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Unmanned Aerial Vehicles (UAVs) have significantly lowered the cost of remote

aerial data collection. The next generation of UAVs, however, will transform the

way that scientists and practitioners interact with the environment. In this the-

sis, we address the challenges of flying low over water to collect water samples

and temperature data. We also develop a system that allows UAVs to ignite pre-

scribed fires. Specifically, this thesis contributes a new peristaltic pump designed

for use on a UAV for collecting water samples from up to 3m depth and capable

of pumping over 6m above the water. Next, temperature sensors and their de-

ployment on UAVs, which have successfully created a 3D thermal structure map

of a lake, contributes to mobile sensors. A sub-surface sampler, the “Waterbug”

which can sample from 10m deep and vary buoyancy for longer in-situ analy-

sis contributes to robotics and mobile sensors. Finally, we designed and built an

Unmanned Aerial System for Fire Fighting (UAS-FF), which successfully ignited

over 150 acres of prescribed fire during two field tests and is the first autonomous

robot system for this application.
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Chapter 1

Introduction

(a) (b)

(c) (d)

Figure 1.1: (a) Temperature sensor on UAV during testing (b) Peristaltic pump
mounted on UAV (c) Waterbug sub-surface sampler in pool test (d) UAS-FF

during field testing

The next generation of UAVs will be highly interactive with the environment.

In this thesis we develop a number of electro-mechanical systems that can aug-

ment existing UAVs or work alongside them to enable environmental interactions.

Key to all of these systems is the development of light-weight and robust mechan-

ical designs that meet the requirements of the scientists and practitioners that use

them. Chapters 3 and 4 of this thesis are focused on data collection and wa-
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ter sampling with a temperature sensor shown in Figure 1.1(a), a pump system

shown in Figure 1.1(b), and a sub-surface water sampler shown in Figure 1.1(c).

Chapter 5 details the design of a UAV-based fire-ignition system shown in Figure

1.1(d) for interacting with the environment to ignite prescribed fires.

We now discuss the motivation for these projects and the specific contributions

of this thesis.

1.1 Water Impact

Monitoring water quality is critical to understanding how and why it changes.

Currently, collecting enough information to draw solid conclusions is quite chal-

lenging and is a bottleneck to developing effective management plans. Human

influence on water systems degrades the water quality and alters ecosystems,

which has an economic impact of approximately $2.2 billion in the US alone [1].

Water quality has a much greater impact than money, however. In 2010, the

United Nations Environment Program reported that, “Over half of the world’s

hospitals beds are occupied with people suffering from illnesses linked with con-

taminated water and more people die as a result of polluted water than are killed

by all forms of violence including wars” [2]. In addition to man-made pollution

in water, there are organic forms of contamination that can degrade water qual-

ity. Invasive species, toxic microbes and plant life can significantly degrade water

quality. More information provided by more frequent and more spatially dense

sampling will yield a better understanding of how water is being affected and

how it can be treated. Since one of the main barriers to increasing sampling is

the required man-hours, automation and robotic aids can be particularly useful

in this area to help increase the productivity of the man-hours available.
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1.2 Sensing and Sampling

The current methods of collecting water samples include grab sampling which is

simply dipping a pitcher off the side of a boat [3], static collection mechanisms [4],

Autonomous Surface Vehicles (ASVs), [5], and Autonomous Underwater Vehicles

(AUVs) [6]. All of these methods suffer from being either slow, expensive, difficult

to deploy or spatially restricted.

Using an Unmanned Aerial Vehicle (UAV) for sample and data collection is

advantageous over the previous methods for several reasons. As presented in

prior UAV-based water sampling work [7] [8], UAVs are light, fast, have good

range, and can be computer controlled for autonomous operation. They are es-

pecially useful when there are many disconnected bodies of water or difficult to

reach areas because of their ability to fly over and around obstacles and land fea-

tures. While a useful tool with definite benefits, a UAV-based water sampler does

have limitations and unexplored applications. The depth from which samples can

be retrieved is limited by the length of tube extending from the UAV and also the

type of pump used to transfer water up to the UAV. Additionally, gathering tem-

perature data with the water sampling UAV is a previously unexplored research

application. In this work, temperature sensors and a peristaltic pumping mech-

anism are developed to add functionality to the UAV. The design and testing of

an autonomous sub-surface sampling robot, the “Waterbug”, that complements

the capabilities of the UAV is also discussed. A paper on the design, testing, and

evaluation of the Waterbug is currently under submission.
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1.3 Prescribed Fire

Lighting prescribed fires to combat wildfires and to improve the health of ecosys-

tems is becoming increasingly common, but combating these wildfires is increas-

ing in cost [9, 10, 11]. The tools used for igniting the prescribed fires, such as

hand-tools, chainsaws, drip torches, and flare launchers are outdated and place

firefighters on the ground at significant risk.

UAVs are increasingly being used to remotely measure and monitors fires

[12, 13, 14], which includes simulations on how to track fire and optimize flight

paths in these conditions [15, 16]. Our team has taken the next step by designing a

system that actually performs aerial ignitions using an Unmanned Aerial System

for Fire Fighting (UAS-FF). Figure 1.2 illustrates the concept of firefighters using

the autonomous system to safely drop the delayed ignition spheres to manipulate

the fire vectors while keeping the firefighters out of danger.

Figure 1.2: Fire fighters deploy UAVs equipped with fire starting mechanisms
from a safe location. The left UAV monitors conditions in an occluded area and

the right UAV drops ignition spheres to continue a line of fire.
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1.4 Contributions

• In this thesis we design, analyze, and test a light-weight peristaltic pump

that can be carried by a UAV. The peristaltic pump allows water to be

pumped to greater heights and from greater depths while being more re-

silient to clogging and more sterile than previous work with the water

sampling UAV. I was responsible for designing, building, and testing the

peristaltic pump. The water sampling UAV was part of previous works by

John-Paul Ore and other members of the NIMBUS Lab [7] [8]. Prior to my

involvement, the Water Sampler could autonomously collect surface sam-

ples up to 12in deep using a miniature impeller pump. The new design has

been tested at 3m depth and at a height of over 6m from the water.

• We also design and evaluate different temperature sensors for measuring

water temperature. The temperature sensors make it possible for a UAV

to quickly collect the data to construct three-dimensional thermal structure

maps. We successfully mapped a 10× 10× 2.5m area during field trials us-

ing one of the temperature sensors. John-Paul Ore was responsible for de-

signing the PCB for the MS5803 pressure/temperature sensor used, I char-

acterized its performance in the lab setting, and we jointly performed the

field tests with the assistance of Michaella Chung and Sally Thompson from

UC-Berkeley. The data were published in an article titled “Obtaining the

Thermal Structure of Lakes from the Air” [17] in Water. I was responsi-

ble for constructing the thermocouples and the characterization of all the

temperature sensors in the lab setting.

• In addition, we develop a sub-surface sampling robot called the Waterbug,

which seeks to fill the needs of water sampling that the UAV cannot satisfy.
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It is capable of retrieving data and water samples from depths up to 10m and

is small and light enough to be deployed and retrieved via UAV. Addition-

ally, an algorithm was developed that allows the Waterbug to achieve neutral

buoyancy to monitor a specific point of interest in the water column despite

only using uni-directional buoyancy control. The development of this robot

resulted in a conference paper titled “The Waterbug Sub-Surface Sampler:

Design, Control and Analysis” accepted at the International Conference on

Intelligent Robots and Systems 2016 [18]. I was responsible for designing

and prototyping the Waterbug. David Anthony worked with me on the

first couple revisions and John-Paul Ore allowed me to use the MS5803 PCB

for the embedded system running the control software that I wrote. Dave

and John-Paul both helped me construct the electronics and trouble-shoot

software and communication bugs.

• The UAS-FF is an unmanned aerial system capable of autonomously ignit-

ing prescribed fires and has the potential to significantly reduce the danger

to firefighters performing interior ignitions for controlled burns. It is small,

light, and inexpensive enough that it is accessible to a crew of any size. The

system successfully ignited over 150 acres over two field tests. Christian

Laney was responsible for designing and populating the PCB. He also did

much of the electrical integration with the mechanism. Evan Beachly and

Christian Laney designed the software. Christian performed the testing for

the early revisions and Evan did so for the later revisions. I was responsible

for the design, prototyping and physical tests of the mechanical device as

well as for maintaining, fixing and modifying the mechanisms when they

required revisions to increase their strength and durability after field tests
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exposed weak components.

1.5 Thesis Overview

This thesis explores the use of robotics for environmental monitoring and inter-

action by first looking at related works in the areas of water monitoring, sensors,

control theory, robotics, and fire (Chapter 2). Next the design, bench testing, and

field testing of a pumping mechanism and various temperature sensors respec-

tively are discussed (Chapter 3). A novel sub-surface sampling robot, the “Water-

bug”, is discussed next (Chapter 4). After this, an autonomous aerial system for

igniting controlled burns is detailed (Chapter 5). Finally, concluding remarks and

an outlook for future work on these projects is given (Chapter 6).
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Chapter 2

Background and Related Work

This chapter examines five research areas that relate to this work. First, the back-

ground of peristaltic pumps and some applications are covered. Next, tempera-

ture sensing applications and types of temperature sensors are examined. Sub-

surface sampling and data collection methods including manual, static sensors,

sensor networks and robots are discussed next. After this, a section on basic

control theory lays the groundwork for research presented in Chapter 4. Finally,

background and motivation for the autonomous aerial fire ignition system, the

UAS-FF, are given.

2.1 Peristaltic Pump

The peristaltic pump was first patented in 1881 [19] by Eugene Allen for the

purpose of facilitating blood transfusions. Figure 2.1 shows an an example of a

rotary peristaltic pump. The main components are a rotor in the middle, that

is driven by a DC motor in this case. Attached to the rotor are four rollers that

squeeze the flexible tube containing the fluid being pumped against the interior
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Figure 2.1: Diagram of part of the peristaltic pump designed for UAV-based
water sampling

of the outer housing. When the flexible tube is pinched by the rollers against

the interior wall, fluid is entrapped between adjacent rollers and carried along

between the rollers until the leading roller loses contact as the rotor circumference

and tube diverge and the formerly entrapped fluid is forced out the outlet side

by the trailing roller. The rotation of the rotor repeats this motion over and over

and new fluid is drawn in by the vacuum created by rollers trapping and moving

fluid through the tube. Peristaltic pumps are widely used in medical applications

for more than just blood transfusions [20, 21, 22, 23]. There are several reasons

why this type of pump is advantageous in the realm of medicine. It is very

easy to maintain a sterile environment because none of the inner workings of
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the pump ever contact the fluid passing through the tube. The pump simply

squeezes the exterior of the tube which is a safety benefit and a significant cost

savings because the same pump can be used over and over instead of requiring

replacement or extensive cleaning between uses. Another key feature is that the

precise amount of fluid pumped can be predicted because of the way in which

fluid is pumped. The space between the rollers is fixed which means the same

amount of fluid is entrapped each time. By utilizing an encoder on the driving

motor, the number of revolutions the pump rotor has turned is measurable and

subsequently the quantity of entrapped fluid pockets that have been transferred

to the outlet of the pump is known. Collecting water samples shares some of

the same concerns with the medical world in regards to sterility and protecting

against contamination. Using a peristaltic pump in our research helps ensure

we prevent contamination from our sampling mechanism. The flexible tubing

dipped into the water for collecting samples is inexpensive which allows us to

simply swap in a new tube for quick redeployment in the field instead of needing

to extensively clean internal mechanisms to prevent contamination of subsequent

samples.

Robotic applications of peristaltic pumps tend to be more like bio-mimicry of

intestinal or esophageal peristalsis than a rotary pump. A micro-peristaltic pump

was designed that used a single actuator to create traveling waves on a polymer

membrane to produce a flow rate of 1.5mL/min for a soft robotics application [24].

Other research has explored making robotic models of the swallowing mechanism

in humans, which presented interesting challenges in control and trajectory gen-

eration [25]. One final robotic application that uses a rotary type peristaltic pump

is a cocktail mixing robot called “Bartendro” sold by Party Robotics [26]. Using

peristaltic pumps allows Bartendro to mix drinks with sub-milliliter accuracy.
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One final property of the peristaltic pump that makes it useful for sampling

in water with a high quantity of particulate matter is its resistance to clogging.

Because the fluid never contacts the working mechanisms of the peristaltic pump,

clogging and wear are minimized which has made it quite popular in applications

for moving sludges of all kinds [27], slurry from agriculture and manufacturing

[28], powders [29], wastewater [30], abrasive chemicals [31], mining material [32],

and fluids containing long polymer chains [33]. Typical impeller or centrifugal

pumps have small internal orifices, channels or valves, which clog easily when

pumping fluids with high particle content. In addition, the particles in the fluid

quickly wear the internal structure of the pump requiring replacement or con-

versely the moving components of the pump damage the fluid.

The commercial systems we found were not well suited for use on an aerial

vehicle. They were either too heavy or had flow rates too low to be useful. Thus,

the challenge was designing a system that was light enough, yet had a high

enough flow rate and integrated easily with the UAV. Additionally, we designed

our pump to allow the tube to be quickly swapped out for fast redeployment in

the field.

2.2 Temperature Sensing

The thermal structures of an aquatic ecosystem are one of the primary factors

in determining the quality of the habitat [34] [35]. The thermal structures also

provide the physical forces that drive the macroscopic dynamics including the

stability and overturning of the water column, which affects biogeochemistry,

oxygen demand, and the ecology as a whole [36, 37, 38, 39, 40, 41]. Typically, bulk

thermal properties of surface water bodies are characterized by point measure-
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ments taken vertically in the water column. This assumes that the water is well

mixed and the conditions are uniform in lateral directions. However, non-uniform

properties in the lateral direction of surface water bodies are increasingly being

recognized as a driving force behind mixing and habitat development. Examples

of this are two alpine rivers in floodplain environments in Italy that have shown

lateral temperature variations as large as diurnal variation at any given point [42].

At river and stream confluences, the mixing due to thermal gradients plays

a dynamic role [43]. Rivers with cool areas due to tributaries with significantly

cooler water than the main channel, bank side shading, deep pools, and ground-

water inputs create thermal structure and cold water refuges that are critical for

fish habitats [44, 45, 46, 47, 48].

In smaller lakes, variances in depth, bottom sediment, shading, or exposure to

wind cause lateral thermal gradients which may be large enough to cause convec-

tive currents, contributing to mixing-layer deepening and over-turning dynamics

[49, 50, 51, 52, 53].

Clearly, thermal gradients in both the vertical and lateral directions can occur

in surface water bodies and they play a critical role in the physical mixing pro-

cess that determines important water and habitat qualities. Characterizing the

non-uniform structures with high spatio-temporal resolution is challenging for

researchers who currently use four methods for obtaining data including manual

sampling, in-situ sensing, remote sensing, and mobile sensing.

Typically, collecting temperature data manually requires either a boat to trans-

port a researcher or a researcher wading into the shallows. Both of these methods

are time consuming, which limits the amount of data they can collect. Addition-

ally, these methods have the potential for disturbing the water and skewing the

measurements taken.
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In-situ sensors are readily available, capable of continuously reporting data,

and require minimal maintenance [54]. These sensors are tied to a line and then

anchored in place in the water. They are useful for long-term deployments, but be-

cause of their lack of mobility, a dense grid would have to be deployed to capture

3D spatial structures. This would quickly become very costly and could disrupt

the normal commercial or recreational use of the water. Further, these sensors

tend to have a slow response time (e.g. 15 minutes for the HOBO pendant data

logger we tested), so they must be fixed in place for long periods. Recent devel-

opments in thermal sensing using fiber optics provide greater spatial continuity

in the measurements made. In these measurements, the exponential dependence

of the scattering of light on fiber temperature allows travel times for light within

a fiber optic cable to be used to infer local temperature variations along the ca-

ble length [55]. This technique works well for sampling along the length of a

stream but is poorly suited for constructing a three-dimensional grid because of

the difficulty of managing many long cables. Cost also remains a constraint for

measuring temperature using fiber optic cable.

Remote sensing involves using a manned helicopter [56], fixed-wing aircraft

[57], or unmanned aerial vehicle [58] equipped with a thermal camera to collect

images of the surface temperature of water bodies. Satellites can also be used

to collect data on a much larger scale. Temperatures are typically inferred from

the relationship between the intensity of the emitted radiation of a water body,

with radiant temperature corrected for emissivity to yield kinetic temperatures.

The resulting data sets are quite accurate (±1 ◦C) [56, 59, 60], but their major

limitation is that they only report surface temperatures.

Our approach seeks to combine the advantages from other techniques into

one procedure. We aim to produce the same degree of accuracy as remote sens-
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ing techniques while also producing high resolution data sets of the entire 3D

structure instead of just the surface. In addition, the data sets should be collected

quickly to allow large scale operation over short periods.

Mobile sensing combines the utility of in-situ sensors for high resolution with

the ability to autonomously move in three-dimensional space. These Autonomous

Surface Vehicles (ASVs) and Autonomous Underwater Vehicles (AUVs) are in-

creasingly being used to construct thermal maps [61, 62, 63, 64, 65]. These sys-

tems can autonomously collect high resolution spatio-temporal data in 3D over

long periods of time. However, they are best suited for large, open bodies of wa-

ter with easy access because they can be difficult to deploy without a boat ramp

or dock. They typically don’t employ extensive obstacle avoidance capabilities,

which limits their utility in shallow water with vegetation. Additionally, GPS and

radio communication is limited underwater, so geo-referencing the data collected

is difficult and expensive for AUVs.

The system created by Zhang et. al. [65] resembles a robotic fish that glides

through the water via either buoyancy driven gliding or fin-actuated swimming.

A significant amount of effort was put into designing a robust controller that ef-

ficiently achieved descending, ascending, and spiraling motions to best monitor

the environment. The methods of motion combine high efficiency with maneu-

verability, however, the maximum velocity achievable is less than 0.5m/s. The

high efficiency and low speed makes it ideal for long missions that gather very

high resolution data. With this type of system, it would be impossible to quickly

create thermal maps of water bodies simply because it cannot move fast enough.



15

2.3 Sub-Surface Sampling

Both the wireless sensor networking and robotics communities have a large body

of research dedicated to underwater operation. To date, most work has considered

either static sensor networks, or fully autonomous robots for monitoring water

bodies. Our work combines advantages from both of these communities to create

new, more effective environmental monitoring tools.

Underwater sensor networks have a multitude of uses, including seismic mon-

itoring, pollution detection, and environmental monitoring [66]. Most underwa-

ter sensor networks are assumed to be sparse, statically deployed networks that

use expensive acoustic modems for communication [66, 67, 68]. Optical links for

underwater communications have also been considered [69]. Traditional wire-

less sensor network (WSN) ideas guide these designs, which rely on many small

nodes to generate and route sensor information to centralized sinks. Traditional

WSNs assume that the nodes must be low cost and complexity, which reduces

manufacturing and maintenance costs. The threat of water intrusion in marine

environments makes this a difficult goal to achieve.

Anchoring nodes to the seafloor with a winch allows nodes to travel vertically

in the water [70, 71]. This mobility allows the nodes to find areas of interest within

the water column. These nodes are expensive, and the winching mechanism

consumes significant energy, which limits the deployment time and how much

information is collected.

Small “drifter” nodes that float with the current of tides or rivers have been

successfully deployed in the environment to take Lagrangian measurements of

current. They are constrained to the surface of the water, both because they lack

the actuation or buoyancy control to dive and also because their communication
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methods require an antenna that extends above the surface [72, 73, 74]. Other

drifting and gliding nodes capable of descending and ascending are used to take

sub-surface measurements but are more complex and expensive [75, 76].

The Waterbug, designed as part of this thesis, combines many of the capa-

bilities of the vertically mobile nodes and the drifting nodes while adding some

improvements. It has the ability to ascend and descend efficiently and to drift

while still being simple and inexpensive.

Aquatic robots have also been used as mobile sensing platforms to study wa-

ter bodies [77, 78, 79, 80, 81]. The autonomy of these robots and collaboration be-

tween them potentially resolves the difficulties of using communication between

static sensor nodes. However, these robots are large, expensive, and difficult to

deploy. These shortcomings are especially evident when working with multiple

small, disconnected water bodies. In these environments it is highly desirable to

avoid redeploying robots, and the number of water bodies makes it impractical

to dedicate a robot for every lake and pond [8]. Using small UAVs in these areas

is attractive, because the high mobility allows a large area to be monitored with

a small number of robots. The drawback to using UAVs is that it is extremely

difficult to interact with the water, which limits the utility of their sensor data.

The high attenuation of water in both the radio and optical domains forces

sparse underwater networks to use acoustic modems, which have the range to

link medium to long range nodes. However, acoustic modems are extremely ex-

pensive and have low channel capacities, which further increases costs, and limits

how much information is collected [82, 83, 84, 85]. Optical links for transmitting

information are extremely short range (<10m), and use high power LEDs that

consume significant energy [69]. The cost, complexity, and size of these com-

munication devices were significant influencing factors in our decision to design
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the Waterbug to not require external communication capabilities while deployed

underwater.

Engineers and researchers at the Monterey Bay Aquarium Research Institute

(MBARI) created a water sampling module to add to their existing 6.4m long

autonomous underwater vehicle (AUV), which they presented in an article by

L. Bird, A. Sherman, and J. Ryan in 2007 [86]. The water sampler had several

functional requirements that were contrived by a team of engineers and scien-

tists. They were interested in sampling within thin layers of the water column

and also detecting sparse microbial populations which drove the decision to re-

quire a relatively large collection volume of 2L collected over only 2s. These two

requirements for the design led to the nickname “the Gulper”. Several other

requirements such as having clear sample collection chambers, depth of opera-

tion, and number of sample chambers were driven by requirements specific to the

interests of the particular users at the MBARI.

The sample collecting mechanism of the Gulper operates much like a large sy-

ringe driven by spring force. Some of the challenges encountered were machining

parts to tight enough tolerances and finding proper O-rings to achieve a leak-free

seal while avoiding high drag forces while actuating the sampler. Additionally,

finding a spring that exerted the required force to actuate the sampler while being

safe to set by hand and having the capability to fit inside the space envelope avail-

able proved challenging as well. After some experimentation, a custom machined

polycarbonate cylinder, quad O-ring, and dual extension springs were chosen to

solve the previously mentioned challenges. Both lab tests and field tests were

carried out and compared to standards to validate the performance of the Gulper.

The samples collected during field tests were compared to samples collected us-

ing more traditional techniques and the results were highly correlated. The team
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at MBARI concluded after several successful missions that using mechanisms like

the Gulper, “for coupling rapid, large-volume water sampling with the autonomy

of an AUV will provide a better observational platform for diverse research areas

in oceanography.”

The Waterbug shares some functional similarities with the Gulper. It also uses

a syringe mechanism for quickly collecting samples which allows it to sample

within thin layers of the water column. Both autonomous water sampling plat-

forms have the potential to provide a better observational platform in their own

domain. The Waterbug is much smaller and is more suited to blanket deployment

for wider spread observation than the point sampling the Gulper provides.

Small UAVs have been used to collect water samples from freshwater bodies as

part of previous work in the NIMBUS Lab [8, 7, 87]. This UAV pumps water from

near the surface of a water body to a reservoir in the UAV. The water samples

are brought back to laboratories for detailed analysis. The small payload capacity

and control complexities limit this approach to collecting small water samples

from near the water’s surface. The weight and complexity of a long tube make it

impractical to collect water samples from deeper than a meter or two below the

surface with a UAV. The Waterbug provides a good complement to the capabilities

of the water sampling UAV. It is light enough to be deployed and retrieved by

UAV but it has the capability to sample from deeper than the UAV alone can

reach, and it can loiter in the water longer than the UAV can hover to observe the

environment.



19

2.4 Control Theory

Three aspects of control theory are particularly relevant to the Waterbug and are

used in the design of the algorithm to achieve neutral buoyancy. A brief overview

of feed-forward, feedback, and precompensation, as well as some supporting as-

pects of control theory are given in this section [88, 89]. Open-loop control repre-

Open	Loop	Control	

Controller	 Plant	Input	 Output	

Figure 2.2: Block diagram of open loop control

sented by the block diagram in Figure 2.2 is one of the simplest forms of control.

The plant is the process or mechanism being controlled, the input is the directive

signal, the controller translates the input signal into a relevant form for the plant

and the output is the plant’s response. This type of control is relatively inex-

pensive and easy because it requires neither a system model nor any additional

equipment to monitor the output of the plant. However, these advantages are also

the disadvantages of the system. Without a system model the controller cannot

make predictions about the output of the plant based on the input it gives and

without feedback, the controller has no knowledge of disturbance in the system

and therefore cannot account for it.

Feedback control is a type of closed loop control and is represented in Fig-

ure 2.3. It improves upon open loop control by adding the ability to account for

disturbance in the system. The lower block takes the output of the plant, multi-
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plies it by a gain H and feeds this signal back to the controller so that the plant is

given a composite input commonly called the error signal that is made up of the

input signal and the plant output. In an ideal world, the input signal would spec-

ify a plant condition and the plant would respond perfectly with no disturbance

so that the output of the plant exactly matches the input signal. The feedback

signal would exactly cancel the input signal to the controller and no additional

input would be given to the plant because its desired output is already achieved.

However, when disturbance is injected at any point in the system, the feedback

and the input signal are not exactly matched and the controller translates this

error signal into a plant input.

Closed	Loop	Feedback	Control	

Controller	 Plant	Input	 Output	

H	

+	
	–		

error	

Figure 2.3: Block diagram of feedback control

Feedback control is not dependent on an accurate system model. By tuning

the gains of the controller and feedback, the plant input can be be scaled to an

appropriate level so as to achieve stability in most situations. However, one situa-

tion where it is difficult to achieve stability with feedback control is when there is

significant delay in the system or the dynamics of the plant are much much slower

than the rate of control input and feedback. In this case, the controller gives the

plant an input and then measures its output, which apparently did not respond
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at all to the input. This information is fed back to the controller which then gives

an even larger input to the plant to try and achieve the desired response. This

process can happen over and over with the controller trying harder and harder

to achieve the desired plant output when in reality, the plant is simply slow to

respond to the input it is given. When the plant does respond, it overshoots the

original desired output and often diverges. There is a significant body of work

devoted to dealing with delay in feedback control for discrete system time de-

lay [90], multivariable systems [91], PID tuning of controllers for systems with

unstable processes [92], PID neural networks [93], an algorithm for stabilization

for systems using fractional-order PID controllers [94], and frequency-domain de-

sign of PID controllers for stable and unstable systems [95]. The vast and varied

approaches for attempting to achieve system stability using only feedback in sys-

tems with delay is a testament to the utility of not requiring a system model.

However, developing a system model is the best approach for achieving stability

in certain circumstances, despite its challenging nature.

Feed-forward control is a technique that takes advantage of a system model.

It looks similar to simple open-loop control, but the controller has knowledge of

the system model for the plant so it is capable of predicting the output based on

its input to the plant, unlike simple open-loop control. It does not require tuning

gains to achieve the desired output like feedback control. The major advantage

of feed-forward control is due to its knowledge of how the system will respond

to a given control input. Delay does not present the challenges that it does for

feedback control, because even if the plant takes a significant amount of time to

respond to the controller input, the system model can predict what the response

will eventually be instead of continually making corrections based on measured

error in the output. Pure feed-forward control does have the disadvantage of
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not correcting for disturbances injected into the system. Also, if the model is

inaccurate, the actual response will differ from the predicted response. In practice,

using feed-forward allows the system itself to be less expensive, smaller, lighter,

and use less energy. The reason behind this is because the model of the system

allows the controller to put in only the control needed to achieve the desired

output instead of having to potentially correct for large errors or overshoots.

Precompensation is a control technique used to scale the reference input to a

system to an appropriate level to eliminate steady-state error. It bears similarity

to feed-forward control because it requires some knowledge of the system and it

does not handle disturbance because it is outside of feedback loops. Nevertheless,

precompensation is a useful tool in the right circumstances.

2.5 Fire

Prescribed fires can reduce wildfire severity [96, 97, 98, 9], control invasive species

[99, 100, 101], and improve rangelands for livestock and grazing [102]. However,

igniting and containing the fire also puts ground crews at risk of injury or death.

Firefighters igniting the interior of a burn unit are surrounded by unburned fuel,

and a drip torch, the tool of choice for interior ignition, starts the fire danger-

ously close to the crew. Changes in wind can smother the personnel in smoke

and transform a slow backburn into a fast-moving blaze, leaving little time to

escape or deploy a fire shelter [103]. The problem is compounded if the burn

unit is in difficult terrain. The firefighter could become injured during ingress or

egress and unable to get themselves out of danger, and rescue would be difficult

because of the terrain. In a conversation with a member of the National Parks

Service who directs the Homestead National Monument, we were informed that
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Figure 2.4: Interior ignition being conducted from an ATV

five firefighters were killed last year in these types of situations. Burning large

acreages introduces additional difficulties. The fire line may be miles long and

require personnel to enter ravines, or other difficult-to-escape terrain. In these

cases, interior ignition is typically conducted using drip torches mounted on All-

Terrain-Vehicles (see Figure 2.4). This introduces additional risks, as ATVs are

prone to roll over. One firefighter died at a prescribed burn when he was pinned

under his ATV after it overturned [104]. Eliminating the need to send a crew

member on the ground into the middle of the fuel of the burn unit would signifi-

cantly reduce the risk to personnel.

Aerial ignition removes the need to have personnel inside the burn area.

The Premo Plastic Sphere Dispenser (PSD) [105] is a mechanism designed to be

mounted on a helicopter that uses ignition spheres to ignite prescribed fires. It

has the capacity to hold 450 spheres which it can drop at variable rate of 45 -

130 spheres per minute. Fully loaded the device weighs nearly 100lbs. These

helicopter-mounted ignition systems [106] are too expensive for most private
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landowners [107], and introduce the risk of crashing [108].

Additionally, there are ground based launchers that use the same type of ig-

nition spheres [109, 110]. They have the capability to launch the spheres between

20 - 100m. Both types of launchers must be manually cocked, aimed, and fired

for each sphere sent downrange. In conversations with the practitioners who use

these types of tools, we were informed that they jam often and require extensive

cleaning to remain operable and as a result, these practioners rarely use them.

Firefighters need new tools that reduce risk, yet are low cost and easy to op-

erate, to make them available to the majority of prescribed fire users.

Two different types of ignition spheres already exist for use in the PSD and

ground based launchers, one produced by SEI Industries [111] and the other pro-

duced by Aerostat, Inc [112]. Both types contain approximately 3g of potassium

permanganate and are manufactured to withstand high impact, which ensures

the spheres stay intact when dropped from altitude, but it also means up to 115N

is required to puncture the wall of the sphere. We used these spheres in our work

because they are widely accepted in the firefighting domain and they are already

mass produced.

One of the significant challenges we faced was designing a mechanism that

could provide and withstand the force necessary to puncture the ball while re-

maining under the size and weight limitations. Our system takes the capabilities

of the helicopter based system, shrinks it down to less than 500g, automates its

function and provides a much higher accuracy than the ground-based launchers,

while keeping personnel out of danger.
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Chapter 3

UAV Sensing and Sampling

This chapter details the requirements (Section 3.2.1), design (Section 3.2.2), char-

acterization (Section 3.2.3), and field testing (Section 3.2.4) of a peristaltic pump

with the capability of pumping water samples to over 6m in altitude. It was de-

signed for use on a UAV, and the length of tubing that can safely be flown by

the UAV is the limiting factor for sample depth and height instead of the pump

performance.

The next portion of the chapter discusses the motivation and requirements for

a temperature sensor used on a UAV to provide mobile sensing in order to create

three-dimensional thermal structure maps of water bodies (Section 3.3.1). The

lab bench tests (Section 3.3.2) and field tests are subsequently discussed (Section

3.3.3).

3.1 UAV Platform

Before getting into details about the sensors and mechanisms designed to be

mounted on the UAV, we will first give a few details about the UAV platform
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used.

Figure 3.1: Ascending Technologies Firefly

The aerial platform we

chose to use for both the peri-

staltic pump and temperature

sensors is an Ascending Tech-

nologies Firefly model. The

Firefly is a hexacopter with

a maximum paylod of 600g

[113], shown in Figure 3.1.

It comes equipped with GPS (Global Positioning System), 3-axis accelerome-

ters and gyroscopes, compass and an air pressure sensor.

The UAV is powered by a 3-cell 5000mAh lithium polymer battery. The battery

ranges from 12.6V when fully charged to 10.5V when discharged. In addition, the

UAV has an onboard 5V regulator and a power port where a separate regulator

can be plugged in for other desired voltage outputs.

With a fully charged battery, the vehicle can fly for 15-20 minutes, which

bounds the maximum mission distance at approximately 2km.

We chose this UAV because it is portable, certified by European aerial vehicle

safety standards, includes extensively-tested control software, has enough pay-

load capacity to carry the mechanism we designed, and in case of motor failure

can still fly with only five of six motors functioning.

The Firefly navigates using a built-in GPS circuit and an air pressure altimeter.

We utilize the GPS for navigation outdoors, as well as determining the location

from which samples and data are collected.

The Firefly has configurable mounting points where a payload can be attached

and plenty of space and height clearance to mount mechanisms beneath it. We
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discovered that most often, the maximum payload weight was the limiting factor

rather than the space available.

3.2 UAV Sensing and Sampling: Pumps

The design requirements for a peristaltic pump to be mounted on a UAV are given

in Section 3.2.2, followed by the final design details (Section 3.2.2), characteriza-

tion (Section 3.2.3), and field testing (Section 3.2.4).

3.2.1 Pump Requirements

Weight: As mentioned in Section 3.1, the maximum payload for the UAV is 600g,

so the pump, tubing and any other peripherals had to remain under this limit,

and the heavier the pump is, the shorter the vehicle flight time.

Flow Rate: Ideally, the pumping rate should be as high as possible but it is

largely dependent on the size and power of motor used to drive the pump. Since

the UAV platform has both weight capacity and power restrictions, we tried to

find the most efficient combination of weight, power consumption, and pumping

rate.

Power Requirements: As mentioned, the UAV has power restrictions and

adding a separate power source consumes a significant portion of the payload, so

we decided that the pump needed be powered directly from the UAV. The motor

driving the pump needs to remain under the voltage and current limits of the

auxiliary power supplies onboard. 5V is readily available on the UAV and any

voltage under 10V is easy to achieve with a lightweight regulator.

Head: Head refers to the height of a column of water a pump can produce.

The pump needs to be able to produce at least 1m of head. One property of the
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peristaltic pump that is particularly useful for UAV-based water sample collection

is a result of the vacuum pressure created by the roller pinching the flexible tube,

which allows the pump to produce a significant amount of head. If the rollers

of the peristaltic pump completely occlude the flexible tube so it is fully sealed,

the maximum head the pump can produce is just over 10m, assuming standard

atmospheric conditions, so this requirement was easily exceeded.

3.2.2 Pump Design

While the concept of using a peristaltic pump for pumping water is not unique,

we did custom tailor a peristaltic pump we designed to fit the electrical capabil-

ities, weight and size restrictions, and tubing used on the NIMBUS Lab’s water

sampling UAV. Figure 3.2 shows one of the final designs used in the UAV water

sampling experiments. The driving motor for this version is a 50:1 ratio Pololu

Micro-Metal Gearmotor rated to run at 6V with an output shaft no-load speed

of 625RPM [114]. The other design was nearly identical except it used a larger

Pololu gearmotor with 9.7:1 ratio, rated to run at 6V with an output shaft no-load

speed of 990RPM [115]. The black tube retainer was a design feature added after

experiments demonstrated that in practice, the tube tended to slowly slip around

the circumference of the rotor in the direction of rotor rotation unless it was held

in place. The tube is press fit into the groove running around the circumference

of the the retainer and the friction from the press fit holds the tube in place. The

open design of the pump makes changing tubes easy and very quick. Replacing

a tube is as simple as slipping the old tube out and pressing the new tube in. The

roller bearings compress the the tube against the inner wall of the outer housing

but the tube used is quite flexible so only a small amount of force is needed to
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squeeze it in place. After this, the tube retainer is snapped in place around the

outer housing and the inlet side of the tube is pressed into the groove on the

retainer.

Figure 3.2: Final peristaltic pump design with small motor

In previous works, we used a TCS Micropump [116] to pump water up to

the UAV. This pump weighs 10g and has an input voltage range of 2V to 4V. It

uses an internal impeller driven by a small brushed DC motor and is capable of

producing slightly more than 1m of head. Because it uses an internal impeller as

its pumping mechanism, it must be primed in order to start pumping water. This

means that in a UAV-based water sampling mechanism that it must be mounted

at the bottom of the tube that runs up to the UAV and be submerged in the

water while pumping. This pump is quite small and light weight but it requires

running wires down the length of the tube to power it. It also requires an external

filter to prevent clogging of the impeller mechanism. Using too fine of a filter
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mesh restricts flow and reduces head, so a larger filter orifice is required, which

occasionally results in the pump becoming clogged, though not as often as with

no filter in place. Some of our research collaborators have expressed concern

over contamination caused by the water touching the inside of this type of pump,

so if there are experiments or sample collections that have strict contamination

requirements, the pump and associated peripherals that come in contact with the

water must be extensively cleaned.

3.2.3 Pump Bench Tests

The peristaltic pumps were tested at 5V and 9V at five different altitudes between

1m and 3m to characterize and compare their performance. 1m was chosen as the

lower bound, because in practice, we will not fly closer than this to the surface of

the water and 3m was chosen as the upper bound because we will not fly with

more than about 4m of tube hanging from the vehicle which allows the vehicle to

fly 3m above the surface with the tube submerged up to a meter deep.

For each lab trial, the end of the tube connected to the pump was submerged in

a bucket of water, which was placed on a flight of stairs. The pump was powered

by a variable voltage power supply and emptied into a container sitting on a

scale. The pump was allowed to prime and then a one minute timer was started

when water began flowing out of the pump. The current draw as reported by the

power supply was approximately constant and was recorded for later calculations.

After one minute, the pump was stopped and the mass of water pumped was

measured and the density of water was used to convert the mass to a volumetric

measurement. The efficiency for each trial was calculated by dividing the energy

consumed over the one minute and dividing the volume pumped by the energy
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Figure 3.3: Peristaltic pump characterization and performance for different
voltages and altitudes

consumed. Figure 3.3 shows the volume pumped and also the efficiency.

The pump with the larger motor pumped more volume and consumed more

energy, as expected, but it also was more efficient than the pump with the smaller

motor. Both pumps had decreased efficiency at higher voltage. The efficiency

for both pumps also decreased at higher altitudes because of the larger amount

of energy required to produce greater head. The pump with the larger motor

weighs 130g and the pump with the smaller motor weighs 48g. On an Ascending

Technologies Firefly hexacopter UAV, an additional 12W of power is required to

hover when carrying the peristaltic pump with the large motor compared to the

small motor. However, just the UAV alone requires around 200W to hover, so

when considering the energy requirements to fly the UAV, the peristaltic pump

with the larger motor is almost twice as efficient because of its higher pumping

rate, even when considering that it is heavier and consumes more energy and

can therefore shorten flight time. Table 3.1 summarizes the results of the power

required to run the pumps at 9V and 2m height, as well as for the UAV to fly with

the pump mounted on it. The flight time was computed assuming a 4900mAh bat-

tery with a nominal voltage of 12V. The efficiency shown is the volume pumped

divided by the total energy consumed over the flight time by both the UAV and
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Table 3.1: Summary of the power required to fly with the two peristaltic pumps
and the overall efficiency

pump.

The TCS Micropump was previously characterized by John-Paul Ore as part

of earlier research with the water sampling UAV [117]. It is somewhat difficult

to compare the performance of the Micropump to the peristaltic pumps because

they run at different voltage ranges and the Micropump cannot pump the water

nearly as high as the peristaltic pumps. Ore tested the pump at various voltage

ranges and altitudes and found that the flow rate of the Micropump drops off very

quickly after 1m when operating at the recommended voltage and stops pumping

completely around 1.2m, even when operating slightly above the recommended

voltage. Table 3.2 compares the performance of the three different pumps at 1m.

As mentioned earlier, 1m is the closest the vehicle will come to the water so we

didn’t test the peristaltic pumps below this altitude. However, the Micropump

was unable to pump any higher than 1m so we compared the three pumps at this

altitude and then continued increasing altitude with the two peristaltic pumps to

compare their performance just against each other.

Table 3.2: Comparison of the three pumps at 1m altitude
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The Micropump has the highest efficiency and flow rate at 1m altitude for the

given voltage. However, in practice, flying only 1m from the surface of the water

can be dangerous for the vehicle and gives the backup pilot very little time to react

in case of an emergency. Additionally, the impeller of the Micropump can clog in

dirty water or when sampling near the bottom which requires disassembling the

pump in the field and possibly losing the small internal pieces.

Even though our initial specification stated that we will not exceed a pumping

height of 3m, we attempted to characterize the maximum height the peristaltic

pump design could achieve. In theory, the pump should be able to achieve over

10m of head. In practice we found that at just over 6m, the pump still functioned

well, but when priming, the tube began to collapse under the vacuum created by

the pump. We considered this the maximum height since one of the benefits of the

pump is that it is self-priming, and even though the pump could have pumped

higher if it was pre-primed, this eliminates part of its functionality.

Both the peristaltic pumps and the Micropump have their respective benefits

and drawbacks, so they will both likely continue to be used alternately when their

individual strengths are of greater value.

3.2.4 Pump Field Tests

The peristaltic pump design, shown mounted on the UAV in Figure 3.4, was tested

on August 12th, 2015 at a lake near Offutt Air Force Base near Omaha, NE. The

purpose of the test was to search for baby Zebra Mussels (veligers) by pumping

water up to the UAV with the peristaltic pump and filtering the water through a

64 micron filter [118]. The lake is known to be infested with Zebra mussels and

our water science collaborators informed us that summer is the most likely time
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to find veligers.

Figure 3.4: Peristaltic
pump mounted on

Astec Firefly

For our tests, we flew approximately 1.5m above

the water and powered the pumps from 9V, so we as-

sume the flow rate was 251ml/min for the small and

444mL/min for the large peristaltic pump based on

data from our bench tests. We tested both pumps to

evaluate their performance in the field. The depth of

the inlet of the tube was controlled by designing a 3D

printed press-fit clamp and attaching a fishing bobber

to it, shown in Figure 3.5(a). The tube ran from the

water up to the peristaltic pump on the UAV.

At the outlet of the tube on the outlet side of the

pump, the water was filtered by the 64 micron filter

before dropping back into the lake. The filter was

wrapped around a 3D printed cage that had internal

threads designed into it. A 3D printed adapter with external threads was af-

fixed to the outlet of the tube to allow the filter to quickly be replaced between

flights. Figure 3.5(b) shows one filter threaded on the adapter, a spare filter, and

a quarter-dollar coin for reference.

The locations we sampled were near the shore where concrete chunks had

been dumped into the lake. Our ecologist and water science collaborators told us

that the veligers breed there and then eventually attach to the rocks or concrete

as they grow. We sampled in several locations that formed a line starting 5ft out

from the shore until the water depth was greater than 15ft. The thick black lines

in Figure 3.6 show the sample locations on a depth map of the lake. Since the test

was for evaluation purposes, we measured the depth of the sampling locations by
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(a)

(b)

Figure 3.5: (a) Inlet side of tube and clamp/bobber float for controlling depth of
sampling (b) Outlet side of tube with 64 micron filter and threaded adapter

hand so that we could set the fishing bobber at the correct location on the tube so

that the end rested right at the depth of the concrete chunks. For completeness,

we also took samples from higher in the water column. We flew from the bank

of the lake over the sampling location, and lowered the tube into the water by

descending the vehicle until the bobber was floating in the water. The pump
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Figure 3.6: The black lines show the locations sampled for Zebra mussel veligers.

ran continually once powered, so water began running through the filter as soon

as the tube was in the water and we continued to loiter the UAV at the sample

location until the battery was depleted approximately 12min later, at which point,

we flew back to shore. Loitering for 12min resulted in approximately 3.01L being

pumped through the filter by the small peristaltic pump and 5.33L by the large

peristaltic pump. After landing, we collected the used filter from the vehicle and

immediately placed it in a sterile vial to be examined for veligers in a laboratory

later. As a control, the traditional method of a researcher in waders casting a net

and dragging it through the shallows was also employed to collect samples. The
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net dragging typically filters around 60L of water per cast.

After all the sample filters were examined in a lab, it was determined that

the veliger distribution was very sparse at the time of sampling. In June of 2015,

the average density of veligers was nearly 200 specimens per test but by August,

the average density had dropped to less than one specimen per test. As a conse-

quence, no veligers were found in the filters used with either the large or small

peristaltic pump. The conclusion was reached that the population was mostly

dormant and sampling at a different time when the activity was higher may have

yielded different results. Unfortunately, this did not allow us to make any deter-

minations about what minimum flow rate is required to detect veligers. Future

tests slated for summer of 2016 will hopefully help to make this determination.

The pump itself performed satisfactorily and we feel confident that it worked

as designed. The filter at the inlet end of the tube that was near the bottom of the

lake filtered out large particles, and even though it became partially clogged with

debris, the peristaltic pump created enough head to continue pumping water with

no discernible drop in the flow rate. After an hour of almost continuous operation,

the portion of tube that was pinched by the rollers smelled warm and was visibly

abraded on the surface, but this had no noticeable impact on the performance.

On June 9th, 2016, the field test was repeated to once again search for veligers.

The flying conditions were less than ideal, with windspeeds exceeding 10m/s, so

we only tested the large peristaltic pump to provide the best chance of capturing

the specimens during the limited amount of flights we attempted. This time, the

veliger activity was much higher and the UAV successfully captured veligers in

its filter. Figure 3.7 shows the veligers captured in the sampling filter during one

of the flights. Capturing the veligers in detectable quantities was a significant

success for the peristaltic pump and UAV sampling techniques. It proved that the
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Figure 3.7: Zebra mussel veligers captured by the UAV water filtering system

system is a viable tool for this application and future work will look at how the

advantages of a UAV, such as precision sampling and mobility can be leveraged

to make invasive species management more effective.

3.2.5 Pump Summary and Contributions

In summary, we designed two versions of a peristaltic pump and compared it to

a Micropump with an impeller that has been used in some of our earlier work.

We overcame the challenges of designing a pump that was light enough for the

UAV, while still providing a high enough flow rate and remaining within the

power limitations available. Through lab testing, we characterized the pumps’

efficiencies at various heights and operating voltages and determined the maxi-



39

mum functional pumping height for our particular setup is just over 6m. We field

tested the pump in an experiment looking for Zebra mussel veligers, and while

none were found due to a dormant population at the time of testing, we were

satisfied that the pump performed as intended.

I was responsible for designing, prototyping and characterizing the peristaltic

pumps and John-Paul Ore assisted me with the field tests.
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3.3 UAV Sensing and Sampling: Temperature

Sensors

In addition to our UAV-based sampling work with the peristaltic pumps pre-

sented in Section 3.2, we introduce our work with UAV-based mobile sensing of

temperature in this section.

3.3.1 Temperature Sensor Motivation and Requirements

Accuracy and an appropriate amount of resolution are, of course required for a

sensor used to measure temperature, but we determined that a very close follow-

ing requirement for a UAV-based temperature sensor is a fast response time for

multiple reasons. First, the UAV battery life is limited, which means that spend-

ing time hovering while waiting for a sensor to settle limits the amount of points

that can be measured before needing to land and change batteries. Second, the

UAV attempts to hold altitude, but if the wind is blowing, the vehicle will be

buffeted up and down, causing the temperature sensor to change depths. If the

water being measured is highly stratified and the sensor is too slow, the stratifi-

cation will simply be averaged out as the sensor bobs up and down because of

the UAV movement. However, the prior two issues can be resolved with a fast

enough sensor.

The pressure sensor used to gauge the depth of the temperature sensor is very

fast and if the temperature sensor could respond similarly quickly, the stratifi-

cation of the water could be observed without requiring the temperature sensor

to be held stationary. The temperature sensor should have a response time of

less than one second to allow high resolution data to be captured faster than
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the normal vehicle dynamics of bobbing up and down occur. A sensor this fast

could be continuously lowered through the water vertically, dragged horizontally,

or a combination of the two motions could be used to quickly build a large 3D

temperature map of a water body.

The first sensor we designed and field tested (MS5803), the results of which

are detailed in Section 3.3.3, had far too slow of a response time. The testing

revealed the importance of having a fast sensor, which lead us to return to the

design of a new temperature sensor which we will field test in future trials.

3.3.2 Temperature Sensor Bench Tests

Figure 3.8: MS5803 IC
on a custom circuit

board

The requirements for a UAV-mounted temperature sen-

sor for the purpose of measuring water structures were

partially driven by some of our early stage trials. We

initially used the integrated temperature sensor on the

MS5803 integrated circuit shown in Figure 3.8. Our

main use for the MS5803 was to measure depth via

pressure, but since it had a temperature sensor built in,

it was convenient for a first attempt to use it for temper-

ature measurements. The sensor was compared against

a HOBO Pendant logger, which is an in-situ temper-

ature sensor that our water science collaborators use.

Table 3.3 gives the specifications for the two sensors.

Figure 3.9 shows a plot of the MS5803 temperature sensor and HOBO pendant

simultaneously submerged in ice water, then switched to room temperature wa-

ter, and then plunged back into ice water. The temperature sensor on the MS5803
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Table 3.3: Sensor specifications

Sensor Specifications
In-situ temperature Hobo Pendant Temperature/Light Data Logger

Resolution: 0.14 ◦C at 25 ◦C
Accuracy: ±0.53 ◦C

Operating range: −20 ◦C to 50 ◦C
Pressure-temperature Measurement Specialties MS5803 sensor

Pressure resolution: 0.012 mbar
Pressure accuracy: ±2.5 mbar

Temperature resolution: 0.01 ◦C
Water contact detector

compares fairly accurately against the HOBO after a correcting offset of −0.3 ◦C

is applied. Figure 3.9 also shows that the settling time to reach the final temper-

ature is faster than the HOBO, but still quite slow. On average, the temperature

sensor on the MS5803 took 90s± 45s to converge to 90% of the final temperature

and reaching the final temperature took considerably longer. In practice, it’s dif-

ficult to keep the UAV stationary both vertically and laterally within our desired

resolution for this length of time. Additionally, UAVs capable of vertical take off

and landing (VTOL) have relatively short flight times, so spending 90s to get one

reading is unacceptable.

Thermocouples can have response times that are less than one second [119]

which would allow the capture of high spatio-temporal data when used on a UAV.

The settling time for a thermocouple is determined by the junction diameter and

shielding material and thickness. One other characteristic of a thermocouple that

is usually advantageous is their extreme functional range. A K-type thermocouple

can measure from 0 ◦C to 1250 ◦C. However, the huge range means that achieving

high resolution is difficult. The temperature of water we will typically use the

UAV temperature sensor to measure only ranges from 0 ◦C to 30 ◦C. We were
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Figure 3.9: Comparison of HOBO and MS5803

unsure if a thermocouple would give high enough resolution for this relatively

small range but the possibility of an extremely fast response time made it worth

investigation.

Another type of sensor we chose to evaluate was a thermistor. A thermistor

works by changing resistance based on temperature. Thermistors have a much

smaller functional range but higher resolution and typically longer response time

than thermocouples. The particular model of thermistor we selected is a GP103J4F

10kΩ Thermistor [120]. This sensor is rated for operation from −40 ◦C to 300 ◦C

but its nominal resistance changes from 33K Ohms to 8K Ohms over the range we

will experience in the field so it gives good resolution, even when using an inex-

pensive 10-bit analog-to-digital converter (ADC). The diameter of the thermistor

is less than 0.060in which helps keep the response time low. The data sheet states
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a specification of 0.35s for one thermal time constant in stirred oil.

(a) (b)

Figure 3.10: (a) Thermocouple constructed with accompanying circuitry (b)
thermistor constructed

We performed bench tests on the thermocouple and thermistor shown in Fig-

ure 3.10 to compare their characteristics to the HOBO and MS5803 temperature

sensor. We knew going into the tests that the HOBO and MS5803 were too slow,

but the HOBO provided a good ground truth and it is what our collaborators use

for their in-situ tests, and we had already used the MS5803 in some field trials, so

we chose to include it in the tests to determine how much better a different sen-

sor might perform. The bench tests were primarily to evaluate the performance

of the thermocouple and thermistor and the other two sensors gave a baseline to

compare against.

Figure 3.11 shows the response of the thermocouple and thermistor when

plunged into ice water from warm water. This is the raw data without any filtering

or offset. Table 3.4 provides a comparison of the important characteristics of the

response.

The thermistor has a 90% settling time that is less than a second and an accu-

racy that was actually limited by the 10-bit ADC used to record the temperature.
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(a) (b)

Figure 3.11: Temperature sensors’ response when plunged into ice water

Table 3.4: Experimentally determined temperature sensor specifications

Sensor 90% settling time (s) 99.9% settling time (s) accuracy (◦C)
Thermistor 0.759 2.784 < 0.5

Thermocouple 1.228 11.618 3.0

From the bench test performed, we can only know that the accuracy was less than

0.5 ◦C and it may have been even better.

The thermocouple did not perform as well in our tests as the thermistor for

several reasons. First, the thermcouple’s accuracy looks poor in the bench tests

we performed, but that is because the sensor is capable of measuring such a large

range that 3 ◦C is only 0.24% of its functional range, which is an acceptable ac-

curacy. However, for our purposes, we need higher accuracy in the range we

are interested in. The response time of the thermocouple is also slower than the

thermistor, which is a result of our manufacturing process. The response time

of a thermocouple is largely dependent on the junction diameter and insulation

thickness if insulation is used. We hand manufactured the sensors by soldering

the wires together and while we attempted to keep the junction as small as pos-

sible, arc welding the tips of the wires would have produced a smaller junction.

Additionally, we insulated the wires with liquid electrical tape which resulted in
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a relatively thick layer of insulating material. The insulation was necessary to

electrically isolate the sensor since it is used in water, but finding a better, thinner

material that is less thermally insulating would reduce the settling time for the

thermocouple.

For the research applications that we want to apply a temperature sensor in

the future, the thermistor looks like the best choice from the sensors we tested.

3.3.3 Temperature Sensor Field Tests

The following data was collected and analyzed cooperatively with our collabora-

tors Sally Thompson, Michael Hamilton, and Michaella Chung from UC-Berkeley.

The data were published in an article titled ”Obtaining the Thermal Structure of

Lakes from the Air” [17] in Water.

Currently, we have only field tested the MS5803 and HOBO sensors. Tempera-

ture sensing experiments were undertaken at Big Lake in Blue Oak Ranch Reserve

(BORR), a 1330ha undeveloped ecological reserve managed as part of the Univer-

sity of California’s Natural Reserve System. Two vertical arrays of HOBO sensors

spaced 6.5m apart were installed 10m from the shoreline in 1.3m deep water on

the western boundary of the lake.

Figure 3.12 shows the location of the two arrays in Big Lake and also the lo-

cation where vertical profile measurements were taken. The HOBO sensors were

used as the ground truth measurement for the temperature of the water at differ-

ent depths. The MS5803 was suspended below the UAV and was lowered into the

water as the vehicle descended. For the first experiment, the thermal sensor was

lowered through the water column near (0.5m radius) one of the vertical arrays of

HOBO sensors. Temperatures were recorded at 4 Hz for 30s at five points through
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Figure 3.12: Location of the HOBO arrays and sample locations for one
experiment set

Figure 3.13: Raw and filtered temperature data from UAV-mounted sensor. The
filtering removed data when either temperature or depth were rapidly changing.

the water column, at 0.2m depth intervals from 0.2m deep to the bed of the lake.

We filtered the temperature data for two reasons. First, the UAV altitude

drifted up and down during flight, which caused the temperature sensor depth

to vary by up to 25cm when it was supposed to be maintaining depth. Without
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filtering, this would have caused multiple temperature readings to be associated

with a given target depth. Additionally, the long settling time of the temperature

sensor on the MS5803 meant that the actual temperature of the water was not

accurately reported until the sensor had been at the target depth for a long enough

period of time. For these two reasons, we filtered the data if either the rate of

depth change or rate of temperature change was high.

Specifically, we excluded temperature readings when the rates exceeded the

following: | ∂T
∂t | ≥ 0.04 ◦C/s or | ∂m

∂t | ≥ 0.35m/s. These thresholds were deter-

mined by visually inspecting plots of temperature and depth rates of change and

observing that during periods of minimal change, nearly all values are bounded

by these thresholds. Figure 3.13 shows that this filtering method retained 15%

of the original readings, and discarded most readings from the descent periods

between the five measurement points in the water column.

After filtering the data from the MS5803, we compared the readings with the

HOBO sensors. The temperatures measured from the UAS were consistently

higher than the in-situ array-recorded temperatures, even following calibration.

The magnitude of the temperature bias varied with depth in the water column

and was highest in deeper areas of the water column. Figure 3.14 shows box plots

of the bias associated with each temperature measurement made by the UAS over

four flights, binned by depth in the water column. The bias is on the order of

0.5 ◦C in the surface 0.5 m of the water column and increases to 1 ◦C at greater

depths below the thermocline.

These deviations in temperature are comparable to those made by other meth-

ods (e.g. TIR [56]; fiber optics [121, 122]). However, the deviations are much

greater than previously seen in mobile sensing systems [62]. The depth-dependence

in the magnitude of the bias suggests that a physical mechanism may be respon-
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sible. We hypothesized that several mechanisms could explain the bias: thermal

lag effects when the sensor was first introduced into the water column from the

air, or entrainment of cold water from depth to surface layers as the sensor was

raised from the lake bed to the surface. As a preliminary means to distinguish be-

tween these hypotheses, we explored whether the magnitude of the thermal bias

at the surface varied between the first shallow readings and the final readings

made during a flight.

Figure 3.14 shows that the UAV sensor temperatures remain higher than the

in-situ sensor temperatures near the surface, but the bias is decreased in the first

readings during a flight. The direction of the bias switches for the final shallow

readings during a flight, with temperatures measured from the UAS being lower

than the in-situ array-recorded temperatures. We suggest that these observations

are more consistent with entrainment of cold water as the tube and sensor were

moved up through the water column at the end of a flight, than with the effect

of thermal lag. Thermal lag in the onboard UAS sensor would be expected to

have led to large positive biases in temperature upon initial entry into the water

column. Despite the temperature bias between the UAV and in-situ sensors, the

UAV sensor’s temperature resolution of 0.01 ◦C is sufficient to capture fine-scale

thermal changes in the water column.

To remove systematic bias from the temperature sensors during the field trials

and consider only relative variations in temperature, we also compared estimates

of the local thermal gradient from each of the sensing platforms, shown in Fig-

ure 3.14. Below the water surface, both platforms produced comparable trends

in the thermal gradient, again within 1 ◦C/m of each other. Both the peak in the

thermal gradient associated with the thermocline, at a depth of approximately 0.6

m, and increased thermal stability with depth were identified by both sensor plat-



50

(a) (b)

Figure 3.14: Comparison of UAS-borne and in-situ temperature sensors,
including logged data and detected thermal gradient. (a) Bias in temperature

measured at each depth (b) Comparison of derived temperature gradient at each
depth

forms. Significant disagreement between the measurements was only observed in

the top 0.25m of the water column, when the UAS measurements indicate a peak

in thermal gradient comparable to that at the thermocline, while the in-situ sen-

sors indicate fairly consistent temperature change with depth. The source of this

high temperature gradient sensed by the UAV is likely associated with lack of el-

evation stability, which caused the sensor to be suddenly pulled out of the water

when at the surface and undergo rapid temperature change.

After the experiment to compare the MS5803 temperature sensor to the HOBO

sensors, we performed a second experiment with the MS5803 taking vertical tem-

perature profile measurements mentioned earlier at the locations shown in Fig-

ure 3.12. At each of the six locations, we descended in 0.5m increments from the

surface and held altitude for 30s at each increment. From this data and some inter-

polation, we constructed a three-dimensional temperature map of a 10× 10× 2.5

m region of Big Lake shown in Figure 3.15. The data were collected over two



51

Figure 3.15: Thermal structure of a 10× 10× 2.5m grid, interpolated and
reconstructed from two UAS flights. White arrows indicate UAS’s sampling

locations, depth measurements were made throughout the water column at these
sites.

flights totaling 26.5min of flight time.

In future work, we could construct a much larger temperature map in the

same amount of flight time if we incorporate the thermistor that has a much

faster response time than the MS5803. To achieve the same resolution as we did

in our previous experiments, we could descend with a constant speed of 0.65m/s

and fly horizontally with a speed of 6.6m/s, which allows enough time for the

sensor to settle to 90% of the true value. Flying in a grid pattern at this speed

would result in a map of a 130× 130× 2.5 m to be constructed. Alternatively,

a smaller map of much higher resolution without the interpolation used in our

previous tests could be constructed by flying slower.
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3.3.4 Temperature Sensor Summary and Contributions

We constructed and lab tested 3 types of temperature sensor for use in creating

3D thermal structure maps of bodies of water using a UAV. We successfully field

tested one of these sensors, the MS5803 and created a 10× 10× 2.5 m temperature

map of Big Lake at BORR in California which resulted in a journal article titled

”Obtaining the Thermal Structure of Lakes from the Air” [17] in Water. We over-

came the challenges of capturing temperature data with a slow sensor and then

lab tested a new sensor with a much faster response time to be field tested in the

future.

I was responsible for the lab characterization and comparison of all sensors

and John-Paul Ore of the NIMBUS Lab and our collaborators Sally Thompson,

Michael Hamilton, and Michaella Chung from UC-Berkeley assisted me with the

field experiment and with writing the journal article.
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Chapter 4

The Waterbug

The Waterbug is a sub-surface sampling and data collection robot designed to

operate at deeper depths than the water sampling UAV can reach. Additionally,

a system model in Section 4.5 and an algorithm in Section 4.7 are developed

which allow the Waterbug to become neutrally buoyant to monitor conditions at

a specific location in the water column.

4.1 System Requirements

This section presents the high level system requirements for the Waterbug that

were developed with our water science collaborators. These requirements drove

the mechanical, electrical, and software design of the system.

Size: The system must be small enough for a scientist to carry several nodes

in a backpack or for a UAV to carry and deploy a node. A Firefly hexcopter by

Ascending Technologies is chosen as the reference platform [113]. The payload

capacity of this UAV limits the total weight of the Waterbug and water sample to

600g or less. The design of the UAV attachment and deployment is outside the
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scope of this work, and we only consider the weight limits of the node.

Sample Size: A minimum of 15mL of water is needed for ex-situ analysis by

limnologists [123]. The device needs to be capable of collecting and storing this

amount of water. Collecting more water is beneficial, since multiple tests can then

be run on each sample, or excess water can be stored for later tests.

Collection Depth: The Waterbug must be capable of descending to water

depths of 10m, collecting a sample, and returning to the water’s surface. This

depth is sufficient for analyzing many freshwater rivers, lakes, and ponds, and

represents a significant improvement over prior collection methods [8]. The am-

bient pressure at this depth is approximately 14.2PSIG, so the mechanical design

must be robust enough to operate at this pressure, and the sensors must function

at this depth.

Neutral Buoyancy: The metric used for characterizing a successful neutral

buoyancy actuation was based on a temperature sensor response time and spatial

resolution. In order to get an accurate temperature reading, the node needs to

hold depth for long enough that the temperature sensor has time to settle to the

environment temperature. Areas of particular temperature or high temperature

gradient are of interest to limnologists [17] so the ability to stop descending and

observe the environment based on temperature is a significant functionality for

the node. The tighter the control over depth, the higher the resolution of the

gathered data. Using a temperature sensor with a response time of 5s or less

[124] as the reference for the required loiter time and a vertical resolution of

approximately one length of the Waterbug yielded a functional requirement of

remaining within 200mm of the target location for at least 5s.

Field Operation: This device will be used in remote environments by mini-

mally trained field researchers. Therefore, the system needs to be low complexity,



55

and not require any tools to field service. This requires the collection mechanism

to be easily reset and not rely on many consumable resources so that it can be

used in multiple experiments.

Cost: Inevitably, some nodes will be lost. The limited sensing radius of the

nodes also means many will be deployed to cover an area. These factors make it

important to keep the unit costs low.

4.2 Previous Iterations

The Waterbug evolved through several design iterations. David Anthony of the

NIMBUS Lab collaborated with me on the early stage designs. Figure 4.1 shows

several iterations and a brief overview of the design details is as follows.

All design iterations prior to the current model used a non-submersible pres-

sure sensor which required a completely sealed chamber for the electronics. Sev-

eral of the design iterations used a latex cover to seal the electronics compartment.

The latex chamber provided a simple method of measuring water depth, reducing

cost and protecting the electronic components. Because latex is very compliant, it

deforms under pressure with very little resistance. Since the latex chamber was

sealed before it was dropped into the water, the pressure inside the chamber was

in equilibrium with atmospheric pressure or 0m depth. As the sample node de-

scended, the external pressure exerted by the water increased, which deformed

the latex chamber until the air inside the chamber was compressed so the inner

air pressure matched the external water pressure. Since latex has effectively no

structural rigidity, it provided no resistance to the compressing force of the exter-

nal pressure which assured the inner air pressure and outer water pressure were

equal. The latex also provided a convenient way of sealing off the electronics from
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(a)
(b)

(c)

(d)

(e)

Figure 4.1: (a) Waterbug Revision 1.1 (b) Section view of Revision 1.1 (c)
Waterbug Revision 1.2 (d) Waterbug Revision 1.3 (e) Waterbug Revision 1.4

the water.

A piston mechanism was used in early designs to simultaneously collect a
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water sample and expand the internal volume of the sample node. This was an

effective way of collecting and sealing the sample from the desired depth and

changing the buoyancy of the sample node so that it ascended to the surface.

While conceptually simple, the majority of the challenges with the mechanical

design stemmed from the actual implementation of driving the piston down the

cylinder against the opposing force of the water pressure. In revision 1.1 shown

in Figure 4.1(a), fishing wire was going to be used to retain a compressed spring

until the desired depth was reached, at which point, a heated nichrome wire

would have been used to cut the fishing line, releasing the spring and driving the

piston down the cylinder.

In order to have enough force to fully seal off the sample chamber and suffi-

ciently change the internal volume so the sample node would ascend, the required

spring exerted 170lbf when fully compressed. In order to use fishing wire to re-

tain the spring, a two stage triggering mechanism was required (see Figure 4.1(b)).

The yellow assembly (A) has a stepped internal diameter and is shown in the top

position. In the top position, it jams the blue ball bearings (B) between the inter-

nal wall and the grey rod (D) that connects to the black piston assembly (G). The

green cylindrical brace (C) holds everything in place by jamming against the blue

ball bearings. The yellow assembly is held in place initially by the fishing wire.

When the fishing wire is cut, the orange spring (E) forces the yellow assembly

down which lets the blue ball bearings slide radially out, allowing the grey rod to

slide down the axis of the green brace which is forced by the purple main spring

(F). The main spring forces the piston down to its final position, collecting the

sample and expanding the internal volume.

While mechanically robust and viable, this design required several machined

parts made of Delrin and aluminum. After receiving the machinist’s quote for
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$791.86 for just the machined parts, this design was revised to try and make it

simpler and less costly.

Design revisions 1.2 and 1.3 shown in Figure 4.1(c) and Figure 4.1(d) still used

the piston concept for sample collection and buoyancy control but instead of us-

ing a spring for providing the necessary force, part of the cylinder was filled with

compressed air. The nichrome wire was still used to cut the fishing line, releasing

a much smaller spring than in revision 1.1, which opened a valve to release the

compressed air and drive the piston down, collecting a sample and increasing

buoyancy. These two revisions were an improvement over the first from the per-

spective of requiring fewer machined parts, but they were still not as simple as

desired. The spring required was much less formidable than the first revision but

both spring actuation and pneumatic actuation were required which went against

the goal of making the design as simple as possible.

In design revision 1.4 shown in Figure 4.1(e), the spring was completely elim-

inated which also eliminated the nichrome wire and associated electronics. The

latex chamber was still utilized for protecting the electronics and facilitating pres-

sure measurements. The actuation force was driven solely by pneumatic force

which simplified the design compared to the previous two iterations. A small

servo motor was used to trigger mechanical valves to control the flow of com-

pressed air in the system. Check valves were used to control the flow of water

into the sample chamber which initially started above the check valves and con-

tained air at atmospheric pressure when dropped in the water. Once the node

reached the trigger depth, compressed air was released into the upper part of the

cylinder which forced the sample collection chamber down below the outlet of

the check valves. At this point, the imbalance of pressure between the inside of

the sample chamber and the outside water caused water to flow into the sample
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chamber until the pressure equalized and the check valves closed and sealed the

water in the sample chamber.

This design required the fewest amount of machined components yet and

worked relatively well during evaluation experiments. However, there were sev-

eral issues that caused problems with the design. The diameter of the acrylic

tube used to form the wall of the cylinder was non-uniform. This made achiev-

ing an airtight seal difficult. An airtight seal was critical because of the use of

compressed air for actuation. Even a small leak was enough to cause failure in

the desired actuation. Additionally, the pneumatic switches began leaking at only

45psi which necessitated a large volume of compressed air to complete the desired

actuation. Even with some successful tests validating the performance of revision

1.4, we were still not satisfied with the outcome, so we decided to to completely

overhaul the design to address the issues of the previous designs.

4.3 Final Mechanical Design

The finalized model and completed prototype are shown in Figure 4.2. The 6in

ruler in the left frame gives a sense of scale. The three main components of the me-

chanical system are shown in Figure 4.3 with the electronics pod on top removed

for clarity. The pneumatic system is shown in Figure 4.3(a), Figure 4.3(b) shows

the sample collection system and Figure 4.3(c) shows the buoyancy system. These

systems are described in the subsequent sections. The total cost to make a single

node is $120, which is significantly less than other actuated sensor nodes and even

slightly less than passive sensor nodes of similar size [72, 73]. The solenoid valves

used to control the pneumatic system are the most expensive component, costing

$26 each. The low overall cost makes it feasible to deploy many nodes for high
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(a)

(b)

Figure 4.2: (a) Rendering of final model (b) Completed prototype in water
during testing

resolution data collection, especially when considering the decrease in unit price

for a larger production run. The overall length of the Waterbug is approximately

200mm at its greatest dimension which is important because making the node as

small as possible allows better sensing of the significant vertical spatial structure

in bodies of water [75]. A larger sensor or vehicle tends to have an averaging

effect on these vertical structures.

4.3.1 Pneumatic System

The actuation system on the waterbug is driven by pneumatic force. The com-

pressed air storage tank is made from 0.75in schedule 40 PVC pipe rated to with-

stand 480PSIG at 73.4◦ F and is capped with a PVC pipe cap at both ends. The

internal volume of the compressed air tank is approximately 35cm3. On one end of

the compressed air storage tank, a standard Schrader valve was inserted to allow
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(a) (b)

(c)

Figure 4.3: (a) Pneumatic system (b) Sample collection system (c) Buoyancy
control system

charging with a standard bicycle pump or air compressor. On the other end of the

tank, a barbed brass fitting was added for connecting an air line that is split with

a Y-connection to run compressed air to the two solenoid valves. One solenoid

valve is responsible for controlling air flow to the sample collection pneumatic

piston actuators and the other solenoid valve controls air flow to the syringes

used for buoyancy control. The solenoids used are ASCOTM RHB206H50B minia-

ture two-way solenoids rated to operate at 12V and a maximum pressure of 70PSI
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[125]. The solenoids draw approximately 160mA at 12V in order to open.

4.3.2 Sample Collection System

The sample collection system uses a 35mL plastic syringe to collect and store the

sample. Syringes have been used by water sampling devices in multiple research

applications [126, 127, 86]. The syringes are very inexpensive which means they

can be discarded after use instead of requiring time to clean for reuse. The sam-

ple collection syringe is connected to two LEGOr pneumatic actuators mounted

in series. Each actuator has a stroke of 28.4mm, giving a total draw length of

56.8mm on the syringe plunger which results in 25mL of fluid collected in the

syringe. The sample collection system is robust because it is completely sealed to

the environment except for the inlet to the syringe where the sample is collected.

This improves on other water samplers with valves open to the environment that

have issues with clogging in dirty water [128].

The sample syringe is easily replaceable without tools to allow redeployment

in the field. Loosening four thumb screws releases the syringe from the two

pneumatic actuators and then it snaps out of place to allow a new syringe to be

snapped in place and secured to the actuators.

4.3.3 Buoyancy Control System

The Waterbug uses two 20mL syringes for one-way buoyancy control. Initially,

the two buoyancy syringes are depressed so they have minimum internal volume.

In this configuration, the Waterbug has a specific gravity greater than 1.0 so it

sinks. After reaching the target depth or other condition, the buoyancy control

solenoid is triggered to release compressed air into the two buoyancy syringes
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so their internal volume expands, resulting in the specific gravity of the Watebug

decreasing to less than 1.0 and it ascends to the surface for retrieval. The maxi-

mum target depth for collecting samples is 10m where the pressure is 14.2PSIG.

In order for the buoyancy syringes to fully expand, the internal pressure of every

component connected to the pneumatic system must be greater than the exter-

nal pressure. Assuming the compressed air tank starts at 60PSIG, the pneumatic

system will have a final pressure of 17PSIG after actuating the pneumatic pistons

for collecting a sample and expanding the buoyancy syringes. This provides a

margin of safety to account for friction in the syringes, overshooting the target

depth or the compressed air tank initially having less than 60PSIG pressure. The

buoyancy syringes can also be partially expanded to achieve neutral buoyancy so

that the Waterbug stops descending and maintains depth to monitor environmen-

tal conditions before collecting a sample and then fully expanding the buoyancy

syringes to ascend back to the surface.

4.3.4 3D Printed Parts

The majority of the body is made from 3D printed ABS components designed

using Solidworks and printed on an Ultimaker2 [129]. 3D printed parts help

reduce custom part cost and since ABS can be dissolved with acetone, it is possible

to make the parts waterproof by briefly dipping them in acetone to fuse the outer

surface.



64

(a) PCB design (b) Populated PCB

Figure 4.4: Electrical hardware design courtesy of John-Paul Ore

4.4 Electrical and Software Design

4.4.1 Microcontroller

The device uses an ATmega328P microcontroller [130] that has 2kB of RAM,

1024bytes of EEPROM storage, 32kB of flash program memory, 8 10-bit ADCs,

and 23 GPIO lines. The active power consumption is less than 12mA at the max-

imum clock speed, which allows the device to conservatively operate for over 48

hours with the battery used.

4.4.2 Communications

The Waterbug’s main mode of communication is a 2.4GHz XBee radio module

[131] that has been configured to allow remote programming of target depths.

The XBee is not intended for transmitting data while the Waterbug is submerged.

Rather, it provides the convenience of interfacing with the on-board electronics

and software without requiring physical access when the node is at the surface or

onshore.
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4.4.3 Sensors

The Waterbug currently has two main sensors on board with the capability to

integrate more in the future. The sensors currently are an absolute pressure sensor

and a temperature sensor.

The pressure sensor is the most critical sensor during a deployment. This

sensor enables the Waterbug to estimate its depth in the water column. The

particular sensor used in the Waterbug is a Measurement Specialties MS5803-

05BA [132]. This sensor is designed for submersion and is capable of measuring

from 0− 72PSIA. The measuring end of the sensor needs to be exposed to the

water but the other end of the sensor needs to be soldered to the PCB which is

sealed inside the waterproof housing. A watertight seal was designed around

the housing of the sensor to expose the measuring portion of the sensor while

protecting the rest of the electronics from the water. Figure 4.4(b) shows the

pressure sensor on the back side of the PCB.

The MS5803 has a temperature sensor integrated into it but it has a rather

slow response time (90s on average for still water [17]) and it currently is not

used. In the future, it would be possible to have events triggered by temperature

readings or to have other functionality or data collection based on temperature

sensor readings.

4.4.4 Mechanical Actuation

Two SSM3K329R.LF N-channel MOSFETs [133] control the state of the solenoids

that control the pneumatic actuators. The MOSFETs are rated for 3.5 amps at 30

volts which is more than sufficient for the system, which keeps them running cool

despite their small footprint. The gate of each MOSFET is connected to a seperate
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GPIO pin on the ATmega328p for independent control.

4.4.5 Power

Power: The system is powered by a custom battery pack made from three 3.7V

750mAh single cell lithium polymer batteries connected in series [134].

4.4.6 Software

The software for the Waterbug is written in C using SeamOS [135]. SeamOS

is a lightweight codebase that is highly portable and encourages code reuse.

SeamOS has an existing serial communication library, which makes interfacing

to the XBee trivial. The Atmega328P has existing PWM and ADC implementa-

tions in SeamOS, which made it simple to use these components in this project as

well.

For lab testing and debugging, the Waterbug can transmit data to an external

receiver using the XBee radio. Currently, the sensors are polled at 80Hz for on-

board calculations and data is transmitted every twentieth reading. In addition to

live data transfer and flashing firmware in the lab, the XBee is used to reset the

electro-mechanical components and could be used to offload data between field

deployments.

When the Waterbug transmits data over the XBee, a Robot Operating System

(ROS) node listening to the serial port on an external computer receives the XBee

packets and decodes them [136]. The data are published in a single ROS topic

containing a custom message type that includes each reading or piece of informa-

tion. This ROS node can easily be integrated into a larger ROS system, and it also

makes it easier to record the data for later analysis.
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4.5 Waterbug Control

In this section, we develop the system model and feed-forward based controller

used by the algorithm the Waterbug utilizes to achieve neutral buoyancy with

only uni-directional buoyancy control.

4.5.1 Challenges, Goals and Assumptions

One of the first challenges with this system is that the node is slow to respond

to input. It takes time for the buoyancy syringes to expand after being given an

input of compressed air and it takes even more time for the node to reach a new

steady state velocity after the syringes have finished expanding. This causes chal-

lenges with feedback control because system state measurements and correction

attempts can be made significantly faster than the system responds which leads

to overshooting and the node returning to the surface before reaching the tar-

get depth. Another challenge with feedback control stems from the mechanical

nature of the syringes. Once they begin expanding, they slide quite easily, but

overcoming the initial static friction takes considerably more force. Using feed-

back to make small corrections causes pressure to build up slowly in the buoyancy

syringes and then a large jump in buoyancy when the syringes finally overcome

static friction and over-expand. Feedback control has the advantage of being ca-

pable of dealing with disturbance in the system but for this particular system,

pure feedback is not enough to achieve the design goal.

Feed-forward control has the distinct advantage, in this case, of being capable

of predicting model performance in spite of delay, but the disadvantages of re-

quiring an accurate system model and not correcting for disturbance. For a device

intended to be used in the area of field robotics, it is all but guaranteed that there
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will be disturbance in the system, so this must be accounted for.

The goal of the controller designed for the Waterbug is to use a two stage

feed-forward controller with precompensation and intermediate feedback. The

precompensation and intermediate feedback adjust the controller for the possi-

ble disturbances that are measurable with the onboard sensors and that can be

corrected for. The precompensation accounts for differences in the Waterbug’s

initial volume displacement, which can be caused by entrapped air bubbles or the

buoyancy syringes not being completely depressed initially. A higher initial vol-

ume has the effect of causing the node to sink slower than expected. The second

and most probable cause of deviation from the ideal model is having the starting

pressure in the compressed air storage tank differ from the expected 60PSIG. The

intermediate feedback accounts for this variation and is discussed in more detail

in Section 4.7.

An important assumption was made about the pressure in the syringes that

would cause the mathematical model of the system to be underdetermined if not

made. The pressure in the syringes is assumed to be equal to the external pressure

from depth as long as the syringes haven’t fully expanded. Once the syringes have

fully extended and reached their stops, the internal pressure will increase beyond

the external pressure, but at this point, additional input from the controller yields

no increase in buoyancy, so it is outside the region governed by the controller. The

assumption is reasonable because the syringes slide quite easily once they begin

to expand so the plunger will continue expanding until the internal compressed

air pressure approximately equals the external water pressure. The friction has a

damping effect that contributes to the delay in the system but the magnitude of

the force is negligible when compared to the force from pressure at depth.
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4.5.2 Computational Fluid Dynamics (CFD) Analysis

Figure 4.5: Section view of CFD analysis

The Solidworks Flow Simulation package was used to estimate the steady state

drag force on the Waterbug during descent. This information was needed to help

design the feed-forward control. The simplest way to conceptualize an external

fluid flow analysis is to fix the object being analyzed and specify a rate of fluid

flowing past it. This is the opposite of reality, where the fluid is quiescent and

the object is moving through the fluid, but mathematically, the two situations

are identical. The CFD analysis used a computational domain greater than 5

times the characteristic length of the Waterbug (assumed to be approximately the

width) upstream and downstream to capture the complete boundary layer that
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forms upstream and enough of the downstream disturbance to characterize the

drag well.

Figure 4.5 shows the velocity profile of water flowing around the Waterbug,

the boundary layer that develops ahead and the wake that forms behind. The ar-

eas of lowest velocity correspond to the highest drag. The analysis computed the

total drag force on the Waterbug for a given input velocity. The force was com-

puted for descent rates increasing by 0.05 m/s increments starting from 0 m/s.

These data were used to generate the graph shown in Figure 4.6 which shows the

steady state drag force as a function of descent velocity. Physical validation tests

Figure 4.6: Drag force vs. velocity curve for CFD data combined with validation
tests

were performed and the CFD and physical sets of data were compared to yield

the equation,

Fd = 7.4498v2 − 0.0926v− 0.0027 (4.1)
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where Fd is the drag force and v is the descent rate. Using the calculated descent

rate and the previous function, the steady state drag force can be calculated dur-

ing an actual descent. Since the drag force is equal to difference between weight

and buoyancy once steady state conditions have been reached, the previous re-

lationship between descent rate and drag force allows direct correlation between

descent rate and buoyancy conditions. This allows a mathematical model to be

developed from knowledge of the descent rate.

4.5.3 Mathematical Model

The goal of the model is to find the required time necessary to open the solenoid

valve in order to achieve a desired descent velocity.

The buoyancy force is given by the equation:

BF = Vwbρwg−mwbg (4.2)

where BF is the buoyancy force, mwb is the mass of the Waterbug, Vwb is the

volume displaced by the Waterbug, ρw is the density of water and g is the ac-

celeration due to gravity. The mass of the Waterbug, the density of water and

the acceleration due to gravity are all known quantities. Since the steady state

drag force can be calculated from the descent rate using equation (4.1), the only

unknown remaining in equation (4.2) is the time varying volume of the Waterbug.

Applying Boyle’s law [137] yields the equation:
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Pt1Vt = PtVt + PsyrVsyr (4.3)

where Pt1 is the initial pressure in the compressed air storage tank and Vt is the

fixed volume of the compressed air storage tank. Pt is the time varying pressure in

the compressed air storage tank. Psyr and Vsyr are the pressure and volume in the

buoyancy control syringes. The product on the left hand side of equation (4.3) is

a constant and the pressure in the syringes is approximately equal to the pressure

from depth during the times considered which is given by the following equation

Psyr = ρwgh + Patm (4.4)

where h is the depth below the surface of the water and Patm is the atmospheric

pressure.

The volume in the syringes is given by the equation

Vsyr = Qmtopen (4.5)

where Qm is the flow rate through the valve in cubic feet per minute (CFM) and

topen is the cumulative time the solenoid valve has been open. The flow rate, Qm

can be simplified so that it has two possible functions that describe its behavior. If

the absolute pressure at the inlet of the valve is greater than double the absolute

pressure at the outlet, the flow through the valve is considered choked and if
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not, the flow is considered sub-critical. The sound barrier prevents flow from

exceeding Mach 1 which is why the flow behavior is bounded by the choked

equation. When considering the pressures that will exist during the majority of

the time the controller is operating on the Waterbug, the flow will be choked so

the flow rate through the buoyancy syringe will be governed by the equation

Qm = 13.61 ∗ PiCv

√
1

(SgT)
(4.6)

where Pi is the pressure at the inlet of the valve in PSIA, Cv is the unitless flow

coefficient for the valve, Sg is the unitless specific gravity with respect to air, T is

the temperature in Rankine and the scalar constant is to account for converting

units [138]. The inlet pressure in equation (4.6) is the pressure in the compressed

air tank, Pt.

Going back to equation (4.3) and taking the first derivative with respect to time

before making any of the substitutions derived in equations (4.4)-(4.6) yields

0 =
dPt

dt
∗Vt + Psyr ∗

dVsyr

dt
+

dPsyr

dt
∗Vsyr (4.7)

Rearranging and substituting equations (4.4)-(4.6) into (4.7) gives the pressure in

the tank,

Pt =
− PsyrQmtopen

dPt
dt
[
Wtopen + ρwg dh

dt
]
− dPt

dt Vt

WPsyr
(4.8)
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where,

W = 13.61 ∗ Cv

√
1

sgT
(4.9)

Equation (4.8) shows that the pressure in the tank depends on every other system

variable considered as well as its own first time derivative, but it is essentially a

first order ODE.

Pt = Ae−Btopen + Pf (4.10)

The constant Pf at the end of equation (4.10) is the final pressure in the tank as

time goes to infinity. Using initial conditions and internal volumes, A can be

solved for: A = 0.532 ∗ Pt1. Rearranging equation (4.3) with the new form for Pt

and solving for the total node volume yields,

Vwb = Vc +
Pt1Vt −Vt(0.532 ∗ Pt1e−Btopen + Pf )

Psyr(t)
(4.11)

where Vc is the volume of the Waterbug when the buoyancy syringes are com-

pressed and topen refers to the amount of time the buoyancy solenoid valve has

been open. The compressed volume of the Waterbug is approximately 450cm3.

Substituting equation (4.11) into equation (4.2) and solving for topen gives:
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topen =
ln

0.532−

mwbg− (7.4498v2 − 0.0926v− 0.0027)

ρwg
−Vc

 Psyr

Pt1Vt1

0.532
−B

(4.12)

which is a fully parametric equation solving for the time the solenoid valve needs

to open for a given pressure in the compressed air tank, target descent velocity,

depth, node volume, mass and appropriate coefficient B. Under the assumptions

that the compressed air tank starts at a known pressure, the Waterbug volume

and mass are known and the pressure, i.e. depth, can be measured using the

onboard pressure sensor, the only unknown in equation (4.12) is the coefficient,

B. The appropriate value for B was empirically solved for by carefully controlling

the starting pressure in the tank so that the only variable in the model was B

and then performing iterative trials with different values until the mathematical

model corresponded with the physical tests. For a pure feed-forward controller,

equation (4.12) is all that is required because it takes an input velocity, translates it

into a length of time to open the solenoid valve which is the input to the plant and

this would theoretically result in the Waterbug slowing to the desired velocity.

However, as noted in section 2.4, this approach would not account for model

inaccuracy or system disturbance. The effects of this are discussed in section 4.6.

4.6 System Sensitivity

The control algorithm’s sensitivity to inconsistencies in input or environmental

factors will have a significant impact on how successful it is out in the field. After
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analyzing the different variables such as descent velocity and depth estimate most

have very little impact for reasonable variations with the exception of one. If

the assumed starting pressure in the compressed air storage tank, Pt1, varies by

more than 1PSIG from the assumed starting pressure of 60PSIG, the Waterbug

will not achieve the neutral buoyancy criteria. Figure 4.7 shows simulations of

the system starting at the correct assumed pressure, 1PSIG under the assumed

pressure, and 1PSIG over the assumed pressure. Even with such a small variation,

the Waterbug’s volume after triggering has enough error to result in a steady state

descent or ascent that would cause it to pass in or out of the target window before

5s has elapsed.

(a) (b)

(c)

Figure 4.7: (a) Simulated depth for correct initial pressure (b) Simulated depth
for under-pressurized tank (c) Simulated depth for over-pressurized tank

Consistently achieving a starting pressure of exactly 60PSIG is unrealistic for
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several reasons. The pressure regulators in common air compressors are inexpen-

sive and not necessarily reliable to the degree required to achieve less than 1PSIG

accuracy repeatably. They also use analog gauges with low resolution so setting

the pressure would still be difficult even if the regulator was perfectly accurate.

In addition, when charging the pneumatic system with the Schrader valve, there

is occasionally some leakage as the air fitting is pulled off the valve. The total

volume leaked is likely small, but since the total volume in the compressed air

storage tank is not large, the pressure change in the tank could be significant from

this small leakage.

In light of the previous sensitivity analysis, using the mathematical model of

equation (4.12) developed in section 4.5 with a blindly assumed starting pressure

of 60PSIG in the compressed air storage tank would cause poor results. Therefore,

a more robust neutral buoyancy control algorithm was developed to account for

environmental and system variances.

4.7 Neutral Buoyancy Algorithm

Algorithm 1 shows an overview of the flow of the control algorithm. After the

node is released at the surface, the descent rate is measured in line 3 after reaching

a steady state and the model is precompensated to account for the true starting

volume, which cascades through the algorithm. Steady state velocity must be

achieved first so that the drag force is equal to the buoyancy force which allows

equation (4.1) to be substituted into equation (4.2) and the actual Waterbug vol-

ume to be calculated based on the measured descent velocity.
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Vc =
(7.4498v2 − 0.0926v− 0.0027) + mwbg

ρwg
(4.13)

The next stage of the controller is feed-forward for the purpose of calibration.

Equation (4.12) is utilized in line 7 to find the required time to open the solenoid

valve, with an assumed starting pressure of 60PSIG in the tank, in order to slow

to a target descent velocity of 50mm/s, which is one quarter the terminal veloc-

ity of the fully compressed node. The actual descent velocity of the Waterbug is

measured in line 10 after pulsing the solenoid for the calculated time and waiting

until the new steady state velocity is achieved. The projected target velocity of

50mm/s is based on an assumed starting pressure in the tank. The actual mea-

sured velocity is used to correct the assumption and back calculate the true initial

pressure by rearranging equation (4.12) and solving for Pt1.

Pt1 =

(
mwbg−(7.4498v2−0.0926v−0.0027)

ρwg −Vc

)
Psyr

Vt(0.532− 0.532e−Btopen)
(4.14)

If the true pressure is not sufficient to expand the syringes at the target depth,

the node can abort and return to the surface. Once the true starting pressure is

calculated and determined sufficient, the variances that can be accounted for in

the model are known and the new values can be used to calculate the total time

necessary to open the solenoid valve to achieve zero velocity at the target depth

shown in line 17. Once this depth is reached, the solenoid valve is opened for

the calculated time minus the time already opened during the calibration stage.

The Waterbug delays at least 5 seconds, then collects a sample and returns to the

surface as shown in lines 19− 21.
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1: procedure NeutralBuoyancy&Sampling()
2: if steady state velocity achieved then
3: measureVelocity()
4: //use true volume to precompensate controller
5: calcTrueVolume() . use equation 4.13

6: //target v=50mm/s
7: calibPulse() . use equation 4.12

8: end if
9: if new steady state velocity achieved then

10: measureVelocity()
11: //back calculate true starting pressure
12: calcTruePressure() . use equation 4.14

13: end if
14: //wait until target depth is achieved
15: if target depth achieved then
16: //target v=0mm/s
17: calcOpenTime() . use equation 4.12

18: solenoidOn = calcOpenTime− calibPulse
19: delay(5s+)
20: collectSample()
21: returnToSur f ace()
22: end if
23: end procedure

Algorithm 1: Neutral Buoyancy and Sampling Algorithm

4.8 Evaluation

A series of tests evaluated the mechanical and electrical performance of the sys-

tem. These tests reveal the capabilities of the system, and point towards future

improvements to be made so that the device is field operable.

4.8.1 Maximum Depth

In order to test the maximum functional depth of the Waterbug, a pressure ves-

sel was used to simulate the pressure that would be experienced. This allowed

easy visibility and recovery when the maximum functional depth was exceeded.
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Initially, 10m depth was simulated by pressurizing the vessel to 14.2PSIG with

the node inside and triggering a sample sequence. The Waterbug performed a

complete cycle that would have resulted in a full sample being collected and then

ascending to the surface which verified that the node achieved its design param-

eter. For the sake of completeness, subsequent tests were performed to determine

how deep the Waterbug could go and still be able to ascend to the surface.

At a simulated depth of 11.2m in the pressure vessel, the Waterbug just barely

collected a full sample and fully expanded the buoyancy syringes. However,

the buoyancy syringes required 10s to expand and since the node will continue

to descend until the syringes have almost fully expanded, it likely would not

have completed the expansion as pressure continued to increase with depth in a

real scenario. Therefore, 11m is considered the cutoff depth for being capable of

returning to the surface.

4.8.2 Neutral Buoyancy

A test apparatus shown in Figure 4.8 was constructed from a 10ft long, 12in diam-

eter clear PVC tube stood on end and filled with water. This allowed for moderate

depth tests while being able to maintain good visibility of the node for evaluation,

which is not possible in a pool or lake. As stated earlier, the minimum criteria

for a successful neutral buoyancy actuation is maintaining depth within one body

length, i.e. 200mm, of the target location for at least 5s to allow settling time

for a temperature sensor to get an accurate reading. 35 successive trials were

performed to evaluate the performance of the system and control algorithm over

three ranges of initial conditions shown in Table 4.1. Over the 35 trials, the Wa-

terbug had an overall success rate of 80% for maintaining depth within 200mm
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Figure 4.8: 10ft vertical water column for in-water lab testing

of the target location for at least 5s. Of the trials that failed to achieve neutral

buoyancy, 5 trials overshot the buoyancy point and 2 undershot. The trials that

undershot the buoyancy point did not slow their descent enough to stay in the

target zone for the required time and the trials that overshot became too buoyant

and ascended out of the target zone before 5s elapsed. Figure 4.9 shows a plot

of the depth and descent rate for one of the successful trial experiments. When
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Table 4.1: Results of neutral buoyancy attempts

Starting Pressure (PSI) Trials Success (%) Mean Dwell (s)

55-59 10 90 16.6
60-64 15 73 15.3
65-70 10 80 10.8

the Waterbug reaches a depth of 600mm, the calibration stage is triggered, which

slows the node to just over 70mm/s. This means that the true starting pressure

in the tank was under the assumed 60PSIG. At the target depth of 1500mm, the

second stage triggers and the node becomes neutrally buoyant and settles around

1630mm. Mechanical inconsistencies and initial conditions too far outside the

Figure 4.9: Depth and descent rate data for a neutral buoyancy trial

working envelope were the cause of the Waterbug failing to remain within 200mm

of the target location for at least 5s after a neutral buoyancy attempt. At a starting

pressure of 75PSIG in the compressed air tank, the first calibration stage of the

control algorithm intended to only slow the descent caused the Waterbug to ac-

tually become positively buoyant and return to the surface before the rest of the

algorithm could even run. Therefore, this bounded the upper limit for the initial

conditions. The lower limit is bounded by the required pressure to return to the

surface from a given depth.

The trials within the functional bounds that failed were caused by the buoy-
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ancy syringes expanding an inconsistent amount. Even when given identical in-

put, the expansion output would occasionally differ from the expected amount.

The suspected cause of this problem is inconsistent friction in the buoyancy sy-

ringes. This problem is difficult to mitigate because the system model cannot

account for this disturbance. Using feedback to correct for it is also challeng-

ing because the delay between input correction and output change is large and

overshooting produces immediate failure because the controller only has uni-

directional control.

4.9 Waterbug Summary and Contributions

In conclusion, we developed the Waterbug, a sub-surface sampling robot that

is inexpensive, and small enough to be deployed and retrieved by a UAV. It is

capable of autonomously descending up to 10m depth, collecting a sample and

data, then returning to the surface. We also developed an algorithm that allowed

the Waterbug to achieve neutral buoyancy in 80% of our trials while only utilizing

one way buoyancy control. The algorithm overcomes challenges associated with

variances in initial conditions, such as starting pressure and volume, from the

expected values to provide robust functionality.

I was responsible for the mechanical design, algorithm development, testing,

and evaluation of the Waterbug. John-Paul Ore allowed me to use a PCB he

designed for the embedded system. David Anthony worked with me on early

revision of the Waterbug and he also helped me with electronics prototyping.
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Chapter 5

Prescribed Fire and the UAS-FF

Figure 5.1: Autonomous aerial fire ignition system during a field trial

This chapter is about a UAV-mounted device for performing aerial fire igni-

tions shown in Figure 5.1. While this is quite unrelated to water science, the same

core challenges of designing light-weight systems that allow greater interaction
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with the environment remain, and it constituted a significant portion of my re-

search while a member of the NIMBUS Lab.

5.1 System Requirements

For the UAS-FF to be successful, the technical capabilities must align with the

requirements of the fire-ignition domain for which they were designed. This con-

text is defined by target areas covering hundreds to thousands of acres, teams

of firefighters performing different roles and operating a variety of vehicles, all

working under a burn plan and a set of regulations and common practices, and

operating in specific ignition situations that make firefighters especially vulnera-

ble. This context and our early studies with fire ecologists, land managers, and

firefighters defined an initial set of parameters that have influenced the design of

the UAS-FF:

Size: The entire system must be small and light enough to be carried by a

single firefighter.

Field Operation: The system must be easily deployable and operable in a

hostile environment that could include wind gusts, smoke, high temperatures,

and difficult terrain such as canyons, gullies, and obstructions.

Safety: The use of the UAS-FF for igniting fires must not increase the potential

for uncontrolled fires.

Regulations: Operation must align with the large body of procedures and

regulations on how such fires must be conducted.

These requirements drove the design of the mechanism prototype built on a

micro-UAS platform that can navigate, deliver an ignition payload with enough

precision to remain within a specified region, and that replicates an accepted form
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of fire-ignition delivery in a miniaturized and automated manner without placing

personnel in danger.

Ignition Payload: The payload is a 1.25in plastic ignition sphere that is com-

mercially available and currently is used in large quantities by helicopter based

aerial ignitions. Two different types of ignition spheres were used, one produced

by SEI Industries [111] and the other produced by Aerostat, Inc [112]. Both types

contain approximately 3g of potassium permanganate and are manufactured to

withstand high impact, which ensures the spheres stay intact when dropped from

altitude, but it also means up to 115N is required to puncture the wall of the

sphere.

Mechanics and Actuation: The device needs to perform four basic functions:

Carry extra spheres during deployment, position and release spheres, puncture

the sphere wall, and inject anti-freeze into the sphere. The puncturing actuation

is the most challenging aspect because of the significant force necessary to pierce

the impact rated wall.

5.2 Mechanical Design

The purpose of the mechanism on the UAS-FF responsible for actually igniting the

fire is to start an exothermic chemical reaction that eventually results in a flame.

The plastic ignition spheres are filled with potassium permanganate powder and

when the spheres are injected with ethylene glycol (the main ingredient in com-

mon antifreeze), an exothermic reaction starts that shortly bursts into flames. One

of our major design goals was to require no preparatory work from firefighters

to use the system. We wanted our system to seamlessly integrate with the com-

mercially available ignition spheres and antifreeze so a firefighter could simply
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drop in the spheres and antifreeze and use the system just like a larger manned

helicopter except without the cost and danger. This means that we had to take the

technology used in aerial ignition helicopters and shrink it to a fraction of the size

and weight while performing the same function. The mechanism on the UAS-FF

requires four functional subsystems to perform the task of igniting a sphere. The

four subsystems are a hopper container, a loading/releasing mechanism, a pierc-

ing mechanism, and an injection mechanism.

The mechanical design of the mechanism for igniting the fires has gone through

two major iterations. Version 1.0 was developed over 1.5 years and version 2.0

was developed in less than a month after field trials of the initial version exposed

weaknesses that had to be quickly overcome before the next set of trials. Sec-

tion 5.2.1 details the design of version 1.0 and Section 5.2.2 similarly explores the

design of version 2.0.

5.2.1 Version 1.0

Version 1.0 underwent many minor changes during its development, was lab

tested, and even successfully tested in the field. The major differences of ver-

sions 1.0.1− 1.0.3 centered around mounting mechanisms and the hopper mecha-

nism. There were many more subtle design changes resulting from insight gained

through testing that were incorporated through the development process. We

will first begin with a description of the core mechanism and its functions that

remained largely unchanged and then give details about the distinctions between

versions 1.0.1− 1.0.3.

Subsystems: Figure 5.2 shows the subsystems from V1.0.3 mentioned earlier

that make up the fire ignition system of the UAS-FF.
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(a) Hopper mechanism (b) Loading/releasing mechanism

(c) Piercing mechanism

(d) Injection mechanism

Figure 5.2: The four subsystems that make up V1.0.3 of the fire ignition
mechanism of the UAS-FF

Positioning Process: The sphere drops into the loading/releasing mechanism

from the hopper, shown in Figure 5.3, where it is ready to begin the process of

being injected with ethylene glycol to start the chemical reaction. The loading/re-

leasing mechanism positions each sphere to be punctured as well as ferries the

spheres from the top loading position to the bottom releasing position. The mech-

anism is composed of an acrylic plate with slots cut in it to fit the spheres and 3D

printed components that have an integrated rotary cam for tripping a limit switch

for position feedback. The mechanism is driven by a 10g brushed gearmotor with

a relatively high gear ratio of 298 : 1 [139] so that it has enough torque to force a

partially jammed sphere out of the mechanism if it ever occurs.
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Figure 5.3: Ignition sphere in loading/releasing mechanism, ready to be
processed through the ignition procedure

Piercing Process: After the sphere drops into the loading/releasing mecha-

nism, it rotates 90◦ to position the sphere in place for the pierce mechanism to

puncture the ball. Figure 5.4(a) shows a section view that details the pierce ram,

the pierce lead screw and driving motor that forces the ram forward, puncturing

the sphere onto the needle. The motor was sized using equation (5.1).

Fa =
2π

16
∗ T ∗ P ∗ E (5.1)

where Fa is the axial force in lbf, the constant accounts for units and translates

rotational motion to linear motion, T is the motor torque in oz-in, P is the pitch

in threads-per-inch of the lead screw connected to the driving motor, and E is
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the efficiency of the lead screw. To be conservative, we assumed the efficiency of

the lead screw to be only 30% because we are using a standard triangular thread

form.

The driving motor chosen is a Faulhaber 1524B012SR+15A 14 : 1 gear motor

which is a 1524SR series motor with an integrated 15A series plastic gear plane-

tary gearbox and an encoder. The entire assembly weighs 26g, has a stall torque

of 8.5oz-in, and a no-load speed of 700RPM at 12V. The lead screw we attached

to this motor has a nominal diameter of 5mm with a lead of 0.8mm. According

to equation (5.1), the motor/lead screw combination should be able to produce

142N of axial force. The ram travels 15.25mm which takes approximately 1.5s

with the combination of gearbox, lead screw and voltage powering the motor.

(a) (b)

Figure 5.4: Section View: Ignition sphere punctured onto needle by piercing
mechanism

Injecting Process: The ram pierces the sphere onto the needle shown as a sec-

tion view in Figure 5.4(b). After the sphere is pierced on the needle, the injection

mechanism, shown in Figure 5.5 injects 0.5mL of antifreeze into it. The injection
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mechansim is driven by a 50 : 1 gear ratio gearmotor [114] which connects to a

lead screw with a nominal diameter of 3mm and lead of 0.5mm. The lead screw

drives the plunger ram which depresses the syringe plunger to inject antifreeze

into the ball through the needle. Using a gear motor and lead screw results in

a large reduction which allows a high degree of precision in the amount of fluid

injected into the sphere because each milliliter injected corresponds with several

thousand encoder increments.

Figure 5.5: Injection system squirts a small amount of fluid from syringe into
ignition sphere

Releasing Process: After the sphere has been injected with antifreeze, it is

primed and will ignite in less than 60s. The pierce mechanism runs in reverse

to retract the sphere off the needle and the loading/releasing mechanism rotates

another 90◦ so that the sphere is rotated to the bottom of the mechanism as shown

in Figure 5.6 where it drops out of the mechanism, falls to the ground, and the

entire process repeats for the next sphere.

The UAS-FF design remained stable in the previously described configuration

during a significant amount of lab and field testing.
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Figure 5.6: Loading/releasing mechanism rotates again to move the ignition
sphere to the bottom of the mechanism where it drops out of the UAS-FF

Previous Iterations: Two iterations were developed and tested prior to version

(a) V1.0.1 (b) V1.0.2 (c) V1.0.3

Figure 5.7: (a) Version 1.0.1 with under-mounted hopper (b) Version 1.0.2 with
over-mounted gravity fed hopper (c) Version 1.0.3 with agitated hopper

1.0.3. The three iterations are shown in Figure 5.7. Version 1.0.1 was the first

complete prototype produced and it was secured to the vehicle via fishing line.

The fishing line mount was used so that if an ignition sphere caught fire in the

mechanism, it would burn through the line and the mechanism would drop away,

preventing the vehicle from being destroyed. In practice, the fishing line was
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relatively difficult and time consuming to attach. The hopper was a basket like

structure that was attached directly to the rest of the mechanism and the entire

device mounted below the vehicle. The ignition spheres had a tendency to jam in

the hopper so that no more ignition spheres could be cycled through the device.

The height of the hopper and mechanism was taller than the landing gear so

the UAV had to be hand launched and landed, which is less than ideal. This

prototype left much to be desired but it proved the viability of the concept by

successfully flying and igniting spheres during a field test inside a rodeo arena.

Version 1.0.2 improved on V1.0.1 by redesigning the attachment and hopper

mechanisms. The hopper was designed to mount above the vehicle and drop

spheres down a chute to the ignition mechanism mounted below the vehicle. The

hopper jammed less easily than the previous design but would still occasionally

jam, especially if the spheres got dirty or damp, which tended to make their outer

surface tacky. Moving the hopper on top of the UAV also reduced the height of

the components mounted under the vehicle so that it could be launched and

landed from its landing gear. The mechanism mount was designed to have one

mounting plate attached to the vehicle and a second mounting plate that attached

to the ignition mechanism with fishing line. This retained the design feature of

a break away mechanism in case of fire while allowing the two mounting plates

to Velcro together for much faster mounting on the UAV. Version 1.0.2 was a

significant improvement over the previous version but the hopper jamming issue

needed to be addressed.

Version 1.0.3 retained the mounting mechanism from the previous version

but a completely new hopper was designed that utilizes a motor to agitate the

spheres in the hopper to prevent the jamming issues that occurred with the purely

gravity fed versions previously. The hopper is a cylindrical shaped polycarbonate
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structure and the agitator is an acrylic plate with five slots cut in it that attaches

to a drive shaft driven by a motor mounted on top of the hopper.

This hopper is capable of holding over 50 ignition spheres. The agitator deliv-

ers spheres to a chute made of 3mm carbon fiber rods that transfers the spheres

from the hopper above the UAV to the mechanism below the UAV.

Lessons Learned: The original design specification limited the weight to 250g

for the ignition mechanism to allow 50 ignition spheres to be carried while re-

maining under 500g total for the vehicle payload. This was an extremely restric-

tive specification and forced compromises to be made in the areas of structural

strength and actuator size which basically meant that both the load bearing mate-

rials and motors were operating near and sometimes over their maximum capac-

ity. This resulted in the mechanism breaking or actuators failing.

Another downfall of version 1.0 was that it required very fine adjustments that

had to be set carefully in order to function properly. If these adjustments were not

set properly or one of the ignition spheres was manufactured poorly, at best, the

mechanism didn’t work, it broke in a less fortunate case, and it lit itself on fire in

the worst case (this only happened once). The instance when the mechanism set

itself on fire was a result of the mechanism jamming due to one of the adjustments

being out of tolerance and poor alignment during the piercing procedure. As a

result, the sphere got caught after it was primed with antifreeze and could not

be ejected from the mechanism. The error was recognized by the software and

it alerted the operators who quickly landed the vehicle and manually removed

the mechanism from the UAV and then the flaming sphere from the mechanism

before significant damage occurred. A more detailed evaluation of version 1.0 is

given in Section 5.3.
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All in all, version 1.0 taught us many valuable lessons and helped us think

about creating designs that are tolerant of errors both in adjustment and manu-

facturing which led us to developing version 2.0.
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5.2.2 Version 2.0

(a)

(b)

Figure 5.8: (a) Version 2.0.1 on the UAV with new mounting mechanism and
hopper (b) Version 2.0.1 mechanism

The lessons we learned from version 1.0 helped us develop version 2.0 in a

much shorter time frame. The fact that we only had a few weeks between starting

the design and its debut in a field trial that involved the National Parks Service,

the Department of Interior, the Federal Aviation Administration (FAA), the Bu-

reau of Alcohol, Tobacco and Firearms (ATF) and a significant amount of media

also encouraged us to complete the design in an expeditious manner. The ATF

was involved because initially, the ignition spheres were considered live muni-

tions, so they had to review our usage.

Version 2.0 is shown in Figure 5.8 and is a complete redesign. We incorporated

the lessons we learned from V1.0, as well some new ideas. One other important

change for V2.0 was that we decided to carry a maximum of 13 ignition spheres

per deployment. This increased the allowable weight for the ignition mechanism

to 425g which allowed us to make the mechanism stronger than in V1.0. V2.0
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is also more compact which allows us to use thicker material and reduce the

moment arms in high stress areas.

Subsystems: Each subsystem was completely redesigned, but the same four

subsystems (hopper, loading/releasing, piercing, injection) are present as in V1.0.

(a) V2.0 hopper mechanism
(b) V2.0 loading/releasing mechanism

(c) V2.0 piercing mechanism
(d) V2.0 injection mechanism

Figure 5.9: The four subsystems that make up version 2.0 of the fire ignition
mechanism of the UAS-FF
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Figure 5.9 shows the four subsystems of version 2.0.

Figure 5.10: Section View: “C” shaped
hopper chute to help keep design

compact and align center of mass with
UAV center

Hopper Mechanism: By reducing

the number of spheres carried per de-

ployment in the hopper, the necessary

complexity of the hopper was also re-

duced. We returned to a purely gravity

fed design, but we were able to align

the spheres single file in a column.

This configuration did not require any

active agitation while still being able to

operate without jamming. The hop-

per forms a “C” shape as shown in

Figure 5.10. The top half of the hop-

per chute angles backwards to fit more

spheres without it being excessively

tall, and it also distributes the mass

about the UAV Center of Gravity (CG).

The bottom half of the hopper chute

moves the ignition mechanism, which is relatively front heavy, towards the back

of the UAV, which helps to centralize mass in the sagittal plane. The CG of the

UAV is shown in blue and the CG for the ignition mechanism is shown in green.

Loading Process: After the spheres are loaded into the hopper chute, the

mechanism is ready to begin priming the spheres with antifreeze and dropping

them to ignite a fire. The loading/releasing mechanism is comprised of a 10g

gearmotor that drives a rocker arm connected to two hatch doors by pushrod

linkages. One hatch door is above the piercing ram chamber and one is below.
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The top hatch door opens to allow a sphere to drop into the piercing ram chamber

from the hopper chute, shown in Figure 5.11 with some of the frame components

removed for clarity.

Figure 5.11: Loading/releasing mechanism positioning a sphere in preparation
for puncturing

Piercing Process: Once a sphere has been loaded into the piercing ram, the

Faulhaber motor turns the lead screw which actuates the lever that runs through

an arched channel in the piercing ram which punctures the ball on the needle.

Figure 5.12 shows a section view with components removed for clarity where

the lever is fully actuated and a sphere is punctured on the needle. The pierc-

ing mechanism on V2.0 was much more reliable than the piercing mechanism

of V1.0, which used a direct drive system where the lead screw that actuated

the pierce ram was fixed to the motor on one end but was floating on the other

end. This caused deflection of the pierce ram if the sphere was misaligned and

caused problems ranging from a bent needle to failure to pierce the sphere wall.

It also resulted in inefficient operation because friction losses increased signifi-
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Figure 5.12: Section View: Piercing mechanism punctures a sphere for injection

cantly when the ram deflected. V2.0 abandoned the direct drive concept for the

pierce mechanism to improve performance at the cost of slightly more complexity

and being larger. For V2.0, the pierce lead screw is fixed radially on one end to

the motor and on the other end by a bushing to eliminate deflection and wob-

bling for more efficient torque transmission. The lead screw is also supported

by dual thrust bearings to protect the motor from axial force. The lead screw

drives a lever which transmits its force to the pierce ram approximately 75% of

the lever length from the lever fulcrum. This increases the axial force produced

by the motor/lead-screw combination but reduces linear travel speed. We felt it

was an acceptable trade-off to increase cycle time slightly to gain the extra force

to ensure we could puncture through any part of the ignition sphere no matter

how thick. The pierce ram on V2.0 is tightly constrained by an acrylic plate on all

four sides to ensure that it can only travel directly in line with the needle, which

has helped ensure all force coming from the motor is directed to puncturing the
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sphere. Additionally, the tighter constraint has prevented bending any needles.

Injection Process: After the sphere has been punctured on the needle, the

injection system is ready to inject antifreeze into the spheres. Figure 5.13 shows

the components of the injection mechanism. A 10g gearmotor drives a lead screw,

which pushes the injection ram connected to the plunger of a syringe. The syringe

is connected to a tube which transfers the antifreeze around the entire mechanism

to the back of the needle that the ball is punctured on. Separating the needle

from being directly connected to the syringe was significant improvement over

V1.0 because it allowed us to make the mechanism much more compact. Making

the lead screw directly inline with the syringe also made this mechanism more

compact and because the movement of the syringe plunger is tightly constrained,

the inline drive system is not plagued by the same issues of the inline drive of the

pierce mechanism from version 1.0.

Figure 5.13: Injection mechanism primes the sphere with antifreeze

Releasing Process: After the ball is primed with antifreeze, the loading re-

leasing mechanism opens the bottom hatch, which simultaneously closes the top

hatch to prevent any of the spheres in the hopper chute from dropping through



102

(a)

(b)

Figure 5.14: Version 2.0 mounting mechanism that securely holds but quickly
releases the mechanism

the mechanism. Once the bottom hatch is open, the piercing mechanism runs

backwards and the lead screw pushes the lever back which pushes the piercing

ram backwards, pulling the ball off the needle and over the open hole in the

bottom frame plate and the sphere falls free of the mechanism. The loading/re-
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leasing mechanism again opens the top hatch, which closes the bottom hatch.

Another sphere drops into the piercing ram and the whole process repeats.

Mounting Mechanism: The final mechanism that was redesigned for version

2.0 is the mounting mechanism. Figure 5.14 shows the designed mechanism both

individually and on the UAV. Figure 5.14(a) shows some of the features including

the quick release handle that slides the shear mounting pin in and out of the

double shear block, as well as the retaining clamp that fits around the head of the

socket head cap screw to keep the release handle in place. Figure 5.14(b) shows

the mounting mechanism mounted on the vehicle with the ignition device below

it ready to be mounted. The mounting lug on top of the ignition device slides into

the double shear block on the mounting mechanism and then the release handle

is pushed in to slide the shear mounting pin through to secure the ignition device

to the UAV.

5.3 Evaluation

Figure 5.15: UAS-FF
Version 1.0.3 in flight

Throughout development we performed a series of tests

that ranged from simulation to outdoor tests. The hard-

ware simulation tests mainly helped assess the stabil-

ity of the vehicle when equipped with the dropper,

and identify the points of major mechanical stress while

puncturing a sphere. Additionally, we learned that mi-

nor modifications can have significant impact on the per-

formance of the hardware. Because of weight restric-

tions, our hardware components were sized to operate

near their functional limits. Adding a small amount

of lubricant or trimming a component’s size to allow a
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slightly looser fit sometimes means the difference between success and failure.

On the software end, we tested the response of the system to motor stalls and

encoder failures both before injection, and in the critical moment after injection to

ensure that the system takes the best steps to remove an injected sphere. Indoor

controlled ignition tests were key in helping us understand the factors that affect

the ignition process, and assess the reliability of critical steps like the injection and

dropping sequence, which integrates software and hardware components. For ex-

ample, this let us learn about the unexpected variability of the piercing duration

depending on whether the needle hits a seam in the sphere. In this setting we

also assessed the precision of the path planners and checked the emergency pro-

cedures. The outdoor tests without ignition helped us assess the communication

and control components, and to understand the effect of wind on the vehicle and

the spheres. For example, at 200m we were able to receive 100% of the commands

sent, and with winds under 5m/s (close to the recommended limit for performing

prescribed burns) the maximum horizontal sphere deflection was within 25% of

the dropping altitude. Non-flying outdoor tests were also used to evaluate and

refine the dropper.

Last and perhaps more compelling, we recently completed two outdoor tests

in realistic yet controlled contexts.

5.3.1 Version 1.0.3 Evaluation

The first test was with Version 1.0.3 (Version 2.0 had not yet been designed) in the

Loess Canyon region, in southwestern Nebraska shown in Figure 5.16. It required

coordination with the fire council of the area (that includes the land owners) and

the Federal Aviation Administration. Under the guidance of the burn boss, we
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Figure 5.16: UAS-FF returning from a sortie, flying 10 meters over ignited trees.
In-picture shows trajectory on a 50m by 35m area, white markers indicate

spheres dropped.

targeted an area of approximately 150 acres, within a larger effort to ignite over

2000 acres that involved about 60 firefighters for a full day. We performed 5

sorties over 3 canyons, each over 400m in length and 100m wide, filled with a

mix of dry and green cedar (an invasive species in this area). The picture within

Figure 5.16 shows one of these sorties, lasting approximately 5 minutes, with the

red line capturing the vehicle path and the white markers showing the locations

where fire ignition spheres were dropped. In the end, we dropped approximately

80 delayed ignition spheres over a period of 75 minutes and were able to safely

ignite large portions of two of the three canyons. We had to halt the process on

the third canyon as the injection mechanism got stuck and we did not deem it

safe to relaunch the vehicle within the time available as the day was ending.

The feedback we have received from the ultimate users of the technology is
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extremely encouraging, with a mix of enthusiasm, valid concerns, and uncer-

tainty, but hope about the potential of the system. We realized that UAS-FF could

replace extremely risky ignition operations over canyons or uneven terrain, like

Loess Canyon, that is being performed by firefighters on foot or on ATVs. These

operations typically require a reach of a few hundred meters and the ability to

exit very quickly. At the same time, when observing the firefighters it was evident

that the system must be able to tolerate sparse operator attention as they are con-

suming a lot of information through their own senses and are often on the move.

One final critical conclusion we came to after the Loess Canyon burn was that

we needed to make some changes to the design of the mechanism (Version 1.0.3).

This mechanism had been tested extensively, both in the lab and outdoors, and

as parts wore, its performance had started to decrease and problematic design

features were causing failures more frequently. The Loess Canyon burn showed

us that the UAS-FF system needed to be more reliable and not require adjustment

or tuning in the field because there is no time for this when it is called upon to

perform its function. We examined the design of Version 1.0.3 and determined

that it was worth the extra work to do a complete redesign, even with our second

field test only weeks away.

5.3.2 Version 2.0.1 Evaluation

The second test was at Homestead National Monument near Beatrice in southeast

Nebraska. Between the two tests, we rapidly developed Version 2.0.1 of the UAS-

FF in preparation to ignite a 26 acre burn unit slated for a prescribed burn. On

April 22nd, 2016, the wind direction and speed were ideal to burn the unit and

test out the very recently completed UAS-FF V2.0.



107

Figure 5.17: UAS-FF Version 2.0.1
outfitted for deployment

Firefighters backburned the perime-

ter of the field and the UAS-FF flew

five sorties over the interior of the un-

burned fuel in the unit, dropping ig-

nition spheres along the flight paths

shown in Figure 5.18.

We experimented with multiple ig-

nition patterns as directed by the burn

boss to evaluate their effectiveness.

The wind was blowing from the north so most of our ignition lines were per-

pendicular to the wind direction because this was assumed to be most effective,

but we also tried one line parallel with the wind direction and one burn pattern

that was more concentrated but that combined both perpendicular and parallel

lines with respect to the wind direction.

Version 2.0 of the UAS-FF performed extremely well and without failure to

the best of our knowledge. We successfully injected and dropped 60 ignition

spheres and burned roughly 20 of the 26 acres before the burn boss made the

decision that the ground crew needed to help finish off the unit before the wind

had the opportunity to change direction. Figure 5.19 shows a series of images

taken from a live video feed from the UAS-FF recorded at a ground station and

stitched together in post-processing.

The left locations were ignited first and it appears that all 12 ignition spheres

dropped successfully ignited, although the last dropped locations on the right

have not progressed far.

One lesson we learned from the test at Homestead National Monument was

that the process of redeploying the UAS-FF needs to be improved. It took us a
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Figure 5.18: Burn unit with flight paths flown by UAS-FF and burn perimeter
started from the ground marked

minimum of approximately seven minutes from the time we landed until we were

ready to redeploy. While on the ground, we replaced the UAV battery, removed

the mechanism to refill the antifreeze reservoir, reloaded the hopper chute with

spheres, saved data, reset the ground station and prepared for the next flight. For

true field use, the data collection will not be a factor and the ground station will

be more compact and streamlined but the process of replacing the consumable

components needs to be addressed to make it faster and less involved.
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Figure 5.19: Locations of dropped ignition spheres as seen from the UAS-FF’s
perspective

5.4 Conclusion and Contributions

We successfully designed, prototyped, and field tested two versions of the UAS-

FF. Version 1.0 successfully burned 150 acres of the Loess Canyon area in south-

west Nebraska and version 2.0 successfully burned a 26 acre burn unit at Home-

stead National Monument in southeast Nebraska. Version 2.0 improved upon

version 1.0 by being smaller, stronger, and more reliable. We overcame the chal-

lenges of designing a mechanism that is small enough to fit on a UAV, yet still

works with industry standard ignition spheres, which require significant force to

puncture. Through tightly integrating the mechanical, electrical, and software de-

sign with the UAV, we created a system capable of highly accurate, autonomous

aerial ignitions. We believe this is the first autonomous robot system that has been

designed for and used to ignite prescribed fires. This system has the potential and

has shown significant promise to keep firefighters out of danger during interior

ignitions and to make aerial ignition safe, affordable, and accessible for fire crews

of any size.

• Christian Laney was responsible for designing the PCB and populating the

PCB. He also did much of the electrical integration with the mechanism.



110

• Evan Beachly and Christian Laney designed the software and Christian per-

formed the testing for the early revisions and Evan did so for the later revi-

sions.

• I was responsible for the design, prototyping and physical tests of the me-

chanical device.

• I was responsible for maintaining, fixing and modifying the mechanisms

when they required revisions to increase their strength and durability after

field tests exposed weak components.
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Chapter 6

Conclusion and Future Work

Interaction with the environment will be a key utility of the next generation of

UAVs. In this thesis we developed a number of electro-mechanical systems that

augment existing UAVs or work alongside them to enable environmental interac-

tions. Key to all of these systems was the development of light-weight and robust

mechanical designs that meet the requirements of the scientists and practitioners

that use them.

6.1 UAV Sensing and Sampling

We designed two versions of a peristaltic pump and compared it to a Microp-

ump with an impeller that has been used in some of our earlier work. The main

challenge was designing a pump that was light enough for the UAV, while still

providing a high enough flow rate and remaining within the power limitations

available. Through lab testing, we characterized the pumps’ efficiencies at various

heights and operating voltages and determined the maximum functional pump-

ing height for our particular setup is just over 6m. We field tested the pump in
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an experiment looking for Zebra mussel veligers, and while none were found due

to a dormant population at the time of testing, we were satisfied that the pump

performed as intended. Future work will include more tests for invasive species,

like Zebra mussels and using the peristaltic pumps in more sampling field exper-

iments.

We constructed and lab tested three types of temperature sensor for use in cre-

ating 3D thermal structure maps of bodies of water using a UAV. We successfully

field tested one of these sensors, the MS5803, and created a 10× 10× 2.5 m tem-

perature map of Big Lake at BORR in California which resulted in a journal article

titled ”Obtaining the Thermal Structure of Lakes from the Air” [17] in Water. The

biggest challenges were capturing temperature data with a slow sensor and then

designing a new sensor with a much faster response time to be field tested in the

future. Future work will include using this faster sensor that we characterized

after the tests at BORR to allow us to map larger areas faster.

6.2 Waterbug

In conclusion, the Waterbug satisfies its design goals of being inexpensive, small

in size, light enough to be carried by a UAV, and being capable of descending

to 10m, collecting a sample and ascending to the surface. It also successfully

achieved neutral buoyancy 80% of the time over a range of parameters simulat-

ing field conditions. We demonstrated the effectiveness of developing an accurate

system model and combining the advantages of feed-forward, feedback and pre-

compensation to develop an algorithm that is successful despite using very inex-

pensive hardware, which was the main challenge. We showed that it is possible to

reduce cost and complexity by using only uni-directional control and still achieve
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similar results as other, more complex systems systems utilizing bi-directional

control.

The main source of failure in the neutral buoyancy algorithm stemmed from

mechanical inconsistency of the buoyancy syringes. Finding a suitable lubricant

to grease the seals on the syringe may help by reducing the friction between

the seal and body to provide more consistent results. It is also possible that

such an inexpensively manufactured component could have slight dimensional

or surface finish variations and one syringe may perform better than another.

Selectively taking the best syringes from a sample set may improve the success

rate of the neutral buoyancy algorithm. In summary, more investigation needs to

be performed to find a suitable solution for this particular issue.

In addition, we plan to conduct field tests, because inevitably, nature finds

ways of exposing weaknesses in design that the lab environment never can. The

Waterbug will be used to collect actual water samples and these samples will need

to be compared to samples collected through traditional means to make sure the

Waterbug does not ruin the fidelity of the samples.

A paper on the design, testing, and evaluation of the Waterbug was accepted

at IROS 2016.

6.3 UAS-FF

We successfully designed, prototyped and field tested two versions of the UAS-

FF. Version 1.0 successfully burned a portion of the Loess Canyon in southwest

Nebraska and version 2.0 successfully burned a 26 acre burn unit at Homestead

National Monument in southeast Nebraska. Version 2.0 improved upon version

1.0 by being smaller, stronger, and more reliable. We overcame the challenges
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of designing a mechanism that is small enough to fit on a UAV, yet still works

with industry standard ignition spheres, which require significant force to punc-

ture. Through tightly integrating the mechanical, electrical, and software design

with the UAV, we created a system capable of highly accurate, autonomous aerial

ignitions. We believe this is the first autonomous robot system that has been de-

signed for and used to ignite prescribed fires. This system has the potential and

has shown significant promise to keep firefighters out of danger and make aerial

ignition safe, affordable and accessible for fire crews of any size. Future work will

include the continued development of the ground station, software, and integra-

tion of the UAS-FF with the methods and procedures of fire crews.

6.4 Contributions

• The peristaltic pump allows water to be pumped to greater heights and

from greater depths while being more resilient to clogging and more sterile

than previous work with the water sampling UAV. I was responsible for

designing, building and testing the peristaltic pump. The water sampling

UAV was part of previous works by John-Paul Ore and other members of

the NIMBUS Lab [7] [8]. Prior to my involvement, the Water Sampler could

autonomously collect surface samples up to 12in deep using a miniature

impeller pump. The new design has been tested at 3m depth and at a height

of over 6m from the water.

• The temperature sensors make it possible for a UAV to quickly collect the

data to construct three-dimensional thermal structure maps. We successfully

mapped a 10× 10× 2.5m area during field trials using one of the tempera-

ture sensors. John-Paul Ore was responsible for designing the PCB for the
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MS5803 pressure/temperature sensor and I characterized its performance

in the lab setting and we jointly performed the field tests with the assis-

tance of Michaella Chung and Sally Thompson from UC-Berkeley. The data

was published in an article titled ”Obtaining the Thermal Structure of Lakes

from the Air” [17] in Water. I was responsible for constructing the thermo-

couples and the characterization of all the temperature sensors in the lab

setting.

• The Waterbug sub-surface sampler seeks to fill the needs of water sampling

that the UAV cannot satisfy. It is capable of retrieving data and water sam-

ples from depths up to 10m and is small and light enough to be deployed

and retrieved via UAV. Additionally, an algorithm was developed that al-

lows the Waterbug to achieve neutral buoyancy to monitor a specific point

of interest in the water column despite only using uni-directional buoyancy

control. The development of this robot resulted in a conference paper ti-

tled “The Waterbug Sub-Surface Sampler: Design, Control and Analysis”

accepted at the International Conference on Intelligent Robots and Systems

2016 [18]. I was responsible for designing and prototyping the Waterbug.

David Anthony worked with me on the first couple revisions and John-Paul

Ore allowed me to use the MS5803 PCB for the embedded system running

the control software that I wrote. Dave and John-Paul both helped me con-

struct the electronics and trouble-shoot software and communication bugs.

• The UAS-FF is an unmanned aerial system capable of autonomously ignit-

ing prescribed fires and has the potential to significantly reduce the danger

to firefighters performing interior ignitions for controlled burns. It is small,

light, and inexpensive enough that it is accessible to a crew of any size.
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The system successfully ignited over 150 acres over two field tests. Chris-

tian Laney was responsible for designing the PCB and populating the PCB.

He also did much of the electrical integration with the mechanism. Evan

Beachly and Christian Laney designed the software. Christian performed

the testing for the early revisions and Evan did so for the later revisions. I

was responsible for the design, prototyping and physical tests of the me-

chanical device as well as for maintaining, fixing and modifying the mecha-

nisms when they required revisions to increase their strength and durability

after field tests exposed weak components.
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[49] A. Wüest and A. Lorke, “Small-scale hydrodynamics in lakes,” Annual Re-

view of Fluid Mechanics, vol. 35, no. 1, pp. 373–412, 2003. 2.2

[50] J. R. Romero and G. W. Kling, “Spatial-temporal variability in surface layer

deepening and lateral advection in an embayment of lake victoria, east

africa,” Limnology and Oceanography, vol. 47, no. 3, pp. 656–671, 2002. 2.2

[51] C. E. Oldham and J. J. Sturman, “The effect of emergent vegetation on con-

vective flushing in shallow wetlands: Scaling and experiments,” Limnology

and Oceanography, vol. 46, no. 6, pp. 1486–1493, 2001. 2.2

[52] G. Horsch and H. Stefan, “Convective circulation in littoral water due to

surface cooling,” Limnology and Oceanography, vol. 33, no. 5, pp. 1068–1083,

1988. 2.2

[53] C. Michael and F. John, “The radiatively driven natural convection beneath

a floating plant layer,” Limnology and Oceanography, vol. 39, no. 5, pp. 1186–

1194, 1994. 2.2

[54] R. D. Moore, D. Spittlehouse, and A. Story, “Riparian microclimate and

stream temperature response to forest harvesting: A review1,” Journal of the

American Water Resources Association, vol. 41, no. 4, p. 813, 2005. 2.2

[55] J. S. Selker, L. Thevenaz, H. Huwald, A. Mallet, W. Luxemburg, N. Van

De Giesen, M. Stejskal, J. Zeman, M. Westhoff, and M. B. Parlange, “Dis-

tributed fiber-optic temperature sensing for hydrologic systems,” Water Re-

sources Research, vol. 42, no. 12, 2006. 2.2



125

[56] C. E. Torgerson, R. N. Faux, B. A. McIntosh, N. J. Poage, and D. J. Nor-

ton, “Airborne thermal remote sensing for water temperature assessment

in rivers and streams,” Remote Sensing of Environment, vol. 76, pp. 386–398,

2001. 2.2, 3.3.3

[57] R. N. Handcock, A. R. Gillespie, K. A. Cherkauer, J. E. Kay, S. J. Burges,

and S. K. Kampf, “Accuracy and uncertainty of thermal-infrared remote

sensing of stream temperatures at multiple spatial scales,” Remote Sensing of

Environment, vol. 100, no. 4, pp. 427–440, 2006. 2.2

[58] A. M. Jensen, B. T. Neilson, M. McKee, and Y. Chen, “Thermal remote sens-

ing with an autonomous unmanned aerial remote sensing platform for sur-

face stream temperatures,” pp. 5049–5052. 2.2

[59] T. J. Schmugge, W. P. Kustas, J. C. Ritchie, T. J. Jackson, and A. Rango, “Re-

mote sensing in hydrology,” Advances in Water Resources, vol. 25, pp. 1367–

1385, 2002. 2.2

[60] J. E. Kay, S. K. Kampf, R. N. Handcock, K. A. Cherkauer, A. R. Gillespie,

and S. J. Burges, “Accuracy of lake and stream temperatures estimated from

thermal infrared images,” Journal of the American Water Resources Association,

vol. 41, no. 5, pp. 1161–1175, 2005. 2.2

[61] M. Dunbabin, A. Grinham, and J. Udy, “An autonomous surface vehicle for

water quality monitoring,” pp. 2–4. 2.2

[62] B. Laval, J. S. Bird, and P. D. Helland, “An autonomous underwater vehicle

for the study of small lakes,” Journal of Atmospheric and Oceanic Technology,

vol. 17, no. 1, pp. 69–76, 2000. 2.2, 3.3.3



126

[63] Y. Zhang, M. A. Godin, J. G. Bellingham, and J. P. Ryan, “Using an au-

tonomous underwater vehicle to track a coastal upwelling front,” IEEE Jour-

nal of Oceanic Engineering, vol. 37, no. 3, pp. 338–347. 2.2

[64] A. Marouchos, B. Muir, R. Babcock, and M. Dunbabin, “A shallow water

auv for benthic and water column observations,” pp. 1–7. 2.2

[65] F. Zhang, J. Wang, J. Thon, C. Thon, E. Litchman, and X. Tan, “Gliding

robotic fish for mobile sampling of aquatic environments,” pp. 167–172. 2.2

[66] I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor

networks: research challenges,” Ad Hoc Networks, vol. 3, pp. 257–279, May

2005. 2.3

[67] K. Akkaya and A. Newell, “Self-deployment of sensors for maximized cov-

erage in underwater acoustic sensor networks,” Comput. Commun., vol. 32,

pp. 1233–1244, May 2009. 2.3

[68] I. Vasilescu, C. Detweiler, and D. Rus, “AquaNodes: An underwater sen-

sor network,” in Proceedings of the Second Workshop on Underwater Networks,

WuWNet ’07, (New York, NY, USA), pp. 85–88, ACM, 2007. 2.3

[69] M. Doniec, I. Vasilescu, M. Chitre, C. Detweiler, M. Hoffmann-Kuhnt, and

D. Rus, “Aquaoptical: A lightweight device for high-rate long-range under-

water point-to-point communication,” in OCEANS 2009, MTS/IEEE Biloxi -

Marine Technology for Our Future: Global and Local Challenges, pp. 1–6, Oct

2009. 2.3

[70] C. Detweiler, M. Doniec, M. Jiang, M. Schwager, R. Chen, and D. Rus,

“Adaptive decentralized control of underwater sensor networks for mod-



127

eling underwater phenomena,” in Proceedings of the 8th ACM Conference

on Embedded Networked Sensor Systems, SenSys ’10, (New York, NY, USA),

pp. 253–266, ACM, 2010. 2.3

[71] C. Detweiler, M. Doniec, I. Vasilescu, E. Basha, and D. Rus, “Autonomous

depth adjustment for underwater sensor networks,” in Proceedings of the

Fifth ACM International Workshop on UnderWater Networks, WUWNet ’10,

(New York, NY, USA), pp. 12:1–12:4, ACM, 2010. 2.3

[72] A. Tinka, Q. Wu, K. Weekly, C. A. Oroza, J. Beard, and A. M. Bayen, “Het-

erogeneous fleets of active and passive floating sensors for river studies,”

Journal of Field Robotics, 2015. 2.3, 4.3

[73] J. Austin and S. Atkinson, “The design and testing of small, low-cost gps-

tracked surface drifters,” Estuaries, vol. 27, no. 6, pp. 1026–1029, 2004. 2.3,

4.3

[74] J. Beard, K. Weekly, C. Oroza, A. Tinka, and A. M. Bayen, “Mobile phone

based drifting lagrangian flow sensors,” in Networked Embedded Systems for

Every Application (NESEA), 2012 IEEE 3rd International Conference on, pp. 1–7,

IEEE, 2012. 2.3

[75] J. Jaffe and C. Schurgers, “Sensor networks of freely drifting autonomous

underwater explorers,” in Proceedings of the 1st ACM international workshop

on Underwater networks, pp. 93–96, ACM, 2006. 2.3, 4.3

[76] R. E. Davis, C. C. Eriksen, and C. P. Jones, “Autonomous buoyancy-driven

underwater gliders,” 2002. 2.3



128

[77] H. Singh, A. Can, R. Eustice, S. Lerner, N. McPhee, O. Pizarro, and C. Ro-

man, “Seabed AUV offers new platform for high-resolution imaging,” Eos,

Transactions American Geophysical Union, vol. 85, no. 31, pp. 289–296, 2004.

2.3

[78] G. Dudek, P. Giguere, C. Prahacs, S. Saunderson, J. Sattar, L. A. Torres-

Mendez, M. Jenkin, A. German, A. Hogue, A. Ripsman, and others, “Aqua:

An amphibious autonomous robot,” IEEE Computer, vol. 40, no. 1, pp. 46–

53, 2007. 2.3

[79] R. Camilli, B. Bingham, M. Jakuba, H. Singh, and J. Whelan, “Integrat-

ing in-situ chemical sampling with AUV control systems,” in OCEANS’04.

MTTS/IEEE TECHNO-OCEAN’04, vol. 1, pp. 101–109, IEEE, 2004. 2.3

[80] B. Allen, R. Stokey, T. Austin, N. Forrester, R. Goldsborough, M. Purcell, and

C. von Alt, “REMUS: a small, low cost AUV; system description, field trials

and performance results,” in OCEANS’97. MTS/IEEE Conference Proceedings,

vol. 2, pp. 994–1000, IEEE, 1997. 2.3

[81] A. Lucieer, D. Turner, D. H. King, and S. A. Robinson, “Using an unmanned

aerial vehicle (UAV) to capture micro-topography of antarctic moss beds,”

International Journal of Applied Earth Observation and Geoinformation, vol. 27,

pp. 53–62, 2014. 2.3

[82] A. Mohapatra, N. Gautam, and R. Gibson, “Combined routing and node re-

placement in energy-efficient underwater sensor networks for seismic mon-

itoring,” IEEE Journal of Oceanic Engineering, vol. 38, pp. 80–90, Jan. 2013.

2.3



129

[83] P. van Walree and R. Otnes, “Ultrawideband underwater acoustic commu-

nication channels,” IEEE Journal of Oceanic Engineering, vol. 38, pp. 678–688,

Oct. 2013. 2.3

[84] Y. Noh, U. Lee, S. Han, P. Wang, D. Torres, J. Kim, and M. Gerla, “DOTS: A

propagation delay-aware opportunistic MAC protocol for mobile underwa-

ter networks,” IEEE Transactions on Mobile Computing, vol. 13, pp. 766–782,

Apr. 2014. 2.3

[85] D. Pompili, T. Melodia, and I. Akyildiz, “A CDMA-based medium ac-

cess control for UnderWater acoustic sensor networks,” IEEE Transactions

on Wireless Communications, vol. 8, pp. 1899–1909, Apr. 2009. 2.3

[86] L. E. Bird, A. Sherman, and J. Ryan, “Development of an active, large vol-

ume, discrete seawater sampler for autonomous underwater vehicles,” in

OCEANS 2007, pp. 1–5, IEEE, 2007. 2.3, 4.3.2

[87] J.-P. Ore, S. Elbaum, A. Burgin, B. Zhao, and C. Detweiler, Field and Service

Robotics: Results of the 9th International Conference, ch. Autonomous Aerial

Water Sampling, pp. 137–151. Cham: Springer International Publishing,

2015. 2.3

[88] K. J. Aström and R. M. Murray, Feedback systems: an introduction for scientists

and engineers. Princeton university press, 2010. 2.4

[89] N. S. Nise, CONTROL SYSTEMS ENGINEERING, (With CD). John Wiley &

Sons, 2007. 2.4



130

[90] J. H. Kim and H. B. Park, “H state feedback control for generalized contin-

uous/discrete time-delay system,” Automatica, vol. 35, no. 8, pp. 1443–1451,

1999. 2.4

[91] S. Skogestad and I. Postlethwaite, Multivariable feedback control: analysis and

design, vol. 2. Wiley New York, 2007. 2.4

[92] Y. Lee, J. Lee, and S. Park, “Pid controller tuning for integrating and unsta-

ble processes with time delay,” Chemical Engineering Science, vol. 55, no. 17,

pp. 3481–3493, 2000. 2.4

[93] H. Shu and Y. Pi, “Pid neural networks for time-delay systems,” Computers

& Chemical Engineering, vol. 24, no. 2, pp. 859–862, 2000. 2.4

[94] S. E. Hamamci, “An algorithm for stabilization of fractional-order time de-

lay systems using fractional-order pid controllers,” Automatic Control, IEEE

Transactions on, vol. 52, no. 10, pp. 1964–1969, 2007. 2.4

[95] Z. Shafiei and A. Shenton, “Frequency-domain design of pid controllers for

stable and unstable systems with time delay,” Automatica, vol. 33, no. 12,

pp. 2223–2232, 1997. 2.4

[96] M. Baeza, M. De Luıs, J. Raventós, and A. Escarré, “Factors influencing fire
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