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Background: Glutaredoxin-2 (Grx2) modulates reversible glutathionylation of mitochondrial proteins.
Results: Grx2 glutathionylates and inhibits UCP3-mediated proton leak.
Conclusion: Grx2 modulates UCP3 activity.
Significance: Grx2 is required to control proton leak through UCP3 and mitochondrial metabolism.

Glutathionylationhas emerged as a keymodification required
for controlling protein function in response to changes in cell
redox status. Recently, we showed that the glutathionylation
state of uncoupling protein-3 (UCP3)modulates the leak of pro-
tons back into the mitochondrial matrix, thus controlling reac-
tive oxygen species production. However, whether or not UCP3
glutathionylation is mediated enzymatically has remained
unknown because previous work relied on the use of pharmaco-
logical agents, such as diamide, to alter the UCP3 glutathiony-
lation state. Here, we demonstrate that glutaredoxin-2 (Grx2), a
matrix oxidoreductase, is required to glutathionylate and
inhibit UCP3. Analysis of bioenergetics in skeletal musclemito-
chondria revealed that knock-out of Grx2 (Grx2�/�) increased
proton leak in a UCP3-dependent manner. These effects were
reversed using diamide, a glutathionylation catalyst. Impor-
tantly, the increased leak did not compromise coupled respira-
tion. Knockdown of Grx2 augmented proton leak-dependent
respiration in primary myotubes from wild type mice, an effect
that was absent in UCP3�/� cells. These results confirm that
Grx2 deactivatesUCP3by glutathionylation. To our knowledge,
this is the first enzyme identified to regulate UCP3 by glutathio-
nylation and is the first study on the role of Grx2 in the regula-
tion of energy metabolism.

Oxidative phosphorylation relies on the potential of various
redox pairs and the establishment of a protonmotive force
across the mitochondrial inner membrane (1). Aerobic ATP
production is not perfectly coupled to respiration because pro-
tons are able to bypass ATP synthase and “leak” back into the
matrix. Proton leaks are biologically important, playing differ-
ent roles in different tissues (e.g. proton leak through uncou-
pling protein-1 (UCP1) is required for brown adipose thermo-
genesis) (2). Uncoupling proteins homologous to UCP1 (i.e.

UCP2–5) have been identified in various other tissues and cell
types (3, 4). However, these uncoupling proteins do not play a
thermogenic role. Rather, their physiological functions may be
derived from their capacity to control mitochondrial reactive
oxygen species (ROS)2 production (5). For instance, UCP2,
which is more ubiquitously expressed, controls glucagon and
insulin release and satiety signaling by regulating cell ROS lev-
els (6–8). Uncoupling protein-3 (UCP3), which is highly selec-
tively expressed in skeletal muscle, promotes glucose and fat
catabolism, protects from obesity and insulin resistance, and
curtails oxidative stress (9–12). Thus, proton leaks through
uncoupling proteins play a diverse array of physiological roles.
These putative functions are associated with the regulation of
ROS production by the electron transport chain.
The rate of ROSproduction is highly dependent on the polar-

ity of the mitochondrial inner membrane. Thus, even a small
decrease in protonmotive force can have a profound impact on
ROS production (13). To this end, leak through UCP3 in skel-
etal muscle mitochondria could significantly decrease mito-
chondrial ROS emission (14). However, several mechanisms
have been described for how UCP3 limits mitochondrial ROS.
The prevailing hypothesis is that UCP3 controls ROS by induc-
ing themild leak of protons back into themitochondrial matrix
(15, 16). However, other studies have shown that UCP3 func-
tions as a lipid hydroperoxide transporter or calcium uniporter
(17, 18). Each of these mechanisms could aid in safeguarding
the cell from oxidative stress, which is one irrefutable function
of UCP3 (17, 19). Thus, the mechanism through which UCP3
regulates cell ROS remains enthusiastically debated. In an effort
to provide further clarity on this issue, our group recently
explored potential redox regulatory mechanisms involved in
controllingUCP3 andUCP2 function (15). Bymanipulating the
redox environment, we showed that covalent attachment of
glutathione to UCP3 and UCP2 inhibits proton leak and that
the inhibition is reversed by small increases in mitochondrial
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ROS (21, 22). Indeed, the short incubation of mitochondrial
extracts or intact cells with the glutathionylation catalyst
diamide (22–24) decreases proton leak in a UCP3- and UCP2-
dependent fashion (21, 22, 25, 26). Conversely, incubation in
subtoxic concentrations of ROS-producing molecules reverses
this inhibition (22, 25). These changes in UCP3 glutathi-
onylation status are rapid, indicating that this regulation is
required to acutely control ROS production by mitochondria.
Moreover, the ROS-mediated deglutathionylation of UCP3
does not even occur when ROS are in millimolar concentra-
tions in vitro. However, ROS are able to deglutathionylate
UCP3 in the presence of a cell environment (22). ROS-induced
deglutathionylation has been shown to occur for both actin and
succinate dehydrogenase (27, 28). It would appear that UCP3 is
regulated in a similar fashion.
Glutathionylation is a redox-sensitive protein modification

involving the formation of a disulfide bridge between glutathi-
one and an available protein thiol (29). It is well established that
glutathionylation reactions can proceed nonenzymatically, and
a number of different mechanisms for protein glutathionyla-
tion (or deglutathionylation) have been proposed (30). Enzy-
matically catalyzed glutathionylation reactions were first
described by Mannervik and Axelsson (31) who showed that a
cytoplasmic thiol transferase was required to reactivate rat liver
pyruvate kinase that had earlier been inactivated with glutathi-
one disulfide. This cytoplasmic thiol transferase was later iden-
tified as glutaredoxin, an oxidoreductase that is now well doc-
umented to mediate glutathionylation reactions (32). Recent
work has established thatmitochondria contain glutaredoxin-2
(Grx2), a mitochondrial matrix homolog of cytosolic Grx1 that
catalyzes (de)glutathionylation reactions (33). Few targets for
Grx2 have been identified; however, Grx2 has been found to
have both glutathionylase and deglutathionylase activities. In
this study, we set out to determine whether Grx2 is required to
control UCP3 function.We used the newly generated germ line
Grx2 knock-out (Grx2�/�) mouse to determine whether Grx2
can modulate leak through UCP3 (34). We found that UCP3
was less glutathionylated and more active in skeletal muscle
mitochondria from Grx2�/� mice. Knockdown of Grx2 in pri-
marymyotubes increased leak, an effect thatwas absent inmyo-
tubes fromUCP3�/�mice. These experimentswere performed
in parallel with liver mitochondrial preparations, which lack
uncoupling proteins. Collectively, our findings indicate that the
matrix oxidoreductase Grx2 is required to deactivate proton
leak through UCP3. These findings have important implica-
tions for an improvedunderstanding of the regulation of proton
leak reactions and the control of mitochondrial ROS emission.

MATERIALS AND METHODS

Animals—Studies involved C57BL6 wild type (WT) and
Grx2 whole body knock-out (Grx2�/�) mice (on C57BL6
genetic background) and C57Bl6J WT and UCP3 whole body
knock-out (UCP3�/�; on C57BLJ6 background) mice. They
were fed a standard diet (44.2% carbohydrate, 6.2% fat, 18.6%
crude protein; diet T.2018; Harlan, Indianapolis, IN) ad libi-
tum. All experiments were performed according to the princi-
ples and guidelines of the Canadian Council of Animal Care,
and the study was approved by the Animal Care Committee of

theUniversity ofOttawa.Micewere genotyped for the presence
or absence of Grx2 and UCP3 prior to experimentation and
myoblast purification. All experiments were performed on
male mice between 9 and 12 weeks of age.
Indirect Calorimetry—Mice were housed individually in a

customized Oxymax open circuit indirect calorimeter cham-
bers (Columbus Instruments) and given free access to food and
water.Mice were supplied with air at 0.5 liters/min,maintained
at room temperature (22–23 °C), and subjected to a standard
light-dark cycle (light 6:00–18:00 anddark 18:00–6:00).Mouse
activity was measured by counting the number of laser beam
breaks (x and y axis). All measurements were conducted over a
24-h period. Concentrations of O2 and CO2 were measured in
each chamber for 60 s every 4 min with a sample line-purge
time of 2 min. The respiratory exchange ratio was calculated as
VCO2/VO2. Mouse activity was calculated as total number of
laser beam breaks (x axis plus y axis) during both light and dark
cycles.
OrganWeights andCirculatingMetabolites—WTandGrx2�/�

mice underwent an overnight fast and were weighed and then
sacrificed the following morning. Following serum collection,
the weights of gonadal white adipose tissue, interscapular
brown adipose tissue (BAT), gastrocnemius muscle, heart, kid-
neys, and liver were determined. Serum was flash-frozen for
later analysis of circulating glucose (Sigma glucose oxidase kit),
free fatty acids (Biovision), and triglycerides (Biovision). All
assays were conducted according to the manufacturers’
instructions. Serum was also used for HPLC analysis of GSH
and GSSG content. Prior to HPLC, serum was diluted 10-fold.
Mitochondrial Isolation—Skeletal muscle and liver mito-

chondria were isolated as described previously (11, 35). All buf-
fers were supplemented with 10 mM pyruvate and 2 mMmalate
or 10 mM succinate and filtered prior to use. All steps were
performed on ice or at 4 °C. Formusclemitochondria, forelimb,
hindlimb, and pectoral muscle were extracted and placed
immediately in basicmedium (BM: 140mMKCl, 20mMHEPES,
5 mM MgCl2, and 1 mM EGTA, pH 7.0). Muscle was then
cleaned of connective tissue and fat, weighed, and then placed
in fresh BM. The muscle was minced on a Teflon board and
placed in homogenizationmedium (BM � 1mMATP, 1 unit of
subtilisin A, 1% w/v defatted BSA). Tissue was homogenized
using a glass/Teflon Potter-Elvehjem tissue grinder and then
centrifuged at 800 � g for 9 min to remove any undisrupted
tissue. The supernatant was collected and centrifuged at
12,000 � g for 9 min. The pellet was resuspended in �1 ml of
BM and incubated on ice for 5 min for myofibrillar repolymer-
ization. Following the removal of the myofibers by centrifuga-
tion at 800� g for 9min, the supernatant was centrifuged again
at 12,000 � g to generate a mitochondrial pellet.
Livers werewashed in livermedium (LM: 70mM sucrose, 220

mMmannitol, 1mMEGTA, 2mMHEPES, 1%w/v defatted BSA,
pH 7.2) and then cut into small pieces. Following three more
washes in LM, the pieces wereminced on a Teflon plate, placed
in fresh LM, and homogenized as described above. The homo-
genate was then centrifuged at 800 � g for 9 min to remove
undisrupted tissue. The supernatant was then collected and
centrifuged at 12,000� g for 9min, and the resulting pellet was
resuspended in �2 ml of LM. Prior to resuspension, the inside
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of the centrifugation tube was wiped to remove any fat. The
volume was then brought to 30 ml with LM, and the resus-
pended mitochondria were incubated on ice for 10 min. The
suspension was then centrifuged again at 12,000 � g for 9 min,
and the resulting pellet was resuspended in BSA-free LM. For
all experiments, mitochondria were kept on ice no longer than
2 h. If mitochondria were not being used for activity assays or
bioenergetic determinations, they were treated immediately
withN-ethylmaleimide (NEM, an alkylating agent that prevents
spontaneous modification of reactive cysteine residues, final
concentration of 25 mM). Mitochondrial protein content was
determined using the Bradford assay.
Mitochondrial Bioenergetics—Isolated mitochondria were

studied in the Seahorse XF24 Extracellular Flux Analyzer (Sea-
horse Biosciences; North Billerica, MA) using a method
adapted from Ref. 35. Mitochondria were diluted to 0.2 mg/ml
in BSA-free BM or LM, and 50 �l of suspension (10 �g of mito-
chondria) was then loaded into Seahorse tissue culture (TC)
plate wells. TC plates were centrifuged at 2000� g for 20min at
4 °C to attachmitochondria to the plastic.Mitochondria adhere
well to the surface due to the chemical properties of the plastic
(35), andmitochondria are not displaced during the experiment
(35). Following the centrifugation, 350 �l of reaction buffer
(LM containing 10 mM KH2PO4, 5 mM MgCl2, 0.2% w/v defat-
ted BSA) was added to each well giving a final volume of 400 �l.
Following a 10-min incubation at 37 °C, plates were loaded into
the XF24 Analyzer for bioenergetic analyses. Assay conditions
were optimized as recommended previously (35).
For bioenergetic determinations, the oxygen consumption

rate (OCR) was first determined under state 2 conditions (pres-
ence of substrate only, 10 mM pyruvate, and 2 mM malate or 10
mM succinate). ADP (0.1mM), oligomycin (2.5�g/ml; ATP syn-
thase inhibitor), FCCP (8 �M; chemical uncoupler), and anti-
mycin A (4 �M; complex III inhibitor) were then sequentially
injected to test state 3, state 4 (proton leak-dependent respira-
tion), maximal respiration, and respiration independent of the
respiratory chain, respectively. When succinate was used as a
substrate, rotenone (1 �M) was included in the reaction
medium to prevent reverse electron transfer and ROS genesis
by complex I. To test the contribution of ANT to proton leak-
dependent respiration, followingmeasurement of state 3 respi-
ration, mitochondria were sequentially treated with oligomy-
cin, carboxyatractyloside (5 �M; inhibits leak through ANT
(36)), and antimycin A. To determine the response of proton
leak-dependent respiration to H2O2 (deglutathionylates UCP3
(22)) and diamide (glutathionylation catalyst (21)), state 3 res-
piration was tested followed by the addition of oligomycin,
H2O2 (10 �M), diamide (10 �M), and antimycin A. For all meas-
urements of OCR, the measurement interval was 3 min, which
included a 1-min mix, and a 2-min measure. All respiration
values were corrected by subtracting OCR values independent
of aerobic respiration (antimycin A OCR). Note that OCR val-
ues were also corrected for background OCR using Seahorse
XF24 software.
Validation of Seahorse XF24 Protocol—To validate our pro-

tocol, we compared OCR data for liver and skeletal muscle
mitochondria derived from a Clark-type oxygen electrode and
the above-described Seahorse method. The Clark-type oxygen

electrodewas aHansatechOxythermunit (Hansatech;Norfolk,
UK). Reaction buffer (same used in Seahorse) was warmed for 5
min in the electrode chamber followed by the addition of mito-
chondria (0.5mg/ml final protein concentration). To testmito-
chondrial respiratory control ratio (RCR), following the estab-
lishment of state 2 respiration, mitochondria were titrated with
ADP (up to 0.5 mM final concentration). For mitochondrial
integrity tests, after the establishment of state 3 respiration,
cytochrome cwas added incrementally up to a final concentra-
tion of 10 �M. Essentially, if cytochrome c elevates respiration,
this indicates that mitochondrial outermembrane integrity has
been compromised during mitochondrial preparation. For all
experiments, antimycin A was added as a control. Seahorse
assays were conducted in the same manner. State 2 was meas-
ured; ADPwas injected up to a final concentration of 0.5 mM to
obtain state 3, and antimycin A (4 �M) was injected to deter-
mine nonmitochondrial respiration. To determine whether the
attachment of mitochondria to TC plates compromised mito-
chondrial integrity, we first measured state 2, injected ADP (0.1
mM), then titrated in cytochrome c (10 �M final), and finally
added antimycin A (4 �M) (supplemental Fig. S2).
Complex I Activity—Complex I activity was measured using

digitonized mitochondria (37). Muscle and liver mitochondria
were treated with 1% (v/v) digitonin, vortexed, and then incu-
bated on ice for 10 min. Mitochondria were then diluted to 0.5
mg/ml in reaction buffer (70 mM sucrose, 220 mM mannitol, 1
mM EGTA, 2 mM HEPES, 10 mM KH2PO4, 5 mM MgCl2, 0.2%
w/v defatted BSA, pH 7.2) containing 2mMKCN, 1�M antimy-
cin A, with or without 2 mM DTT. Reactions were initiated by
the addition ofNADH (0.2mM). Reactions devoid ofmitochon-
dria served as the negative control. The rate of NADH con-
sumption was calculated from the first 30 s of the reaction (rep-
resents the time frame of fastest NADH consumption).
Mitochondrial ROS Emission—Mitochondrial ROS produc-

tion kinetics were measured using dihydrodichlorofluores-
cein diacetate, the BioTek SynergyMX2 microplate reader
(Winooski, VT), and Gen5 software as described previously
(21).Mitochondria were diluted to 0.5mg/ml in reaction buffer
(70 mM sucrose, 220 mM mannitol, 1 mM EGTA, 2 mM HEPES,
10 mM KH2PO4, 5 mM MgCl2, 0.2% w/v defatted BSA, pH 7.2)
containing dihydrodichlorofluorescein diacetate (20 �M) and
with or without 2 mM DTT. Reactions were initiated by the
addition of pyruvate (10 mM) and malate (2 mM). Following the
initial measurement of ROS production over 6min, oligomycin
was added (2�g/ml) to induce state 4 respiration. ROS produc-
tion was then measured for 10 min. Reactions devoid of mito-
chondria served as the control. Values were corrected for back-
ground fluorescence.
Concentration of GSH and GSSG—Mitochondrial GSH and

GSSG levels were determined by HPLC as described previously
(21). Mitochondria were diluted to 0.5 mg/ml in 0.5% (v/v) per-
chloric acid solution (prepared in mobile phase) and incubated
on ice for 10 min. For measurement of circulating GSH and
GSSG, serum was diluted 10-fold in perchloric acid solution.
Following removal of precipitate, the supernatant was collected
and injected into anAgilentHPLC system equippedwith a Pur-
suit C18 column (150 � 4.6 mm, 5 �m; Agilent Technologies)
operating at a flow rate of 1 ml/min. Reduced (GSH) and oxi-
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dized (GSSG) glutathione were detected using an Agilent UV-
visible variable wavelength detector set to 215 nm. Retention
times were confirmed by injecting standard solutions. Absolute
amounts of GSH andGSSGwere determined by calculating the
area under the GSH and GSSG peaks in the chromatogram for
each sample. These integration values were then extrapolated
from standard curves developed from injecting varying
amounts of standard GSH and GSSG solutions. Integration of
chromatograms and solute concentration estimates were car-
ried out using Agilent Chemstation software. The 2GSH/GSSG
and redox potential of this pair were calculated using the
Nernst Equation 1 as described below (38, 39). Reduced gluta-
thione (GSH) was squared in Equation 1 because both concen-
tration of GSH and oxidized glutathione (GSSG) and the GSH/
GSSG influence the redox potential of this pair. Mitochondrial
matrix volume was assumed to be 0.75 �l (because volume var-
ies between 0.5 and 1 �l per mg of mitochondrial protein) (40).

GSSG � 2e � � 2H � ¡ 2GSH

Eh � �240 �
61.5mV

2
log

[GSH]2

[GSSG]
at 37 °C (Eq. 1)

Protein-Glutathione (PSSG) Adducts—Amount of PSSG was
determined as described previously (21, 22). Mitochondria
were diluted to 2 mg/ml and electrophoresed under nonreduc-
ing (no �-mercaptoethanol) on a 10% isocratic SDS gel. Upon
completion, the gel slab was equilibrated in transfer buffer for
15 min, and proteins were then electroblotted onto nitrocellu-
losemembranes (1 h, 100 V). After a 1-h incubation in blocking
solution,membraneswerewashed twicewithTBS-T (5min per
wash) and then probed overnight at 4 °Cwith anti-PSSG (1:500,
Virogen). Blots were then washed twice with TBS-T and incu-
bated for 1 h in anti-mouse HRP conjugate secondary antibody
(1:2000, Santa Cruz Biotechnology). To ensure that the
observed immunoreactivity pattern in the blots was not due to
nonspecific binding of PSSG antiserum, sampleswere also elec-
trophoresed under reducing conditions (2% v/v �-mercapto-
ethanol included in Laemmli buffer). A powerful reductant like
�-mercaptoethanolwill removeGSH fromall glutathionylation
sites. Ponceau S staining ofmembranes served as a loading con-
trol. The total amount of glutathionylated proteins was then
quantified using ImageJ software.
BioGEEPulldowns—Mitochondria from the liver andmuscle

of WT and Grx2�/� mice were diluted to 4 mg/ml in isolation
medium containing 1 mM BioGEE and incubated for 1 h by
gentle inversion at room temperature.Mitochondria were then
diluted to 2 mg/ml in RIPA buffer containing 25 mM NEM and
then incubated overnight at 4 °C in streptavidin beads to immu-
noprecipitate BioGEEylated proteins. Following centrifuga-
tion, the supernatant was placed in an ice-cold minitube, and
beads were washed once in PBS and then incubated for 10 min
at room temperature in PBS containing 4 M urea to separate
pulled down proteins from beads. Protein content of each frac-
tion was determined by a BCA assay. Presence of UCP3 was
detected by immunoblot.
Immunofluorescent Staining—Gastrocnemius muscles from

WT and Grx2�/� mice were excised and placed immediately
in 10% formalin/acetate solution. Muscle was then sectioned

(10 �m) by cryostat and mounted onto slides. The degree of
UCP3 glutathionylation was visualized by dual staining muscle
sections with UCP3 antibodies and antibodies directed against
BioGEE. Following several washes, muscle sections were incu-
bated in BioGEE (0.1 mM) for 1 h. Sections were then washed
three times and incubated for 1 h at room temperature in
Dylight 594 streptavidin antibody (1:100;Dylight 594 fluoresces
red). Sectionswere thenwashed 3–5 times and incubated for 20
min in 5% (v/v) goat serum (diluted in PBS). Sections were then
incubated overnight at 4 °C in anti-UCP3 antibody (1:100 in
0.3% (v/v) Triton X-100 and 5% (v/v) goat serum in PBS). Fol-
lowing three more washes, muscle was then incubated in goat
anti-rabbit secondary antibody conjugated to Dylight 488
(1:150 in PBS; fluoresces green) for 1 h at room temperature.
After 3–5 washes, slides were mounted in Vectashield fluores-
centmountingmedium, and coverslips were sealed onwith nail
polish. Control experiments were conducted with NEM or
dithiothreitol (DTT). Briefly, prior to exposure to BioGEE, sec-
tions were incubated for 10min in either 25mMNEMor 10mM

DTT. NEM is an alkylating agent that blocks BioGEE binding
providing a 0%base line reading for glutathionylation. Likewise,
DTT treatment is a reductant that reverses glutathionylation,
thus providing a maximum for BioGEE binding. Fluorescence
was monitored using a Zeiss AxioObserver.Z1 deconvolution
microscope and Axiovision 4.8 software. Images were acquired
using a �40 Plan-Apochromat objective and AxioCam MRm
CCD. To eliminate image haze, between 20 and 30 slice images
were taken along the z axis. Images were then deconvolved
using Axiovision SF64 software and enhanced using ImageJ.
Scale bar corresponds to 10 �m.
4-HNE-His Adducts—4-Hydroxy-2-nonenal-histidine (HNE-

His) covalent adducts were measured using the OxiSelect
ELISA kit provided by CellBio Labs (CellBio Labs, San Diego).
Assays were conducted according to the manufacturer’s
instructions.
Metabolite Analysis—TCA cycle intermediate and ATP lev-

els were assessed by HPLC as described previously (11). Mito-
chondria were diluted to 0.5 mg/ml in 0.5% v/v perchloric acid
solution, incubated on ice for 10 min, and the precipitate
removed by centrifugation. The resulting supernatant was
injected into an Agilent HPLC system equipped with a C18
reverse phase hydrophilic HPLC column (Synergi Hydro-RP, 4
�m, 250� 4.6mm; Phenomenex) operating at a flow rate of 0.7
ml/min. The mobile phase consisted of 20 mM KH2PO4 dis-
solved in double distilledH2O, pH2.9. TCAcycle intermediates
and ATP were detected using an Agilent variable wavelength
detector set to 210 and 254 nm for organic acids and nucleo-
tides, respectively. Retention timeswere confirmed by injecting
standard solutions. Levels of metabolites were quantified using
Agilent Chemstation software.
Primary Cell Culture and Grx2 Knockdown—Primary

myoblasts were isolated and cultured as described previously
(22). For experiments, primarymyoblastswere seeded at 50,000
cells/ml in Seahorse TC plates or 60-mm2 dishes coated with
Matrigel. Upon reaching �90% confluency, the growth
medium (DMEM containing 5 mM glucose, 4 mM glutamine, 1
mM pyruvate, 10% v/v FBS, 2.5 ng/ml basic FGF, and 1% v/v
antibiotics/antimycotics) was replaced with differentiating
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medium (DM; DMEM containing 5 mM glucose, 4 mM gluta-
mine, 1 mM pyruvate, 2% v/v FBS, and 1% v/v antibiotics/anti-
mycotics), and cells were differentiated for up to 4 days. DM
was replaced every 2 days.
For Grx2 knockdown studies, confluent primary myoblasts

were treated with fresh DM for 4 h followed by a 48-h incuba-
tion in fresh DM containing 2.0 �g/ml Polybrene (Santa Cruz
Biotechnology) and scrambled shRNA (control; shCtl) or Grx2
shRNA (Grx2 knockdown; shGrx2) lentiviral particles (�5000
infectious viral particle units/ml (Santa Cruz Biotechnology)).
Medium was then replaced with fresh DM and incubated for
24 h in puromycin to select for myotubes containing lentivirus.
Assessment of Mitochondrial Bioenergetics in Intact Cells—

Bioenergetic characteristics of primary myotubes fromWT or
UCP3 knock-out (UCP3�/�) mice transduced with shCtl or
shGrx2 lentiviral particles were tested using the Seahorse XF24
Analyzer. Differentiated cells were washed twice in PBS (to
remove puromycin), incubated for 45 min in glucose and
HCO3-free Seahorsemedium (4mM glutamine, 1mM pyruvate,
4.5 g of powdered DMEM in 500ml, pH 7.2) at 37 °C and ambi-
ent CO2, and then tested for bioenergetics. Following themeas-
urement of resting respiration, cells were treated sequentially
with oligomycin (0.2 �g/ml), diamide (100 �M), FCCP (2 �M),
and antimycin A (2 �M) to test the effect of diamide on state 4
(proton leak-dependent, nonphosphorylating), maximal, and
extramitochondrial respiration, respectively. Each measure-
ment interval consisted of 2 min mixing, 2 min incubation, and
2minmeasurement steps. OCR values were calculated by aver-
aging the measurements from each interval followed by sub-
traction of the extramitochondrial respiration value and cor-
rection to protein content/well.

RESULTS

Physiological and Metabolic Characterizations of the Grx2�/�

Mouse—To explore the role of Grx2 in the modulation of pro-
ton leak through UCP3, we used a whole body Grx2 knock-out
(Grx2�/�) mouse on a C57Bl6 genetic background. To our
knowledge, this mouse model has only been used in one previ-
ous study where ROS homeostasis was tested in cultured pri-
mary lens epithelial cells from Grx2�/� mice (34). Thus, prior
to performing in-depth bioenergetics analyses, we determined
whether Grx2�/� had effects at the whole body level. All deter-
minations in this study were performed on male mice between
9 and 12 weeks of age. In comparison with WTmice, Grx2�/�

had a small but significant decrease in total body weight (Fig.
1a); however, there were no differences in linear growth. Anal-
ysis of tissue and organ weights revealed lower gonadal white
adipose tissue weight, a proxy measure of adiposity (Fig. 1b).
Notable also was the lower amount of fat associated with skel-
etal muscle in Grx2�/� mice (data not shown). No significant
differences in liver, gastrocnemius muscle, or brown adipose
tissue weights were observed (Fig. 1b). In addition, no signifi-
cant differences in total lean muscle mass (hind limb, forelimb,
and pectoral) were recorded (data not shown). A small but sig-
nificant increase and decrease in heart and kidney weights,
respectively, was observed inGrx2�/�mice (Fig. 1b). Hematox-
ylin and eosin (H&E) staining of tissue sections from gastrocne-
mius muscle and liver revealed no gross histological changes or

noticeable pathologies (Fig. 1c). Furthermore, liver sizes and
color were similar between WT and Grx2�/�.

We next measured whole body O2 consumption rates and
spontaneous physical activity. Grx2�/� did not alter whole
body O2 consumption rates indicating that Grx2�/� does not
alter energy requirements, at least at the whole body level (Fig.
1d). However, the preferred source of energy oxidized did differ
between WT and Grx2�/� mice. Respiratory exchange ratio
data showed that Grx2�/� mice relied more on carbohydrates
than fats as an energy source in both light and dark phases (Fig.
1, d and e). Grx2�/� mice were also less active than WT mice
during both light and dark cycles (Fig. 1e). However, Grx2�/�

mice maintained normal fasting levels of circulating glucose,
triacylglycerol, and free fatty acids (supplemental Table S1).
Furthermore, there were no differences in daily food intake
(Fig. 1f).
Grx2�/� Alters Mitochondrial Glutathione Homeostasis but

Does Not Induce Oxidative Damage—We next tested the
impact of Grx2�/� on mitochondrial glutathione homeostasis
and the glutathionylated proteome. Absolute levels of reduced
glutathione (GSH) did not change in liver or muscle mitochon-
dria from Grx2�/� mice, but there was a significant increase in
mitochondrial glutathione disulfide (GSSG) in both tissues
(Fig. 2a). The increase in GSSG caused significant decreases in
2GSH/GSSG in both liver and muscle mitochondria (Fig. 2a).
However, Grx2�/� had a more profound impact on 2GSH/
GSSG in liver than muscle mitochondria (Fig. 2a). We also cal-
culated the relative redox potential of the 2GSH/GSSG ratio in
mitochondria (Fig. 2a). Grx2�/� significantly increased the
potential in liver but not in muscle mitochondria (although a
trend for an increase in muscle was observed). This difference
reflects the more drastic change in 2GSH/GSSG in liver mito-
chondria from Grx2�/� mice. The potential of 2GSH/GSSG in
mitochondria has previously been reported to range from�280
to �340 mV (42). The reported Eh varies according to the
method used (HPLC or ratiometric fluorescent probes). For
instance, using our method it should be anticipated that the
absolute amounts of GSH may be underestimated (and GSSG
possibly overestimated) during sample preparation due to oxi-
dation. Regardless, our calculated Eh is similar to values
reported in previous publications. Thus, despite the knock-out
of Grx2 and the subsequent increase in GSSG, Grx2�/� mito-
chondria are still able to retain a reductive environment.
Measurements of absolute circulating levels of GSH and

GSSG showed that both reduced and oxidized forms of gluta-
thione were significantly lower in Grx2�/� thanWTmice (Fig.
2b). The changes in circulating and tissue glutathione levels
prompted us to measure His-HNE protein adducts. HNE is an
electrophilic end product of ROS-mediated lipid membrane
damage, which can covalently modify proteins and enzymes
impairing their functions. No differences in His-HNE were
observed in liver and muscle mitochondria from WT and
Grx2�/� mice (Fig. 2c). Thus, Grx2�/� does alter glutathione
homeostasis but does not induce oxidative damage.
GSSG has been suggested to nonenzymatically glutathiony-

late proteins via simple disulfide exchange reaction with free
protein thiols. Given our observation that GSSG levels increase
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in Grx2�/� mitochondria, we measured total protein glutathi-
one disulfidemixture levels. No significant changes in total pro-
tein glutathionylation were observed in either liver or muscle

(Fig. 2d). However, the glutathionylated proteome itself was
different between muscle and liver mitochondria (Fig. 2d).
Indeed, more of the liver mitochondrial proteome is glutathio-

FIGURE 1. Impact of Grx2�/� on whole body energetics and mouse physiology. a, mouse weight. Student’s t test, n � 4, mean � S.E. b, effect of Grx2�/� on
tissue and organ weights. Student’s t test, n � 4, mean � S.E. BAT, interscapular brown adipose tissue; GWAT, gonadal white adipose tissue. c, hematoxylin and
eosin staining of gastrocnemius (�40 objective) and liver (�20 objective) cross-sections. d, measurement of whole body energetics by indirect calorimetry. n �
6. e, impact of Grx2�/� on respiratory exchange ratio (RER) and mouse activity in WT and Grx2�/� mice during light and dark phases. Student’s t test, n � 6,
mean � S.E. f, daily food intake. Measurements were taken every 3– 4 days and corrected for spillage. n � 5, mean � S.E.
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nylated than muscle, suggesting that this type of redox modifi-
cation is more prevalent in liver.
Accordingly, we then determined whether there were any

changes in enzymes involved in redox homeostasis and antiox-
idative defense. No increase in Trx2 protein levels was detected
in liver or muscle mitochondria from Grx2�/� (Fig. 2e). Thi-
oredoxin-2 (Trx2) has been implicated in catalyzing degluta-
thionylation reactions but with less efficiency than Grx2 (43).
As expected, UCP3 protein was only detected in muscle mito-
chondria (Fig. 2e). An increase in UCP3 protein (�60%) was
observed in muscle mitochondria from Grx2�/� mice. In liver
mitochondria, no changes inmanganese superoxide dismutase,

glutathione peroxidase 4 (GPx4), or ANT were observed (sup-
plemental Fig. S1A). Inmuscle, Grx2�/� induced an increase in
GPx4 and ANT protein levels with no changes in manganese
superoxide dismutase (supplemental Fig. S1A). In fact, the
increase in GPx4 in muscle mitochondria from Grx2�/� mice
was substantial. GPx4 is responsible for catalyzing the glutathi-
one-mediated reduction of lipid hydroperoxides (44). Given
our results, Grx2�/�does alter glutathione homeostasis but not
enough to induce oxidative damage in mitochondria from liver
or muscle. This would indicate that Grx2 catalyzes site-specific
glutathionylation reactions and that an increase in GSSG is not
enough to prompt protein glutathionylation.

FIGURE 2. Grx2�/� alters 2GSH/GSSG redox potential and the glutathionylated proteome but does not induce oxidative damage. a, measurement of
the absolute levels of GSH and GSSG in liver and muscle mitochondria from WT and Grx2�/� mice. 2GSH/GSSG was calculated from the absolute GSH and GSSG
levels. Eh was calculated using the Nernst equation as described under “Materials and Methods.” ** indicates p � 0.01. Student’s t test, n � 4, mean � S.E.
b, serum levels of GSH and GSSG in WT and Grx2�/� mice. n � 4, mean � S.E., Student’s t test. c, measurement of HNE-His adducts in liver and muscle
mitochondria from WT and Grx2�/� mice. n � 4, mean � S.E., Student’s t test. d, assessment of the glutathionylated proteome in liver and muscle mitochondria.
Gels were run under nonreducing conditions to preserve PSSG adducts. Samples prepared in 2% (v/v) �-mercaptoethanol served as the control. Blots were
quantified using ImageJ software. Student’s t test, n � 5, mean � S.E. e, immunodetection of glutaredoxin-2, Grx2; thioredoxin-2, Trx2; and uncoupling
protein-3, UCP3. SDH, succinate dehydrogenase.
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Grx2�/� Alters Mitochondrial ROS Emission and Metab-
olism—The effects of Grx2�/� on mitochondrial ROS emis-
sion, complex I activity, and metabolite levels were then exam-
ined. For ROS emission and complex I activity assays, reactions
were performed in the presence or absence of DTT, a powerful
reductant that reverses protein glutathionylation. Liver mito-
chondria from Grx2�/� mice generated more ROS in compar-
ison with WT before and after the addition of oligomycin, an
ATP synthase inhibitor; when ATP synthase is inhibited, mito-
chondrial membrane potential increases, which in turn
increases ROS production by the electron transport chain
(Table 1). Adding DTT to the reaction mixtures lowered ROS
production (Table 1). Interestingly, no differences in mito-
chondrial ROS emission were observed withmusclemitochon-
dria Grx2�/� and WT mice before and after oligomycin treat-
ment (Table 1). Thus, the loss of Grx2 in liver enhances
mitochondrial ROS production, which can be reversed with
DTT.
As complex I is a well characterized target for Grx2 degluta-

thionylation (45, 46), we next tested the effect of Grx2�/� on
complex I activity.Others have shown that complex I glutathio-
nylation not only lowers its activity but also increases mito-
chondrial ROS production (47). The specific activity of com-
plex I was significantly decreased (�37%) in liver mitochondria
from Grx2�/� mice (Fig. 3a). Interestingly, performing the
reactions in the presence of DTT did not reverse the inhibition
of complex I inGrx2�/� (Fig. 3b). However, the activity of com-
plex I in mitochondrial preparations fromWT liver seemed to
increase when DTT was added to the reaction mixture. For
muscle mitochondria, complex I-specific activity seemed to be
unaffected by Grx2�/� (Fig. 3a). Performing reactions in the
presence of DTT had no further effects on complex I activity in
mitochondrial preparations from WT and Grx2�/� muscle
(Fig. 3b).
Next, we decided to assess the effects of Grx2�/� on levels of

TCA cycle metabolites and mitochondrial ATP. In liver mito-
chondria, Grx2�/� led to the accumulation of several TCA
cycle intermediates (Fig. 4a). Specifically, there was a signifi-
cant accumulation in pyruvate, citrate, and succinate, possibly
due to a slowing of the TCA cycle, thus prompting the accumu-
lation of metabolites. These data are consistent with the
decrease in complex I activity and the increase inROSemission.
Indeed, decreasedNADHoxidation by complex I is well known
to diminish TCA cycle flux and increase metabolite accumula-
tion (48). Further TCA cycle enzymes have been shown to be
inhibited through glutathionylation (49). In muscle mitochon-
dria, no alterations in pyruvate,malate, or citratewere observed

(Fig. 4b). However, a significant decrease and increase in 2-oxo-
glutarate and succinate levels, respectively, were observed (Fig.
4b). Thus, in contrast to liver, muscle mitochondria from
Grx2�/� do not display any fluctuations in TCA cycle flux
except for the decrease in 2-oxoglutarate, which would suggest
increased utilization and conversion to succinate. ATP levels
were lower in liver mitochondria from Grx2�/� mice (Fig. 4c).
These effects were not observed in muscle mitochondria iso-
lated from Grx2�/� mice (Fig. 4d). Thus, our findings indicate
that Grx2 regulates mitochondrial metabolism differently in
skeletal muscle and liver mitochondria.
Effect of Grx2�/� on Mitochondrial Bioenergetics—Our ob-

servations above indicate that Grx2�/� results in decreased
complex I activity, TCA cycle flux, and ATP levels and
increased ROS production in liver mitochondria, whereas loss
of Grx2 had no effect on any of these parameters in muscle
mitochondria except TCA cycle flux. These fundamental dif-
ferences prompted us tomeasure various bioenergetics param-
eters and respiratory states in liver and muscle mitochondria.
To test the energetics of liver and muscle mitochondria from
WT and Grx2�/�, we used a new method involving the Sea-
horseXF24Analyzer (35). In this instrumentOCR and energet-
ics can bemeasured in up to 20 samples simultaneously, requir-
ing only 10 �g of mitochondrial protein per well. Compared
with a Clark-type oxygen electrode system, much less mito-
chondrial protein is typically required for measurements.
Before proceeding with our assays, we validated our Seahorse
protocol by measuring RCR of mitochondria (supplemental
Fig. S2,A and B) and assessingmitochondrial integrity (supple-
mental Fig. S2, C and D). Seahorse determinations were per-
formed in parallel withmeasurements in the Clark-type oxygen
electrode. For RCRmeasurements, liver andmuscle mitochon-
dria were very responsive to sequential ADP treatments in the
Seahorse XF24. Rates of respiration following ADP exposure
were similar in both the XF24 and the Clark-type oxygen elec-
trode (supplemental Fig. S2, A and B). However, the measured
rate of state 2 respiration (an estimation of proton leak) was
much higher in the XF24 versus the Clark-type oxygen elec-
trode. This difference altered the calculated RCR values
between the two methods (supplemental Fig. S2, A and B). To
eliminate the possibility that this difference was due to loss of
mitochondrial outer membrane integrity, we measured state 3
respiration before and after addition of cytochrome c. As shown
in supplemental Fig. S2,C andD, addition of cytochrome C did
not alter the absolute respiration rates in either the XF24 or the
Clark-type oxygen electrode. This indicates that mitochondria

TABLE 1
Loss of Grx2 expression increases the rate of ROS production from liver but not skeletal muscle mitochondria
Rates of ROS production frommitochondria isolated fromwild-type andGrx2 knock-out (Grx2�/�) mice treated with or without DTTwere calculated before and after the
addition of oligomycin (Oligo). ROS production wasmeasured using dihydrodichlorofluorescein diacetate. Arbitrary units/min/mg protein. Student’s t test, n� 4, mean�
S.E. NA corresponds to no rate recorded.

�DTT �DTT
WT Grx2�/� WT Grx2�/�

Liver (�Oligo) 9.06 � 5.86 42.63 � 4.63a NA 26.67 � 7.71a
Liver (�Oligo) 52.11 � 6.77 73.09 � 14.41a 69.03 � 7.37 79.57 � 3.06
Muscle (�Oligo) NA NA NA NA
Muscle (�Oligo) 28.17 � 4.51 32.33 � 6.59 35.66 � 3.97 37.08 � 7.98

a p � 0.05, statistical comparisons were performed between WT and Grx2�/� mitochondria under each condition.
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maintain outer membrane integrity after isolation and attach-
ment to the XF24 TC plates.
Applying this method, we measured bioenergetics in liver

and muscle mitochondria fromWT and Grx2�/� (supplemen-
tal Fig. S3A). As shown in Fig. 5a, Grx2�/� did not alter state 2
or FCCP-stimulated respiration in liver mitochondria. How-
ever, Grx2�/� induced a significant decrease and increase in
ADP-stimulated and proton leak-dependent (state 4) respira-
tion, respectively, thus indicating diminished mitochondrial
coupling efficiency (Fig. 5a). Muscle mitochondria from
Grx2�/� mice displayed increases in state 2, state 3, and state 4
respiration rates (Fig. 5b). No change in the respiratory control
ratio (state 3/state 4) ofmusclemitochondriawas observed.We
confirmed the increase in proton leak in skeletal muscle mito-

chondria from Grx2�/� using the complex II-linked energy
substrate succinate. Proton leak-dependent respirationwas sig-
nificantly higher in muscle mitochondria from Grx2�/� mice
(supplemental Fig. S4). No differences in leak were observed in
liver mitochondria when succinate was the substrate. We next
examined if the changes in proton leak were associated with
ANT. Intriguingly, carboxyatractyloside (CAT; an ANT inhib-
itor) did not decrease proton leak-dependent respiration in
liver mitochondria from WT and Grx2�/� (supplemental Fig.
S5). CAT treatment decreased proton leak inmusclemitochon-
dria fromWT and Grx2�/� mice (supplemental Fig. S5). How-
ever, the leak remained elevated in theGrx2�/� comparedwith
WT mitochondria indicating other leak mechanisms, such as
UCP3, are activated.

FIGURE 3. Effect of Grx2�/� on complex I activity in liver and muscle mitochondria. Reactions were performed on digitonized mitochondria in the absence
(a) or presence (b) of 2 mM DTT. Student’s t test, n � 4, mean � S.E.

FIGURE 4. Levels of TCA cycle metabolites and ATP in liver (a and c) and muscle (b and d) mitochondria, as assessed by HPLC. Student’s t test, n � 5,
mean � S.E.
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UCP3 Is Less Glutathionylated in Grx2�/� Muscle Mi-
tochondria—In our previous work, we showed that glutathio-
nylation of UCP3 inhibits leak and that this can be reversed by
ROS (15). The increase in ANT-independent proton leak in
Grx2�/� skeletal muscle mitochondria prompted us to deter-
mine whether these differences in leak were associated with
UCP3 and its glutathionylation state. Mitochondria from
Grx2�/� skeletal muscle were sequentially treated with oligo-
mycin,H2O2 (10�M), anddiamide (10�M) to test the sensitivity
of proton leak toward changes in mitochondrial redox state
(supplemental Fig. S3B). Our group has previously established
that diamide can serve as a glutathionylation catalyst deactivat-
ing UCP3, whereas H2O2 (or other ROS species) can reverse
glutathionylation thereby activating proton leak (22). In WT
muscle mitochondria, a significant increase in proton leak was
observed following treatment with H2O2 (Fig. 6a). This
increase was not observed in muscle mitochondria from
Grx2�/� mice. However, it is important to point out that state
4 (proton leak-dependent) respiration was already elevated in
Grx2�/� mitochondria prior to treatment with H2O2. Treat-
ment of WT mitochondria with H2O2 actually elevated state 4
respiration to levels observed in Grx2�/� mitochondria. The
subsequent injection of the glutathionylation catalyst diamide
lowered respiration back to oligomycin-induced state 4 respi-
ration levels in WT and Grx2�/� muscle mitochondria (Fig.
6a). Thus, our results would suggest that H2O2 is required to
stimulate UCP3, and this activation can be reversed by gluta-
thionylationwith diamide.Most important though is the obser-
vation that the H2O2 effect is absent in Grx2�/� mitochondria.
To confirm that UCP3 was responsible for the changes in

proton leak following H2O2 and diamide treatment, we per-
formed the same experiments on muscle mitochondria from
UCP3�/� mice. The presence or absence of UCP3 was con-

firmed by immunoblot (supplemental Fig. S5C). Absolute pro-
ton leak-dependent respiration rates were 2-fold higher in
mitochondria collected frommuscle of WTmice (Fig. 6b). It is
important to point out that mitochondria were isolated in the
presence of substrate (pyruvate and malate), which can main-
tain a high protonic potential. Indeed, Azzu et al. (50) previ-
ously reported that maintenance of a high protonic potential in
isolated mitochondria is required to properly measure leaks
through UCP3. Leak was significantly increased and decreased
in WT muscle mitochondria by subsequent treatments with
H2O2 and diamide, respectively (Fig. 6b). H2O2 and diamide
effects were absent in muscle mitochondria collected from
UCP3�/� mice. The elevated leak in WT mitochondria
remained even when mitochondria were treated with CAT,
thus indicating that ANT is not responsible for the differences
observed (supplemental Fig. S5D).
Next, we tested the glutathionylation status of UCP3. For

this, we treated freshly isolated mitochondria with BioGEE, a
membrane-permeable glutathione analog that tags glutathio-
nylation sites with biotin. The biotinylated protein can then be
isolated for immunoblot analysis. A higher amount of BioGEE
binding indicates that there are more free glutathionylation
sites available for BioGEEmodification, i.e. a lower endogenous
level of glutathionylation. More BioGEE-tagged UCP3 was
enriched from Grx2�/� than WT muscle mitochondria (Fig.
6c), indicating a lower endogenous UCP3 glutathionylation in
Grx2�/� muscle mitochondria. No UCP3 was detected or
enriched from liver mitochondria. We confirmed these obser-
vations by immunofluorescent staining for both UCP3 (green)
and BioGEE-tagged proteins (red) in gastrocnemius muscle
sections. A combination of red and green fluorescence provides
yellow fluorescence indicating co-localization of UCP3 anti-
body and BioGEE. Thus, more yellow fluorescence indicates

FIGURE 5. Impact of Grx2�/� on bioenergetics of mitochondria from liver (a) and skeletal muscle (b). Bioenergetic determinations were performed with
the Seahorse XF24 Extracellular Flux Analyzer. Mitochondria (10 �g) were attached to the surface of Seahorse TC plates and then treated sequentially with ADP
(0.1 mM), oligomycin (oligo; 2.5 �g/ml) and FCCP (8 �M) to test state 3, state 4, and maximal respiration, respectively. % contribution of respiration to ATP
production was calculated by dividing state 4 respiration (proton leak-dependent) by state 3 respiration. Student’s t test, n � 4, mean � S.E. Pyr, pyruvate; Mal,
malate.
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that more UCP3 protein is deglutathionylated. More UCP3
stain was co-localized with BioGEE staining in gastrocnemius
sections fromGrx2�/� mice (Fig. 6d). Importantly, most of the
signal associated with the co-localization of both antibodies
was around the edges of the sections and possibly localized to
subsarcolemmal mitochondria (Fig. 6d). We also analyzed sec-
tions that were pretreated with NEM or DTT (see “Materials
and Methods”). Pretreatment with either NEM or DTT con-
firmed that changes in fluorescent staining were associated
with UCP3 glutathionylation state. Hence, there is decreased
glutathionylation of UCP3 in muscle from Grx2�/�.
Grx2 Is Required to Deactivate UCP3 Leak—The observa-

tions above indicate the following: 1) proton leak is higher in
muscle mitochondria from Grx2�/� mice; 2) these effects can
be reversed using glutathionylation catalysts, and 3) UCP3 glu-
tathionylation is much lower in Grx2 �/� thanWTmuscle.We
then questioned if there was a direct relationship between
Grx2�/� and UCP3 function. To do this we used WT and
UCP3�/� mouse primary myotubes transduced with either
scrambled RNA or short hairpin Grx2 (shGrx2) lentiviral par-
ticles. There was an �82 and �61% knockdown in WT and
UCP3�/� cells, respectively, following shGrx2 treatment (Fig.
7c). Grx2 knockdown inWT cells significantly increased state 4
respiration, which was readily suppressed by a subsequent
treatment with diamide (Fig. 7b). The observed increase in pro-
ton leak following Grx2 knockdown was absent in UCP3�/�

cells (Fig. 7b). These results support the idea that Grx2 directly
modulates proton leak through UCP3 by glutathionylation.

DISCUSSION

Regulation of protein function by glutathionylation is espe-
cially relevant to mitochondria because this organelle harbors
an environment that is conducive for reversible glutathionyla-
tion reactions (51). Numerous mitochondrial proteins, includ-
ing key TCA cycle enzymes, some of the respiratory complexes,
UCP2, UCP3, and ANT can be glutathionylated (52). Addition
of a bulky glutathionemoiety to these proteins alters their activ-
ities. In the mitochondrial matrix, Grx2 is the only enzyme
known to mediate (de)glutathionylation (33, 53). Just a handful
of mitochondrial proteins, including complex I and possibly
also �-ketoglutarate dehydrogenase, is known to be targeted by
Grx2 (46, 49). Previously, we showed that purified UCP3 can be
glutathionylated by Grx1 in vitro (22). Furthermore, we were
able to show that reversible glutathionylation of UCP3 is
required to modulate mitochondrial ROS production that can
have profound signaling effects (15).We andothers have shown
that UCP3 mitigates obesity and promotes fasting-induced
fatty acid oxidation (54, 55). Thus, given that glutathionylation
is an important covalent modification in mitochondria that is
controlled in part by Grx2, we aimed to determine whether
Grx2 is required to modulate mitochondrial function and con-
trol UCP3.
Here, we have identified Grx2 as the enzyme required to

inhibit UCP3 proton leak via glutathionylation. In Grx2�/�

muscle mitochondria, UCP3 was less glutathionylated as indi-
cated by BioGEE enrichment assays and immunohistochemis-
try, consistent with the observed increases in proton leak. The

FIGURE 6. Effect of H2O2 and diamide on mitochondrial proton leak. a, impact of successive H2O2 and diamide treatments on proton leak in mitochondria
isolated from muscle of WT and Grx2�/� mice. One-way analysis of variance with Fisher’s protected least significant difference post hoc test, n � 4, mean � S.E.
* and # correspond to comparisons with WT or Grx2�/� (oligomycin (oligo) conditions). b, impact of successive H2O2 (Per) and diamide (Dia) treatments on
proton leak in mitochondria isolated from muscle of WT and UCP3�/� mice. One-way analysis of variance with Fisher’s protected least significant difference
post hoc test, n � 4, mean � S.E. * and # correspond with comparisons to WT or UCP3�/� (oligomycin conditions). c, Grx2 is required to glutathionylate UCP3.
Mitochondria were treated with BioGEE, and proteins were immunoprecipitated and then tested for UCP3 by immunoblot. d, visualization of UCP3 glutathio-
nylation status by immunofluorescent microscopy. Gastrocnemius muscle sections were fixed and treated with antibodies directed against UCP3 (green) and
BioGEE (red). Co-localization of both stains provides a yellow fluorescence. Preincubation in NEM or DTT were used as controls. Scale bar, 10 �m.
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importance of Grx2 in modulating UCP3 leak was confirmed
using primarymyotubes fromWT andUCP3�/� mice. Indeed,
knockdownofGrx2 inWTprimarymyotubes increased proton
leak, although no effect was observed in myotubes from
UCP3�/� mice. We also performed functional determinations
on isolated mitochondria using a novel multiwell plate
approach to ascertain if the increased proton leak in Grx2�/�

muscle mitochondria could be further stimulated by H2O2
and/or reversed by diamide. Prior to diamide treatment, mito-
chondria under state 4 respiratory conditions were acutely
treated with 10 �M H2O2. Intriguingly, H2O2 increased leak in
WT mitochondria to levels found in Grx2�/� muscle mito-
chondria, consistent with the conclusion that UCP3 leak in
Grx2�/� is fully activated.When similar experiments were per-
formed onmuscle mitochondria fromWT andUCP3�/� mice,
H2O2 and diamide activated and impeded the leak, respectively,
only in mitochondrial preparations fromWTmice, which con-
firmed our previous observations (22). From these observa-
tions, we can conclude that Grx2 is required to turn off UCP3-
mediated proton leak through glutathionylation. However, the
mechanism of ROS-mediatedUCP3 activation remains elusive.
We have previously observed that ROS-induced deglutathio-

nylation of UCP3 requires a cellular/mitochondrial environ-
ment because this reaction does not proceed in vitrowith puri-
fied UCP3. This led us to propose in previous publications that
ROS may activate a yet to be identified enzyme that activates
UCP3 through deglutathionylation (see Introduction). How-

ever, it is also possible that ROS may actually oxidize UCP3
thiols to sulfenic acid moieties to activate proton conductance.
In this case, glutathionylation may block ROS-mediated thiol
oxidation and activation of leak. It should be noted that leak
through ANT was also increased in Grx2�/� skeletal muscle
mitochondria suggesting that this protein may also be targeted
byGrx2 (56). This increase in the CAT-sensitive leak could also
be associatedwith the increase inANTprotein levels. However,
despite inhibition of ANT with CAT, the leak was still elevated
in Grx2�/�, indicating the contributions of both UCP3 and
ANT to leak inGrx2�/�musclemitochondria. Intriguingly, the
increase in proton leak in muscle mitochondria did not com-
promise mitochondrial ATP production. It is important to
point out however that Grx2 is not the first enzyme reported to
interact with UCP3. For instance, UCP3 protein is turned over
by proteosomal degradation that requires ubiquitination (57).
In regard to redox biology, Trx2 has been found to interact with
the N terminus of UCP3 in the intermembrane space (58). It
was demonstrated that the Trx2-UCP3 complex is required to
lower mitochondrial ROS emission. To our knowledge, the
interaction between Trx2 and UCP3 is the first evidence show-
ing that UCP3 actually has binding partners. Intriguingly how-
ever, in regard to redox signaling, Trx2 fulfills different roles
than Grx2 because Trx2 preferentially reduces intra- or inter-
molecular disulfide bridges instead of mediating glutathionyla-
tion reactions. Indeed, we observed no compensatory increases
in Trx2 expression supporting the divergence in Trx2 andGrx2

FIGURE 7. Grx2 is required to modulate proton leak through UCP3 in intact skeletal muscle cells. Primary myotubes from WT or UCP3�/� mice were
transduced with shGrx2 lentivirus to knock down Grx2. Scrambled shRNA served as a control. a, oxygen consumption trace showing the bioenergetic
responses of WT and UCP3�/� primary myotubes transduced with scrambled or shGrx2 lentiviral particles. O, oligomycin; D, diamide; F, FCCP; A, antimycin A.
b, Grx2 knockdown increases proton leak in primary WT but not UCP3�/� myotubes. Student’s t test, n � 4, mean � S.E. c, immunoblot for UCP3 and Grx2 in
WT and UCP3�/� myotubes knocked down for Grx2. SDH, succinate dehydrogenase.
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in redox signaling. However, this does not diminish the impor-
tance of Trx2 in the regulation of UCP3. In fact, it would seem
that UCP3 serves as a hub for redox regulation because of the
following: 1) prominent thiol-metabolizing enzymes, namely
Grx2 and Trx2, interact with UCP3; 2) UCP3 plays an impor-
tant role in limiting mitochondrial ROS emission (ROS levels
have a direct effect on mitochondrial thiol homeostasis).
The effects of Grx2�/� in liver mitochondria were in stark

contrast to those in muscle mitochondria. Indeed, oxidative
phosphorylation and aerobic ATP production were decreased
in livermitochondria; this was accompanied by decreased com-
plex I activity and TCA cycle flux and increased mitochondrial
ROS emission. Incubation of mitochondrial extracts from
Grx2�/� liver in DTT, which reverses glutathionylation, did
lower mitochondrial ROS production but did not restore com-
plex I activity. It is possible that complex I may have been deac-
tivated by the increase in ROS. Oxidation of key thiol residues
on the 75-kDa subunit of complex I has been reported to deac-
tivate the respiratory complex (59). It is important to note how-
ever that despite the increase in ROS production in Grx2�/�

liver mitochondria, no oxidative damage (as assessed by His-
HNE protein adducts) was recorded. This result may seem
inconsistent with the elevation in GSSG levels; however, liver
mitochondria retained high GSH levels, and there were no
compensatory increases in antioxidative enzymes. Thus, we
can conclude that the observedmetabolic changes appear to be
due to the lack of Grx2, rather than oxidative damage. Thus,
this mouse model effectively illustrates the importance of Grx2
in the regulation of mitochondrial metabolism in liver. Because
UCP2 and -3 are not expressed in liver parenchyma, it is possi-
ble that the increase in leak is due to other proton-conducting
proteins that are modulated by Grx2-mediated (de)glutathio-
nylation events.
It has been known for some time that proteins can be cova-

lently modified by glutathione (60) and that this reaction can
potentially regulate metabolism and other processes (61, 62).
After several decades, it is now well appreciated that there are
two classes of glutathionylation reactions, enzymatic and non-
enzymatic. Both reaction types are dictated by the 2GSH/GSSG
redox pair, and the amount of ROS being produced, which not
only influences the redox state of 2GSH/GSSG but also renders
thiols more amenable for glutathionylation. However, the true
nature of these reactions and how they regulate cellular pro-
cesses still remains elusive. In fact, the identity of the thiol
transferase first described byMannervik andAxelsson (31) (see
Introduction) was not identified until the mid-1990s (in 1995,
Mieyal andChock first suggested that glutaredoxinwas respon-
sible for catalyzing glutathionylation reactions (63)). What
remains clear however is that glutathionylation reactions can
be protein-specific and tightly regulated, and this can have a
profound impact on cell function. Nonenzymatic glutathiony-
lation reactions have been described to proceed via a multitude
of pathways (30, 64, 65), including ROS-mediated oxidation of
protein thiols to reactive sulfenic acids, generation of thiyl rad-
icals, or simply a thiol disulfide exchange between GSSG and a
protein thiol. However, for regulatory purposes, glutathionyla-
tion reactions must proceed enzymatically because these types
of reactions can be more rapid, efficient, and specific. Our

observations support the idea that glutathionylation is at least
in part mediated by Grx2, is site-specific, and cannot be medi-
ated simply by GSSG. Indeed, Grx2�/� elevated GSSG, but this
did not induce any overt changes in protein glutathionylation in
mitochondria. We also found that UCP3 is a target for Grx2,
which further argues that glutathionylation reactions can be
specific. However, detailed analysis of the mitochondrial pro-
teome from Grx2�/� mice is required because we cannot fully
account for all the bioenergetic changes in liver and muscle
mitochondria. Grx2�/� did alter glutathione homeostasis in
both liver and muscle mitochondria. Furthermore, in liver
mitochondria Grx2�/� also significantly increased the Eh of
2GSH/GSSG, which could account for the observed effect on
liver mitochondria. Intriguingly, circulating GSH and GSSG
levels were significantly decreased in Grx2�/� mice indicating
either a decreased propensity to expel GSH into blood or
enhanced glutathione uptake from blood. Because of the
increase in total glutathione in themitochondrial environment,
the latter rather than the former is most likely. Thus, Grx2�/�

alters glutathione homeostasis but not enough to induce oxida-
tive damage or uncontrolled hyper-glutathionylation.
Reversible glutathionylation of proteins has mostly been

investigated in the cytosol where it participates in the modula-
tion of cell signaling in conjunction with phosphorylation cas-
cades (66). In mitochondria, the regulatory role of glutathiony-
lation is less well studied, but with the observation that
glutathionylation reactions can be mediated, at least in part, by
Grx2, it is becomingmore appreciated. Using the newGrx2�/�

mouse model and a rapid and sensitive plate-based approach
for measurement of mitochondrial energetics in different sam-
ples simultaneously, we investigated if Grx2 was required to
control proton leak through UCP3. Along with our focused
experiments onUCP3, we alsomeasured the role of Grx2 in the
regulation of mitochondrial metabolism overall in liver and
skeletal muscle. Our results indicate that Grx2 plays an impor-
tant role in regulating mitochondrial metabolism, but the reg-
ulatory role is tissue-dependent. Collectively, we have identi-
fied Grx2 as the enzyme responsible for regulating proton leak
through UCP3 by glutathionylation. Specifically, by conjugat-
ing glutathione to UCP3, Grx2 inhibits proton leak in skeletal
muscle mitochondria. What remains elusive however is how
Grx2 actually conjugates glutathione to UCP3 and how ROS
subsequently remove this moiety. However, based on our find-
ings and work published by others (41, 44), it is increasingly
clear that redox circuits govern important mitochondrial pro-
cesses, including energetics, by eliciting their glutathionylation
and deglutathionylation.
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