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ASG
acMGDG
acPG
DAD1
DAG
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dnOPDA
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LPC
LPE
MGDG
oxDGDG
oxMGDG
OPDA
PA

Mechanical wounding of Arabidopsis thaliana leaves results in
modifications of most membrane lipids within 6 hours. Here, we
discuss the lipid changes, their underlying biochemistry, and
possible relationships among activated pathways. New evidence
is presented supporting the role of the processive
galactosylating enzyme SENSITIVE TO FREEZING2 in the
wounding response.

Abbreviations

Acyl sterol glucoside
Acylated monogalactosyldiacylglycerol

Acylated phosphatidylglycerol
Defective in anther dehiscence 1
Diacylglycerol
Digalactosyldiacylglycerol
Digalactosylmonoacylglycerol

Dinor-oxophytodienoyl
Galactolipid
Glucoside
Glycosylceramide

Glycosylinositolphosphoceramide
Lysophosphatidylcholine
Lysophosphatidyl-ethanolamine
Monogalatosyldiacylglyerol

Oxidized digalactosyl- diacylglycerol
Oxidized monogalactosyldiacylglycerol

Oxophytodienoyl
Phosphatidic acid
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PC
PE
PG
PG
PI
PS
PLA2
PLD
PL
PDAT1
SFR2
SG
SQDG
TeGDG
TAG
TrGDG

Phosphatidylcholine
Phosphatidylethanolamine
Phosphatidylglycerol
Phosphatidylglycerol
Phosphatidylinositol
Phosphatidylserine
Phospholipase A2
Phospholipase D
Phospholipid
Phospholipid:diacylglycerol acyltransferase 1

SENSITIVE TO FREEZING 2
Sterol glucoside
Sulfoquinovosyldiacylglycerol
Tetra-galactosyldiacylglycerol

Triacylglycerol
Tri-galactosyldiacylglycerol.

Wounding (i.e., mechanical damage) of plant tissues can be caused by wind,
rain, or hail or can occur during insect attack, grazing, or pathogen
infection. In the laboratory, mechanical wounding of plants provides a
controlled experimental treatment to elicit chemical responses, including
changes in gene expression, protein expression, and metabolite composition.
Changes in lipids occur rapidly, with many examples of changes observed in

5 min or less.1-4.

In a recent study,5 complex lipids were analyzed in leaves of unwounded
plants and mechanically wounded plants, sampled 45 min and 6 h after
wounding, with each treatment replicated 31 times. The levels of 254 out of
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the total of 264 complex lipids detected changed significantly in response to
mechanical wounding. Here, the observed changes in complex lipids in
wound response are examined further and considered in relation to known
and proposed lipid metabolic pathways.

Overview

Vu et al.5 found that, after wounding, the total levels of membrane and
membrane-derived lipids dropped. The mass spectral intensity of all
measured leaf lipids fell 6% from the level in unwounded plants at 45 min
after wounding and a further 22% at 6 h after wounding (Fig. 1A). The drop
in total lipid level was mainly due to decreases in the levels of normal-
chain, diacyl polar membrane lipids including phospholipids (PLs),
sulfolipid (sulfoquinovosyldiacylglycerol, SQDG), and galactolipids (GLs)
(Fig. 1A and B). On the other hand, many less abundant lipids increased
(Fig. 1A, C and D). Lipids with increased levels include molecular species
with oxidized fatty acyl chains, head-group acylated membrane lipids,
monoacyl polar lipids, phosphatidic acids, oligogalactolipids, sterol
glucosides, acyl sterol glucosides, and triacylglycerols. Additionally there
were subtle increases in lipid unsaturation in PC and PA. In the following
sections, we detail and discuss these changes and discuss possibilities for
the underlying biochemistry (Fig. 2).
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View larger version

Figure 1. Changes in leaf lipid classes following pressure
wounding on leaves of wild-type Arabidopsis thaliana across the
mid-vein with a hemostat. Leaves were harvested from unwounded
or wounded plants 45 min and 6 h after wounding.5 This figure is
based on data in ref. 5. (A) Normalized mass spectral intensity for
lipids in the panels (B, C, and D). 1 unit of normalized mass spectral

signal equals the signal obtained from 1 pmol of internal standard. Values over the
bars indicate the percent of the total lipids represented by the bar. (B) Amount of
structural (membrane) lipid classes after wounding relative to unwounded level for
each class. (C) Amounts of minor plastidic lipid classes relative to the unwounded
level for each class. (D) Amounts of minor extraplastidic lipid classes relative to the
unwounded level for each class. * indicates significant changes compared to
unwounded samples, T-test, P < 0.001, n = 31. Error bars are standard deviation.

View larger version

Figure 2. Proposed reactions of membrane lipids in the
wounding response in Arabidopsis leaves. (a) Lipid head-group
acylation and lipolytic reactions producing monoacyl lipid molecular

species; (b) galactosylation of lipids and other reactions producing DAG, PA, and
TAG; (c) formation of sterol glucosides and acyl sterol glucosides; (d) increase of fully
desaturated PC and PA fractions during the wounding response; and e. oxidation of
lipids in the wounding response. See text for details.

Glycerolipid head-group acylation and lipolytic reactions producing
monoacyl lipid molecular species

Fatty acylation of the lipid head group of monogalatosyldiacylglyerol

(MGDG) was originally described by Heinz.6 MGDG acylation occurs when
a fatty acyl chain is transferred from digalactosyldiacylglycerol (DGDG) to

the 6-position on the galactose of MGDG,7,8 producing an acylated MGDG
and digalactosylmonoacylglycerol (DGMG) (Fig. 2, block a). More recently,
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oxidized acylated MGDGs have been identified in Arabidopsis leaves
following bacterial infection or wounding; the most common molecular
species is an MGDG with oxidized fatty acids in the 1- and 2- positions
(oxophytodienoyl/dinor-oxophytodienoyl; OPDA/dnOPDA), acylated on
galactose with OPDA. This species was given the common name

“Arabidopside E”.9,10 It is now apparent that a wide variety of acylated
MGDG molecular species and DGMGs are produced upon wounding of

Arabidopsis leaves (Fig. 1C and D).5,8,11-13 Additionally
phosphatidylglycerol (PG) with an acyl chain on the terminal glycerol and
small amounts of head-group acylated DGDGs are also produced in

Arabidopsis leaves when they are wounded (Fig. 1C).5,11,13 DGMG may
also be produced by the acylhydrolases, such as DAD1 and DAD1-like

enzymes, localized in chloroplasts and capable of acting on galactolipids.14

In addition to DGMG, mono-acyl glycerolipids produced in response to
wounding include lysophosphatidylcholines, which increase more than 2
fold at 45 min after wounding, and lysophosphatidylethanolamines
(Fig. 1D). These may be formed from PC and PE by the action of

acylhydrolases such as the patatin-like PLA2s (e.g., refs. 15-16).

Galactosylation of galactolipids and other reactions producing DAG,
PA, and TAG

In response to freezing, tri- and tetra-galactosyldiacylglycerol (TrGDG and
TeGDG) are formed by the processive addition of galactose moieties from
available MGDG molecular species, forming first DGDG, and then TrGDG
and TeGDG by the enzyme SENSITIVE TO FREEZING 2 (SFR2) (Fig. 2,

block b).17,18 The side product, DAG, can be converted to TAG by an
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acyltransferase.17 DAG that has accumulated in the chloroplast envelopes
during non-freezing conditions can enter PL metabolism, possibly through

action of a DAG kinase.19-20 Following wounding, the tight co-occurrence
of PA(34:6) with TrGDG(34:6) and TeGDG(34:6), and parallel reduction of

MGDG(34:6),5 is consistent with this pathway of processive galactosylation
and PA(34:6) as a by-product.

Because previous data suggested that the presence of SFR2 is only critical to

plant survival following freezing,21-22 the role of SFR2 in wounding was

confirmed using an Arabidopsis line lacking SFR2, sfr2–3.17 The data are
included as Supplemental Table 1. Data extracted from this data set and
shown in Figure 3 demonstrate that galactosylation during the wounding
response is dependent on the presence of SFR2. In the absence of SFR2,
TrGDG and TeGDG are not formed, and PA(34:6) is much reduced.
Additionally, TAG(18:3/34:6), a plastid-derived molecular species
containing 16:3 in the “34:6” moiety, is not formed during wounding in
sfr2–3 (Fig. 3D). These data indicate that wounding produces a measurable
activation of SFR2 in leaves of wild-type plants, and confirms that PA is
correlated with SFR2 activity, adding to the known effects of SFR2. Further
investigation of the physical characteristics associated with the wounding
suggested that tissue desiccation occurred around the wounding site. If
SFR2 is responding to the desiccation, this would be consistent with
observed production of oligogalactolipids during desiccation of the

resurrection plant.23
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View larger version

Figure 3. Formation of TrGDG, TeGDG, PA(34:6), and 16:3-
containing TAG is abolished in sfr2–3 (SALK_106253) plants.
Leaves were harvested from unwounded or wounded plants 45 min
after wounding as in ref. 5. In the indicated lipids, “34:6” is composed

of 18:3 and 16:3 fatty acyl chains. 1 unit of normalized mass spectral signal equals the
signal obtained from 1 pmol of internal standard. ** indicates a significant change at P
< 0.01, * indicates a significant change at P < 0.05, T-test, n = 6. Error bars are
standard deviation.

Small increases in DAG levels are detectable during the leaf's response to
wounding (Fig. 1D). Like PA, DAG can accumulate after wounding as a
result of multiple reactions, including SFR2 acting on MGDG and
phospholipase C acting on phospholipids. Production of PA via DAG by a
phospholipase C-diacylglycerol kinase pathway has been detected in

Arabidopsis in low-temperature stress.24 PA is also formed from DAG by

DAG kinase in plant-fungus interaction.25 Formation of PA via DAG and
DAG kinase was also shown to play roles in abscisic acid response and plant

tolerance to drought and salt stresses.26 Both DAG derived from
extraplastidic phospholipids and DAG formed from MGDG are converted to
triacylglycerols (TAGs) during the wounding response. This is likely to

occur by the action of PDAT1.20 Indeed, TAG levels increase over a
prolonged period after wounding (Fig. 1D). The formation of TAG was
recently demonstrated to be an essential intermediate in the delivery of
plastidic fatty acids to peroxisomal β-oxidation, to maintain membrane lipid

homeostasis in leaves.20

In addition to the SFR2 and phospholipase C-diacylglycerol kinase
pathways, PA can be produced by hydrolysis of phospholipids by
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phospholipase D (PLD) during wounding stress.4 About half of the PA
formed in the first 15 min after wounding can be attributed to the action of

PLDα1.4 PA species formed by PLD contain DAG moieties characteristic of
extraplastidic phospholipids (e.g., 34:3, 34:2, 36:5, and 36:4), distinguishing
them from the PA(34:6) derived from MGDG. Additionally, PAs derived
from extraplastidic PLs and PA(34:6) from MGDG are formed with
different kinetics; specifically, the maximal increase in PA-containing fatty
acids from extraplastidic lipids occurs more quickly than maximal
formation of PA(34:6) (Fig. 1C and D).

Formation of sterol glucosides and acyl sterol glucosides

Vu et al.5 identified increases in sterol glucosides and acyl sterol glucosides
upon wounding (Fig. 1 and Fig. 2, block c). Sterol glucosides probably are

formed by UDP-Glc:sterol glycosyltransferase(s).27 Acyl sterol glucosides
are likely to be formed by acylation of sterol glucosides, but acylating
enzymes acting on sterol glucosides are not identified.

Increase of fully desaturated PC and PA fractions during the
wounding response

One of the more subtle changes detected in response to wounding was an
increase in the unsaturation of the PC and PA pools, with fully desaturated
34:6 and 36:6 species particularly increased. “34:6” represents an 18:3/16:3
acyl chain combination, while “36:6” represents an 18:3/18:3 combination.
Unsaturation indices and percentage of the PA and PC classes that can be
attributed to these fully desaturated species are shown in Table 1. In
response to wounding, the unsaturation of PC and PA increases
significantly. In particular, the proportion of PC(36:6) and PA(36:6) species
as a% of the total head group class increases at 45 min after wounding, and
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the proportion of PC(34:6), and PA(34:6), species increases strongly at 6 h
after wounding. The increase in PC(36:6) and PA(36:6) may result from an
increased amount of desaturase activity per PC molecule due to a decrease
in the size of the PC pool (Fig. 2, block d). However, given that SFR2 and
other activities are forming PL precursors from the highly desaturated
plastid pool of MGDG, the formation of PC and PA species containing 16:3
likely arises from transfer of 16:3 from the plastids. The identity of the
molecule transferred is not clear, but the strong incorporation of 16:3 into
PA could suggest that PA or intact DAG is the transferred species.

See full table

Table 1. PA and PC unsaturation is increased
in wounded plants. In particular, this is due to
increases in 36:6 and 34:6 molecular species. The
unsaturation index is a measure of the average
unsaturation of the fatty acyl chains in each class. The
unsaturation index of a lipid species is calculated by

multiplying the number of double bonds by the fraction of that lipid in the lipid class
divided by the number of acyl chains in the lipid (i.e., 2 for diacyl lipids). The
unsaturation index of the class is the total of the unsaturation index of all lipid species
in that class. The PA and PC species as percent of the total indicate the percentage of
that class composed on the indicated lipid species. One-way ANOVA was performed
to compare the unsaturation indices or lipid percentages among the three treatments.
If a significant difference (p < 0.001; n = 31) was detected for a lipid, a Tukey post-hoc
test was performed to identify the differing treatments. * indicates that the value in the
wounded sample is significantly increased compared to the unwounded sample.

Oxidation of lipids in the wounding response

While oxidation of extraplastidic phospholipids, such as PC and PE, during

wounding is minimal (Fig. 1D),5,8,12 plastidic lipids including PG, MGDG,
DGDG, and acylated MGDG are converted to a plethora of oxidized
molecular species during wounding (Fig. 2, block e).
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In response to wounding, total oxidized DGDG and MGDG of leaves

increased 5 to 6-fold at 45 min after wounding.5 Oxidized membrane lipids

described by Vu et al.,5,12 include those potentially produced by established
pathways, such as OPDA, and numerous molecular species whose structures
and biosynthetic pathways are less clearly delineated. Chemical formulas
for detected molecular species include those consistent with the presence of
hydroxy fatty acids, such as 18:2-O (hydroxylated 18:2) and 18:3-O
(hydroxylated 18:3), ketols (such as 16:3–2O and 18:3–2O), and

phytoprostanes (e.g., 18:4–2O and 18:4–3O).5,12 The two most abundant
oxidized MGDG species are Arabidopside A, also known as
MGDG(OPDA/dnOPDA) and MGDG(34:8–2O), and Arabidopside B, also
known as MGDG(diOPDA) and MGDG(36:8–2O), which are increased

∼100 and ∼50 fold at 45 min after wounding, respectively.28 The most
abundant oxidized DGDG, Arabidopside D, also known as DGDG(diOPDA)
and DGDG(36:8–2O), increased ∼45 fold at 45 min compared to its level in

unwounded plants.29 Oxidized acylated MGDG species are also formed
quickly and in relatively high amounts. Arabidopside E,
MGDG(OPDA/dnOPDA) acylated on galactose with OPDA, and also known
as acMGDG(18:4-O/34:8–2O), is increased over 200-fold at 45 min after
wounding. The formation of OPDA-containing galactolipids seems to be

restricted to Arabidopsis and related species.30 However, other plant species
produce membrane lipids with oxidatively modified acyl chains, such as
colneleic acid-containing PtdIns in potato tubers; etherolenic acid-
containing DAGs (linolipin A and B) and etherolenic acid containing
DGDGs (linolipin C and D) in flax leaves upon responding to freezing-

thawing.31-33
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In earlier work, a more resolved time-course experiment demonstrated that
MGDG(OPDA/dnOPDA), MGDG(OPDA/OPDA), and
DGDG(OPDA/OPDA) were formed faster than their counterparts with a

single oxylipin chain.34 Nilsson et al.35 demonstrated that oxidation of
trienoic fatty acids to OPDA and dnOPDA occurs on intact galactolipid
molecules and does not involve hydrolysis of the acyl chains from the
backbone. Together, these data suggest that lipoxygenase acts shortly after
wounding and is more likely to oxidize both chains on a galactolipid than a
single chain.

Figure 4 shows levels of 4 types of acMGDG: acMGDG with 3 normal
chains, acMGDG with 1 out of 3 fatty acyl chains oxidized, acMGDG with 2
out of 3 fatty acyl chains oxidized, and acMGDG with 3 oxidized chains.
The fully oxidized acMGDG pool is induced most quickly, and to the
highest final level: 87 fold at 45 min, with a drop at 6 h. Other acMGDG
pools with a mixture of oxidized and normal chains (or all normal chains)
were produced more slowly, and levels were higher at 6 h after wounding
than at 45 min. This again suggests that oxidation happens quickly after
wounding, that there is a preference for multiple oxidation of acyl chains on
a single molecule, and that oxidized chains are cleared by replacement with
non-oxidized chains at later times.
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View larger version

Figure 4. Levels of 4 types of acMGDG as a function of
oxidation. This figure is based on data in Vu et al.5 acMGDG with 3
oxidized chains, acMGDG with 2 out of 3 fatty acyl chains oxidized,

acMGDG with 1 out of 3 fatty acyl chains oxidized, and acMGDG with 3 normal chains
are shown. 1 unit of normalized mass spectral signal equals the signal obtained from 1
pmol of internal standard. Levels are compared to the level in unwounded plants. The
total of the categorized acMGDG accounts for 71% of acMGDG at 45 min and 6 h
after wounding; 29% of acMGDG cannot be readily categorized, due to ambiguity in
acyl chain identification. * indicates a significant change, T-test, P < 0.001, n = 31.
Error bars are standard deviation.

Conclusion and Perspectives

The data presented here and in Vu et al.5 demonstrate that membrane lipids
undergo extensive, diverse modifications during wounding. These changes
raise important questions concerning the function of the modifications.
Wounding of plant tissues can be caused by abiotic stresses, such as wind,
rain, and hail or biotic stresses, such as insect attack, grazing, or pathogen
infection. Our recent studies indicate that distinctive types of ac-lipids are
produced in plants responding to different stresses, such as freezing,

wounding, and pathogen infection.12 In Arabidopsis, the acMGDGs
Arabidopsides E and G have antimicrobial functions and are proposed to be
reserves for quick release of oxylipins in response to stress. On the other
hand, ac-MGDGs acylated with un-oxidized, normal fatty acids (e.g., 16:0)
are not oxylipin reserves and likely have other functions. However, the
cellular and physiological functions are virtually unknown for most of the
wound-induced lipid metabolites and modifications. Potentially, they could
be involved in protecting cells from oxidative damage, provide stress
pattern recognition and/or cell signaling. The identification of the
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compounds and the deduced metabolic pathways for their production will
facilitate greatly functional investigations.

It is also noted that our data on whole leaves do not provide informations
about potentially different levels of responsiveness to wounding in various
leaf cells. Such differences might be due to differences in cell types or
physical locations relative to the wounding sites. Toward this end,
application of methodology with spatial resolution capacity, such as mass

spectrometry imaging (reviewed by Horn & Chapman),36 is likely provide
to novel insights that promote functional studies of wound-induced
membrane lipids.

Data and metadata from this work and the work of Vu et al.5 are available in
the metabolomics-focused database, Plant/Eukaryotic and Microbial

Systems Resource (PMR; http://www.metnetdb.org/PMR/).37 In PMR, the
data on lipid changes during leaf wounding in Arabidopsis can be plotted
interactively and otherwise explored further. A screenshot from PMR
showing an interactive volcano plot of the wounding data is provided in
Figure 5. The experiment is publically accessible at
http://www.metnetdb.org/PMR/experiments/?expid=243.

View larger version

Figure 5. Screenshot of Arabidopsis wounding data
volcano plot at Plant/Eukaryotic and Microbial Systems
Resource (http://www.metnetdb.org/PMR/). Mouse-over of any

point in the plot provides information about the metabolite and its change in response
to wounding. Data include levels of fatty acyl chains in complex lipids as well as levels
of intact complex lipid species.
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Figure 1.
Changes in leaf lipid classes following pressure wounding on leaves of wild-type
Arabidopsis thaliana across the mid-vein with a hemostat. Leaves were harvested
from unwounded or wounded plants 45 min and 6 h after wounding.5 This figure is
based on data in ref. 5. (A) Normalized mass spectral intensity for lipids in the panels
(B, C, and D). 1 unit of normalized mass spectral signal equals the signal obtained
from 1 pmol of internal standard. Values over the bars indicate the percent of the total
lipids represented by the bar. (B) Amount of structural (membrane) lipid classes after
wounding relative to unwounded level for each class. (C) Amounts of minor plastidic
lipid classes relative to the unwounded level for each class. (D) Amounts of minor
extraplastidic lipid classes relative to the unwounded level for each class. * indicates
significant changes compared to unwounded samples, T-test, P < 0.001, n = 31.
Error bars are standard deviation.
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Figure 2.
Proposed reactions of membrane lipids in the wounding response in Arabidopsis
leaves. (a) Lipid head-group acylation and lipolytic reactions producing monoacyl
lipid molecular species; (b) galactosylation of lipids and other reactions producing
DAG, PA, and TAG; (c) formation of sterol glucosides and acyl sterol glucosides; (d)
increase of fully desaturated PC and PA fractions during the wounding response; and
e. oxidation of lipids in the wounding response. See text for details.
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Figure 3.
Formation of TrGDG, TeGDG, PA(34:6), and 16:3-containing TAG is abolished in
sfr2–3 (SALK_106253) plants. Leaves were harvested from unwounded or wounded
plants 45 min after wounding as in ref. 5. In the indicated lipids, “34:6” is composed
of 18:3 and 16:3 fatty acyl chains. 1 unit of normalized mass spectral signal equals
the signal obtained from 1 pmol of internal standard. ** indicates a significant change
at P < 0.01, * indicates a significant change at P < 0.05, T-test, n = 6. Error bars are
standard deviation.
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Table 1.
PA and PC unsaturation is increased in wounded plants. In particular, this is due to
increases in 36:6 and 34:6 molecular species. The unsaturation index is a measure of the
average unsaturation of the fatty acyl chains in each class. The unsaturation index of a lipid
species is calculated by multiplying the number of double bonds by the fraction of that lipid
in the lipid class divided by the number of acyl chains in the lipid (i.e., 2 for diacyl lipids).
The unsaturation index of the class is the total of the unsaturation index of all lipid species
in that class. The PA and PC species as percent of the total indicate the percentage of that
class composed on the indicated lipid species. One-way ANOVA was performed to
compare the unsaturation indices or lipid percentages among the three treatments. If a
significant difference (p < 0.001; n = 31) was detected for a lipid, a Tukey post-hoc test
was performed to identify the differing treatments. * indicates that the value in the wounded
sample is significantly increased compared to the unwounded sample.

 Unwounded
45 min
after

wounding

6 h after
wounding

 Unsaturation index (n = 31)

PA class
1.60 ±
0.04

1.69* ±
0.01

1.66* ±
0.02

PC class
1.83 ±
0.02

1.86* ±
0.02

1.87* ±
0.01

 
PA species as percent of total

PA

PA(36:6) 5.1 ± 0.8
6.6* ±

0.5
5.8* ±

0.6

PA(34:6) 0.3 ± 0.3
0.3 ±
0.1

1.6* ±
0.4
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PC species as percent of total

PC

PC(36:6)
10.7 ±

0.8
12.0* ±

0.8
11.9* ±

0.9

PC(34:6) 0.2 ± 0.0
0.3* ±

0.0
0.5* ±

0.1

[Back]

27



[Back]

Figure 4.
Levels of 4 types of acMGDG as a function of oxidation. This figure is based on data
in Vu et al.5 acMGDG with 3 oxidized chains, acMGDG with 2 out of 3 fatty acyl
chains oxidized, acMGDG with 1 out of 3 fatty acyl chains oxidized, and acMGDG
with 3 normal chains are shown. 1 unit of normalized mass spectral signal equals the
signal obtained from 1 pmol of internal standard. Levels are compared to the level in
unwounded plants. The total of the categorized acMGDG accounts for 71% of
acMGDG at 45 min and 6 h after wounding; 29% of acMGDG cannot be readily
categorized, due to ambiguity in acyl chain identification. * indicates a significant
change, T-test, P < 0.001, n = 31. Error bars are standard deviation.
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Figure 5.
Screenshot of Arabidopsis wounding data volcano plot at Plant/Eukaryotic and
Microbial Systems Resource (http://www.metnetdb.org/PMR/). Mouse-over of any
point in the plot provides information about the metabolite and its change in
response to wounding. Data include levels of fatty acyl chains in complex lipids as
well as levels of intact complex lipid species.
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