	Evaluating Permission Ranking with Negative Rate
	Evaluating Permission Mining with Association Rules
	Evaluating Support based Permission Ranking

	Evaluating Malware Detection Efficiencies with Different Machine Learning Algorithms
	Improvement of MLDP
	Scalability of MLDP
	Algorithm: Fusion of Multiple Lists
	X-value

	Comparison with Other Approaches

	Related Work
	Conclusion
	Future Work
	Bibliography

