

Purdue University Purdue e-Pubs

Publications of the Ray W. Herrick Laboratories

School of Mechanical Engineering

7-2002

The application of the edge-constraint effect to nearly-realistic noise control applications

J Stuart Bolton *Purdue University*, bolton@purdue.edu

Bryan H. Song NASA-Kennedy Space Center

Follow this and additional works at: http://docs.lib.purdue.edu/herrick

Bolton, J Stuart and Song, Bryan H., "The application of the edge-constraint effect to nearly-realistic noise control applications" (2002). *Publications of the Ray W. Herrick Laboratories*. Paper 77. http://docs.lib.purdue.edu/herrick/77

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

THE APPLICATION OF THE EDGE-CONSTRAINT EFFECT TO NEARLY-REALISTIC NOISE CONTROL APPLICATIONS

Background

- Investigation of edge constraint effect on samples placed in a modified standing wave tube (J. S. Bolton et al., SAE 1997; B. H. Song et al., JASA 1999).
- Internal constraints may be used to selectively enhance the transmission loss of lining materials at low frequencies (B. <u>H. Song et al., JASA 2001</u>).
- Enhancement of the barrier performance of porous linings by using internal constraints (B. H. Song et al., submitted for NCEJ 2001).

Introduction

- Comparison between measured and FE predicted random transmission loss.
- Enhancement of transmission loss of barrier system by exploiting the edge-constraint effect at low frequency
- Design of low frequency noise control barriers following from constraint of porous lining materials around their edges.

Glass Fiber Material inside of Sample Holder

Four Microphone Measurement

Anechoic Transmission Loss (3" Sample A in a Small Tube)

Surface Normal Impedance (3" Sample A in a Small Tube)

Poroelastic Material Properties used in Calculations

Material	Bulk density (Kg/m ³)	Porosity	Tortuosity	Flow resistivity (MKS Rayls/m)	Shear modulus (Pa)	Loss factor
Sample A	6.73	0.99	1.1	21000	1200	0.35

Random Incidence Transmission Loss (27 cm X 27 cm)

Schematic of Experimental Setup for the Random Transmission Loss

The Circular Aperture for Random Incidence Transmission Loss (30 cm Diameter)

TL for the Various Constraint Cases

TL for the Unconstrained FE Predictions

The Square Aperture for Random Incidence Transmission Loss (27 cm by 27 cm)

Internally-Constrained, 27 cm by 27 cm Sample

Internally-Constrained Green Sample (Frame Constraint)

TL Increase for the Internally-Constrained Sample A (Frame Constraint)

TL Increase for the Internally-Constrained Sample A (Frame Constraint)

- Good agreement between <u>measured and FE predicted random</u> <u>transmission losses</u>.
- Random transmission losses through segmented lining materials were enhanced at low frequencies by the edge constraint effect.
- Light and stiff fibrous materials combined with edge and internal constraint mechanisms can be used to design, light, high performance low frequency noise control barriers.