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NMR Metabolomics Analysis of Parkinson's Disease

Shulei Lei1 and Robert Powers1,*

Robert Powers: rpowers3@unl.edu
1University of Nebraska-Lincoln, Department of Chemistry, 722 Hamilton Hall, Lincoln, NE 
68588-0304

Abstract

Parkinson's disease (PD) is a neurodegenerative disease, which is characterized by progressive 

death of dopaminergic neurons in the substantia nigra pars compacta. Although mitochondrial 

dysfunction and oxidative stress are linked to PD pathogenesis, its etiology and pathology remain 

to be elucidated. Metabolomics investigates metabolite changes in biofluids, cell lysates, tissues 

and tumors in order to correlate these metabolomic changes to a disease state. Thus, the 

application of metabolomics to investigate PD provides a systematic approach to understand the 

pathology of PD, to identify disease biomarkers, and to complement genomics, transcriptomics 

and proteomics studies. This review will examine current research into PD mechanisms with a 

focus on mitochondrial dysfunction and oxidative stress. Neurotoxin-based PD animal models and 

the rationale for metabolomics studies in PD will also be discussed. The review will also explore 

the potential of NMR metabolomics to address important issues related to PD treatment and 

diagnosis.
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1. Introduction

PD is the second most common neurodegenerative disorder behind Alzheimer's disease 

[1-3]. In 2005, 4.1 to 4.6 million people were estimated to have PD worldwide, with a high 

prevalence of PD in the United States [4]. Aging is one of the strongest risk factors 

associated with PD (Figure 1a) [5, 6]. Correspondingly, as the world population continues to 

age, the number of PD cases is predicted to double by 2030, imposing an increasing burden 

on the healthcare systems in many countries. In the U.S.A. alone, the annual economic cost 

of Parkinson's disease is estimated at $10.8 billion [7]. As a result, maintenance of 

functional independence at advanced ages has become a critical public health priority [8].

PD patients suffer from a range of movement disorders (bradykinesia, postural instability, 

rigidity, tremors) collectively known as Parkinsonism. Parkinsonism is mainly caused by the 

degeneration of dopaminergic neurons (DAergic) in the substantia nigra pars compacta 
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(SNpc) and the resulting depletion in dopamine. However, a large proportion of PD patients 

also suffer from other non-motor symptoms (anosmia, autonomic dysfunction, 

hallucinations, sleep disorders) [9]; along with neuronal loss in many other brain regions. 

This can occur before or after the loss of DAergic neurons [10, 11]. Currently, the diagnosis 

of PD depends primarily on the observation of motor symptoms in a clinical setting. 

Unfortunately, the rate of misdiagnosis of PD may be upwards of 50% [12]. This is due to 

the absence of symptoms in the early stages of the disease, and a variation of symptoms 

among individual patients [13]. There is also no cure for PD. Current treatments focus on 

addressing the symptoms and reducing the progression of the disease [14-17]. The standard 

treatment for PD consists of replacing dopamine with L-DOPA (Figure 2), a dopamine 

precursor [18]. Unfortunately, the effectiveness of L-DOPA declines as the disease 

progresses; leading to serious side-effects.

Despite decades of investigation, the PD mechanism of pathogenesis is still unknown and 

dopamine depletion may be merely a consequence of PD. Several studies have shown that 

proteinaceous inclusions (Lewy bodies and Lewy neuritis) are localized in different areas of 

a PD brain (Figure 1b) even before dopamine loss and Parkinsonism symptoms occur 

[19-21]. These proteinaceous inclusions are composed of lipids and several proteins, such as 

α-synuclein (PARK1) [22]. Correspondingly, current hypotheses for PD pathogenesis are 

based on protein misfolding and aggregation [23], mitochondrial dysfunction [24], or 

oxidative stress [25]. Initially, these pathogenesis routes were thought to work 

independently, but recent data strongly suggests they interact together to deplete dopamine 

[26].

In this review, we will briefly summarize current models and supportive evidence for the 

molecular mechanisms of PD, with a specific focus on mitochondrial dysfunction and 

oxidative stress. We will provide a background and rationale for the utility of metabolomics 

to investigate PD with a particular emphasis on the application of NMR-based 

metabolomics. Metabolomics has a tremendous potential to provide valuable insights into 

the etiopathogenesis of PD, to discover novel molecular targets for the treatment of PD, and 

to identify reliable and sensitive PD biomarkers. Biomarkers may play an important role in 

the early diagnosis of PD, in monitoring the progression of PD, and in determining the 

efficacy of therapeutic intervention. Metabolomics methodology and its application to PD 

will also be briefly described. The proper choice and handling of cellular and animal models 

are critical to a successful metabolomics study. Thus, the most commonly used animal PD 

models and their application to metabolomics will also be summarized.

2. Discussion

2.1. Risk Factors of PD

Studies on the etiology of PD have revealed multiple factors. In addition to aging, PD has 

been shown to have a genetic association [27], and a correlation with head trauma [28] and 

exposure to pesticides and herbicides (Figure 2) [29]. Specifically, PD has been associated 

with exposure to paraquat, carbamates, and organochlorines [30, 31]. Not surprisingly, the 

Midwest of the USA have a high prevalence of PD with Nebraska having the highest 

number of PD patients per capita [6]. A byproduct of a synthetic opioid (MPPP, 1-methyl-4-
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phenyl-4-propionoxypiperidine), 1-methyl 4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is 

chemically similar to paraquat and also results in PD-like motor symptoms and further 

supports an environmental cause of PD.

Additionally, there are genetic links that associate PD with pesticides and herbicides [32]. In 

fact, a recent study suggests that an environmental-genetic interaction plays a more 

important role in PD than do either genetic or environmental factors alone [33]. A genetic 

analysis of an Italian family [34] and a western Nebraska family [35] identified an 

association between the α-synuclein (PARK1) and leucine-rich repeat kinase 2 (LRRK2/

PARK8) genes and the development of both familial and sporadic PD. Similar genetic 

studies have identified mutations in the protein Parkin (PARK2) as the most common 

indicator of familial PD [36]. Other genetic studies have identified a correlation with PD for 

mutations in lysosomal protein glucocerebrosidase (GBA) [37], PTEN-induced putative 

kinase 1 (PINK1/PARK6) [38], and the DJ-1 protein (PARK7) [39]. The majority of PD 

cases are sporadic [1], where α-synuclein (PARK1) and leucine-rich repeat kinase 2 

(LRRK2/PARK8) are associated with autosomal-dominant forms of PD and Parkin 

(PARK2), PTEN-induced putative kinase 1 (PINK1/PARK6), DJ-1 protein (PARK7) are 

associated with autosomal recessive forms of PD [40].

Mutations in leucine-rich repeat kinase 2 (LRRK2/PARK8) usually results in mid-to-late 

onset PD with a slow disease progression through an unknown mechanism. 

Correspondingly, the neuropathology is generally inconsistent. Conversely, mutations in α-

synuclein (PARK1) often lead to early-onset PD with a rapid disease progression and the 

presence of Lewy bodies and α-synuclein (PARK1) fibrils. The mutation in GBA possibly 

leads to an increase in α-synuclein (PARK1) aggregation [41]. Parkin (PARK2) mutations 

results in juvenile and very early-onset PD that progresses very slowly. It causes neuronal 

loss and gliosis in the substantia nigra, but commonly lacks Lewy bodies. Indistinguishable 

clinical outcomes occur with mutations in PINK1 (PARK6) and DJ-1/PARK7. Importantly, 

mutations in Parkin (PARK2), PINK1 (PARK6), DJ-1 (PARK7) and exposure to pesticides 

and herbicides appear to alter redox balance leading to neuronal death [42]. Parkin (PARK2) 

is involved in protein ubiquitination and interacts with synphilin-1, which interacts with α-

synuclein (PARK1). DJ-1/PARK7 has an unknown function, but has been associated with a 

protective role related to oxidative stress. PINK1 (PARK6) is upstream of Parkin (PARK2) 

in a pathway associated with eliminating damaged mitochondria [38, 43, 44]. The 

mitochondria are a major provider of cellular energy and also play a key role in cell death 

(apoptosis) [45, 46]. The brain has the highest energy requirement of all organs and, 

correspondingly, neuronal mitochondria are subjected to high levels of oxidative stress and 

potential damage that may lead to cell death. As a result, mitochondrial quality control 

pathways have evolved to maintain molecular function or eliminate a dysfunctional 

organelle, where the impairment of these processes is associated with PD [43, 44].

2.2. Mitochondrial dysfunction and oxidative stress in PD

Oxidative stress is caused by a cumulative production of free radicals, typically known as 

reactive oxygen species (ROS) and reactive nitrogen species (RNS). Elevated level of ROS 

may result in a significant damage to DNA, proteins and lipids [47]. Brain tissues are more 
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susceptible to oxidative stress due to (i) a low concentration of antioxidant enzymes and a 

low ability to maintain energy homeostasis [48], (ii) a high consumption of the total 

available oxygen [49, 50], (iii) a high percentage of polyunsaturated fatty acids [51], and (iv) 

the increased presence of redox metals (iron, copper and zinc) in an aging brain [52]. 

Among many sources of free radical production, metal-catalyzed reactions and 

mitochondria-catalyzed electron transport reactions are two potential sources of PD-related 

ROS [53]. It is thought that 95-98% of ROS generated during aerobic metabolism are from 

mitochondrial activity [54]. As a result, mitochondria contain an extensive antioxidant 

defense system, where a damaged or dysfunctional mitochondrion leads to an increase in 

ROS [55].

Dopaminergic neurons in the substantia nigra pars compacta region are also very prone to 

oxidative damage because of (i) higher iron and copper levels in this region of the brain, 

higher activity of monoamine oxidase, and aberrant oxidation of dopamine that all lead to a 

higher intrinsic ROS, (ii) higher sensitivity to ROS signaling that induces apoptosis, (iii) 

lower mitochondrial mass, lower ATP levels and dysfunctional mitochondria, (iv) readily 

activated mitochondrial permeability transition (MPT) pore by dopamine metabolite that 

leads to cell death, (v) deficient DNA damage repair, (vi) glial dysfunction, (vii) calcium 

dysregulation and glutamate hyperactivity, and (viii) the large size of the neurons and higher 

demand for energy [56, 57].

Mitochondria were implicated in PD by two cases involving young drug users taking illicit 

narcotics contaminated with MPTP [58]. Later studies implicated the MPP+ (1-methyl-4-

phenylpyridinium) metabolite of MPTP (Figure 2) as the cause of Parkinsonism in these 

designer-drug abusers. MPP+ inhibits complex I of the mitochondrial electron-transport 

chain [59]. This model has been supported by animal studies, in which the chronic infusion 

of rotenone [60] (another complex-I inhibitor) or MPTP [61] results in a clinical 

parkinsonian phenotype, and pathological nigrostriatal dopamine degeneration with 

cytoplasmic inclusions immunoreactive for α-synuclein (PARK1) and ubiquitin [62]. 

Oxidative stress is the probable mechanism of toxicity for complex-I inhibitors [63]. 

Complex-I inhibition and oxidative stress were shown to be relevant to naturally occurring 

PD when complex-I deficiency and glutathione depletion were found in the substantia nigra 

of patients with idiopathic PD, and in patients with pre-symptomatic PD [64]. In addition, 

many of the genes associated with PD also have a functional role in the mitochondria. Choi 

et al. argues that mitochondrial complex I inhibition is not required for dopaminergic neuron 

death induced by retenone, MPP+, or paraquat. A mouse strain lacking functional Ndufs4, 

which abolishes complex I activity in midbrain mesencephalic neurons cultured from 

embryonic day 14 mice, showed no effect on the survival of dopaminergic neurons in 

culture [65].

2.3. PD animal models

Animal models are essential tools to study etiology, pathogenesis, and the molecular 

mechanisms of PD in vivo. Over the past decades, various animal models have been 

developed for PD research [66-68]. These animal models can be generally categorized into 

toxin-based models and genetic models.
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Toxin-based models typically rely on dosing animals with MPTP, 6-hydroxydopamine (6-

OHDA), rotenone or paraquat. Given the well-known cases of PD-like motor symptoms 

induced by MPTP associated drugs, MPTP has been widely used as a model for PD. 

Administration of MPTP mimics human PD in many aspects, such as selective lesion of 

substrantia nigra dopaminergic neurons and the presence of α-synuclein (PARK1) 

aggregates. Unlike PD, the MPTP animal model is an acute, non-progressive disease. The 

neuron toxin 6-OHDA has the longest history of use as a PD model and has been commonly 

used to degenerate central catecholaminergic projections, including the nigrostriatal system 

[69, 70]. Although dopamine depletion, nigral dopamine cell loss, and neurobehavioral 

deficits have been observed with the 6-OHDA model, it does not mimic all of the clinical 

features of PD. The 6-OHDA animal model does not form Lewy bodies, and it does not 

affect other PD involved brain regions, such as olfactory structures, lower brain stem areas, 

or locus coeruleus [71]. The rotenone animal model is the first to link an environmental 

toxin to PD development [72, 73]. Rotenone administration produces hallmark traits of PD, 

such as nigrostriatal dopamine neurons damage, α-synuclein (PARK1) aggregation, Lewy-

like body formation, oxidative stress, and gastrointestinal problems [74].

A number of genetic animal models have been created by mutating PD associated genes, 

such as, α-synuclein (PARK1) [75, 76], LRRK2 (PARK8) [77, 78], PINK1 (PARK6), 

Parkin (PARK2) [79, 80], DJ-1 (PARK7) [81] and ubiquitin C-terminal hydrolase-L1 

(PARK5) [82]. Interestingly, these genetic models do not present PD related neuronal 

degeneration, but they provide systems for investigating PD pathogenesis, for evaluating 

potential therapeutic targets, and to assist in the drug discovery process.

2.4. The rationale for PD metabolomics studies

Metabolomics refers to the study of the metabolome, the collection of small molecules, such 

as amino acids, carbohydrates and lipids, present in cells, tissues, organs, or biological fluids 

[83-89]. Metabolomics combines analytical techniques (IR, NMR, MS, etc.) [85, 90, 91] 

with multivariate statistical methods [92] to analyze metabolite concentration changes in a 

high throughput manner. Metabolomics is a relatively new omics discipline that is 

complementary to genomics and proteomics, and an important addition to systems biology 

[86, 93-95]. The identities, concentrations, and fluxes of the metabolites within a 

metabolome are a direct consequence of protein activity, and, importantly, change in 

response to the environment (disease state, drug treatment, nutrient availability, genetic 

modification, etc.). Thus, the metabolome reflects the state of a cell or biological system and 

can provide an overall picture of how the system responds to a specific perturbation. Thus, 

metabolomics is routinely used to define phenotypes [96-98]. Conversely, a change in the 

expression level of a gene or protein from a genomics or proteomics study is not necessarily 

correlated with a change in protein activity, or directly linked to a disease state. In addition 

to studying disease pathogenesis, metabolomics is used in drug discovery to identify 

chemical leads [99] and novel therapeutic targets [100]. Metabolomics is also a powerful 

tool for the identification of biomarkers for early disease detection, for monitoring disease 

progression, and the response to therapy [83]. Biomarkers have been identified from a 

variety of bodily fluids that include cerebrospinal fluid (CSF) by NMR imaging and GC-MS 

[101], feces by NMR [102], saliva by CE-MS [103], serum by NMR [104], and urine by 
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NMR [105]. Metabolomics has been applied to a wide-variety of human diseases including 

cardiovascular diseases [106], diabetes [107], and various types of cancer [108]. 

Metabolomics has also been successfully applied to investigate central nervous system 

disorders such as Alzheimer's Disease [109], Huntington's disease [110], motor neuron 

disease [111], and schizophrenia [112]. Paige et al. reported an alteration in several 

metabolites between depressed patients and controls by performing an MS-based 

metabolomics analysis of blood plasma samples [113]. Given that PD pathology may be 

closely related to protein misfolding and aggregation, mitochondrial dysfunction and 

oxidative stress, metabolomic changes would also be expected for PD.

PD is a complex and heterogeneous disease where metabolomics holds the promise of 

identifying specific disease-related networks to enhance our understanding of the multiple 

interrelated pathways of pathogenesis. This, in turn, may lead to the identification of novel 

therapeutic targets and the development of new treatments. Moreover, the application of 

metabolomics may result in the discovery of PD biomarkers for diagnosing the disease. 

Validated PD biomarkers would aid in the early detection of the disease and address the high 

misdiagnosis rate for PD [114, 115]. PD biomarkers would also allow for the accurate 

evaluation of disease progression, which would be invaluable in assessing the efficacy of a 

patient's treatment [116].

2.5. NMR-based metabolomics methodology

Due to the large size and diversity in the chemical and physical properties of the 

metabolome [117, 118], a range of analytical techniques have been applied to characterize 

metabolites present in a biological sample. Common analytical techniques used for 

metabolomics include NMR [85], GC-MS [119], LC-MS [120] and LC-electrochemistry 

array metabolomics platforms (LCECA) [121]. These analytical techniques have both 

advantages and limitations; and as a result are complementary to each other. Thus, it is 

common to integrate multiple techniques in a metabolomics study [122-124]. NMR 

spectroscopy has been used to investigate a wide range of diseases such as cancers 

[125-127], aging [128], heart disease [129], polycystic ovary syndrome [130, 131], and 

diabetes [132]. Correspondingly, NMR has some unique advantages that include: minimal 

sample handling, high reproducibility, easy quantitation, non-destructive, structural 

determination, and high throughput [87, 133-136]. Although we only discuss NMR-based 

methodologies in this review, there is a common work flow that is independent of the 

analytical method employed. This work flow is comprised of sample collection, sample 

preparation, data processing and analysis, and metabolite pathway identification (Figure 3). 

However, the experimental details for these processes (sample preparation, data analysis, 

etc.) still need to be optimized for the specific analytical technique utilized.

Various types of biological samples can be analyzed by NMR which includes cell extracts, 

tissue extracts, and numerous biofluids. Moreover, intact tissues can be analyzed by using 

high resolution magic angle spinning magnetic resonance spectroscopy (HR MAS) after a 

simple sample preparation procedure [137]. For a typical PD in vitro study, intracellular 

metabolites are acquired by quenching and lysing neuron cells, followed by extracting the 

metabolome. Cerebrospinal fluid (CSF) is a preferred choice for a PD in vivo study. 
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However, there are associated risks with obtaining CSF from patients that diminishes its 

value as a routine diagnostic tool [138, 139]. Instead, easily accessible biofluids (plasma, 

serum, urine) provide a safer alternative. Procedures for preparing metabolomic samples 

from mammalian cell lines and biofluids have been extensively reviewed [88, 133, 

140-164].

The metabolome is a complex heterogeneous collection of compounds with a diversity of 

physiochemical properties, where specific metabolite stability and enzymatic turn-over rates 

are highly variable [161, 162]. It is essential that the extracted or collected metabolome 

reflects the true state of the system and is biologically relevant. In effect, changes to the 

metabolome should not be introduced by sample handling. Thus, a reliable sampling 

protocol is critical to a successful metabolomics study, where rapid sample collection and 

analysis are important [163]. For example, rapid quenching of cells with cold methanol 

avoids the more time consuming and physiological stressful trypsinization applied in 

conventional sampling methods [164]. Residual enzymatic activity or induction of stress 

response pathways (e.g. apoptosis) from trypsinization would alter the metabolome. Sample 

preparation is considerably simpler for biofluids. The sample is filtered or centrifuged; and 

then spiked with a deuterated phosphate buffer containing a preservative or anticoagulant 

[88, 89].

The application of NMR for the analysis of metabolomics samples has also been extensively 

reviewed [83-85, 87, 134, 165-170]. A typical one-dimensional (1D) 1H NMR spectrum can 

be acquired in a few minutes using an automated high throughput protocol [171]. The 

resulting 1D 1H NMR spectrum provides a global “fingerprint” or “snap-shot” of the 

metabolome for each sample. Thus, the 1D 1H NMR spectrum is routinely used to 

characterize a particular class (healthy or diseased, control or drug treated, etc.) and to 

identify the global features that distinguish between the classes or groups. This initial global 

analysis of the metabolome doesn't rely on identifying changes to individual metabolites (or 

assigning the highly complex NMR spectrum). Instead, multivariate statistical methods 

(principal component analysis, PCA; partial least squares, PLS; orthogonal projection to 

latent structures, OPLS) are applied to identify the spectral features that distinguish between 

the classes or groups [92, 172-175]. In general, the outcome of PCA, PLS, or OPLS is a 

scores plot, where each 1D 1H NMR spectrum is reduced to a single point in the plot (Figure 

4). Simply, the NMR spectrum consisting of a range of chemical shifts (ppm) and peak 

intensities is transformed into a multidimensional Cartesian space, where each axis (V1, V2, 

V3, … Vn) corresponds to a chemical shift and the value along each axis is the intensity of 

the NMR peak at that given chemical shift. If the NMR spectrum was collected with 32K 

data points there would be 32K axes. PCA then identifies a principal component vector 

 within this multidimensional space corresponding to the largest variation in the data 

set. A second vector  orthogonal to  is identified that corresponds to the next 

largest variation in the data set. Each successive vector describes a diminishing amount of 

the variability of the data set, where most of the variability is described by the first two or 

three principal components. The PC1 and PC2 scores (unitless values) are the individual fit 

of each NMR spectrum to  and , respectively, and are usually presented in a 2D 
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plot. The relative clustering of the NMR spectra in the scores plot identifies the relative 

similarity or differences between each spectrum, and correspondingly, their metabolomes. In 

essence, PCA, PLS, or OPLS is used to determine if a statistically significant difference in 

the metabolome has occurred as a result of the applied environmental stress (disease state, 

drug treatment, genetic modification, etc.). To be clear, PCA, PLS, and OPLS do not 

provide a direct analysis of the statistical significance of group separation in a scores plot. 

Instead, other utilities, such as a Mahalanobis distance metric and T2 and F distributions are 

required to return p values for quantitation of PCA, PLS, or OPLS group separations [176].

Multivariate statistical methods are classified into supervised (PLS, OPLS) and 

unsupervised (PCA) approaches. PCA [172, 173] is the most popular unsupervised 

algorithm routinely used in metabolomics. Importantly, PCA provides an unbiased view of 

the clustering patterns for all the conditions under investigation, and should be routinely 

employed to verify that a spectral difference actually exists. PCA directly analyzes the NMR 

spectra without any user intervention. If a true difference exists between the various classes, 

then all members within a class will cluster together and separate from the other classes in 

the resulting PCA scores plot. This occurs without PCA having any prior knowledge of the 

class membership for each NMR spectrum. In principal, PCA can actually be used to 

identify the class membership for each NMR spectrum. Thus, PCA can also be used as a 

quality control to identify outliers [177]. Of course, this assumes that the samples and 

spectra were not biased by experimental procedures or data processing.

PLS and OPLS are commonly used supervised methods, [174, 175]. The major difference 

between PCA and PLS/OPLS is that class membership is defined prior to PLS or OPLS. 

Thus, OPLS and PLS are inherently biased techniques since class designations are explicitly 

incorporated into the analysis. In effect, PLS/OPLS will only identify spectral differences 

that correlate with the manually defined class designations. This occurs regardless of the 

significance of these differences compared to other spectral features. As a result, an OPLS 

or PLS scores plot will always show a separation based on the manually defined class 

designation, even for completely random data [178]. Thus, OPLS and PLS can easily be 

misleading and requires validation of the model.

Cross validation and permutation testing [179] and CV-ANOVA [180] are routinely 

employed to validate OPLS and PLS models. For cross validation, the PLS/OPLS models 

are generated with a subset of the data, where the quality of the fit of the held-out data is 

measured against the model. The process is repeated numerous times, where different 

subsets of the data are held-out. The resulting quality assessment (Q2) statistic has no 

standard of comparison besides its theoretical maximum of 1 or an empirically acceptable 

value of ≥ 0.4 [179]. Unfortunately, a large Q2 value is still possible for an invalid model. 

The R2 values provide a measure of the fit of the data to the model, while it is not a measure 

of cross-validation an R2 ≫ Q2 indicates a possible over-fitting of the model. For 

permutation, the class designations are randomly changed and the quality of the model (Q2) 

is assessed and compared against the model with the correct classification. Again, the 

process is repeated numerous times where the correct classification is expected to yield the 

largest Q2 value. Also, a p value can be calculated based on the distribution of Q2 values for 

the incorrect class designations relative to the Q2 value for the correct model. Similarly, CV-
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ANOVA provides a p value for the PLS/OPLS model based on the cross-validated 

predictive residuals of a model as a basis for hypothesis testing.

Supervised analyses does provide valuable clues on biomarkers - the metabolites that 

experienced the largest change and primarily contribute to the class distinction in the PLS or 

OPLS scores plot. These potential biomarkers can then be targeted for further investigation. 

Potential biomarkers are typically identified from an S-plot [181] generated by the PLS or 

OPLS model (Figure 3). Basically, the extreme regions of the S-plot identify the spectral 

features (chemical shifts, metabolites) that significantly contribute to the class distinctions 

observed in the scores plot. A number of other data analysis methods are also used to 

analyze NMR metabolomics spectra [182], a few select examples include self-organizing 

map (SOM) [183, 184] support vector machines (SVM) [185, 186], and hierarchical 

clustering (HCA) [187].

The primary difference between PLS and OPLS is that OPLS attempts to maximize the 

separation between the classes along the X-axis with unrelated (orthogonal) variations along 

the Y-axis. As a result, OPLS minimizes within class variations. To be clear, any separation 

along the Y-axis in an OPLS scores plot is not correlated with the manually defined class 

designations. In other words, for OPLS a corresponding PLS scores plot is rotated to align 

the maximal separation between the classes along the X-axis.

Comparable to sample preparation, multivariate statistical methods are also very sensitive to 

the quality of the input data, where the results can be biased by data handling and processing 

protocols [178]. Basically, PCA, OPLS or PLS will highlight any spectral difference 

regardless of the source. Baseline distortions, incorrect phasing, chemical shift referencing 

errors, chemical shift and line shape perturbations, and irrelevant variations in spectral 

intensities due to instrument performance or sample preparations are all common NMR 

issues. NMR chemical shifts are very sensitive to subtle changes in temperature, pH, ionic 

strength, and instrument stability. Therefore, it is important to implement a uniform data 

pre-processing protocol that includes spectral alignment, binning, data normalization and 

data scaling [92]. The spectra can be aligned by using an internal standard like TMSP-d4 or 

computationally aligned using a variety of methods [188-193]. Importantly, an internal 

standard can only correct for a uniform deviation in chemical shifts that may arise between 

replicate samples. For example, chemical shifts generally change linearly with temperature, 

but a subtle variation in pH may result in large chemical shifts for some peaks, while others 

are essentially unchanged. Also, the direction of chemical shift change due to pH differences 

may vary between peaks. NMR spectra are also commonly binned to minimize minor 

variations in peak position and peak shape, and to filter out noise. The NMR spectrum is 

divided into “bins” having typical widths of 0.04 ppm, where the total peak intensity within 

each bin is integrated. “Intelligent” or “adaptive” binning uses variable bin sizes to avoid 

dividing peaks between multiple bins [194-197]. Since noise is biologically irrelevant and 

has been shown to bias PCA and PLS, noise regions should be removed prior to any 

multivariate statistical analysis [198, 199]. In addition to these spectral variations, the total 

signal intensity may vary across a set of NMR spectra due to differences in the number of 

cells, biofluid volume, or tissue size per sample. Thus, the absolute NMR peak intensities 

need to be normalized to a common reference or standard. Common normalization 
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techniques include normalization to the total signal intensity, probabilistic quotient 

normalization, contrast normalization and quantile normalization [200]. Normalization may 

also rely on an internal TMSP-d4 standard or an external standard such as cell culture 

optical density or protein content [201, 202]. Finally, the data needs to be scaled in order to 

avoid the multivariate analysis from only focusing on changes to the most intense peaks 

[201]. Effectively, the disparity in intensities and variances between peaks needs to be 

minimized in order for changes in low or high concentrated metabolite to make equal 

contributions to the PCA, PLS, or OPLS model. A range of scaling methods have been 

described [201] that emphasize different features of the spectrum and have different 

advantages and disadvantages.

The primary application of 1D 1H NMR spectra is to characterize the global metabolomic 

changes. The large number of metabolites and the limited chemical shift dispersion in a 1D 

spectrum lead to severe peak overlap that makes metabolite identification very challenging. 

As a result, alternative methods have been developed or implemented to simplify metabolite 

identification. These approaches include 1D NMR methods such as selective total 

correlation spectroscopy (TOCSY) [203, 204], and statistical methods such as statistical 

total correlation spectroscopy (STOCSY) [205] and ratio analysis nuclear magnetic 

resonance spectroscopy (RANSY) [206]. In addition, two-dimensional (2D) NMR 

experiments routinely employed to characterize natural products (1H-13C heteronuclear 

single quantum correlation, HSQC; 2D 1H-1H TOCSY) are also used for metabolite 

identification [158]. The 2D NMR experiments significantly reduce peak overlap by 

dispersing the chemical shift information into two-dimensions. Importantly, these 

experiments also improve the accuracy of peak identification by providing chemical shift 

information for correlated nuclei, such as 13C-1H and 1H-1H pairs in the 2D 1H-13C HSQC 

and 2D 1H-1H TOCSY experiments, respectively. Unfortunately, these NMR experiments 

are significantly more time-consuming than the simpler 1D experiment, requiring upwards 

of hours to complete. Also, 13C-based NMR experiments require even longer acquisition 

times or the incorporation of 13C labeled metabolites because of the low natural abundance 

(1.1%) and sensitivity of 13C. However, the 2D 1H-13C HSQC experiment has a unique 

advantage when cells can be cultured with a 13C labeled carbon source. Only a subset of the 

metabolome is highlighted and the 13C label can be traced as it flows through specific 

metabolic pathways. Of course, this requires a judicious selection of the 13C-probe to 

monitor the appropriate metabolic pathways.

2.6. Metabolomics applied to PD

2.6.1. PD biomarker identification using the metabolome

2.6.1.1 Targeted metabolomics studies: An exciting potential of metabolomics is the 

identification of biomarkers to diagnose PD, to monitor disease progression, and to evaluate 

a patient's response to treatment. Thus, a primary goal of metabolomics is to identify or 

“discover” the specific metabolites significantly perturbed in response to a disease state. 

What are the metabolites that are biologically relevant or correlated with PD? Conversely, a 

traditional targeted approach follows changes to a few select metabolites based on prior 

knowledge or hypothesis. Correspondingly, targeted analysis has identified metabolite 

variations in CSF, blood and urine samples obtained from PD patients and animal models 
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[207-211]. For example, Ahmed et al. [207] evaluated 22 targeted metabolites in plasma 

samples obtained from 37 healthy controls and 43 drug-naïve PD patients by using 1D 1H 

NMR and multivariate analysis. The 22 metabolites were selected based on prior 

connections with PD as cited in the literature. Metabolites were identified using a 

combination of 2D COSY and TOCSY NMR experiments, and an NMR reference library 

for 292 metabolites to assign the chemical shifts observed in the 1D 1H NMR spectra.

These metabolites were shown to incur statistically significant changes (P < 0.05; ANOVA) 

in PD plasma samples. Of the 22 targeted metabolites, 17 metabolites were decreased and 5 

were elevated in PD patients (Figure 5a). The heat map depicts metabolite concentration 

differences between healthy controls and PD patients. The relative metabolite concentrations 

are indicated by a color gradient. Red indicates an increase in the average metabolite 

concentration and green a decrease. The metabolites with a decrease in concentration are 

suberate, methylmalonate, galactitol, citrate, malate, succinate, glycerol, isocitrate, 

ethanolamine, ascorbate, threonate, gluconate, acetate, trimethylamine, glutarate, 

methylamine and glucolate, while the five elevated metabolites are pyruvate, sorbitol, 

myoinositol, ethymalonate and propylene glycol. It is important to note that a typical heat 

map would normally contain all of the individual replicates instead of the group-wise 

average presented by Ahmed et al. By including all replicates, it would be possible to assess 

the within group variability and, critically, determine if all the patients from the diseased and 

normal groups cluster together. This would provide an important quality check to further 

substantiate the relevance of each of the 22 targeted metabolites to PD. Simply, is the 

metabolite uniformly increased or decreased across the 43 PD patients and 37 healthy 

controls? The data was also used to train an artificial neural network (ANN) for PD 

diagnosis. The resulting ANN had a classification accuracy of 97.14% and a 100% 

specificity. Importantly, this classification accuracy was computed on held-out samples.

A PLS 2D scores plot generated from the NMR data identified a clear separation between 

PD patients and healthy controls (Figure 5b). Unfortunately, no statistical validation of the 

class separation in the PLS scores plot was provided. Again, PLS is a supervised method, is 

inherently biased and will always show a separation in the scores plot regardless of the 

existence of any true separation between the classes [178]. The separation in the PLS scores 

plot is determined by the manually defined class designation, where the follow-up validation 

step determines if this observed separation is statistically significant. Thus, the PLS result is 

very difficult to interpret. Instead, PCA would have been a more appropriate choice to 

provide a direct assessment of the significance of the class separation between PD patients 

and healthy controls. PCA is unsupervised, does not use class designations, and, as a result, 

is inherently unbiased. Nevertheless, PLS is useful for identifying the spectral features and, 

correspondingly, the metabolites that primarily contribute to the class separation in the 

scores plot. Of course, any subsequent analysis is dependent on the reliability of the original 

PLS model.

Myoinositol, glucitol, citrate, acetate, and pyruvate were identified as the key contributors to 

the class separation in the PLS scores plot and, thus, may serve as potential biomarkers if the 

PLS model is valid. The observed increase in myoinositol may be indicative of a decrease in 

sciatic motor-nerve conduction velocity. It is well-established that diabetic neuropathy in 
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both humans and animal models is observed through the slowing of nerve conduction [212], 

which is also correlated with an increase in plasma and urine myoinositol levels [213, 214], 

and a corresponding decrease of myoinositol in nerve cells [215]. As a result, a complex 

metabolic mechanism has been proposed that correlates this myoinositol defect with the 

slowing of nerve conduction in diabetes [215]. This pathogenic scheme includes the polyols 

pathway, Na+-K+-ATPase activity, protein kinase C activity and phosphoinositide 

metabolism. The increase in sorbitol in PD may result from oxidative stress. The change in 

both myoinositol and sorbitol also implies a dysfunction of the polyols metabolic pathway 

and, correspondingly, a malfunctioning mitochondrion. Pyruvate (increased) is an end 

product of glycolysis that then enters the tricarboxylic acid cycle (TCA cycle) as acetyl-coA, 

where the other TCA metabolites citrate, acetate, succinate and malate were decreased. 

These results suggest an abnormal activity in pyruvate dehydrogenase. Interestingly, a 

differential down-regulation in the PDHB gene that has pyruvate dehydrogenase activity is 

also consistent with the observed increase in pyruvate levels and a decrease in TCA 

metabolites in the plasma of PD patients [207]. Correspondingly, Ahmed et al. suggests that 

pyruvate plasma levels may be a diagnostic for PD. Of course, given pyruvate's central role 

in metabolism, it is highly unlikely that pyruvate will be a unique biomarker for PD since 

pyruvate will probably be affected by other diseases besides PD.

Unfortunately, multiple discrepancies have been reported in the literature for metabolites 

associated with PD (Table 1). Importantly, the magnitude of these discrepancies can be 

misleading since different sets of metabolites were targeted by different studies. For 

instance, none of the 22 metabolites described above (Figure 5) and the focus of the study by 

Ahmed et al. [194] were selected by the four other studies summarized in Table 1. 

Nevertheless, there are still differences in the identity of the metabolites; and the magnitude 

and direction of the concentration changes do differ between some of these existing studies. 

These contradictory results may be attributed to the different analytical techniques (LCECA, 

GC-MS) employed by these studies. This also leads to variations in sample preparation 

procedures, storage conditions, and sample sizes. Moreover, differences in the selection of 

study participants (random, age/sex matched, family member inclusion), variations in the 

disease phenotype (various PD genetic variants), disease progression, and disease treatment 

all potentially play a major role in the inconsistency of the identified potential biomarkers. 

Furthermore, as discussed previously, there are multiple factors contributing to the etiology 

of PD that includes age, exposure to pesticides and herbicides, and head trauma. A different 

set of metabolite biomarkers are potentially associated with each etiology. Finally, a variety 

of other factors such as diet, life-style, and comorbidity could create a complex background 

and mask metabolites associated with PD. Correspondingly, the design of the study and how 

these various factors are controlled or normalized may explain or contribute to the observed 

discrepancies (Table 2).

As an illustration, Tohgi et al. [208] reported a dramatic reduction in the concentration of 

aspartate, glutamate and δ-aminobutyric acid (GABA), and a modest, but significant 

reduction of glycine in the CSF from PD patients compared to healthy controls. However, 

Jiménez-Jiménez et al. [209] demonstrated that PD patients had similar CSF glutamate, 

glutamine, asparagine and glycine levels. CSF GABA levels in PD patients were still higher 
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than in healthy controls. Alternatively, plasma glutamine, asparagine, and glycine levels 

were higher, aspartate levels were lower, and glutamate and GABA levels were similar in 

PD patients relative to healthy controls. The results of Jiménez-Jiménez et al. also showed 

an increase in CSF glycine levels and an increase in plasma aspartate and GABA levels after 

levodopa therapy; an increase in plasma glutamine levels after treatment with a dopamine 

agonist; and a decrease in CSF and plasma glutamate levels, and plasma aspartate levels 

after deprenyl treatment. Alternatively, Mally et al. [210] observed a highly significant 

decrease in glutamate levels, a slight decrease in alanine, lysine and isoleucine levels, and a 

significant increase in glutamine level in the CSF from PD patients. Mally et al. did observe 

a decrease in glutamate similar to Tohgi et al. Fewer metabolite changes were observed in 

the serum of PD patients, which included a decrease in the levels of arginine and 

methionine, and an increase in the levels of valine. Finally, Weisskopf et al. [211] observed 

a reduction in uric acid (a natural antioxidant) levels in the plasma of PD patients.

Importantly, the study design varied significantly across these four projects (Table 2). There 

was a large variation in the treatments received by PD patients. Tohgi et al. included PD 

patients that were either receiving L-DOPA or no treatment at all. Conversely, Jiménez-

Jiménez et al. included PD patients receiving a variety of treatments, Mally et al. only 

included PD patients that were not receiving a treatment and Weisskopf et al. did not report 

patient treatments. Similarly, there was a ten year range in the average age of the PD 

patients between the studies, a high of 71.5 for the Weisskopf et al. study and a low of 59.8 

for the Tohgi et al. study. A similar variation was observed in the number of participants. 

Weisskopf et al. included 84 PD patients and 165 healthy controls, while the Mally et al. 

study only included 10 PD patients and 10 healthy controls. The Weisskopf et al. study used 

matched case controls, where the others used random controls. Critically, the PD patients 

were not further classified into PD stage or phenotype in any of these studies.

2.6.1.2 Untargeted metabolomics studies: Untargeted metabolomics has been recently 

applied to PD in order to identify disease biomarkers and for the investigation of drug 

metabolites resulting from PD treatment [216-220]. Bogdanov et al. [216] identified 

approximately 2000 metabolites in plasma samples obtained from 25 healthy controls and 

66 PD patients by using high performance liquid chromatography coupled with 

electrochemical coulometric array detection (LCECA). A resulting PLS 2D scores plot 

showed a statistically significantly separation (P < 0.01 by permutation test) for the 

metabolic profiles between healthy and PD patients. The main metabolites contributing to 

the observed PLS separation was an increase in 8-hydroxydeoxyguanosine (8-OHdG) and a 

decrease in uric acid and glutathione in the plasma of PD patients. Johansen et al. [217] 

applied a similar metabolomics strategy, LCECA combined with multivariate data analysis, 

to assess changes in plasma samples obtained from PD patients with the G2019S LRRK2 

(PARK8) mutation. The study also enrolled PD patients without any known mutation 

(idiopathic) and asymptomatic family members of those PD patients with or without the 

G2019S LRRK2 (PARK8) mutations. Again, 2D scores plots from PLS depicted an obvious 

visual separation (no statistical significance was presented) between the metabolic profiles 

for LRRK2 (PARK8) mutation patients, idiopathic patients and control subjects. The 

metabolomic analysis also indicated an aberration in the purine pathway in PD. Michell et 
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al. [218] investigated the metabolic profiles of serum and urine samples from 23 female 

patients with Parkinson's disease (PD) and 23 age and sex-matched controls using GC-MS, 

PCA and PLS. Contrary to the Bogdanov et al. [216] and Johansen et al. [217] studies, PCA 

or PLS (P = 0.67; χ2 test) did not yield a separation between healthy and PD patients using 

serum samples. Furthermore, PCA did not yield a separation between healthy and PD 

patients using urine samples, but interestingly, PLS did (P < 0.01; χ2 test). Importantly, the 

separation in the 3D PLS scores plot could not be attributed to any particular metabolite. 

This suggests that only a subtle difference exists in the metabolome between healthy and PD 

patients. These contradictory results could be attributed to the different experimental 

protocols and variations in the study designs (Table 2). Ahmed et al. included PD patients 

from three stages of PD, while Johansen et al. recruited idiopathic PD patients or patients 

with the LRRK2 (PARK8) PD variant. Again, there were variations in the number of 

participants (23 to 66 PD patients, 15 to 37 controls), average age range of the participants 

(55.7 to 68.6), and PD treatments.

2.6.2. PD pathogenesis investigation using metabolomics—Metabolomics is also 

an invaluable systems biology tool and an important approach for studying the underlying 

mechanisms associated with PD. Abnormal choline metabolism and mitochondrial electron 

transport system (ETS) dysfunction have been closely associated with central nervous 

system diseases like PD, but the relationship between ETS and choline metabolism is not 

well-understood. Towards this end, Baykal et al. investigated the relationship between 

functionally impaired ETS and choline metabolism using NMR metabolomics [221]. Human 

SH-SY5Y neuroblastoma cells were treated with a set of ETS inhibitors, where each 

compound selectively inhibited one of the five (I through V) ETS complexes. The extracted 

cellular metabolome were analyzed by 1D 1H NMR and PCA. Metabolites of choline and 

phosphorylcholine were further quantified by matrix-assisted laser desorption/ionization 

mass spectrometer (MALDI-TOF MS). Each ETS complex inhibitor resulted in a separate 

cluster in the PCA 2D scores plot consistent with a distinct perturbation of the cellular 

metabolome. Thus, the inhibition of each ETS complex leads to a specific mitochondrial 

dysfunction, and a distinct phenotype. Nevertheless, all the ETS complex inhibitors resulted 

in a significant increase in choline and associated metabolites. This is consistent with the 

observation that choline is elevated in CNS diseases [222, 223]. The increase in choline may 

occur because the ETS complex inhibitors may also target choline metabolic enzymes as 

evident by an observed increase in the induction of choline kinase by all of the inhibitors.

Gao et al. [220] used 1D 1H-NMR spectroscopy and PLS to detect metabolic changes in the 

striatum of 6-OHDA-induced Parkinson's rat. The right striatum of Sprague–Dawley rats 

were injected with 1.5 μg/μL of 6-OHDA. After the rats were sacrificed, specimens of both 

right (6-OHDA dosed) and left (control) striatum were dissected, followed by extraction of 

the metabolome for analysis by NMR. As expected, the resulting PLS 2D scores plot 

indicated a clear separation between the control and 6-OHDA treated groups. Unfortunately, 

the PLS model was not statistically validated making it difficult to interpret the reliability of 

the results. The corresponding PLS loading plot indicated that glutamate and glutamine were 

among the major contributors to the class separation. A statistically significant (p < 0.05) 

increase in glutamate and δ-aminobutyric acid (GABA), and a decrease in glutamine was 
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also observed for the 6-OHDA treated striatum based on a comparison between normalized 

NMR integrals. These results suggest a likely shift in the steady-state equilibrium of the 

Gln-Glu cycle between astrocytes and neurons. A change in the Gln-Glu cycle would disrupt 

the balance between excitatory and inhibitory brain processes that would potentially lead to 

long-term abnormalities in glutamatergic and GABAergic activities. 6-OHDA induced 

perturbations in other cerebral metabolites (alanine, lactate, N-acetyl aspartate and taurine) 

that also suggest the possible involvement of energy metabolism and the TCA cycle in the 

pathogenesis of PD.

2.6.2. PD drug discovery using metabolomics—In addition to biomarker discovery 

and mechanistic studies, Sun et al. [219] demonstrated the use of metabolomics to 

investigate drug metabolism in PD. During the evaluation of a potential new drug, it is 

critical to ascertain both the drug's efficacy and toxicity. Tolcapone, a catechol-O-methyl 

transferase inhibitor for PD treatment, was used to dose Sprague-Dawley rats. Urine samples 

were collected over a 28 day period to identify the metabolite profile. UPLC/MS, MS/MS 

(MS2) combined with multivariate statistical analysis was used to investigate the impact of 

tolcapone on the urine metabolome. A total of 15 different metabolites of tolcapone were 

identified using both positive and negative modes of LC/MS and MS2. While two of the 

observed metabolites, could be oxidatively bioactivated to induce liver toxicity, these 

reactive species were not observed and histopathology analysis indicated no significant 

changes. The PCA 2D score plots show complete separation between the control group, and 

the day 1 and day 28 dosed groups (Figure 6). Importantly, tolcapone and the metabolites of 

tolcapone were the primary contributors to this class separation. Also, there was a 

significantly larger separation between the control group and the day 28 dosed group. This is 

consistent with the accumulation of tolcapone and its metabolites from multiple doses.

3. Conclusions

3.1. Merits of metabolomics for PD research

Parkinson's disease is a CNS disorder with a high heterogeneity in clinical symptoms, with 

multiple etiological factors, and numerous, not well-understood pathological mechanisms. 

Metabolomics offers a unique opportunity to study this complex disease from a systems 

biological perspective. Changes in the metabolome are correlated with phenotypes, and are a 

direct result of alterations in protein and enzyme activities. Thus, metabolomics may provide 

critical information on cellular processes, molecular interactions and metabolic pathways 

associated with PD. Correspondingly, the electron transport system, choline metabolism, the 

Glu-Gln cycle, energy metabolism and TCA cycle have been implicated in PD from NMR 

metabolomics studies discussed in this review. Other highlighted metabolomics studies 

demonstrate the great potential of using NMR metabolomics to identify novel biomarkers 

for diagnosing PD, for personalized medicine, and for aiding in drug discovery and 

development. But, there are also clear challenges with the application of metabolomics to 

study PD.
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3.2 Limitations of metabolomics

The metabolomics studies presented in this review yielded contradictory results in the 

identification of metabolite biomarkers for PD. This unfortunate outcome is likely due to a 

combination of experimental errors, the use of different analytical techniques, the use of 

different targeted metabolites, the heterogeneity of PD, and different study designs. The 

appeal of metabolomics is the simplicity of the methodology, but it is also easy to obtain 

erroneous results. Simply, the metabolome is sensitive to any variation in experimental 

conditions.

The metabolome is a heterogeneous mixture of compounds with a range of turn-over rates, 

stabilities, solubilities, and volatilities. Thus, improper sample handling and preparation 

procedures may perturb the composition of a biological sample. For example, removing an 

extraction solvent like methanol may also result in removing other volatile metabolites. 

Also, residual enzymatic activity would affect the concentrations of associated substrates, 

co-factors and products. A biological sample is nutrient-rich, so a loss of sterility would also 

result in a dramatic change in the sample composition. Concentrating or drying a biological 

sample may result in the precipitation of specific metabolites due to limited solubility or 

changes in ionic strength or pH. Similar effects may result from choice of buffer or pH. The 

solubility of a metabolite can also be negatively affected by the presence of other 

metabolites in the sample. How long the sample is kept at room temperature, how long the 

sample is stored before analysis, and how many freeze-thaw cycles a sample undergoes are 

all factors that can perturb the composition of a biological sample.

Different analytical techniques (NMR, MS, IR, LCECA, etc.) have different strengths and 

limitations, and hence, emphasize different regions of the metabolome. Thus, it is not 

surprising that the application of various analytical techniques may also result in different 

outcomes. NMR is relatively insensitive technique and will only detect the most abundant 

metabolites, so a change in a low concentration metabolite would be unobservable by NMR. 

In contrast, MS depends on compound ionization and volatility. A number of metabolites do 

not produce a detectable molecular ion [224]. Moreover, the heterogeneity and complexity 

of the metabolome may lead to additional ion suppression and further diminish the detection 

of weakly ionizable metabolites. In addition, the application of chromatography to separate 

the metabolome may change the relative concentrations of a select set of metabolites in the 

MS spectrum. Again, the diversity of the physiochemical properties of metabolites will 

inevitably lead to a range of compound recoveries from chromatography columns; and 

correspondingly, result in relative changes in metabolite concentrations.

An observed difference (or lack of a difference) in the metabolome of biofluids from healthy 

and PD patients depends both on the disease and patient demographics. A patient's lifestyle, 

medical history, disease progression, medical treatments, gender, age, race, diet, etc. are all 

likely to affect their metabolome and may obscure the expected similarities between PD 

patients or between healthy controls. For example, a difference in the metabolome would be 

expected between PD patients receiving or not receiving a drug treatment. In fact, this 

difference may mask any similarities in the metabolome due to the disease itself. Similar 

issues arise if the PD patients have a variety of disease etiology or are at different stages of 

disease progression. The situation becomes even more complex when participants vary in 
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sex, age, diet, lifestyle behavior, and comorbidity, to name just a few possibilities. Again, all 

these factors are likely to affect the metabolome and obscure any within group similarities. 

As a result, it becomes difficult to find a common difference in the metabolome between PD 

patients and healthy controls. In fact, any metabolite identified as a potential PD biomarker 

may simply be a result of a coincidence or from another prominent demographic besides PD. 

Thus, the inconsistency in the observed PD metabolite biomarkers (PCA, PLS, and OPLS) is 

not unexpected given the diversity in the patient demographics (Table 2).

3.3 Potential solutions and future directions

Validating and optimizing the experimental protocol is fundamental to a reliable 

metabolomics study [88, 133, 140-155, 161]. This is achieved by eliminating or minimizing 

all factors that cause undesirable changes in metabolite concentrations. In practice, this may 

be challenging, but general goals include minimizing the number of experimental steps and 

limiting sample handling, making the process as fast as possible, keeping the sample cold or 

frozen at all times, and analyzing the samples as soon as feasible.

The possibility that various analytical techniques may yield different outcomes for a 

metabolomics study can be turned into strength. As highlighted above, analytical techniques 

have different limitations and advantages, in essence, the techniques should be viewed as 

complementary to each other. Thus, a current trend in metabolomics is the integration of 

multiple techniques in a metabolomics study [122-124].

PD is a heterogeneous disease and the analysis of the metabolome to identify potential 

biomarkers requires a focused approach. Correctly addressing this challenge requires 

controlling or eliminating all patient variables besides the specific disease state. Ideally, all 

the PD patients should have the same etiology and stage of PD, and are not receiving any 

drug treatment. The participants should be the same age, sex, and equally healthy. Diet 

should be strictly controlled and alcohol consumption, smoking, and other medications 

should be eliminated. In effect, the only difference in the metabolome between the control 

and PD group should result from PD. Of course, this scenario could be very challenging to 

achieve in practice.

Also, observing a change in a metabolite between a control and PD group does not 

necessarily infer the discovery of a PD biomarker. The potential PD biomarkers need to be 

validated. One valuable approach is to simply repeat the study with a second group of 

participants and confirm the identification of the same set of metabolites. For the majority of 

the PD studies reported here, the number of participants in each class (healthy vs. PD) is too 

small (< 80) for statistical significance (α 0.05, power 90%), especially given the presence 

of other variables [225]. Also, a number of the models generated from supervised 

multivariate analysis were not validated [92, 179]. Similarly, the statistical significance of 

the defined group clusters in the PCA, PLS and OPLS scores plot are generally not 

evaluated [176, 226]. These are common occurrences in metabolomics studies, and are not 

unique to the PD field. Thus, the metabolomics community needs to adopt standard 

protocols for reporting the statistical validation of metabolomics data that also needs to be 

enforced by publishers [227]. The lack of validation in the PD studies reported herein does 

not necessarily negate the value of the individual outcomes, but it does raise a serious 
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concern especially given the observed inconsistencies between the various PD metabolomic 

studies. Additionally, the significance of a change in a specific metabolite and its 

relationship to PD needs to be statistically verified [227, 228]. If a set of metabolites are 

proposed as a potential diagnostic test for PD, the statistical significance of the metabolite 

set also needs to be adjusted for multiple comparisons using the Benjamini-Hochberg, 

Bonferroni, Holm, or other similar methods [229, 230]. The observed metabolite biomarkers 

may not be unique to PD and may be associated with other CNS diseases, an immune 

response or some other comorbidity. Thus, the inclusion of multiple control groups, 

emphasizing a global analysis of the metabolome, increasing the number of participants, 

validating the multivariate models, and repeat studies using a second study group are all 

critical to a successful outcome from a PD metabolomics study. Metabolomics is still a 

relatively new field of study and, as a result, experimental protocols are still being 

developed and optimized. Correspondingly, the application and impact of metabolomics on 

PD has been limited to date. Nevertheless, as the methodology continues to evolve and 

improve, metabolomics has the potential of making significant contributions to PD research.
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Figure 1. 
(a) Annual US incidence of Parkinson's disease as a function of the patient's age. The 

occurrence of PD below age 65 is rare [6]. (b) α-synuclein aggregates in the cortex of 

patients with Lewy body dementia can be shown in the shape of Lewy bodies by using 

conventional histological techniques; Bar=50 μm (HE, arrow, inset) (Reprinted with 

permission from reference [231], Copyright 2010 by Deutscher Ärzte-Verlag GmbH).
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Figure 2. 
Chemical structures of L-DOPA, a common treatment for Parkinson's disease, and toxins, 

herbicides and pesticides known to selectively destroy dopamine neurons and induce 

Parkinson's disease in animals.
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Figure 3. 
(a) Illustration of NMR-based metabolomics work flow with (b) select examples of 

representative data and results [99, 158-160].
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Figure 4. 
Illustration of the principal component analysis of NMR spectra.
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Figure 5. 
(a) Heat map differentiation of metabolite. Average metabolite variability of blood plasma 

between PD patients (n = 43) and healthy controls (n = 37) are shown. Cluster analyses of 

the 22 differentially altered metabolites are selected based on significance P value (P < 

0.05). The heat map depicts high (red) and low (green) relative levels of metabolite 

variation. (b) Partial least square discriminant analysis. PLS scores plot showing a 

significant separation between control subjects (n = 37) and unmedicated PD patients (n = 

43) using complete digital maps. The observations coded according to class membership: 

black square = controls; red square = PD patients. (Reprinted with permission from 

reference [207], Copyright 2009 by BioMed Central Ltd.)
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Figure 6. 
The scores plot (a) from PCA analysis of the positive UPLC/MS data and (b) for negative 

UPLC/MS data for animals after day 1 and day 28 post-dosing of vehicle only (control) and 

200mg/kg tolcapone administration. (Reprinted with permission from reference [219], 

Copyright 2009 by Elsevier).
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