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Evaluation of Genome-Enabled 
Selection for Bacterial Cold Water 
Disease Resistance Using Progeny 
Performance Data in Rainbow Trout: 
Insights on Genotyping Methods and 
Genomic Prediction Models 
Roger L. Vallejo 1*, Timothy D. Leeds 1, Breno O. FragomenF, Guangtu Gao 1, 
Alvaro G. Hernandez 3

, Ignacy MisztaJ2, Timothy J. Welch 1, Gregory D. Wiens 1 and 
Yniv Palti 1 

1 National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of 

Agriculture, Kearneysville, WI!, USA, 2 Animal and Dairy Science Department, University of Georgia, Athens, GA, USA, 

3 High-Throughput Sequencing and Genotyping Unit, Roy J. Carver Biotechnology Center, University of Illinois at 

Urbana-Champaign, Urbana, IL, USA 

Bacterial cold water disease (BCWD) causes significant economic losses in salmonid 
aquaculture, and traditional family-based breeding programs aimed at improving BCWD 

resistance have been limited to exploiting only between-family variation. We used 

genomic selection (GS) models to predict genomic breeding values (GEBVs) for BCWD 

resistance in 10 families from the first generation of the NCCCWA BCWD resistance 

breeding line, compared the predictive ability (PA) of GEBVs to pedigree-based estimated 

breeding values (EBVs), and compared the impact of two SNP genotyping methods 

on the accuracy of GEBV predictions. The BCWD phenotypes survival days (DAYS) 

and survival status (STATUS) had been recorded in training fish (n = 583) subjected 

to experimental BCWD challenge. Training fish, and their full sibs without phenotypic 

data that were used as parents of the subsequent generation, were genotyped using 

two methods: restriction-site associated DNA (RAD) sequencing and the Rainbow Trout 

Axiom® 57 K SNP array (Chip). Animal-specific GEBVs were estimated using four GS 

models: BayesB, BayesC, single-step GBLUP (ssGBLUP), and weighted ssGBLUP 

(wssGBLUP). Family-specific EBVs were estimated using pedigree and phenotype data 

in the training fish only. The PA of EBVs and GEBVs was assessed by correlating 
mean progeny phenotype (MPP) with mid-parent EBV (family-specific) or GEBV (animal

specific). The best GEBV predictions were similar to EBV with PA values of 0.49 and 

0.46 vs. 0.50 and 0.41 for DAYS and STATUS, respectively. Among the GEBV prediction 

methods, ssGBLUP consistently had the highest PA. The RAD genotyping platform 

had GEBVs with similar PA to those of GEBVs from the Chip platform. The PA of 

ssGBLUP and wssGBLUP methods was higher with the Chip, but for BayesB and 

BayesC methods it was higher with the RAD platform. The overall GEBV accuracy in 

this study was low to moderate, likely due to the small training sample used. This study 
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explored the potential of GS for improving resistance to BCWD in rainbow trout using, for

the first time, progeny testing data to assess the accuracy of GEBVs, and it provides the

basis for further investigation on the implementation of GS in commercial rainbow trout

populations.

Keywords: bacterial cold water disease, Bayesian methods, disease resistance, genomic selection, rainbow trout,

single-step GBLUP

INTRODUCTION

Bacterial cold water disease (BCWD) causes significant mortality
and economic losses in salmonid aquaculture, and methods
to control outbreaks are limited (Nematollahi et al., 2003;
Barnes and Brown, 2011). We previously reported a family-
based, selective breeding program (Silverstein et al., 2009), with
the objective of increasing rainbow trout resistance against
Flavobacterium psychrophilum (Fp), the etiological agent of
BCWD. Resistance to laboratory injection challenge with Fp
strain CSF259-93 is a moderately heritable trait that responds to
selection (Leeds et al., 2010). A selection line, designated ARS-
Fp-R, has exhibited higher survival and phenotype stability as
compared to reference lines when evaluated on-farm (Wiens
et al., 2013). The genetic architecture of resistance is complex
(Vallejo et al., 2010) and we previously identified several major
resistance QTL in the NCCCWA odd- and even-year rainbow
trout selective-breeding populations (Wiens et al., 2013; Vallejo
et al., 2014a; Liu et al., 2015b; Palti et al., 2015b). While
those loci can be evaluated for marker assisted selection (MAS)
following fine-mapping, the complex genetic architecture of
BCWD resistance and high genetic variation we discovered in
past studies (Vallejo et al., 2014a) led us to hypothesize that
a whole genome-enabled selection approach would be a more
efficient strategy for improving rainbow trout genetic resistance
against BCWD.

Genomic selection (GS) is a relatively recent strategy

(Meuwissen et al., 2001) that is revolutionizing plant and animal

breeding. This methodology uses high-density marker genotype
data that covers the whole genome combined with phenotypic
records to compute genomic estimated breeding values (GEBVs)
for all genotyped individuals. The GS methodology is chiefly
relevant for traits that cannot be directly recorded on the
potential breeders or selection candidates including disease
susceptibility, carcass and sex-limited traits, and was shown to
be highly effective in the dairy cattle industry (Hayes et al.,
2009a; VanRaden et al., 2009; Goddard et al., 2011; Wiggans
et al., 2011). For aquaculture species like salmonids, the key
benefit is that GS enables prediction of individual GEBVs for
non-phenotyped fish, and hence exploits within-family genetic
variation. In addition to increasing accuracy of selection, GS
is expected to decrease inbreeding rate per generation because
it enables better differentiation within families and lowers co-
selection of sibs (Daetwyler et al., 2007; Dekkers, 2007).

For agricultural livestock species, single nucleotide

polymorphism (SNP) arrays or chips have been the platform

of choice for whole genome genotyping of at least 50 K SNPs

(Matukumalli et al., 2009; Ramos et al., 2009; Groenen et al.,

2011); including the recently developed rainbow trout 57

K SNP chip as a new tool available to breeders (Palti et al.,
2015a). However, sequencing-by-genotyping methods capable
of simultaneous marker discovery and genotyping in many
individuals were developed for genetic/genome analyses (Davey
et al., 2011). One technique is restriction-site-associated DNA
(RAD) sequencing (Miller et al., 2007; Baird et al., 2008) that
does not require a priorimarker discovery or a reference genome
sequence. In recent past years, the method of RAD sequencing
was widely used in salmonid species for SNP discovery and other
genetic/genome analyses (Hecht et al., 2012, 2013; Houston et al.,
2012, 2014; Miller et al., 2012; Hale et al., 2013; Narum et al.,
2013; Brieuc et al., 2014; Campbell et al., 2014; Gonen et al., 2014;
Palti et al., 2014; Liu et al., 2015a).

There is uncertainty about the best computational method for
GS. The genomic BLUP (GBLUP) method assumes a polygenic
architecture of the trait and uses all themarkers data in estimating
the genomic relationship G matrix; in contrast, the Bayesian
variable selection methods assume that the genetic variance is
explained by a reduced number of markers with small-moderate
or large effects (Habier et al., 2007; Hayes et al., 2009b; de
los Campos et al., 2013; Fernando and Garrick, 2013; Tiezzi
and Maltecca, 2015). Based on this assumption, GBLUP is
not expected to perform as well as Bayesian variable selection
models when the trait is not polygenic and it is controlled
by several moderate-to-large effect QTLs. The GBLUP method
was modified into the single-step GBLUP method which allows
the combination of the pedigree (A) and genomic-derived
relationships (G) into a combined relationship matrix (H)
(Aguilar et al., 2010; Legarra et al., 2014), and to the weighted
single-step GBLUPmethod which emulates the Bayesian variable
selection models by fitting in the multiple regression model
selected SNP that explain moderate-large fraction of the genetic
variance (Wang et al., 2012).

The accuracy of predicted GEBVs depends on several key
parameters including (1) the level of linkage disequilibrium
(LD) between the marker loci and the QTL; (2) the number of
individuals with phenotype and genotype records in the training
population; (3) the degree of relationship between training and
testing/validation animals; (4) the average relationship among
training individuals; (5) the heritability of the trait, or reliability
of breeding values if using de-regressed breeding values; and (6)
the distribution of QTL effects (Goddard, 2009; Pszczola et al.,
2012). The genetic architecture of the trait coupled with the
correct GS model may also have a significant impact on the
accuracy of the genomic predictions. Therefore, when evaluating
a new trait in a new population and species it is important to
compare the accuracy of GEBV predictions from GS models
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based on single-step GBLUP methods (Aguilar et al., 2010;
Wang et al., 2012) as well as Bayesian variable selection models
(Fernando and Garrick, 2013; Garrick and Fernando, 2013).

This study was conducted to assess the feasibility of GS for
improving BCWD resistance in rainbow trout and compare
its accuracy with traditional family-based selective breeding.
The objectives of this research were to (1) perform genomic
predictions for BCWD resistance using a subset of 10 families
from the first generation of the NCCCWA disease resistance
breeding line; (2) compare the predictive ability (PA) of classic
pedigree-based EBVs with that of GEBV predictions from four
different GS models; and (3) compare the PA of GEBVs when
using the SNP chip and the RAD genotyping platforms.

MATERIALS AND METHODS

Fish Rearing and Disease Challenge
All fish work has been conducted in accordance with national
and international guidelines. The protocol for this study was
specifically approved by the Institutional Animal Care and Use
Committee (IACUC) of the US Department of Agriculture,
Agricultural Research Service, the National Center for Cool and
Cold Water Aquaculture. All efforts were made to ensure fish
welfare and to minimize suffering.

Details of the fish rearing conditions and the 21-day survival
study following intraperitoneal injection with the causative
agent of BCWD, F. psychrophilum (Fp), was reported elsewhere
(Silverstein et al., 2009; Leeds et al., 2010). The procedures
of data recording in the disease challenge were also reported
elsewhere (Palti et al., 2015b); briefly, the dead fish were removed
and recorded daily and fin clipped; the fish health during the
study was monitored daily and no unexpected deaths were
observed; periodic sampling of the dead fish was conducted to
make bacterial cultures and confirm the presence of Fp in the
dead fish as the likely cause of death; the surviving fish at day
21 post-infection were euthanized in 200mg L−1 of Tricaine
methanesulfonate, MS 222 (Sigma) for at least 5min prior to
sampling of their fin clips. The collected fin clips from all fish
(mortalities and survivors) were individually kept in 95% ethanol
until DNA extraction as previously described (Palti et al., 2006).

Training and Validation Fish
The training fish included 10 full-sib (FS) families randomly
sampled from a total of 71 pedigreed FS families from year-class
(YC) 2005 of the NCCCWA BCWD resistant line (Silverstein
et al., 2009; Leeds et al., 2010). The YC 2005 families represented
the base generation of the breeding line, and thus had not
previously been selected for BCWD resistance. Each family had
n = 39–80 fish evaluated in the laboratory BCWD challenge
in one or two tanks per family with an initial stocking of 40
fish per tank. The total number of training fish with genotypes
and phenotypes was 583. The 10 FS families were chosen for
use as the training population because non-challenged siblings
from these families were used as parents (validation fish) of
the subsequent generation, and DNA archives were available
for genotyping from the training and validation groups within
each family. The validation sample included 53 breeders (sires

and dams) that were disease naïve progeny of the 10 training
families; each family contributed 2–11 breeders. The breeders
or validation fish had family-based EBVs for survival days
(DAYS) and survival status (STATUS) estimated using BCWD
resistance records measured on their siblings and any collateral
relatives among the 71 FS families (N = 4492 fish with BCWD
resistance phenotypes). In addition, phenotypes from 31 YC 2007
FS progeny testing families (N = 1913 progeny with BCWD
resistance phenotypes) with both parents from the validation
sample were used to calculate the mean progeny phenotype
(MPP) for each FS progeny testing family (PTF). This GS study
by design ensured a high level of relationship between training
and validation fish. A summary of the experimental variables of
this GS study for BCWD resistance is presented in Table 1.

BCWD Resistance Phenotypes
The BCWD resistance phenotype DAYS, the number of days to
death post-challenge, were recorded for 21 days post-challenge
with survivors being assigned a value of 21. Each fish also
had a binary survival STATUS record. The BCWD resistance
phenotype STATUS had two categories: 1 = the fish died during
the 21 days post challenge evaluation period; and 2 = the fish
was alive on day 21 post-challenge. In the GS analysis, we used
the DAYS and STATUS records from the training fish to first
train the GS models and estimate the marker effects, then we
estimated the GEBVs for DAYS and STATUS for each validation
fish using the estimated marker effects with the training fish.

SNP Genotyping Platforms
The training and validation fish with their corresponding parents
(YC 2002 and 2003 fish) were genotyped with the recently
developed Rainbow Trout Axiom R© 57 K SNP array (Chip) as
we have previously described (Palti et al., 2015a); the samples
were genotyped by a commercial service provider (Geneseek,
Inc., Lincoln, NE) following the Axiom genotyping procedures
described by the array manufacturer (Affymetrix). For final
genotyping calls and quality control analyses we utilized the
Affymetrix Power Tools and SNPolisher software applications as
we have previously described (Palti et al., 2015a). Each family
had between 48,646 and 48,899 genotyped SNPs. The quality
control (QC) pipeline filtered out SNPs with significant distortion
from the expected Mendelian segregation in each FS family
(Bonferroni adjusted to P < 0.05) and also removed two training
fish that did not have matching genotypes with the parents given
in the pedigree (i.e., did not pass pedigree check). After genotype
data QC, a total of 49,468 SNPs were included in the raw Chip
genotype dataset.

The training and validation fish were also genotyped with
∼24 K SNPs generated by sequencing of RAD tag libraries
following established procedures in our lab (Palti et al., 2014,
2015b). Genomic DNA from offspring and parents (YC 2005
10 FS families) was digested with restriction enzyme SbfI, and
RAD sequencing libraries were made as described elsewhere
(Palti et al., 2014). Each RAD library that had 30 indexed
samples with a unique six-nucleotide barcode for each sample
was sequenced (single end 100 bp read) on a single lane of HiSeq
2000; the raw sequences were submitted to the short read archive
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TABLE 1 | Experimental variables in pedigree-based and genomic selection analyses for BCWD resistance.

Variable PED modela Progeny testingb ssGBLUP and wssGBLUPc BayesB and BayesCd

Training Validation Training Validation

Number of families 71 31 71 10 10 10

Offspring per family 39–80 38–122 39–80 2–11 39–80 2–11

Genotyped fish Nae Na 658 53 583 53

Phenotyped fish 4492 1913 4492 Na 583 Na

Pedigree records 4757 Na 4757 Na Na Na

Progeny tested breedersf Na 53 Na 53 Na 53

aPedigree-based model (PED) fit BCWD records from 2005 families.
bThe validation fish or potential breeders were mated to generate 31 progeny testing full-sib families.
cThe single-step GBLUP (ssGBLUP) and weighted ssGBLUP (wssGBLUP) methods used in training models analysis all fish that had genotype and phenotype records and had any

type of pedigree relationship (parents, full-sibs, half-sibs, etc.).
dThe Bayesian methods BayesB and BayesC used in training model analysis only those fish that had matched genotype and phenotype records without missing data.
eNa indicates either non-available or non-needed data cell.
fProgeny tested breeders are fish from 2005 families that were used as breeders to generate 2007 families.

of GenBank under project accession number PRJNA295850
(Samples: SAMN04090427–SAMN04091127; SRA Accession:
SRP063932); and before sequence alignment, we trimmed the six-
base barcode at the 5′ end and the last five bases at the 3′ end
of each sequence read, and filtered out reads with a cumulative
sequencing error probability of more than 20% in the 89 bp
read as described elsewhere (Palti et al., 2014). We analyzed the
remaining trimmed reads to identify SNPs using Novoalign and
Perl scripts as previously described (Liu et al., 2015a). To ensure
sufficient sequence reads coverage in the parents, each parent
was sequenced twice. The genotype data from parents were called
using the bioinformatics pipeline of SNP discovery and genotype
calling; and for the offspring genotype calling, the RAD sequences
were mapped to the parental alleles of each SNP requiring exact
matching in Novoalign as already described (Palti et al., 2015b).
The average number of filtered reads per parent was 7.8M with a
range between 5.7 and 12.6 M; for the offspring from the training
sample (i.e., fish with phenotypes) the average was 3.0M with a
range between 790 K and 10.0M per offspring; for the offspring
from the validation sample (i.e., fish with EBVs based on siblings
and progeny-testing performance) the average was 3.9M with
a range between 2.0 and 9.5M per offspring. As described
elsewhere (Palti et al., 2015b), for each offspring, we required a
minimum of four identical sequence reads to call it homozygous
for a particular SNP; for heterozygous genotype calls, we required
that the total number of reads for the locus (e.g., both alleles)
will be ≥4, and the frequency of the minor allele sequence
reads (MAF) ≥10%. If both alleles were present in the offspring
sample, and the MAF was ≤10%, we did not call a genotype
for that SNP in that particular offspring and it was recorded
as missing data. SNP loci and samples with ≥30% missing data
were removed from the final genotype data (SNP/sample calling
rate ≥70%). Also, Chi-square goodness-of-fit tests were used
to check the genotype segregation ratio (1:1 or 1:2:1) for each
SNP, and SNPs with significant Bonferroni-corrected segregation
distortion (P < 1e-5) were removed from the final genotype
dataset. After this genotype data QC, a total of 24,465 RAD SNPs
remained in the raw RAD genotype dataset.

Before fitting the GS training models, the total genotyped
SNPs were further QC filtered out using QC algorithms
implemented in computer program BLUPF90 (Misztal et al.,
2015). After this final raw dataset QC, for the Chip SNPs, only
those SNPs and samples with genotype calling rate ≥0.90 were
included in the GS analysis, with a final effective number of
40,710 SNPs. Likewise, for the RAD SNPs, only those SNPs and
samples with calling rate≥0.70 were included in the GS analysis,
with a final effective number of 10,052 SNPs.

Estimation of EBV with Pedigree-Based
Model
For the validation fish, we estimated EBVs for BCWD resistance
phenotypes (DAYS and STATUS) using classic pedigree-based
model (PED) without genomics or marker genotype data.
Family-based EBVs were estimated using BCWD records
measured on siblings of the validation fish (YC 2005 families) and
any collateral relatives. The phenotypic dataset included DAYS
and STATUS records from 4492 fish from 71 FS families (14
paternal half-sib families, 10 maternal half-sib families, and 27
families not nested within a half-sib family), and the pedigree
included 4659 records.

Before carrying out PED data analysis, to identify significant
predictors of DAYS and STATUS, we executed multivariable
regression analysis using mixed linear models that included
random family effect, tank, and year fixed effects, and covariate
body weight (BW) using STEPWISE model selection with
procedure REG from SAS software (SAS, 2007). Then, the
experimental variables with significant effect on DAYS and
STATUS (potential variables to include in PED model) were
assessed for family effect using procedure MIXED from SAS
software (SAS, 2007). This latter test is performed to avoid
wrongly adjusting response variables for fixed and covariate
effects that had significant family effect. At STEPWISE model
selection using one-generation BCWD records (YC 2005
families), we found out that BW and tank had significant
contribution on the predictive power of DAYS and STATUS.
Due to practical restrictions imposed by the disease challenge
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studies with juvenile fish, the experimental design of our disease
challenge experiments confounded tank with family effects; so
we decided not to include tank effect in the model of analysis.
Next, we found that family had non-significant effect on BW
(model tested: BW = mean + family + error) which hints
that the covariate BW can be included in the model. Based
on these results, we decided that the linear model to estimate
EBV should include a population mean effect, random animal
effect, continuous covariate BW, and random error effect. The
BCWD DAYS and STATUS records were fit into PED linear and
threshold models, respectively, using the computer application
BLUPF90 (Misztal et al., 2015).

Estimation of GEBV with Bayesian Variable
Selection Models
The Chip or RAD SNP genotype data from the training fish
(YC 2005 families) with their corresponding BCWD phenotypic
records were used to train the prediction models and estimate
marker effects using BayesB and BayesC methods implemented
in the software GENSEL (Fernando and Garrick, 2013; Garrick
and Fernando, 2013). Before proceeding with the GS analysis,
we first performed variance components analysis with BayesC
from GENSEL and AIREML implemented in software BLUPF90
(Misztal et al., 2015) to estimate genetic and residual variances
for BCWD resistance phenotypes; these estimates of variance
components were used as priors in the Bayesian analysis. We
performed GS analysis for DAYS using this mixed linear model:

y = 1µ + Zα + e

Where y is n× 1 vector of phenotypic records; µ is overall mean;
Z is an n × k matrix of genotype covariates (coded as −10, 0,
or 10) for k SNP markers, α is a k x 1 vector of random partial
regression coefficients of k SNPs (additive marker effects), and e

is a vector of residuals.
As outlined in the previous section, we also performed

STEPWISE model selection with the training sample used in
GS analysis with Bayesian methods which included only fish
that had both phenotype an genotype records (n = 583) to
determine whether family, tank, and weight variables should be
included in the model. We observed that tank, BW and family
had significant effect on DAYS and STATUS records; nonetheless,
we decided not to include the tank effect in the model because
tank was confounded with family in the design of our disease
challenge studies (Vallejo et al., 2014b). The scatter plot of the
first two principal components estimated with software BLUPF90
(Misztal et al., 2015) using the SNP Chip genotype data hinted a
population structure. There were nine clusters which represented
family groups; we used 10 FS families from which two families
shared the same dam parent (maternal half-sib families). We
decided not to account for this apparent structure by modeling
either family or the two first principal components because it was
caused by family genetic effects that are being estimated in the
GS analyses. Next, we found that family had significant effect on
BW which hints that the BW covariate should not be included
in the mixed linear model. The GS analysis of the binary data
STATUS was performed using the option for categorical analysis

implemented in GENSEL (Fernando and Garrick, 2013; Garrick
and Fernando, 2013).

In BayesB and BayesC analyses, the mixture parameter π

specifies the proportion of loci with zero effect. So, given a
p effective number of SNPs, the k = (1− π) p markers that are
sampled as having non-zero effect are fitted simultaneously in
the Bayesian multiple regression model. The mixture parameter
π was assumed to be known and defined to meet the condition
k ≤ n; where n is the number of training fish. So in the GS analysis
with Bayesian methods, we evaluated π values of 0.98, 0.99, and
0.995 with the SNP Chip data; and π values of 0.975, 0.98, 0.99,
and 0.995 with the RAD data.

With Bayesian variable selection models BayesB and BayesC,
we used a flat prior for the vector β of non-genetic fixed effects,
and conditional on the residual variance σ2e , a normal distribution
with null mean and covariance matrix Rσ2e for the vector of
residuals, where R is a diagonal matrix. In addition, σ2e was
treated as an unknown parameter with a scaled inverse chi-square
prior. In BayesB, the prior assumptions are that the marker
effects have identical and independent mixture distribution, each
marker has a point mass at zero with probability π and a
univariate-t distribution with probability 1−π with a null mean,
scale parameter S2α, and vα degrees of freedom (Fernando and
Garrick, 2013); and the t-distribution in BayesB is equivalent to
a univariate normal distribution with unknown null mean and
locus-specific variance (Garrick and Fernando, 2013).

In BayesC, the prior assumptions are that the marker effects
have identical and independentmixture distributions, where each
has a point mass at zero with probability π and a univariate-
normal distribution with probability 1 − π having a null mean
with variance σ2α, which has a scaled inverse chi-square prior with
S2α scale parameter and vα degrees of freedom (Fernando and
Garrick, 2013). In addition, in BayesC, a locus-specific variance is
assumed which is calculated by using information from the prior
and actual data (Garrick and Fernando, 2013).

The computer application GENSEL uses Gibbs sampling
methods in all its Bayesian variable selection methods. The
BCWD resistance phenotypes were analyzed using 50,000
Markov Chain Monte Carlo (MCMC) iterations from which
the first 10,000 samples were discarded as burn-in; from the
remaining 40,000 samples, we saved one from every 10 samples
(i.e., thinning = 10). To ensure that the MCMC samples
were drawn from the full-conditional posterior distributions,
we assessed the proper mixing and convergence of the MCMC
iterations using the R package CODA (Plummer et al., 2006).

Estimation of GEBV with Single-Step
Genomic BLUP Methods
The Chip or RAD SNP genotype data from training and
validation fish (offspring from 10 NCCCWA 2005 FS families)
with BCWD records measured in training fish and pedigree
information on all fish included in this GS study were used to
estimate GEBVs for the validation fish (full-sibs of training fish
that were not disease challenged) using two methods: (i) single-
step genomic BLUP (ssGBLUP; Aguilar et al., 2010; Christensen
and Lund, 2010); and (ii) weighted ssGBLUP (wssGBLUP).
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In wssGBLUP, the weights for each SNP are 1’s for the 1st
iteration which means that all SNPs have the same weight (i.e.,
standard ssGBLUP). For the next iterations (2nd, 3rd, etc.),
the weights are individual variance of SNP effect estimated
in the previous iteration (Wang et al., 2012). In contrast to
Bayesian variable selection models, the single-step genomic
BLUP methods included in the analysis also progeny from YC
2005 families that had only BCWD resistance phenotype records
without marker genotype data: full-sibs of training fish (10 FS
families) and 61 additional FS families that were pedigree-related
to the 10 FS families that provided training and validation fish
(n = 4492; Table 1).

Before performing the GS analysis with ssGBLUP and
wssGBLUP methods, as a quality check and to have estimates
of genetic parameters to use as priors in the Bayesian analysis of
the binary STATUS, we performed variance components analysis
for DAYS with AIREMLF90 which is implemented in BLUPF90
(Misztal et al., 2015). The variance components analysis and
GS analysis for STATUS was performed with the computer
application THRGIBBS1F90 which is implemented in BLUPF90
(Misztal et al., 2015). The binary STATUS data were analyzed
as categorical data with a threshold model under a Bayesian
framework. The MCMC Gibbs sampling scheme included a total
of 70,000 iterations; the first 10,000 iterations were discarded
as burn-in iterations; then from the remaining 60,000 samples,
one from every 20 samples were saved for analysis. This
Gibbs sampling scheme collected 3000 independent samples
for the analysis. The proper mixing and convergence of these
MCMC iterations were also evaluated with the R package CODA
(Plummer et al., 2006).

The linear and threshold models to estimate GEBVs for DAYS
and STATUS, respectively, included a population mean effect,
random animal effect, continuous covariate BW, and random
error effect. The mixed-linear model for DAYS and threshold
model for the binary STATUS were fitted using a suite of
computer applications implemented in the software BLUPF90
(Misztal et al., 2015).

Predictive Ability and BIAS of EBV and
GEBV
The predictive ability (PA) of EBV and GEBV, both being
estimates of additive genetic effects, was estimated under the
assumption that the correlation between mid-parent EBV or
GEBV and the MPP for each FS PTF is the best-unbiased
estimator of the accuracy of predicted breeding values, given the
mixture of 17 FS families nested within 8 paternal half-sib (HS)
groups, and 14 FS families not nested within a HS family (total
of 31 YC2007 PTFs) in our validation sample (Ødegård et al.,
2007; Cheng et al., 2015). Because we did not mate the validation
parents to a large, random sample of fish from a common genetic
base, but instead mated them to each other, we used the mid-
parent BV to account for geneticmerit of themate. So throughout
this study, the calculated PA for EBV and GEBV was used as an
estimator of prediction accuracy. To estimate mean STATUS and
mean DAYS phenotype (MPP) for each PTF, we calculated the
mean for each challenge tank, and then calculated the mean of
challenge tank means within a family.

In this study, we first estimated EBV and GEBV for each of
the n = 53 validation sample fish (Data Sheet 1 in Supplementary
Material). Then we calculated the mid-parent EBV and GEBV for
each of the 31 FS progeny-testing families from YC 2007 (Data
Sheet 2 in Supplementary Material). The PA of EBV (PAEBV) was
estimated as the Pearson’s correlation coefficient of mid-parent
EBV with MPP from each PTF, PAEBV = CORR (EBV, MPP).
To our knowledge, this is the first GS study in rainbow trout that
uses empirical progeny testing data to validate the accuracy of
genomic predictions.

The bias of EBV prediction was estimated as the regression
coefficient of performance MPP on predicted mid-parent EBV

(βMPP. EBV). Similarly, the PA of GEBV (PAGEBV) was estimated
as the correlation coefficient of mid-parent GEBV with MPP
from each PTF, PAGEBV = CORR (GEBV, MPP). The bias of
GEBV prediction was estimated as the regression coefficient of
performance MPP on predicted mid-parent GEBV (βMPP. GEBV).
A value of 1.0 for the regression of true breeding value,
performance phenotype, or MPP on predicted EBV or GEBV
is theoretically expected for unbiased estimates of BV; and a
deviation from 1.0 can be interpreted as prediction bias (Saatchi
et al., 2013).

RESULTS

In order to rule out potential errors in the ssGBLUP method
and the used statistical model, we performed (1) GBLUP
analysis with the current statistical model (phenotype=mean+

animal + body weight + error) to ensure that nothing was
wrong with the ssGBLUP algorithm; and (2) ssGBLUP analysis
with an alternative statistical model (phenotype = tank +

animal + body weight + error) to assess the impact of the
fixed effect tank in the accuracy of prediction with ssGBLUP.
As expected, with the current statistical model, the accuracy of
GBLUP (DAYS = 0.41; STATUS = 0.31) was lower than the
accuracy of ssGBLUP (DAYS = 0.49; STATUS = 0.46) which
suggests that nothing was wrong with the ssGBLUP method.
Next, we found that the accuracy of current model ssGBLUP
is significantly higher than the accuracy of alternative model
ssGBLUP (DAYS = 0.32; STATUS = 0.25) which highlights the
adverse effect of including the tank effect in the statistical model.
Furthermore, the genetic variance and heritability estimated with
the alternative model ssGBLUP

(

h2DAYS = 0.11; h2STATUS = 0.33
)

had about 100% reduction in comparison to those estimated with
the current model ssGBLUP

(

h2DAYS = 0.24; h2STATUS = 0.45
)

.
The reduction in genetic variance, heritability and prediction
accuracy with alternative model ssGBLUP was due to the
confounding of tank with family effects in our disease challenge
experimental design; hence, by including the tank effect in the
alternative model, the family effect was wrongly accounted twice
and depleted the genetic variance. Thus, we confirmed that the
statistical model we used in the GS analyses is correct.

EBV and GEBV Predictions for BCWD
Resistance
For BCWD resistance phenotypes DAYS and STATUS, the
pedigree-based EBVs and the GEBV predictions from four GS
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models using the Chip and RAD genotyping platforms are
presented in the Additional File S1.

Correlation between GEBV Estimated with
GS Models
The correlations between GEBVs for BCWD resistance estimated
with four GS models using data from two genotyping platforms
are shown in Table 1 in Supplementary Material. The GEBVs
were highly correlated (0.81–0.99). As can be expected, the
GEBVs estimated with BayesB and BayesC had the highest
correlation (0.97–0.99) followed by the GEBVs estimated with
ssGBLUP and wssGBLUP (0.91–0.93).

Heritability of BCWD Resistance
The heritability of DAYS and STATUS were 0.31 and 0.48,
respectively (Table 2), using the PED model without genomics
data.

Predictive Ability and Bias of EBVs
The PA of EBV for DAYS (PAEBV = 0.50)was higher than the PA
of EBV for STATUS (PAEBV = 0.41)(Table 2). The bias of EBV
for DAYS (βMPP.EBV = 1.10) was lower than the bias of EBV for
STATUS (βMPP.EBV = 0.33), or DAYS deviated less from 1.0 than
STATUS. These results indicate that EBV estimates for DAYS had
higher PA and lower bias than those EBV for STATUS.

Predictive Ability and Bias of GEBVs
For DAYS, the proportion of genetic variance explained by the
markers was h2M = 0.26 − 0.33 across GS models and SNP
genotyping platforms (Table 3). The PA of GEBVs for DAYS had
a range of PAGEBV = 0.37 − 0.49. The bias of the GEBVs for
DAYS had a range of βEBV2.EBV = 0.32 − 0.69 which indicates
that the GEBVs for DAYS are up-biased.

For STATUS, the proportion of genetic variance explained by
the markers was h2M = 0.43 − 0.54 across GS models and SNP
genotyping platforms (Table 4). The PA of GEBVs for STATUS
had a range of PAGEBV = 0.26 − 0.46. The bias of GEBVs for
STATUS had a range of βEBV2.EBV = 0.13− 0.24 which indicates
also that the GEBVs for STATUS are up-biased.

Overall, across GS models and genotyping platforms, the
PAs of GEBVs for DAYS were higher than those estimated for
STATUS, and the bias estimates for DAYS were smaller.

DISCUSSION

The heritability estimated with the PED model and the
proportion of genetic variance explained by the markers
estimated with GS model for DAYS were similar to the
previously reported heritability for BCWD survival STATUS
in this population (Silverstein et al., 2009; Leeds et al., 2010).
However, the heritability estimated with the PED model and
the proportion of genetic variance explained by the markers
estimated with GS model for STATUS were higher than our
previous estimates with survival analysis model; here the binary
data STATUS was analyzed with a threshold model in the
underlying scale of disease liability.

The GEBVs for BCWD resistance estimated with four GS
models and across genotyping platforms were highly correlated
(0.81–0.99). With the highest correlation between BayesB
and BayesC (0.97–0.99) followed by the correlation between
ssGBLUP and wssGBLUP (0.91–0.94). These results highlight
that the ranking of breeders across the GS models for BCWD
resistance in this population is very similar.

On the other hand, the correlation between the pedigree-based
model EBV and GEBVs for BCWD resistance was only moderate
(∼0.60; data not shown) which indicates that EBVs and GEBVs
are not similar predictors of animal genetic merit for this trait in
this population. Hence, given that moderate correlation between
EBVs and GEBVs, the ranking of breeders by the two prediction
methods is different and themethod with the highest PA and least
bias is expected to yield significantly better performance.

The PAs of GEBV for DAYS (PAGEBV = 0.37− 0.49) were
higher than those estimated for STATUS (PAGEBV = 0.26− 0.46)
reflecting the better fit of the discrete data DAYS to the mixed
linear model than the binary data STATUS fit with a threshold
model. In this study, the accuracy of genomic predictions for
BCWD resistance was in the range of 0.26–0.49 (Tables 3, 4)
which is close to those estimated with the PEDmodel (0.41–0.50;
Table 2); however, they are still short from the 0.55 maximum
realized accuracy that can be expected with a PED model given a
heritability of 0.30 (Van Vleck et al., 1987). Given the training
sample size used here (n = 583) and the heritability of
0.30 for BCWD resistance, we calculated using a deterministic
expression (Daetwyler et al., 2008) that genomic predictions with
an accuracy of 0.51 are expected if at least 500 independent loci
were affecting BCWD resistance; which is close to the best PA of
GEBVs achieved in this study. Thus, assuming that there are at
least 500 independent loci affecting BCWD resistance and given
a heritability of 0.30 for this disease trait, with training samples of
3000 and 10,000 fish we expect to predict GEBVs with accuracy
of 0.80 and 0.93, respectively; which are 46 and 69% greater than
the expected realized accuracy of PED model EBVs.

Comparison between EBVs and GEBVs
The PA of EBV for DAYS (PAEBV = 0.50) (Table 2) is higher
than the PA of GEBV for DAYS (PAGEBV = 0.37− 0.49)
estimated with four GS models and two genotyping platforms
(Table 3, Figure 1A). Conversely, the PA of EBV for STATUS

(PAEBV = 0.41) is lower than the PA of GEBV for STATUS

(PAGEBV = 0.42− 0.46) estimated with ssGBLUP at both
genotyping platforms (Table 4, Figure 1B).

The bias of EBV for DAYS (βMPP. EBV = 1.10) (Table 2)
is lower than the bias of GEBV for DAYS

(βMPP. GEBV = 0.32− 0.69) across GS models and genotyping
platforms (Table 3). Likewise, the bias of EBV for STATUS

(βMPP. EBV = 0.33) (Table 2) is lower than the bias of GEBV
for STATUS (βMPP. GEBV = 0.13− 0.24) across GS models and
genotyping platforms (Table 4).

The PA and bias of the pedigree-based EBVs were similar to
those of the best genomic-based GEBVs, which were estimated
using the ssGBLUP model (Figure 1, Tables 2–4). Overall, the
sample size we used was too small for evaluating the full potential
of GS for BCWD resistance in this rainbow trout population. The
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TABLE 2 | Predictive ability and bias of estimated breeding value (EBV) for BCWD resistance using a pedigree-based modela.

Phenotypeb σ
2c
a σ

2
e h2 Average EBV accuracyd Predictive abilitye Biasf

DAYS 13.73±2.70 30.54± 1.58 0.31 0.67 0.50 1.10

STATUS 0.93±0.28 1.00± 0.03 0.48 0.67 0.41 0.33

aThe EBVs were estimated using a pedigree-based animal model run with BLUPF90 computer program (Misztal et al., 2015).
bThe BLUP analysis included BCWD resistance phenotypes measured on 4492 fish (progeny of 2005 families).
cGenetic parameters with their standard error: σ2a is the additive genetic variance;

σ2e is the random error variance; and h2 is the trait narrow-sense heritability.

dAverage EBV accuracy
(

REBV

)

was calculated using EBV accuracy estimated for each validation fish (n = 53).

eThe predictive ability (PA) of EBV was calculated using the mean progeny performance (MPP) of 31 progeny testing families that had as parents a pair of validation fish. The PA of EBV

was estimated as the correlation of mid-parent EBV with MPP from each progeny testing family, PAEBV= CORR (EBV, MPP).
fThe bias of EBV was estimated as the regression coefficient of performance MPP on predicted mid-parent EBV (βMPP.EBV ).

TABLE 3 | Predictive ability and bias of genomic breeding value (GEBV) for BCWD survival DAYS using four GS models with two genotyping platforms.

Genotyping platforma GS modelb Training samplec Validation sampled

Phenotyped Genotyped Effective SNPsf π
g Fitted SNPsh h

2

M

i Predictive abilityj Biask

Chip ssGBLUP 4492 652 40,710 Nal Na 0.29 0.49 0.68

Chip wssGBLUPe 4492 652 40,710 Na Na 0.29 0.40 0.34

Chip BayesB 583 583 40,744 0.990 407 0.27 0.39 0.55

Chip BayesC 583 583 40,744 0.995 204 0.26 0.44 0.63

RAD ssGBLUP 4492 649 10,052 Na Na 0.33 0.48 0.63

RAD wssGBLUP 4492 649 10,052 Na Na 0.33 0.37 0.32

RAD BayesB 579 579 10,059 0.975 251 0.28 0.47 0.69

RAD BayesC 579 579 10,059 0.990 101 0.31 0.46 0.61

aThe effective number of SNPs used was 40,710 and 10,052 from the Chip and RAD genotyping platforms, respectively.
bGenomic selection models: single-step GBLUP (ssGBLUP); weighted ssGBLUP (wssGBLUP); Bayesian methods BayesB and BayesC; the GS analysis included only progeny of 2005

families.
cThe training sample included offspring from 10 full-sib 2005 families each with n = 38–80 offspring; BayesB and BayesC models included only fish that had both genotype and

phenotype records (n = 579–583). In contrast, the ssGBLUP and wssGBLUP methods included also non-genotyped fish that had disease records (progeny of 2005 families).
dThe validation sample included 53 breeders (offspring of 2005 families that were included in training sample).
eFrom wssGBLUP, iteration 2 results are presented; iteration 2 yielded higher accuracy GEBVs than iteration 3.
fThe analysis included SNPs and samples with a calling rate ≥0.70 and 0.90 for the RAD and Chip genotyping platforms, respectively.
gMixture parameter p specifies the proportion of loci with null effect.
hMarkers that are sampled as having non-zero effect (1− π) are fitted simultaneously in the multiple regression model.
iProportion of genetic variance explained by the markers

(

h2M
)

.
jThe predictive ability (PA) was calculated using the mean progeny performance (MPP) of 31 progeny testing families that had as parents a pair of validation fish. The PA of GEBV was

estimated as the correlation of mid-parent GEBV with MPP from each progeny testing family, PAGEBV = CORR
(

Midparent GEBV, MPP
)

.
kThe bias of GEBV was defined as the regression coefficient of performance MPP on predicted mid-parent GEBV

(

βMPP.Midparent GEBV
)

.
lNa indicates either non-available or non-needed data cell.

number of training fish and the number of progeny tested FS
families in the validation sample were rather limited in this study.
Hence, increasing the sample size of the training and validation
populations is expected to increase the PA and accuracy
of the GEBV predictions for BCWD resistance in rainbow
trout.

Comparison among GS Models
The PA of GEBVs for DAYS estimated with ssGBLUP

(PAGEBV = 0.48− 0.49) was higher than those estimated
with BayesB (PAGEBV = 0.39− 0.47) and BayesC

(PAGEBV = 0.44− 0.46) across genotyping platforms; and
the worst accuracy for DAYS was achieved with wssGBLUP
using RADs (PAGEBV = 0.37) which can be attributed to
stochastic fluctuations when using relatively small training
samples (Table 3). Similarly, the PA of GEBVs for STATUS

estimated with ssGBLUP (PAGEBV = 0.42− 0.46) and
wssGBLUP (PAGEBV = 0.40− 0.43) were higher than those
estimated with BayesB (PAGEBV = 0.26− 0.40) and BayesC

(PAGEBV = 0.31− 0.35) across genotyping platforms (Table 4).
Overall, across BCWD phenotypes and genotyping platforms,

the GEBVs estimated with ssGBLUP had the highest PAGEBV ;
and the GEBVs estimated with BayesC had the lowest
PAGEBV (Tables 3, 4, Figure 1). Clearly, the GEBVs estimated
with ssGBLUP had higher PAGEBV than those estimated
with wssGBLUP. The method BayesB outperformed BayesC
marginally by about 0.06 PAGEBV units (Figure 1).

Across BCWD phenotypes and genotyping platforms, the
GEBVs calculated with ssGLBUP were the least biased or had
smallest departure from 1.0 (Tables 3, 4). In contrast, the
GEBVs estimated with wssGBLUP were the most biased or had
largest departure from 1.0. The GEBVs estimated with BayesB
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TABLE 4 | Predictive ability and bias of genomic breeding value (GEBV) for BCWD survival STATUS using four GS models with two genotyping platforms.

Genotyping platforma GS modelb Training samplec Validation sampled

Phenotyped Genotyped Effective SNPsf π
g Fitted SNPsh h

2

M

i Predictive abilityj Biask

Chip ssGBLUP 4492 652 40,710 Nal Na 0.45 0.46 0.24

Chip wssGBLUPe 4492 652 40,710 Na Na 0.45 0.43 0.14

Chip BayesB 583 583 40,744 0.995 204 0.44 0.26 0.14

Chip BayesC 583 583 40,744 0.995 204 0.44 0.31 0.15

RAD ssGBLUP 4492 649 10,052 Na Na 0.52 0.42 0.19

RAD wssGBLUP 4492 649 10,052 Na Na 0.52 0.40 0.13

RAD BayesB 579 579 10,059 0.980 201 0.43 0.40 0.23

RAD BayesC 579 579 10,059 0.980 201 0.54 0.35 0.14

aThe effective number of SNPs used was 40,710 and 10,052 from the Chip and RAD genotyping platforms, respectively.
bGenomic selection models: single-step GBLUP (ssGBLUP); weighted ssGBLUP (wssGBLUP); Bayesian methods BayesB and BayesC; the GS analysis included only progeny of 2005

families.
cThe training sample included offspring from 10 full-sib 2005 families each with n = 38–80 offspring; BayesB and BayesC models included only fish that had both genotype and

phenotype records (n = 579–583). In contrast, the ssGBLUP and wssGBLUP methods included also non-genotyped fish that had disease records (progeny of 2005 families).
dThe validation sample included 53 breeders (offspring of 2005 families that were included in training sample).
eFrom wssGBLUP, iteration 2 results are presented; iteration 2 yielded higher accuracy GEBVs than iteration 3.
fThe analysis included SNPs and samples with a calling rate ≥0.70 and 0.90 for the RAD and Chip genotyping platforms, respectively.
gMixture parameter p specifies the proportion of loci with null effect.
hMarkers that are sampled as having non-zero effect (1− π) are fitted simultaneously in the multiple regression model.
iProportion of genetic variance explained by the markers

(

h2M
)

.
jThe predictive ability (PA) was calculated using the mean progeny performance (MPP) of 31 progeny testing families that had as parents a pair of validation fish. The PA of GEBV was

estimated as the correlation of mid-parent GEBV with MPP from each progeny testing family, PAGEBV = CORR
(

GEBV, MPP
)

.
kThe bias of GEBV was defined as the regression coefficient of performance MPP on predicted mid-parent GEBV (βMPP.GEBV ).
lNa indicates either non-available or non-needed data cell.

FIGURE 1 | Predictive ability of estimated breeding value (EBV) and genomic breeding value (GEBV) for BCWD resistance phenotypes: (A) Survival

DAYS, and (B) Survival STATUS.

and BayesC had intermediate bias to that of ssGBLUP and
wssGBLUP. Between the Bayesian methods, BayesB provided less
biased GEBVs than BayesC.

The most accurate ssGBLUP GEBV (DAYS with Chip) had a
PA of 0.49, which was only slightly better than the best BayesB
and BayesC estimators with PA = 0.47 and 0.46, respectively.
Interestingly, the accuracy of the GBLUP models was higher
with the Chip genotyping platform, while the Bayesian models’
accuracy was better with the RAD platform. The ssGBLUP
outperformed wssGBLUP across all phenotypes and genotyping
platforms. The wssGBLUP accuracy was slightly better than the
Bayesian models for the STATUS phenotype, but less accurate

with the DAYS phenotype. BayesB accuracy was better than
BayesC with the RAD genotyping platform, but BayesC wasmore
accurate with the Chip platform.

Previously we have shown that the genetic architecture of
BCWD resistance in this rainbow trout population is controlled
by oligogenic inheritance of few moderate-large effect QTL and
many genes/loci each with a small effect (Vallejo et al., 2010,
2014a; Liu et al., 2015b; Palti et al., 2015b). Thus, given that
genetic architecture, it seems that GS models that use pedigree
and phenotype records with marker genotype data in a single-
step GS analysis (Aguilar et al., 2010; Legarra et al., 2014)
can yield GEBVs with higher accuracy than methods based on
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shrinkage or variable selection models (Garrick and Fernando,
2013) that fit in the Bayesian multiple regression model markers
with mostly moderate-large effect. However, we caution that the
advantage of ssGBLUP over Bayesian variable selection models
in this study was very small and hence should be validated using
larger training and validation samples.

Comparison between Chip and RAD
Platforms
The Chip genotyping platform had GEBVs with higher PAGEBV

than those from RAD genotyping platform when using ssGBLUP
and wssGBLUP (Tables 3, 4, Figure 1). However, when using
Bayesian methods, the RAD had GEBVs with higher PA than the
Chip genotyping platform.

Overall, across BCWD phenotypes and GS models, the Chip
platform yielded GEBVs with lower bias than those estimated
with RAD (Tables 3, 4). For both BCWD phenotypes, the RAD
platform had GEBVs with lower bias than those estimated with
Chip only when using BayesB.

The numbers of effective SNPs after genotype data QC
were about 40 and 10 K for the Chip and RAD genotyping
platform, respectively. Hence, it was somewhat surprising that
the RAD platform (PAGEBV = 0.35− 0.48) was as efficient as the
Chip platform (PAGEBV = 0.26− 0.49) in accuracy of genomic
predictions. Another study also reports that the accuracy of
GEBVs using RAD and SNP marker genotype data were similar
when large numbers of markers were genotyped and the read’s
depth per individual was ≥1x (Gorjanc et al., 2015). RAD
or similar genotype-by-sequencing methods offer an attractive
option for species with less developed genome resources lacking
the availability of an affordable high-density SNP chip. However,
the SNP Chip is higher throughput than the RAD platform,
and the RAD sequencing SNPs are more family and population
specific which does not facilitate generating high density panels
with common SNPs that are informative across-families and
populations. In addition, the bioinformatics pipeline for the SNP
Chip is more robust and much easier to implement, and hence
we find that the chip platform is more practical for large scale
genome genotyping studies.

We hypothesize that the relatively low marker density RADs
were as efficient as the SNP Chip due to the high extent of long-
range LD in our rainbow trout disease resistance line. The high
extent of long-range LD was likely generated by the high level of
admixture in this population which had as founders four distinct
domesticated strains (Johnson et al., 2007; Silverstein et al., 2009);
and this admixture also simultaneously reduces the short-range
LD in the population. These population genetic events likely
decreased the relative benefit of high-density SNP data, as a fairly
larger fraction of the existing LD can be captured even by sparse
marker panels, possibly explaining the good performance of the
RADs at lower marker density than the SNP Chip. A similar
phenomenon of high extent of admixture induced long-range
LD that enabled efficient GS at relatively low marker density was
reported in farmed salmonid populations (Ødegård et al., 2014).
Another factor possibly contributing to the relative success of the
RAD platform in this study, is that many of the RAD SNPs are
family-specific and hence some genome regions that harbor QTL
may be better represented in some of the families by the RAD

genotype data. The question then is whether the RAD SNP data
set for this population detects the same QTL and at the same
signal intensity as the Chip SNPs, and to answer that question we
are currently conducting genome-wide association analysis with
the two datasets.

Additional Remarks and Comparison with
Other GS Studies
A shortcoming of this study is the post-hoc assessment using
limited number of archived training and validation samples and
using a less-than-ideal design at the training and validation steps.
However, we should highlight that this is a proof-of-principle
study that aims to give insight about the relative performance of
several models and genotyping platforms when applied to two
disease resistance phenotypes with different statistical properties,
rather than being the definitive evaluation of GS compared to
PED-based EBVs. Furthermore, this study provides new and
more comprehensive empirical data that furthers (or at least
validates) our understanding about the genetic architecture of
BCWD resistance in rainbow trout.

In comparison to dairy cattle and other farmed animals, one
of the main challenges for implementing GS in family-based
breeding programs with salmonid species is the high number of
potential selection candidates and the low value of the selection
candidates in comparison to the genotyping cost. Nevertheless,
the sib-testing scheme in salmonid disease resistance breeding
programs can be redesigned to capitalize on the ability of GS
to increase accuracy of genomic prediction and rate of genetic
gain. Alternative strategies could involve the pre-selection of
candidates for genotyping as suggested elsewhere (Sonesson
and Meuwissen, 2009; Lillehammer et al., 2013; Ødegård and
Meuwissen, 2014).

To this end, for rainbow trout GS, we suggest combining a first
step of traditional sib-testing disease challenge evaluations to pre-
select for disease resistant families, followed with a second step of
selective genotyping individuals from the pre-selected families.
In this GS scheme, the disease phenotype and marker genotype
records from pre-selected families can be used as the training
sample to train the GS prediction models, to then predict GEBV
for each genotyped selection candidate or disease naive sibs from
pre-selected families at the first step.

The unique features of genome-enabled selection such as
to increase accuracy of animal EBV prediction and response
to selection while not increasing the rates of inbreeding are
one of the key benefits of GS in livestock species. The ability
of GS to reduce rates of inbreeding has been reported in
poultry (Wolc et al., 2015), and a much larger reduction in rate
of inbreeding was reported in aquaculture breeding programs
due to sib-testing for both sexes (Sonesson and Meuwissen,
2009). The core reason for the decreased rates of inbreeding
with GS is that genomic data offers information on Mendelian
sampling terms which diminishes the emphasis placed on family
selection and thus reduces the correlation of EBVs among family
members and likelihood of co-selecting relatives (Daetwyler et al.,
2007). Moreover, selection is usually performed over several
generations, and the Bulmer effect would diminish between-
family variation in the population. Consequently, the capability
to use within-family genetic variation will be more important
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for forthcoming generations. Hence, because traditional sib-
selection breeding schemes with salmonids do not exploit within-
family genetic variation, the relative benefit of GS is projected to
rise if selection is applied over many generations (Ødegård and
Meuwissen, 2014).

A major challenge for applying GS in commercial aquaculture
breeding programs is collecting large training or reference
population which is necessary for accurate estimation of marker
effects (Goddard and Hayes, 2009). In this study, the number of
training fish was limited so increasing the size of the training
population would be expected to increase further the accuracy
of GEBV for BCWD resistance in this rainbow trout disease
resistance line. Finally, this study provides the basis for additional
research on the use of GS in rainbow trout populations, including
the potential for its implementation in the rainbow trout
industry.

CONCLUSION

The results of this study show the potential utility of GS for
exploiting the within-family genetic variation in rainbow trout
family-based selective breeding programs. Here, the number of
training fish was limited so increasing the size of the training
population would be expected to increase the accuracy of
genomic prediction for BCWD resistance in this rainbow trout
population. We expect that by using a larger training sample
size with improved GS experimental design, we can exploit the
advantage of GEBVs for BCWD resistance in rainbow trout over
the classical sib-selection breeding scheme that does not exploit
within-family genetic variation. Thus, this study provides the
basis for further investigation on the implementation of GS in
commercial rainbow trout populations.
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