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Utilities for Quantifying Separation in PCA/PLS-DA Scores Plots

Bradley Worley, Steven Halouska, and Robert Powers*

Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304

Abstract
Metabolic fingerprinting studies rely on interpretations drawn from low-dimensional
representations of spectral data generated by methods of multivariate analysis such as PCA and
PLS-DA. The growth of metabolic fingerprinting and chemometric analyses involving these low-
dimensional scores plots necessitates the use of quantitative statistical measures to describe
significant differences between experimental groups. Our updated version of the PCAtoTree
software provides methods to reliably visualize and quantify separations in scores plots through
dendrograms employing both nonparametric and parametric hypothesis testing to assess node
significance, as well as scores plots identifying 95% confidence ellipsoids for all experimental
groups.
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Introduction
A trademark of metabolomics experiments – more specifically metabolic fingerprinting and
non-targeted metabolic profiling studies – is the use of multivariate analysis techniques,
most commonly principal components analysis (PCA) and projection to latent structures
discriminant analysis (PLS-DA) [1,2]. While these techniques provide low-dimensional
representations of complex datasets through visually interpretable scores plots, the task of
inferring biologically relevant conclusions from scores plots has been largely based on
subjective examinations by expert users. Correspondingly, the continued growth in
metabolomics and the associated application of chemometric analysis has created a strong
need for a quantitative means to justify conclusions drawn from these scores plots. Towards
this goal, we recently described the application of our PCAtoTree software to generate
metabolic tree diagrams from scores plots and the use of standard bootstrapping techniques
to infer the statistical significance of each resulting tree node [3]. This note presents a new
set of portable software tools that enhances and improves upon our original methodology.
Our updated version of the PCAtoTree software provides quantification of scores-space
separation using both nonparametric bootstrapping and multivariate Hotelling’s T2

hypothesis testing to generate easily interpretable dendrograms of differences between

© 2012 Elsevier Inc. All rights reserved.
*To whom correspondence should be addressed, Robert Powers, University of Nebraska-Lincoln, Department of Chemistry, 722
Hamilton Hall, Lincoln, NE 68588-0304, rpowers3@unl.edu, Phone: (402) 472-3039, Fax: (402) 472-9402.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Anal Biochem. Author manuscript; available in PMC 2014 February 15.

Published in final edited form as:
Anal Biochem. 2013 February 15; 433(2): 102–104. doi:10.1016/j.ab.2012.10.011.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

proyster2
Typewritten Text

proyster2
Typewritten Text
PMCID: PMC3534867

proyster2
Typewritten Text
Copyright © 2012 Elsevier Inc.

proyster2
Typewritten Text



experimental groups. Notably, the new software is now stand-alone and no longer dependent
on PHYLIP (http://www.phylip.com/) [4].

Scores plots generated from unsupervised PCA or supervised PLS-DA methods provide
visualizable representations of information-rich spectral data by means of dimensionality
reduction. In the case of PCA, orthogonal lines of maximum gross variation are found
within the data, termed the ‘principal axes’, onto which the input data is transformed [5].
This operation preserves as much original gross variation as possible in the first few
transformed dimensions, and reveals separations between experimental groups only when
within-group variability is sufficiently less than between-group variability. Alternatively,
PLS-DA is a supervised method that guides this transformation informed by between-group
variability to better reveal group structure [6,7]. In any case, the resultant two- or three-
dimensional scores plot is used to identify spectral features contributing to between-group
variability based on separations observed between groups in the scores plot.

The importance placed on interpretation of PCA and PLS-DA scores plots necessitates the
use of quantitative procedures to determine the significance of these group separations.
However, no de facto protocol or metric exists to provide a means of reporting the degree or
significance of cluster separation [3,8,9]. Anderson et. al. used the J2 criterion [10,11] to
assess the quality of resulting scores clusters according to the average within-group and
between-group scatters for all groups. However, the J2 metric only provides an overall
estimation of cluster separation without fine-grained information on each pair of groups
[11]. A similar problem exists with the related Davies-Bouldin index [12], which chooses a
worst-case estimate of cluster overlap as its figure of merit. Dixon et. al. also
comprehensively reported the performances of four cluster separation indices based on
modifications of metrics used to validate separation for unsupervised clustering algorithms
[13]. Alternatively, our PCAtoTree protocol constructs dendrograms from distance matrices
based on PCA scores for the PHYLIP software suite using a bootstrapping routine to
determine node significance [3,4]. However, it was recently shown that hypothesis testing
using a Mahalanobis distance metric and the T2 and F distributions can provide a statistical
means to infer cluster similarity [8], suggesting the possibility of returning p -values for full
statistical quantitation of PCA group separations.

Methods
The methods described below were implemented in software using the C programming
language with minimal external dependencies, so the programs may be compiled and
executed on any modern GNU/Linux distribution.

Probability calculation
Under the assumption that each group in the scores space is distributed as a multivariate
normal random variable, the distances between groups may be calculated using the squared
Mahalanobis distance metric [14]:

Here, ui and uj are the p -variate sample means of groups i and j, respectively, and Sp is the
pooled p -by- p variance-covariance matrix, a weighted average of the covariance matrices
from groups i and j. The Mahalanobis distance may then be related to a Hotelling’s T2

statistic by the following scaling [15]:
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where ni and nj are the number of data points in groups i and j, respectively. This T2 statistic
is an extension of the Student’s t statistic to hypothesis tests in multiple dimensions, and can
be related to an F -distribution by a final scaling [15]:

It can be seen from this final relation that evaluation of the complement of the cumulative F
-distribution function at xF yields the p -value for accepting the null hypothesis: that the
points in groups i and j are in fact drawn from the same multivariate normal distribution.

Tree generation
The implementation of the tree generation procedure is a classical UPGMA algorithm [16].
When p -values are reported at each branch point, a single tree is generated based on the
matrix of Mahalanobis distances between groups. In the case of bootstrapped trees, the
groups are randomly resampled with replacement while preserving group size. The desired
number of trees is then generated using Euclidean distances between group means. The final
tree used to report bootstrap probabilities is built using a Euclidean distance matrix
calculated from the original (non-resampled) dataset.

Confidence ellipse calculation
When viewing PCA and PLS-DA scores plots, it is common practice to apply hand-drawn
ellipses to inform group membership or to even omit such ellipses entirely. This may lead to
inconsistent or erroneous interpretation of experimental results. Instead, the fact that the
Mahalanobis distances of a set of p -variate points from their sample mean follow a chi-
square distribution having p degrees of freedom [17] may be leveraged to estimate 95%
confidence ellipsoids for scores in any number of dimensions. The sample mean u and
covariance matrix S for each group must first be calculated from its scores space data. Then,
the group covariance matrix is decomposed into its eigenvalues and eigenvectors:

where Q is a p -by- p matrix whose columns are the eigenvectors of S, and Λ is a diagonal
matrix of the corresponding eigenvalues of S. For the case of two-dimensional scores data,
the 95% confidence ellipse for the group follows:

where  is the value of the inverse chi-square cumulative distribution function at α =
0.05 and two degrees of freedom, and the square root is taken element-wise over Λ.
Similarly, a three-dimensional (3D) confidence ellipsoid may be obtained from the
following parametric equation:
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where the parameters t, u and v are all evaluated on (0, 2π). These methods allow for the
inclusion of confidence regions onto two- and three-dimensional scores plots that reflect the
95% membership boundaries for each group. The approach assumes normally distributed
data. Figure 1 illustrates the inclusion of these group confidence regions in representative
PCA and OPLS-DA scores plots [18,19]. The ellipses and ellipsoids clearly define
statistically significant class separation and also provide an example where multiple groups
actually belong to the same biological classification.

Discussion
Our updated and enhanced PCAtoTree software package consists of a set of stand-alone C
programs that generate dendrograms from PCA/PLS-DA scores, report p -values and
bootstrap numbers, and incorporate confidence ellipse/ellipsoids into scores plots. The p -
values reported for every pair of distinct groups in a PCA/PLS-DA scores plot provide a
truly quantitative means to discuss group separations. We also included support for the
generation of dendrograms which use these p -values at each branch point to address the
question of tree uniqueness. This eliminated the prior dependency on PHYLIP [4]. The
reporting of p -values is complementary to bootstrapping methods in cases of highly
overlapped groups, where it provides a more direct, interpretable quantitation of group
separation.

The PCAtoTree software package now uses Mahalanobis distances because this metric is
more appropriate for multivariate data. De Maesschalck et. al. provides an exceptional
introduction to the use of Mahalanobis distances with PCA [20]. Specifically, Mahalanobis
distances account for different variances in each direction (PC1, PC2, PC3) and is scale-
invariant. Moreover, the use of a Mahalanobis distance metric for dendrogram generation
includes cluster shape and orientation in the analysis of group separation. Also, Mahalanobis
distances calculated between groups in PCA scores space will closely approximate those
calculated on the original data while avoiding possibly collinearity of the original variables.
This is not true of Mahalanobis distances in PLS-DA scores space, due to the underlying
supervision of PLS. These features differ from the Euclidean metric, which is a special case
of the Mahalanobis metric with the group covariance matrices equaling the identity. Figure 2
illustrates the differences in dendrogram structure based on the use of Euclidean and
Mahalanobis distances determined from the same set of scores.

It is important to note that our software is not a means of inferring the reliability of PCA or
PLS-DA models, but only a toolset for quantifying the scores that those models produce. In
the case of PCA scores, significance of the principal components used must be inferred
based on explained sum of squares or another cross-validation technique [21,22]. PLS-DA
models require rigorous cross-validation to ensure model reliability, as they almost always
yield perfect separations between the scores of different groups [23]. With that in mind,
separations between groups not under discrimination may be due to true experimental
differences in PLS-DA scores plots, as opposed to the forced separations between
discriminated groups. Thus, interpretation of the results of our PCAtoTree software must be
done with the knowledge of the underlying algorithm’s mathematical intent, and only after
the model has been validated. While we demonstrated our software using only 2D and 3D
scores plot, our software places no restrictions on the number of components or on which
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components are used during dendrogram generation and p -value calculation. Any
dimensionality or choice of scores may be used with our PCAtoTree software provided all
components are suitably validated.

Our updated and enhanced PCAtoTree software package provides novel means of
quantifying and visualizing separation significance in PCA and PLS-DA scores plots.
Importantly, our new software enables single-step methodologies for generating informative
scores plots and dendrograms of experimental groups in any studies utilizing PCA or PLS-
DA to elucidate group structure in complex datasets, including metabolic fingerprinting and
non-targeted metabolic profiling. The tools are distributed under version 3.0 of the GNU
General Public License and are freely available at http://bionmr.unl.edu/pca-utils.php.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(a) 2D OPLS-DA scores plot illustrating 95% confidence ellipses for data having one
predictive and one orthogonal PLS component. The symbol shape and color of each point
correspond to the groups in Figure 2. Discrimination in the first component is between wild-
type and antibiotic-treated Mycobacterium smegmatis, and separations along the second
component indicate metabolic differences between various antibiotic treatments. The
antibiotics cluster together based on a shared biological target (cell wall synthesis, mycolic
acid biosynthesis, or transcription, translation and DNA supercoiling). Three compounds of
unknown in vivo activity were shown to cluster together with inhibitors of cell wall
synthesis inferring a potential biological target. Interestingly, the M. smegmatis strain is
resistant to ampicillin resulting in the ampicillin-treated cells clustering closer to untreated
cells. (b) 3D PCA scores plot with superimposed 95% confidence ellipsoids drawn as
meshes containing group points. The ellipses and ellipsoids define the statistical significance
of class separation and provide an illustration where two groups actually belong to the same
biological classification. Group ‘SN’ refers to mock-transfected pancreatic cancer cells
grown as a control group, while ‘SM’ refers to MUC1-overexpressing pancreatic cancer
cells. Separations in scores space relate to metabolic differences in pancreatic cancer due to
MUC1 overexpression.
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Figure 2.
(a) Dendrogram generated using Euclidean distances between group means from the OPLS-
DA scores in Figure 1(a). Bootstrap statistics reported at each branch are for 5,000 bootstrap
iterations. (b) Dendrogram generated from identical scores using Mahalanobis distances,
with p -values for the null hypothesis reported at each branch.
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Supplementary Figure 1. Dendrogram generated using Euclidean distances between group means from the OPLS-DA scores in 

Figure 1(a). Bootstrap statistics reported at each branch are for 5,000 bootstrap iterations.
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Supplementary Figure 2. 3D PCA scores plot with superimposed 95% confidence ellipsoids drawn as meshes containing group 

points. The ellipsoids define the statistical significance of class separation and provide an illustration where two groups actually 

belong ...
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