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Sucrose harvested from plants represents a multi-billion 
dollar (US) annual industry, with great interest in ex-
panding production for food and biofuel uses.1-5 Multi-
ple crops have been independently bred to store high con-
centrations of sucrose in terminal storage organs, namely, 
the taproots of sugar beet (Beta vulgaris L.), and the stems 
of sweet sorghum (Sorghum bicolor L. Moench) and sug-
arcane (Saccharum officinarum L.).5-9 However, the sucrose 
contents of these crops appear to be approaching maxi-
mal levels attainable from breeding efforts10,11; therefore, 
new approaches are needed to increase sucrose accumu-
lation in storage organs. Hence, characterizing the genes 
that function in sucrose transport and storage will reveal 
potential new targets for future manipulations to enhance 
crop yields.3,4,12-16

Different sorghum genotypes have been selectively 
bred to store carbohydrates in contrasting storage or-
gans: sweet sorghums accumulate large quantities of sol-
uble sugars, mostly sucrose, in stem tissues, whereas 
grain sorghums primarily store carbohydrates as starch 
in the seeds.1,2,6,17,18 The molecular basis for the differ-
ence in carbohydrate partitioning between these sor-
ghum types is unknown. Previous research found that 
sucrose accumulation within sweet sorghum stems was 

not correlated with the activities of enzymes involved in 
sucrose metabolism, invoking sucrose transport proteins 
as potentially controlling sucrose content.19 Transport 
experiments using asymmetrically radio-labeled sucrose 
determined that sucrose movement into stems likely in-
cluded an apoplasmic transport step.20 Subsequent dye 
transport studies suggested the phloem tissues within 
sorghum stems are symplasmically isolated from sur-
rounding tissues, supporting that sucrose phloem un-
loading occurs apoplasmically, and thus requires sucrose 
transport proteins.21 However, other studies support a 
possible symplasmic transport route from phloem sieve 
elements to storage parenchyma cells in mature stems.22 
Quantitative reverse-transcription polymerase chain re-
action (qRT-PCR) analyses indicated that Sucrose Trans-
porters (SUTs), which function as H+/sucrose symporters 
to transport sucrose across membranes, were not differ-
entially expressed in the stem of a flowering sweet sor-
ghum line, UNL71-2011, a sweet sorghum derived from 
cultivar Wray, in comparison to a similarly staged grain 
sorghum line, UNL3016, selected from cultivar Macia.21 

These data suggest other types of sucrose transport pro-
teins may underlie sucrose accumulation within sor-
ghum stem tissues.
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Abstract
Carbohydrates are differentially partitioned in sweet versus grain sorghums. While the latter preferentially accu-
mulate starch in the grain, the former primarily store large amounts of sucrose in the stem. Previous work de-
termined that neither sucrose metabolizing enzymes nor changes in Sucrose transporter (SUT) gene expression 
accounted for the carbohydrate partitioning differences. Recently, 2 additional classes of sucrose transport pro-
teins, Tonoplast Sugar Transporters (TSTs) and SWEETs, were identified; thus, we examined whether their expres-
sion tracked sucrose accumulation in sweet sorghum stems. We determined 2 TSTs were differentially expressed 
in sweet vs. grain sorghum stems, likely underlying the massive difference in sucrose accumulation. A model illus-
trating potential roles for different classes of sugar transport proteins in sorghum sugar partitioning is discussed.
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Two additional distinct classes of sucrose transport 
proteins have recently been described. SWEETs are a fam-
ily of sugar transport proteins, with different family mem-
bers preferentially transporting hexoses or sucrose.23-28 
Clade III SWEET proteins, which localized to the plasma 
membrane, have been proposed to function as uniport-
ers that facilitate the transport of sucrose down a concen-
tration gradient. A different class of sugar transport pro-
teins, Tonoplast Sugar Transporters (TSTs, also known as 
Tonoplast Monosaccharide Transporters), is located on 
the tonoplast and function a H+/sucrose antiporters to 
transport sucrose into the vacuole.29-32 Recently, a TST 
was shown to be responsible for sucrose accumulation 
within the sugar beet taproot.12 Whether TST or SWEET 
genes have also been selected during the domestication of 
other major sucrose storage crops, such as sweet sorghum 
or sugarcane stem tissues, is not known. Since SbSUT 
genes were not differentially expressed between sweet 
and grain sorghum stem tissues,21 we decided to examine 
the expression of other predicted sucrose transport pro-
teins, specifically, the clade III SbSWEET and the SbTST 
genes. For these studies, we compared gene expression 
between the sweet sorghum line UNL71-2011 at anthesis, 
when sugars are actively accumulating in the stem, with 
the equally staged grain sorghum line UNL3016, with 
low stem sugar content, to determine if any SbSWEET or 
SbTST genes are associated with sucrose accumulation 
in stem tissues. These lines are herein simply referred to 
as sweet and grain sorghums for clarity. As a point of 

reference, we found that the total solute levels, consist-
ing primarily of sucrose, increased approximately 24-fold 
in sweet sorghum stems compared with grain sorghum 
stems during the ripening process from anthesis to phys-
iological maturity.21

Bioinformatic analyses were used to identify SbTST 
and SbSWEET genes in the sorghum genome. Three 
SbTST genes and 20 SbSWEET genes were identified.24 
We next analyzed a sorghum gene expression database 
to determine which of these genes were expressed in leaf 
and stem tissues (Table 1).33 SbSWEET13A was the most 
strongly expressed clade III gene within these tissues. 
Its expression was more than 10-fold higher than other 
clade III sweet genes; SbSWEET13B and SbSWEET13C 
had lower, but appreciable, expression relative to Sb-
SWEET13A. The other clade III SbSWEET genes likely 
to transport sucrose were all very lowly or not detect-
ably expressed (Table 1). Therefore, we selected the 3 Sb-
SWEET13 genes and all SbTST genes for further expres-
sion analyses. Gene-specific qRT-PCR primer sets were 
validated for each gene (Table 2). The qRT-PCR experi-
ments and statistical analyses were performed as previ-
ously described.21 In examining mature leaf and ripening 
stem tissues of both grain and sweet sorghum, we deter-
mined that SbTST1, SbTST2, and SbSWEET13A were re-
liably expressed, whereas SbTST3, SbSWEET13B, and Sb-
SWEET13C were expressed at a much lower level (Figs 
1–2). SbSWEET13B expression was at least 33-fold less 
than SbSWEET13A in all tissues examined. Similarly,  

Table 1. The expression level of the SbTST and SbSWEET genes by RNA-seq in the leaf and stem tissues. The numbers represent 
the average expression obtained from the FPKM (fragments per kilobase of transcript per million mapped reads) plots.

Gene name  Phytozome reference no.  Gene ID.  Leaf  Stem

SbTST1  Sobic.001G312900  Sb01G030430  105  149
SbTST2  Sobic.004G099300  Sb04G008150  110  130
SbTST3  Sobic.010G276100  Sb10g031000  Not detected  Not detected
SbSWEET11AIII  Sobic.007G191200  Sb07g026040  Not detected  10
SbSWEET11BIII  Sobic.002G259300  Sb02g029430  Not detected  Not detected
SbSWEET12III  Sobic.001G373600  Sb01g035490  Not detected  Not detected
SbSWEET13AIII  Sobic.008G094000  Sb08g013620  2250  200
SbSWEET13BIII  Sobic.008G094300  Sb08g013840  28  2
SbSWEET13CIII Sobic.008G094400  Sb08g014040  120  20
SbSWEET14III  Sobic.005G123500  Sb05g018110  1  3
SbSWEET15III  Sobic.004G157100  Sb04g021000  Not detected  1
SbSWEET16IV  Sobic.001G377600  Sb01g035840  Not detected  Not detected
SbSWEET1AI  Sobic.003G377700  Sb03g041740  100  135
SbSWEET1BI  Sobic.009G143500  Sb09g020860  82  2
SbSWEET2AI  Sobic.003G182800  Sb03g024250  15  8
SbSWEET2BI  Sobic.003G269300  Sb03g032190  75  4
SbSWEET3AI  Sobic.009G080900  Sb09g006950  135  300
SbSWEET3B I  Sobic.003G015200  Sb03g001520  Not detected  1
SbSWEET4A II   Sobic.004G136600  Sb04g015420  85  35
SbSWEET4B II   Sobic.004G133500  Sb04g012910  20  30
SbSWEET4C II   Sobic.004G133600  Sb04g012920  Not detected  Not detected
SbSWEET5 II   Sobic.009G252000  Sb09g030270  Not detected  Not detected
SbSWEET6II  Sobic.003G213000  Sb03g027260  30  10

The numbers are estimated from the FPKM plots obtained from the MOROKOSHI sorghum transcriptome database (http://sorghum.riken.jp/moro-
koshi).33 The different upper-case roman letter superscripts indicate the clade to which each SbSWEET gene belongs. Not detected means that the 
gene had no detectable RNAseq counts in the corresponding tissue. The underlined genes are those selected for this study.
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SbSWEET13C was expressed at least 20-fold less than 
SbSWEET13A in leaves of both cultivars. SbSWEET13C 
was expressed approximately 6.7- and 29-fold lower 

than SbSWEET13A in grain and sweet sorghum stems, 
respectively; however, SbSWEET13C exhibited lower 
expression in sweet sorghum stems compared to grain 
sorghum stems, which is the opposite of what was hy-
pothesized if the gene functioned to promote sucrose 
accumulation in sweet sorghum stems. Based on these 
results, we conclude that SbTST3, SbSWEET13B, and Sb-
SWEET13C are minimally expressed in mature leaf and 
ripening stem tissues and therefore do not likely con-
tribute substantially to sucrose accumulation within 
these tissues.

Based on the previous results, we examined SbTST1, 
SbTST2, and SbSWEET13A to determine if they are dif-
ferentially expressed between sweet and grain sorghum 
leaf and stem tissues. In mature leaves, SbTST1 and SbTS2 
showed ~3.5-fold and ~7.4-fold higher expression levels 
in sweet sorghum relative to grain sorghum (p  ≤ 0.05; 
Fig. 3A, B). Within stem tissues at anthesis, SbTST1 and 
SbTST2 showed significantly higher expression levels in 

Table 2. List of primers used.

Primer name  Primer sequence (50 – 30)  Product size (bp)

SbTST1-F  GATGGGCTGACCTGTTTG  175
SbTST1-R  GCAGAAGATGCGCTAAGG  175
SbTST2-F  TTGGAGGTTGGAGGAGAC  150
SbTST2-R  CTTGGAAGGTCGAGCAATC  150
SbTST3-F  CTGTTGCTTCGTCATGGG  146
SbTST3-R  TGACAGGAAGAGAGTAGGTG  146
SbSWEET13A-F  CGCTCACTACTGCTAAGTATTAT  96
SbSWEET13A-R  ACAGTAGTCTGGGATCGATTA  96
SbSWEET13B-F  CATGAGTCGAGTCCGAATG  116
SbSWEET13B-R  AGCTACGGTTGGATAAACG  116
SbSWEET13C-F  ACCCGTTTATCCAACCCTTAG  87
SbSWEET13C-R  TGAAATTCCTGCCTGGTTACA  87
Luciferase-F  CCAGGGATTTCAGTGGATGT  183
Luciferase-R  AATCTGACGCAGGCAGTTCT  183

Figure 1. Expression levels of SbTST2 and SbTST3 relative to SbTST1 in grain and sweet sorghum mature leaves and stems. A, B show 
grain sorghum (black bars), and C, D show sweet sorghum (white bars); A, C are mature leaf tissues, and B, D are flowering stems. 
Values are means ± standard error of N = 5 plants, and an asterisk indicates significantly different means between the 2 genes at p 
≤ 0.05. Relative gene expression is shown compared to exogenously added Luciferase RNA as a normalization control.21
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Figure 2. Expression levels of SbSWEET13B and SbSWEET13C relative to SbSWEET13A in grain and sweet sorghum mature leaves and 
stems. A, B show grain sorghum (black bars), and C, D show sweet sorghum (white bars); A, C are mature leaf tissues, and B, D are 
flowering stems. Values are means § standard error of N = 5 plants, and an asterisk indicates significantly different means between the 
2 genes at p ≤ 0.05. Relative gene expression is shown compared to exogenously added Luciferase RNA as a normalization control.21

Figure 3. Expression levels of SbTST1, SbTST2, and SbSWEET13A in leaves and stems of sweet sorghum relative to grain sorghum. 
Expression levels are shown for SbTST1 (A), SbTST2 (B), and SbSWEET13A (C). An asterisk indicates significantly different means be-
tween the 2 lines at p ≤ 0.05 of N = 5 plants.
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sweet sorghum compared to grain sorghum (~2.6- and 
~4.4-fold, respectively) (Fig. 3A, B). SbSWEET13A showed 
reduced expression in sweet compared to grain sor-
ghum leaves and comparable expression in stem tissues 
of both genotypes (Fig. 3C). These data indicate SbTST1 
and SbTST2 are significantly more highly expressed in 
leaves and stem tissues of sweet sorghum than in grain 
sorghum, and that SbSWEET13A expression was reduced 
in sweet sorghum leaves compared to grain sorghum but 
not differently expressed in stem tissues. Thus, these data 
suggest that differential expression of SbTST1 and SbTST2 
genes, but not SbSWEET13A may play an important role 
in sugar accumulation in sweet sorghum stems. To our 
knowledge, no previous reports have shown the differen-
tial expression of SbTSTs associated with sugar accumu-
lation in the stems of sweet vs. grain sorghum.

From our expression studies, we developed a model 
of the various sucrose transporter protein functions to ex-
plain the basis of sugar accumulation within sorghum 

leaf and stem tissues and to stimulate new directions in 
research (Fig. 4). Within leaves, SbSUT2 and SbSUT4, but 
not SbSUT1, were more highly expressed in sweet sor-
ghum than in grain sorghum, suggesting that SbSUT4 
may function to import sucrose into cells, and SbSUT2 
may function to export transitory stored sucrose from the 
vacuole.21 SbSUT1 function is likely conserved between 
grain and sweet sorghum, and based on orthology with 
the maize (Zea mays) ZmSUT1 gene, it likely functions 
in sucrose phloem loading in leaves.34-36 SbSWEET13A 
showed reduced expression in sweet compared with grain 
sorghum leaves, whereas SbTST1 and SbTST2 were both 
more highly expressed in sweet sorghum leaves, suggest-
ing that they may function to import sugars into the vacu-
ole for temporary storage during daylight. In stem tissues, 
none of the SbSUT or SbSWEET13A genes were differen-
tially expressed, suggesting they do not account for the 
differences in sugar accumulation. However, both SbTST1 
and SbTST2 were highly significantly expressed in sweet 

Figure 4. A model illustrates the roles for different sucrose transport proteins in sucrose movement across cellular membranes in 
sorghum leaf (green shaded background) and stem (blue shaded) tissues in grain sorghum (left) vs. sweet sorghum (right). The vac-
uole is shown in gray. SPC = stem parenchyma cell. SUT proteins are shown by a blue circle, with an arrow indicating the direction 
of sucrose movement, and the numbers correspond to SbSUT1, SbSUT2, or SbSUT4. Purple diamond with an arrow refers to a TST 
protein located on the tonoplast, and the numbers represent SbTST1 or SbTST2. The green boxes labeled 13A correspond to Sb-
SWEET13A. The increased size of the shapes indicates increased expression of the corresponding gene in sweet (UNL 71-2011) vs. 
grain (UNL 3016) sorghum tissue.
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sorghum stems, suggesting these genes function to im-
port sucrose for storage in the vacuole within stem paren-
chyma cells. Based on these results, we hypothesize the 
~24-fold increase in total stem solutes observed in sweet 
sorghum compared with grain sorghum is predominantly 
due to the significantly higher expression of SbTST1 and 
SbTST2 in sweet sorghum tissues.

In summary, based on both our previous and current 
results, we determined SbTST1 and SbTST2, but proba-
bly not SbSUTs or SbSWEETs, are likely responsible for 
the substantial sugar accumulation in sweet sorghum 
stems. Testing of this hypothesis will potentially require 
characterizing loss-of-function mutations in both genes, 
since they were found to be partially functionally redun-
dant in Arabidopsis thaliana.29 These efforts are currently 
underway. Furthermore, these data suggest TSTs have 
been the target of selection for sugar accumulation in both 
the sweet sorghum stem and the sugar beet taproot. It 
will be interesting to determine whether TSTs have sim-
ilarly been selected within sugarcane stem tissues. If so, 
it would indicate TSTs have been convergently selected 
during domestication of the world’s 3 major sucrose stor-
age crops. Our findings tantalizingly suggest SbTST1 and 
SbTST2 are candidate genes for the control of sucrose ac-
cumulation in sweet sorghum stems. Hence, modifying 
the expression or function of TSTs through genetic engi-
neering or selective breeding, could potentially achieve 
greater sucrose accumulation and therefore enhancement 
of crop yields in sugar-storing organs, which would lead 
to direct benefits for food and fuel production.

Disclosure of potential conflicts of interest — No potential 
conflicts of interest were disclosed.

Acknowledgments — We thank R. Frank Baker for com-
ments on the manuscript. We wish to clarify UNL71-2011 and 
UNL3016 are the same lines referred to as cultivars Wray and 
Macia, respectively, in our previous publication.21 This re-
search was supported by the US DOE Office of Science, Office 
of Biological and Environmental Research (BER), grant no. DE-
SC0006810, and by the US National Science Foundation Plant 
Genome Research Program, grant no. IOS–1025976, to DMB.

References

1. Dweikat I, Weil C, Moose S, Kochian L, Mosier N, Ileleji K, et 
al. Envisioning the transition to a next-generation biofuels 
industry in the US Midwest. Biofuels Bioprod Bioref 2012; 
6:376-86; doi 10.1002/bbb.1342

2. Slewinski TL. Non-structural carbohydrate partitioning in 
grass stems: A target to increase yield stability, stress tol-
erance, and biofuel production. J Exp Bot 2012; 63:4647-70; 
PMID:22732107; doi 10.1093/jxb/ers124

3. Braun DM, Wang L, Ruan YL. Understanding and manipu-
lating sucrose phloem loading, unloading, metabolism, and 
signalling to enhance crop yield and food security. J Exp Bot 

2014; 65:1713-35; PMID:24347463; doi 10.1093/jxb/ert416
4. Ruan YL. Sucrose metabolism: Gateway to diverse carbon use 

and sugar signaling. Annu Rev Plant Biol 2014; 65:33- 67; 
PMID:24579990; doi 10.1146/annurev-arplant-050213-040251

5. McGrath JM, Townsend B. Sugar Beet, Energy Beet, and In-
dustrial Beet. In: Cruz V, Dierig D, eds. Industrial Crops: 
Springer New York, 2015:81-99.

6. Rooney WL, Blumenthal J, Bean B, Mullet JE. Designing or-
ghum as a dedicated bioenergy feedstock. Biofuels Bioprod 
Bioref 2007; 1:147-57; doi 10.1002/bbb.15

7. Wang J, Nayak S, Koch K, Ming R. Carbon partitioning in 
sugarcane (Saccharum species). Front Plant Sci 2013; 4:201.

8. Bihmidine S, Hunter III CT, Johns CE, Koch KE, Braun DM. 
Regulation of assimilate import into sink organs: Update 
on molecular drivers of sink strength. Front Plant Sci 2013; 
4:177; PMID:23761804; doi 10.3389/fpls.2013.00177

9. Calvino M, Messing J. Sweet sorghum as a model system 
for bioenergy crops. Curr Opin Biotech 2012; 23:323-9; 
PMID:22204822; doi 10.1016/j.copbio.2011.12.002

10. McCormick AJ, Watt DA, Cramer MD. Supply and demand: 
Sink regulation of sugar accumulation in sugarcane. J Exp 
Bot 2009; 60:357-64; PMID:19050062; doi 10.1093/jxb/ern310

11. Patrick JW, Botha FC, Birch RG. Metabolic engineering of 
sugars and simple sugar derivatives in plants. Plant Bio-
tech J 2013; 11:142-56; PMID:23043616; doi 10.1111/pbi.12002

12. Jung B, Ludewig F, Schulz A, Meißner G, W€ostefeld N, 
Flugge UI, et al. Identification of the transporter responsible 
for sucrose accumulation in sugar beet taproots. Nat Plants 
2015; 1:14001; doi 10.1038/nplants.2014.1

13. Braun DM, Slewinski TL. Genetic control of carbon parti-
tioning in grasses: Roles of Sucrose Transporters and Tie-
dyed loci in phloem loading. Plant Physiol 2009; 149:71 81; 
PMID:19126697; doi 10.1104/pp.108.129049

14. Ma Y, Slewinski TL, Baker RF, Braun DM. Tie-dyed1 en-
codes a novel, phloem-expressed transmembrane protein 
that functions in carbohydrate partitioning. Plant Physiol 
2009; 149:181-94; PMID:18923021; doi 10.1104/pp.108.130971

15. Slewinski TL, Baker RF, Stubert A, Braun DM. Tie-dyed2 en-
codes a callose synthase that functions in vein development 
and affects symplastic trafficking within the phloem of maize 
leaves. Plant Physiol 2012; 160:1540-50; PMID:22932757; doi 
10.1104/pp.112.202473

16. Slewinski TL, Braun DM. The psychedelic genes of maize 
redundantly promote carbohydrate export from leaves. 
Genetics 2010; 185:221-32; PMID:20142436; doi 10.1534/
genetics.109.113357

17. Murray SC, Sharma A, Rooney WL, Klein PE, Mullet JE, 
Mitchell SE, Kresovich S. Genetic improvement of sorghum 
as a biofuel feedstock: I. QTL for stem sugar and grain non-
structural carbohydrates. Crop Sci 2008; 48:2165-79; doi 
10.2135/cropsci2008.01.0016

18. Sukumaran S, Xiang W, Bean SR, Pedersen JF, Kresov-
ich S, Tuinstra MR, Tesso TT, Hamblin MT, Yu J. Asso-
ciation mapping for grain quality in a diverse sorghum 
collection. Plant Genome 2012; 5:126-35; doi 10.3835/
plantgenome2012.07.0016

19. Hoffmann-Thoma G, Hinkel K, Nicolay P, Willenbrink 
J. Sucrose accumulation in sweet sorghum stem inter-
nodes in relation to growth. Phys Plant 1996; 97:277-84; doi 



SbTSTs  Putat ively  Control Sucrose  Accumulat ion in Sweet  Sorghum Stems   7

10.1034/j.1399-3054.1996.970210.x
20. Tarpley L, Vietor DM. Compartmentation of sucrose dur-

ing radial transfer in mature sorghum culm. BMC Plant Biol 
2007; 7:33; PMID:17584916; doi 10.1186/1471-2229-7-33

21. Bihmidine S, Baker RF, Hoffner C, Braun DM. Sucrose ac-
cumulation in sweet sorghum stems occurs by apoplasmic 
phloem unloading and does not involve differential Su-
crose transporter expression. BMC Plant Biol 2015; 15:186; 
PMID:26223524; doi 10.1186/s12870-015-0572-8

22. Milne RJ, Offler CE, Patrick JW, Grof CPL. Cellular path-
ways of source leaf phloem loading and phloem unloading 
in developing stems of Sorghum bicolor in relation to stem su-
crose storage. Funct Plant Biol 2015; 42:957-70; doi 10.1071/
FP15133

23. Baker RF, Leach KA, Braun DM. SWEET as sugar: New 
sucrose effluxers in plants. Mol Plant 2012; 5:766-8; 
PMID:22815540; doi 10.1093/mp/SSS054

24. Eom J-S, Chen LQ, Sosso D, Julius BT, Lin IW, Qu X-Q, Braun 
DM, Frommer WB. SWEETs, transporters for intracellular 
and intercellular sugar translocation. Curr Opin Plant Biol 
2015; 25:53-62; PMID:25988582; doi 10.1016/j.pbi.2015.04.005

25. Braun DM. SWEET! The pathway is complete. Science 2012; 
335:173-4; PMID:22246760; doi 10.1126/science.1216828

26. Chen LQ. SWEET sugar transporters for phloem trans-
port and pathogen nutrition. New Phytol 2014; 201:1150-5; 
PMID:24649486; doi 10.1111/nph.12445

27. Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, 
Frommer WB. Sucrose efflux mediated by SWEET proteins 
as a key step for phloem transport. Science 2012; 335:207-11; 
PMID:22157085; doi 10.1126/science.1213351

28. Feng L, Frommer WB. Structure and function of Semi SWEET 
and SWEET sugar transporters. Trends Biochem Sci 2015; 
40:480-6; PMID:26071195; doi 10.1016/j.tibs.2015.05.005

29. Wormit A, Trentmann O, Feifer I, Lohr C, Tjaden J, Meyer 
S, Schmidt U, Martinoia E, Neuhaus HE. Molecular iden-
tification and physiological characterization of a novel 

monosaccharide transporter from Arabidopsis involved 
in vacuolar sugar transport. Plant Cell 2006; 18:3476-90; 
PMID:17158605; doi 10.1105/tpc.106.047290

30. Martinoia E, Meyer S, De Angeli A, Nagy R. Vacuo-
lar transporters in their physiological context. Annu Rev 
Plant Biol 2012; 63:183-213; PMID:22404463; doi 10.1146/
annurev-arplant-042811-105608

31. Schulz A, Beyhl D, Marten I, Wormit A, Neuhaus E, Poschet 
G, Buttner M, Schneider S, Sauer N, Hedrich R. Proton-driven 
sucrose symport and antiport are provided by the vacuo-
lar transporters SUC4 and TMT1/2. Plant J 2011; 68:129-36; 
PMID:21668536; doi 10.1111/j.1365-313X.2011.04672.x

32. Wingenter K, Schulz A, Wormit A, Wic S, Trentmann O, Ho-
ermiller II, Heyer AG, Marten I, Hedrich R, Neuhaus HE. In-
creased activity of the vacuolar monosaccharide transporter 
TMT1 alters cellular sugar partitioning, sugar signaling, 
and seed yield in Arabidopsis. Plant Physiol 2010; 154:665-
77; PMID:20709831; doi 10.1104/pp.110.162040

33. Makita Y, Shimada S, Kawashima M, Kondou-Kuriyama 
T, Toyoda T, Matsui M. MOROKOSHI: Transcriptome da-
tabase in Sorghum bicolor. Plant Cell Physiol 2015; 56:e6; 
PMID:25505007; doi 10.1093/pcp/pcu187

34. Slewinski TL, Garg A, Johal GS, Braun DM. MaizeSUT1 
functions in phloem loading. Plant Sig Behav 2010; 5:687-
90; PMID: 20404497; doi 10.4161/psb.5.6.11575

35. Slewinski TL, Meeley R, Braun DM. Sucrose transporter1 
functions in phloem loading in maize leaves. J Exp Bot2009; 
60:881-92; PMID:19181865; doi 10.1093/jxb/ern335

36. Rotsch D, Brossard T, Bihmidine S, Ying W, Gaddam V, Har-
mata M, Robertson JD, Swyers M, Jurisson SS, Braun DM. 
Radiosynthesis of 60 automated synthesis and its utility to 
study in vivo sucrose transport in maize (Zea mays) leaves. 
PLoS ONE 2015; 10:e0128989; PMID:2602452; doi 10.1371/
journal.pone.0128989-deoxy-60


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2015

	Tonoplast Sugar Transporters (SbTSTs) Putatively Control Sucrose Accumulation in Sweet Sorghum Stems
	Saadia Bihmidine
	Benjamin T. Julius
	Ismail M. Dweikat
	David M. Braun

	tmp.1467919090.pdf.UEDyh

