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Staphylococcus aureus Metabolic Adaptations during the Transition
from a Daptomycin Susceptibility Phenotype to a Daptomycin
Nonsusceptibility Phenotype

Rosmarie Gaupp,a* Shulei Lei,b Joseph M. Reed,a Henrik Peisker,c Susan Boyle-Vavra,d Arnold S. Bayer,e Markus Bischoff,c

Mathias Herrmann,c Robert S. Daum,d Robert Powers,b Greg A. Somervillea

School of Veterinary Medicine and Biomedical Sciences, University of Nebraska—Lincoln, Lincoln, Nebraska, USAa; Department of Chemistry, University of Nebraska—
Lincoln, Lincoln, Nebraska, USAb; Institute of Medical Microbiology and Hygiene, University of Saarland, Homburg/Saar, Germanyc; Department of Pediatrics, University of
Chicago, Chicago, Illinois, USAd; Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USAe

Staphylococcus aureus is a major cause of nosocomial and community-acquired infections. The success of S. aureus as a patho-
gen is due in part to its many virulence determinants and resistance to antimicrobials. In particular, methicillin-resistant S. au-
reus has emerged as a major cause of infections and led to increased use of the antibiotics vancomycin and daptomycin, which
has increased the isolation of vancomycin-intermediate S. aureus and daptomycin-nonsusceptible S. aureus strains. The most
common mechanism by which S. aureus acquires intermediate resistance to antibiotics is by adapting its physiology and metab-
olism to permit growth in the presence of these antibiotics, a process known as adaptive resistance. To better understand the
physiological and metabolic changes associated with adaptive resistance, six daptomycin-susceptible and -nonsusceptible iso-
genic strain pairs were examined for changes in growth, competitive fitness, and metabolic alterations. Interestingly, daptomy-
cin nonsusceptibility coincides with a slightly delayed transition to the postexponential growth phase and alterations in metabo-
lism. Specifically, daptomycin-nonsusceptible strains have decreased tricarboxylic acid cycle activity, which correlates with
increased synthesis of pyrimidines and purines and increased carbon flow to pathways associated with wall teichoic acid and
peptidoglycan biosynthesis. Importantly, these data provided an opportunity to alter the daptomycin nonsusceptibility pheno-
type by manipulating bacterial metabolism, a first step in developing compounds that target metabolic pathways that can be
used in combination with daptomycin to reduce treatment failures.

Daptomycin is a calcium-dependent cyclic lipopeptide antibiotic
that has become a common therapeutic option in the treatment

of serious Staphylococcus aureus infections (1–5). As daptomycin
use has increased, patient treatment failures have increased be-
cause of the emergence of S. aureus strains that can grow in the
presence of low concentrations of daptomycin (3, 6–14). This in-
crease in daptomycin-nonsusceptible (DapNS) S. aureus isolates has
enhanced interest in discovering the changes that occur during the
transition to a nonsusceptibility phenotype. Insight into this tran-
sition can be gained by understanding the mechanism by which
daptomycin acts on bacteria. Primarily, daptomycin disrupts
membrane function by redirecting cell division and cell wall syn-
thetic proteins, which causes leakage of ions and membrane de-
polarization (15, 16) and induction of the cell wall stress stimulon
via VraSR (17–19). Because of daptomycin’s mode of action, it
was reasonable to predict that DapNS S. aureus would have alter-
ations in cell wall-related and membrane genes. This prediction
was borne out when comparisons of daptomycin-susceptible
(DapS) and DapNS isogenic strain sets identified single nucleotide
polymorphisms in the mprF gene, the yycFG (also known as,
walKR) operon, and genes encoding subunits of RNA polymerase
(i.e., rpoB and rpoC) (10, 13, 20–27). Similarly, phenotypic studies
have identified several mechanisms that contribute to daptomycin
nonsusceptibility, specifically, a thickened cell wall (26, 28, 29),
enhanced cell surface charge (i.e., increased activity of MprF and
D-alanylation of wall teichoic acids [WTAs]) (23, 30–33), and/or
altered cell membrane composition, fluidity, and permeabiliza-
tion (21, 29, 34).

In addition to genetic and phenotypic analyses of DapNS

strains, global transcriptional and proteomic analyses have iden-
tified differences in virulence determinants, lipid metabolism, and
teichoic acid and cell wall biosynthesis (18, 22, 25–27, 35, 36).
Additionally, several metabolic pathways, including intermediary,
fermentative, amino acid, vitamin, and nucleoside metabolism,
are altered during the transition to a daptomycin nonsusceptibil-
ity phenotype (18, 25, 27, 35, 36). While transcriptional and pro-
teomic analyses provide valuable data, they offer an incomplete
view of the metabolic changes due to posttranscriptional and
posttranslational regulation and feedback and feedforward
changes caused by substrate and cofactor availability. In order to
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understand the metabolic changes that permit growth in the pres-
ence of daptomycin, we assessed the physiology and metabolism
of six isogenic DapS and DapNS S. aureus clinical strain pairs by
using nuclear magnetic resonance (NMR)-based metabolic pro-
filing and growth, enzyme, and metabolite analyses. This ap-
proach allowed us to gain new insight into the metabolic changes
that accompany the transition to a daptomycin nonsusceptibility
phenotype, but it also permits the integration of our NMR
metabolomic data with the transcriptional and proteomic studies.
Lastly, these data provided insight into methods to reverse the
daptomycin nonsusceptibility phenotype.

MATERIALS AND METHODS
Bacterial strains. Six different isogenic strain sets isolated from patients
before daptomycin therapy and after treatment failure were used in this
study (Table 1). The strains represent two methicillin-susceptible S. au-
reus (MSSA) and four methicillin-resistant S. aureus (MRSA) pairs with or
without mprF and/or yyc operon mutations. Antibiotic susceptibility or
nonsusceptibility to daptomycin was verified with Etest strips (bio-
Mérieux) and the broth microdilution method (Table 2). Briefly, dapto-
mycin susceptibility was determined with Etest strips on Mueller-Hinton
(Becton Dickinson and Company) agar plates inoculated with 100 �l of a
1:100-diluted 0.5 McFarland suspension of bacteria in 0.85% saline. Ad-
ditionally, the MIC of daptomycin was determined in triplicate by the
broth microdilution method in Mueller-Hinton broth supplemented
with Ca2�. The MIC was defined as the lowest antibiotic concentration
that inhibited visible growth after 24 h of incubation at 37°C. The poten-
tial influences of daptomycin and vancomycin cross-resistance (26, 28, 29,
37, 38) have been addressed by determining the vancomycin MICs (Table
2). Only strain pair CB1663/CB1664 had a significant change in vanco-

mycin susceptibility, with strain CB1664 having an intermediate vanco-
mycin susceptibility phenotype (vancomycin-intermediate S. aureus
[VISA]). In addition to determining MICs, the thicknesses of cell wall
sacculi were determined by atomic force microscopy (AFM) (Table 2).

The availability of isogenic DapS and DapNS strain pairs is very limited.
In five of the six strain pairs, the DapNS strain had a mutation in mprF
(Table 1). This raises the possibility that mprF mutations could be respon-
sible for any common metabolic changes observed in the DapNS strains
relative to the susceptible strains. That being said, heterogeneity in the
bacterial responses to fitness challenges and the tricarboxylic acid (TCA)
cycle inhibitor fluorocitrate suggests that the common metabolic changes
in the DapNS strains are due to multiple genetic and/or epigenetic changes.

Bacterial growth conditions. S. aureus strains were grown in filter-
sterilized tryptic soy broth without dextrose (TSB; Becton Dickinson and
Company) supplemented with 0.25% glucose (Sigma-Aldrich) or 0.25%
[13C6]glucose (Cambridge Isotope Laboratories) or on TSB plates con-
taining 1.5% agar. Bacteria from overnight cultures were diluted 1:100 in
TSB and incubated for 1.5 to 2 h. These precultures were centrifuged for 5
min at 5,000 rpm, and the exponentially growing cells were inoculated
into prewarmed TSB to an optical density at 600 nm (OD600) of 0.07. All
bacterial cultures were incubated at 37°C and aerated at 225 rpm with a
flask-to-medium ratio of 10:1. The growth rate (�) of the S. aureus strains
was calculated by the formula (ln OD2 � ln OD1)/(t2 � t1), where OD1

and OD2 are the ODs calculated from the exponential growth phase at
times t1 and t2, respectively. The generation time of each strain was deter-
mined with the formula ln 2/�.

For experiments performed with daptomycin (Cubist Pharmaceuti-
cals), the culture medium was supplemented with CaCl2 to a final Ca2�

concentration of 50 �g/ml, as recommended by the manufacturer. In
these cultures, daptomycin (0.5 �g/ml for DapS strains and 1.5 �g/ml for

TABLE 1 Isogenic DapS and DapNS S. aureus strain pairs used in this study

DapS/DapNS strain paira Methicillin susceptibility

SNPs of DapNS strain

Source and/or referencemprF yycG rpoB/rpoC

616/703 MSSA S295Lc NDd ND 21
Q2819/Q2818 MRSA S337Lc Nonee None 22
BOY755/BOY300 MSSA S295Lc ND ND 30
CB5011/CB5012 MRSA L826Fb None ND Cubist Pharmaceuticals, 25
CB5062/CB5063 MRSA None None None Cubist Pharmaceuticals, 34
CB1663/CB1664 MRSA L826Fb R86H None Cubist Pharmaceuticals, 34
a All clinical strain pairs were bloodstream isolates.
b Mutation in putative mprF synthase domain.
c Mutation in putative mprF translocase domain.
d ND, not determined.
e None, no mutation determined.

TABLE 2 Daptomycin and vancomycin MICs and thickness of cell wall sacculi of DapS and DapNS strain pairs

DapS/DapNS strain pair

MIC (�g/ml)

Cell wall sacculus thickness (nm)

Daptomycin

Vancomycin (broth microdilution)Etest Broth microdilution

616/703a 0.094/1.5 0.5/2 0.5–1/0.5–1 16.3 � 2.0/21.8 � 2.2
Q2819/Q2818a 0.094/1–1.5 0.5/2 0.5–1/1 19.5 � 2.1/19.7 � 2.3c

BOY755/BOY300b 0.094/1–1.5 0.5/2 1/1 19.9 � 3.8/21.6 � 0.9
CB5011/CB5012 0.094/5 0.5/2 0.5/1 21.3 � 2.3/24.6 � 3.1
CB5062/CB5063 0.094/2 0.5/4 0.5/1 20.4 � 3.1/21.9 � 1.5
CB1663/CB1664 0.125/3 0.5/4 0.5–1/2–4 21.2 � 2.1/31.4 � 4.1
a Patients were treated with vancomycin prior to daptomycin treatment.
b No vancomycin treatment of the patient because of allergies.
c Not significant. All other strain pairs have P values of � 0.05.
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DapNS strains) was added to produce a growth reduction of approxi-
mately 50% after 2.5 h of incubation.

Determination of competitive fitness. The relative fitness of the DapS

parental strains and the isogenic DapNS isolates was determined in paired
competition experiments (39). Precultures were prepared as described
above. The precultures were diluted 1:1,000, and equal volumes of DapS

and DapNS cultures were used to create a mixed culture that was incubated
for 20 to 22 h. The CFU counts of DapS and DapNS strains were deter-
mined at the beginning and end of the incubation by spotting 10-�l ali-
quots of serial dilutions onto nonselective TSB agar plates and onto Ca2�-
supplemented plates containing 1 �g of daptomycin/ml. As previously
described (40), the number of generations of the competing strains was
calculated by the formula (log B � log A)/log2, where A and B are the
numbers of CFU per milliliter at the beginning and end of the culture
period, respectively. The relative fitness of each strain was determined
from the ratio of the number of generations from the DapNS strain to the
DapS strain.

Measurement of acetate and ammonium in culture supernatants.
Aliquots (1.5 ml) of bacterial cultures were centrifuged for 2 min at 13,200
rpm, and supernatants were removed and stored at �20°C until use.
Acetate and ammonia concentrations were determined with kits pur-
chased from R-Biopharm and used according to the manufacturer’s di-
rections. The metabolite concentrations were measured in duplicate in
three independent experiments.

Aconitase activity assay. Bacteria were harvested during the postex-
ponential growth phase (6 h) by centrifugation, suspended in ACN buffer
(100 �M fluorocitrate, 90 mM Tris/HCl, pH 8.0), and lysed with lysing
matrix B tubes and a FastPrep instrument (MP Biomedicals). The lysate
was centrifuged for 5 min at 13,200 rpm at 4°C, and the aconitase activity
in the cell-free lysate was measured by the method of Kennedy et al. (41).
One unit of aconitase activity is defined as the amount of enzyme neces-
sary to give a �A240 min�1 of 0.0033. Protein concentrations were deter-
mined by the method of Bradford (42).

NMR sample preparation. Samples for intracellular metabolite anal-
ysis were prepared from independent cultures in the exponential (2.5 h)
and postexponential (6 h) growth phases. For two-dimensional (2D) 1H-
13C heteronuclear single quantum coherence (HSQC) analysis, bacteria
were cultivated in TSB medium containing 0.25% [13C6]glucose. Bacteria
were harvested by vacuum filtration with 0.45-�m-pore-size Microfil V
filters (Millipore) that were prewashed with extraction buffer (20 mM
phosphate buffer; uncorrected pH 7.2). The bacteria containing filters
were placed into precooled 50-ml conical tubes and immersed in liquid
nitrogen. The bacteria were suspended from the filter with ice-cold extrac-
tion buffer and washed to remove residual medium components. Cells
were adjusted to 20 OD600 units and lysed with precooled lysing matrix B
tubes and a FastPrep instrument (MP Biomedicals). The resulting lysates
were centrifuged at �9°C to remove cell debris and glass beads. A second
extraction step was performed with the same extraction buffer, and the
samples were pooled. A final volume of 1.5 ml of cell-free lysate was frozen
in dry ice, lyophilized, and kept at �80°C until use for NMR analysis. At
the time of use, the samples were dissolved in 600 �l of D2O containing 50
�M 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid sodium salt (TMSP) for
one-dimensional (1D) 1H spectra or 500 �M TMSP for 2D 1H-13C HSQC
spectra and transferred to NMR tubes.

NMR data collection and analysis. The 1D and 2D NMR spectra were
collected as described previously (43, 44). NMR spectra were collected on
a Bruker 500-MHz Avance DRX spectrometer equipped with a 5-mm
triple-resonance cryoprobe (1H, 13C, 15N) with a z axis gradient, a BACS-
120 sample changer, an automatic tuning and matching accessory, and
Bruker Icon NMR software.

1D 1H NMR spectra were processed with our MVAPACK software
suite (http://bionmr.unl.edu/mvapack.php) (45). Each spectrum was
Fourier transformed and then automatically phased (46), binned (47),
normalized by standard normal variate normalization, denoised with re-
moval of solvent and buffer peaks, and unit variance scaled (for principal-

component analysis [PCA]) or Pareto scaled (for orthogonal partial least-
squares discriminant analysis [OPLS-DA]). PCA, linear discriminant
analysis (LDA), and OPLS-DA models were calculated with MVAPACK.
Hotelling 95% confidence ellipsoids, PCA score dendrograms, and corre-
sponding Mahalanobis P values were generated with our PCA/PLS-DA
utilities (http://bionmr.unl.edu/pca-utils.php) (48, 49) to determine the
statistical significance of group separation in the PCA score plots. An
observed P value of �0.05 was used to identify statistically significant
group separation. The OPLS-DA models were validated by analysis of
variance of the cross-validated residuals (CV-ANOVA) (50) and 7-fold
Monte Carlo single cross-validation (51).

The 2D 1H-13C HSQC spectra were processed with NMRPipe (52) and
analyzed with NMRViewJ (53). Peak intensities were normalized and ref-
erenced to TMSP. The relative concentration of each metabolite was de-
fined on the basis of the average intensity of all of the NMR peaks assigned
to the metabolite. Peak annotation was accomplished by comparing the
observed 1H and 13C chemical shifts against chemical shifts for known
metabolites deposited in three metabolomic databases, the Platform for
RIKEN Metabolomics (http://prime.psc.riken.jp/) (54), the Human
Metabolome Database (http://www.hmdb.ca/) (55), and the BiomagRes-
Bank (http://www.bmrb.wisc.edu/) (56). Error tolerances of 0.08 and 0.25
ppm for 1H and 13C chemical shifts, respectively, were used to make a peak
assignment.

Peptidoglycan preparation. Peptidoglycan purification was based on
the method of Jonge and colleagues (57). Briefly, bacterial cultures (10 ml)
from the postexponential growth phase (6 h) were harvested by centrifu-
gation for 10 min at 4,000 rpm (4°C) and suspended in 5 ml of ice-cold 50
mM Tris-HCl (pH 7.0). The cell suspension was transferred dropwise into
15 ml of 5% boiling sodium dodecyl sulfate (SDS), boiled for 30 min, and
concentrated by centrifugation for 10 min at 4,000 rpm. The pellet was
washed twice with 1 M NaCl and three times with hot deionized water
(60°C) to remove the SDS. Cells were broken with lysing matrix B tubes
and a FastPrep instrument (PreCellys 24; Peqlab). Broken cell walls and
glass beads were separated by pipetting the suspension through a cell sieve
(40-�m mesh size). The cell walls were concentrated by centrifugation at
10,000 rpm for 30 min at room temperature; suspended in 750 �l of 100
mM Tris-HCl (pH 8.0) containing 20 mM MgSO4, 10 �g/ml DNase A,
and 50 �g/ml RNase I; and then incubated at 37°C for 2 h. After incuba-
tion, 100 �g/ml proteinase K and 10 mM CaCl2 were added and the
mixture was incubated overnight at 37°C. After protein digestion, the
peptidoglycan was collected by centrifugation as described above and
washed two times with deionized water, once with 8 M LiCl, once with 10
mM EDTA, and twice with deionized water. For AFM imaging, 10 �l of
the diluted peptidoglycan suspension was placed on freshly cleaved mica
and dried under a soft stream of water-free nitrogen gas (grade 5.0 or
higher).

AFM imaging. For AFM imaging, a Bioscope Catalyst Atomic Force
Microscope (Bruker Nano Surface, Karlsruhe, Germany) mounted on an
inverted light microscope (Leica DMI 4000B; Leica Microsystems GmbH)
operating in phase-contrast mode was used. The ScanAsyst mode was
used to visualize peptidoglycan. All scans were carried out in air (20°C
with 43% relative humidity) with a tip velocity of 20 �m/s and a resolu-
tion of 1,024 by 1,024 pixels. ScanAsyst Air Cantilevers (Bruker AXS
S.A.S.) featuring tip curvatures of �7 nm were used for imaging, and the
spring constant was calibrated by the thermal tuning method described by
Hutter and Bechhoefer (58). Image processing was done with Gywiddion
open-source image processing software (59). The heights of 50 individual
cell walls were measured and used for statistical analysis with SigmaPlot 11
(Systat Software GmbH) and one-way ANOVA (Table 2).

RESULTS
DapNS strains have a delayed transition into postexponential
growth. The transition from antibiotic susceptibility to nonsus-
ceptibility can coincide with growth alterations in S. aureus (60).
To determine if the transition from a DapS to a DapNS state af-
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fected bacterial growth, we assessed the growth of six DapNS

strains and their isogenic parental DapS strains. Five strain pairs
revealed similar exponential growth phase profiles with genera-
tion times of 24 to 27 min and comparable acidification of the
culture medium with pH minima after 3 to 4 h of growth (e.g.,
DapS 616 and DapNS 703, Fig. 1A and Table 3; see Fig. S1 in the

supplemental material). In contrast to the growth similarities of
most DapS and DapNS strain pairs, the generation time of DapNS

strain CB1664 was significantly higher than that of isogenic DapS

strain CB1663 (37 � 1 and 26 � 0 min, respectively); this resulted
in a late pH minimum for strain CB1664 after 6 h of growth (see
Fig. S1E in the supplemental material). Interestingly, strain
CB1664 is the only strain that also has an intermediate vancomy-
cin resistance phenotype. Although the growth profiles of most of
the strain pairs were similar, a slight difference in growth was
observed at the transition between the exponential and postexpo-
nential growth phases. These slight differences often reflect a met-
abolic transition similar to a diauxic shift, which occurs when
bacteria are switching from the catabolism of one carbon source to
that of another.

During rapid aerobic growth in glucose-containing medium,
S. aureus incompletely oxidizes glucose to acetyl coenzyme A
(acetyl-CoA), which causes acetate to accumulate in the culture
medium, resulting in a decreased pH (61–63). Induction of the
TCA cycle facilitates the utilization of acetate, a process that re-
quires anaplerotic reactions to offset the withdrawal of biosyn-
thetic intermediates. Commonly, amino acids are used to provide
the anaplerotic carbons, a process that requires deamination of
the amino acids, which causes ammonia to accumulate in the
culture medium (62). The combined acid extraction from the cul-
ture medium and the accumulation of ammonia causes the me-
dium to alkalinize. The exponential growth phase acidification of
the culture medium was similar for five of the six strain pairs
examined in this study; however, the postexponential growth
phase alkalization was delayed in four of the six DapNS strains (Fig.
1A and Table 3; see Fig. S1 in the supplemental material). This
delay in alkalization of the culture medium is likely a reflection of
that diauxic-shift-like change observed at the exponential-to-
postexponential growth phase transition in the growth profiles.
Taken together, most DapNS strains had slightly delayed transi-
tions into the postexponential growth phase.

Competitive fitness. The similar generation times observed
for most DapNS and DapS strain pairs led us to examine if a bio-
logical fitness cost was associated with daptomycin nonsuscepti-
bility in S. aureus. For this analysis, mixed-culture competition
assays of DapNS and DapS strain pairs were performed in the ab-
sence of selective pressure. The relative fitness of most of the iso-
genic pairs ranged from 0.761 � 0.004 to 0.98 � 0.02; however,
the CB1663/CB1664 strain pair had a more pronounced relative
fitness difference of 0.63 � 0.02 (Table. 4). This difference is likely
a reflection of the longer generation time of VISA DapNS strain
CB1664 than that of DapS strain CB1663 (Tables 2 and 3; see Fig.
S1E in the supplemental material). In other words, the biological
cost of daptomycin nonsusceptibility ranged from no or little loss
of fitness to a considerable loss of fitness. This may be of impor-
tance with respect to the persistence of DapNS strains in the clinical
setting.

Delayed transition into postexponential growth of DapNS

strains correlates with decreased TCA cycle activity. The di-
auxic-shift-like change in the growth of the DapNS strains and the
altered pH profiles in the postexponential growth phase suggested
that catabolism of incompletely oxidized carbon sources (i.e., ac-
etate) was altered during the transition to a DapNS state. To assess
if the catabolism of carbon sources was altered, the concentrations
of acetate and ammonium in the culture medium were deter-
mined in the postexponential growth phase. As expected, the post-

FIG 1 Growth and physiological characteristics of DapS (strain 616) and iso-
genic derivative DapNS (strain 703) bacteria. (A) Growth and pH profile of
strain pair 616/703 grown aerobically in TSB. (B and C) Acetate depletion (B)
and net ammonium accumulation (C) in the culture supernatants of strain
pair 616/703. The results presented are the averages and standard deviations of
three independent experiments. Symbols are defined in the insets. The statis-
tical significance of differences between strains 616 and 703, determined by
Student’s t test, is indicated (*, P �0.1; **, P �0.05; ***, P �0.005).
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exponential growth phase catabolism of acetate and generation of
ammonia was significantly lower in DapNS strains than in the iso-
genic DapS strains (Fig. 1B and C and Table 3). As stated above, the
catabolism of acetate requires a functioning TCA cycle; hence, the
delayed alkalization of the medium and acetate catabolism sug-
gested that nonsusceptibility to daptomycin corresponds to de-
creased carbon flow through the TCA cycle. To test this sugges-
tion, the activity of the TCA cycle enzyme aconitase was assessed
in DapS and DapNS S. aureus strains after 6 h of incubation. Con-
sistent with the physiological differences at the transition to the
postexponential growth phase, the aconitase activity was signifi-
cantly lower in all six DapNS strains than in the parental DapS

strains (Fig. 2). Taken together, the subtle physiological differ-
ences between the DapNS and DapS strains suggest that the delayed

transition to postexponential growth corresponded to altered cen-
tral metabolism, specifically, the TCA cycle.

DapS and DapNS strains have significantly different meta-
bolic states. The physiologic and enzymatic data strongly indi-
cated that the transition of S. aureus to a daptomycin nonsuscep-
tibility phenotype coincided with metabolic changes. To examine
these metabolic changes in more detail, the metabolomes of three
strain pairs (i.e., 616/703, Q2819/Q2818, and BOY755/BOY300)
were assessed by NMR metabolomics during the exponential (2.5
h) and postexponential (6 h) growth phases. The 1D 1H NMR
metabolic profiles were first analyzed by PCA, and then LDA was
used to convert the 3D PCA score plot into a 2D plot to simplify
data visualization. LDA is used to identify a rotational orientation
that provides an optimal view of a 3D data set, which is then
projected onto a 2D plane (64, 65). The LDA plot of the 616/703
strain pair (Fig. 3A) revealed four distinct clusters formed by the
strain and growth phase, demonstrating that the transition to a
DapNS state significantly altered the metabolome of strain 703
relative to that of strain 616. The corresponding metabolomic tree
diagram generated from the PCA scores and associated P values
for each cluster were determined to assess the significance and the
distance between groups (Fig. 3B). As expected, the largest sepa-
ration was observed between the exponential and postexponential
growth phases, as this growth phase transition coincides with ma-
jor metabolic changes, specifically, derepression of the TCA cycle
and oxidative phosphorylation. The separation between DapS and
DapNS was apparent during both the exponential and postexpo-
nential growth phases; however, the metabolic differences were
more pronounced after 6 h of cultivation. This metabolic differ-
ence is consistent with the postexponential-phase physiological
observations (Fig. 1 and Table 3). Similar clustering differences in
the PCA score plots were observed for strain pairs Q2819/Q2818
and BOY755/BOY300 (see Fig. S2 in the supplemental material).

OPLS-DA was used to identify the spectral features (metabo-
lites) that significantly contribute to the observed class separa-
tions. OPLS-DA models were calculated by using one predictive

TABLE 3 Summary growth characteristics and extracellular metabolites of DapS and DapNS strain pairsa

Strain Generation time (min) OD600
b pHb Acetateb concn (mM) Ammoniumb concn (mM)

616 24 � 0 11.9 � 0.3 (0.0021) 7.0 � 0.0 (0.0002) 11.1 � 0.7 (0.0055) 15.8 � 0.6 (0.0025)
703 25 � 1 9.6 � 0.1 6.5 � 0.0 14.2 � 0.6 11.2 � 0.3

Q2819 25 � 0 11.0 � 0.4 (0.0096) 9.6 � 0.9 (0.0068) 12.6 � 0.6 (0.0150)
Q2818 26 � 1 9.7 � 0.3 6.5 � 0.0 13.7 � 0.4 10.3 � 0.2

BOY755 25 � 1 10.6 � 0.3 (0.0095) 6.7 � 0.0 (0.0006) 11.8 � 0.7 (0.0120) 12.1 � 0.4 (0.0204)
BOY300 26 � 1 9.4 � 0.3 6.4 � 0.0 15.2 � 0.1 9.6 � 0.9

CB5011 25 � 0 10.2 � 0.8 (0.1120) 6.9 � 0.1 (0.0347) 10.8 � 1.4 (0.0575) NDc

CB5012 26 � 0 8.9 � 0.2 6.5 � 0.1 13.6 � 0.8

CB5062 26 � 0 9.5 � 0.6 (0.3721) 6.1 � 0.1 (0.2799) ND ND
CB5063 27 � 0 9.1 � 0.5 6.2 � 0.0

CB1663 26 � 0 9.7 � 1.2 (0.3400) 6.5 � 0.3 (0.0404) ND ND
CB1664 37 � 1 8.8 � 0.1 5.8 � 0.1
a Average values of three independent experiments � the standard deviations are shown.
b Values were determined after 6 h of growth in TSB under aerobic conditions. The statistical significance (P value) of the difference of the DapS value from that of the
corresponding DapNS strain, determined by the Student t test, is shown in parentheses.
c ND, not determined.

FIG 2 DapNS strains have less aconitase activity than DapS parental strains.
Aconitase activities were determined in triplicate in at least three independent
cultures after 6 h (postexponential phase) of growth. The results presented are
averages, and error bars represent the standard deviations. The statistical sig-
nificance of differences between a DapS strain and the corresponding DapNS

strain, determined by Student’s t test, is indicated (*, P � 0.1; **, P � 0.05; ***,
P � 0.005).
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and two orthogonal components. The quality of OPLS-DA mod-
els was evaluated on the basis of cross-validation by a Monte Carlo
leave-n-out procedure (66) and CV-ANOVA (see Table S1 in the
supplemental material). As an example, the R2 (degree of fit), Q2

(predictive ability), and CV-ANOVA P value for the comparisons
between the 616 and 703 strains after 2.5 or 6 h of growth were
0.9949, 0.8093, and 4.9 � 10�3 and 0.9972, 0.9280, and 1.2 �
10�3, respectively. Importantly, the validated OPLS-DA model
further supports the trends seen in the 3D PCA score plots (Fig. 3;
see Fig. S2 in the supplemental material). In addition, OPLS-DA
identified the relative contributions of each NMR bin (i.e., 1H
NMR chemical shift and associated metabolites) to the group sep-
aration based on an associated S plot (see Fig. S3 in the supple-
mental material). Each NMR bin with a high correlation
{p(corr)[1] 	 0.8 or � 0.8} and covariance (p[1] 	 1.0 or � 0.1)
was considered to be a major contributor to the class separation in
the OPLS-DA score plot. A comparison of these major contribu-
tors to group separation revealed that 45% of the NMR bins were
common to at least two of the three strain pairs during postexpo-
nential growth. Similarly, 30% of the NMR bins were common to
at least two of the three strain pairs during exponential growth.
This analysis suggests a common difference between the metabo-
lomes of the three DapS and DapNS strain pairs (see Table S2 in the
supplemental material). Overall, these results further support the
notion that the transition of S. aureus to a DapNS state coincides
with an altered metabolome relative to that of DapS parental
strains.

The transition to a daptomycin nonsusceptibility phenotype
alters central, amino acid, pyrimidine, and purine metabolism.
Because of the large number and significant overlap of peaks in a
1D 1H NMR spectrum and the chemical shift degeneracy of me-
tabolites, the assignment of metabolites based solely on 1D 1H
NMR can be challenging. To facilitate the identification of altered
metabolites between strain pairs, 2D 1H-13C HSQC NMR was
used to identify metabolic changes between strains 616 and 703.
The reduced complexity of the 2D 1H-13C HQSC spectra and the
two correlated and distinct chemical shifts allowed for improved
metabolite assignments. In addition to aiding in metabolite iden-
tification, the 13C-labeled glucose provides information about the
flow of carbon through the metabolome. By this approach, 41 and

34 metabolites were identified in the exponential and postexpo-
nential growth phases (see Table S3 in the supplemental material),
respectively, accounting for about 60% of the peaks in the 2D
1H-13C HSQC spectra. Similar to the physiological data and PCA
and OPLS-DA models (Table 3 and Fig. 3; see Table S2 in the
supplemental material), the majority of the metabolic changes
between DapS and DapNS strains were found in the postexponen-
tial growth phase (Fig. 4).

All exponential growth phase metabolites whose concentra-
tions were significantly altered were more abundant in DapNS

strain 703. Importantly, N-acetyl-D-glucosamine was increased in
DapNS strains. UDP-activated N-acetylglucosamine is synthesized
from the glycolysis/gluconeogenesis intermediate fructose-6-
phosphate and serves as a precursor for the synthesis of the exopo-
lysaccharides polysaccharide intercellular adhesion (PIA) and
capsule, which are associated with biofilm formation (67) and
virulence (68). In addition, N-acetylglucosamine is a component
of peptidoglycan and WTA and a biosynthetic intermediate used
in the synthesis of N-acetylmuramic acid and N-acetylman-
nosamine, major components of peptidoglycan and WTA (69),
respectively. The concentration of ribitol, a precursor of CDP-
ribitol that is used in WTA biosynthesis (70), was also significantly
increased in DapNS strains during both the exponential and post-
exponential growth phases. In contrast, the concentration of the
WTA component mannose was significantly altered only in the
postexponential growth phase. Other metabolites with increased
concentrations in DapNS strains were erythrose-4-phosphate, ri-
bose, and fructose, which relate to the pentose phosphate pathway
that is necessary for the synthesis of the WTA precursor ribitol.
Overall, these data suggest an increased carbon flow of glucose
into pathways associated with the synthesis of cell wall compo-
nents in DapNS.

An increase in carbon flow to pathways that provide biosyn-
thetic intermediates necessary for cell wall precursors implies that
carbon is directed away from pathways not involved in cell wall
precursor synthesis. Consistent with this implication, the reduced
activity of the TCA cycle (Fig. 2) suggests that carbon cannot enter
into the TCA cycle in DapNS strains at a rate equivalent to that at
which it does in susceptible strains. This is reflected in higher
concentrations of acetyl-CoA in DapNS strains and in the lower

FIG 3 Metabolic profiles of DapS strain 616 and isogenic derivative DapNS strain 703. Clustering of metabolomes from the exponential (2.5 h) and postexpo-
nential (6 h) growth phases examined by PCA of 1D 1H-NMR spectra and then presented by LDA demonstrates significantly different metabolic profiles in the
2D LDA plot (A) and the dendrogram plot (B), both of which are generated from 3D PCA scores. The ellipses correspond to the 95% confidence limits of a normal
distribution for each cluster. Each dendrogram node is labeled with a P value; a lower P value indicates a larger separation between the clades.
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concentrations of the TCA cycle-derived amino acids glutamate,
aspartate, and asparagine in DapNS strain 703 than in susceptible
strain 616 in the postexponential phase (Fig. 4; see Table S2 in the
supplemental material).

In addition to the changes in central and amino acid metabo-
lism, there were alterations in pyrimidine and purine metabolism,
with higher concentrations of several nucleotides in DapNS strains
than in DapS strains. Taken together, the metabolic perturbations
associated with daptomycin nonsusceptibility in S. aureus involve
(i) decreased TCA cycle activity, (ii) increased synthesis of pyrim-
idines and purines, and (iii) increased carbon flow in pathways
associated with WTA and peptidoglycan biosynthesis.

DapNS strain metabolism is minimally altered during growth
in the presence of daptomycin. For most S. aureus strains, the
transition to the daptomycin nonsusceptibility phenotype caused
little or no loss of fitness in the absence of daptomycin in the
cultivation medium (Table 4). To determine if the transition to
the daptomycin nonsusceptibility phenotype alters metabolism in
DapS and DapNS strains, the strain pairs 616/703, Q2819/Q2818,
and BOY755/BOY300 were treated with a concentration of dap-
tomycin sufficient to produce an 
50% reduction in growth and
the metabolomes were harvested and analyzed by 1D 1H NMR.
Daptomycin concentrations of 0.5 and 1.5 �g/ml for DapS and

DapNS strains, respectively, were empirically determined to re-
duce bacterial growth to comparable levels (45% � 15%) after 2.5
h of incubation. As expected, challenging S. aureus cultures with
daptomycin resulted in metabolic alterations that caused group
separation in the LDA plots generated from the 1D 1H NMR spec-
tra (Fig. 5A). Importantly, the corresponding dendrogram illus-
trates that the metabolomes of DapNS strain 703, when challenged
with daptomycin, clustered closer to the untreated metabolomes
than did treated parental strain 616 (Fig. 5B). Similar patterns
were also observed in strain pairs Q2819/Q2818 and BOY755/
BOY300 (see Fig. S3 in the supplemental material). These results
were also verified by OPLS-DA (see Table S1 in the supplemental
material).

For all three strain pairs analyzed, the groups of daptomycin-
treated and untreated DapNS cells were closer to each other than
the groups of treated and untreated DapS cells. This was apparent
from the clustering patterns of the groups and the P values re-
ported for each clade separation in the dendrogram, in which the
P values were used to quantify the distance between separated
clades. A pairwise P value was also calculated for each pair of
analyzed groups in order to measure the relative distance (see
Table S4 in the supplemental material). As an example, the groups
of bacteria of strain 616 with or without daptomycin treatment
were separated with a P value of 1.06 � 10�6, while the higher P
value of 1.70 � 10�2 for DapNS strain 703 represented a shorter
distance; hence, fewer metabolic alterations were associated with
daptomycin challenge in strain 703 than in strain 616. The P val-
ues for challenged and unchallenged cultures of strain Q2819
(2.79 � 10�6) versus strain Q2818 (2.23 � 10�3) and strain
BOY755 (2.85 � 10�10) versus strain BOY300 (1.03 � 10�2) re-
vealed patterns similar to that of strain pair 616/703. Additionally,
the metabolomes of daptomycin-treated DapNS cells were more
similar to those of the untreated parental DapS cells (P values of
3.98 � 10�4, 7.48 � 10�6, and 1.86 � 10�4 for strain pairs 616/
703, Q2819/Q2818, and BOY755/BOY300, respectively) than the
metabolomes of daptomycin-treated DapS cultures (P values of

FIG 4 Significantly altered metabolites of DapNS strain 703 compared to those of parental DapS strain 616. Metabolite concentration changes were identified by
2D 1H-13C HSQC NMR analyses in triplicate of bacteria grown aerobically in TSB medium containing [13C]glucose. Metabolites are highlighted according to
their chemical nature as amino acids (white), amino sugar/sugars/sugar alcohol (black), pyrimidines/purines (dark gray), or others (bright gray). Positive values
represent higher concentrations, and negative values represent lower concentrations, of the metabolites in the DapNS strain than those of the metabolites in the
DapS strain. Abbreviations: GlcNAc, N-acetyl-D-glucosamine; Ery-4-phosphate, erythrose-4-phophate; AXP, AMP, ADP, or ATP; CXP, CMP, CDP, or CTP;
dA/dG, deoxyadenosine/deoxyguanosine. Each bar is shown with the statistical significance determined by Student’s t test at the 90%
(*, P � 0.1) or 95% (**, P � 0.05) confidence level.

TABLE 4 Relative fitness of DapNS S. aureus strains

DapS/DapNS strain pair Mean relative fitness � SEMa P valueb

616/703 0.953 � 0.037 0.4708
Q2819/Q2818 0.761 � 0.004 �0.0001
BOY755/BOY300 0.914 � 0.039 0.0684
CB5011/CB5012 0.801 � 0.030 0.0010
CB5062/CB5063 0.982 � 0.021 0.2312
CB1663/CB1664 0.625 � 0.019 �0.0001
a Values were derived from at least four independent experiments.
b The statistical significance (P value) of the difference between the formed generations
of the DapS strain and those of the corresponding DapNS strain was determined by
Student’s t test.
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1.06 � 10�6, 2.79 � 10�6, and 2.85 � 10�10 for strains 616,
Q2819, and BOY755, respectively). These data suggest that the
metabolism of DapNS strains is preadapted to permit growth in the
presence of daptomycin.

The 2D 1H-13C HSQC analysis of DapS (616) and DapNS (703)
with 13C6-labeled glucose revealed a broad impact of daptomycin
on the metabolomes with decreased concentrations for the major-
ity of metabolites compared to untreated bacteria (Fig. 6). Chal-
lenging bacteria of both DapS and DapNS strains with daptomycin
also resulted in reduced concentrations of the TCA cycle interme-
diate 2-oxoglutarate and TCA cycle-derived amino acids (i.e.,
Asp, Glu). While the concentrations of Asp and Glu were de-
creased in both DapS and DapNS strains, significantly lower con-
centrations were detected in DapS strain 616 than in strain 703.
Similar patterns of significantly lower metabolite concentrations
in strain 616 than in strain 703 after treatment with daptomycin
were observed for metabolites associated with glycolysis (i.e., fruc-
tose, fructose-6-phosphate, glyceraldehyde, and acetylphos-
phate), the pentose phosphate pathway (i.e., ribulose-5-phos-
phate), and the peptidoglycan precursor D-alanyl–D-alanine and
for WTA precursors (i.e., ribitol, glycerol-3-phosphate, and man-
nose). In contrast, the concentration of N-acetylglucosamine was
higher in DapS cells exposed to daptomycin than in unchallenged
DapS strain 616 or challenged DapNS strain 703. Notably, the
higher concentration of N-acetylglucosamine in DapNS strains
than in DapS strains observed under unchallenged conditions
(Fig. 4) was not significantly altered during a daptomycin chal-
lenge (Fig. 6; see Table S3 in the supplemental material), suggest-
ing that the metabolism of DapNS strains is better prepared for
growth in the presence of daptomycin.

Metabolic intervention to increase the daptomycin sensitiv-
ity of DapNS strains. Transition to the daptomycin nonsuscepti-
bility phenotype alters metabolism (Fig. 3 and 4). When bacteria
alter carbon flow through a metabolic pathway, they can become
more or less sensitive to inhibitors of those enzymes or pathways.
If the level of an enzyme is decreased, the bacteria might become
more resistant to an inhibitor because of a decrease in the number
of targets for that inhibitor. Conversely, bacteria can become
more sensitive to an inhibitor because the inhibitor concentration
overwhelms the reduced enzyme level. To determine if inhibiting

an enzyme or pathway would alter the daptomycin susceptibility
of DapNS strains, the aconitase-specific inhibitor fluorocitrate was
added to the culture medium in the presence or absence of dap-
tomycin and growth was assessed after 12 h of incubation (Fig. 7).
The addition of fluorocitrate to the culture medium significantly
decreased the growth yield of S. aureus DapNS strain 703 relative to
that of DapS strain 603 (Fig. 7A). In fact, the DapS strain was
largely unaffected by the addition of fluorocitrate. As expected, in
the absence of fluorocitrate, the DapNS strain was more resistant to
daptomycin than the susceptible strain was (Fig. 7B). In contrast,
when fluorocitrate and daptomycin were combined, the DapNS

strain became significantly (P � 0.05) more sensitive to daptomy-
cin (Fig. 7C). Analysis of the remaining strain pairs found that the
sensitivity of the DapNS strains to fluorocitrate varied from none
(strains BOY755, CB5012, and Q2818) to a sensitivity resembling
that of strain 703 (strains CB1664 and, to a lesser extent, CB5063).
Taken together, these data demonstrate that the daptomycin non-
susceptibility phenotype can be altered by manipulating metabo-
lism. In addition, the heterogeneity of responses to fluorocitrate
suggests that the TCA cycle changes are not the primary metabolic
adaptation that confers the daptomycin nonsusceptibility pheno-
type on S. aureus. These data also demonstrate that susceptibility
to fluorocitrate cannot be attributed to mutations in mprF because
strains with the S295L mutation (i.e., 703 and BOY300) differ
profoundly in fluorocitrate susceptibility.

DISCUSSION

The transition from antibiotic susceptibility to nonsusceptibility
often coincides with a reduced growth rate and/or reduced fitness.
As examples, the acquisition of new genetic determinants such as
the staphylococcal chromosomal cassette (SCCmec) that confers
resistance to �-lactam antibiotics caused severe growth reductions
in the first MRSA strains (71). Accordingly, these strains were
restricted to clinical settings where high selective antibiotic pres-
sure predominates. Evolution has reduced the size of SCCmec
elements, and the fitness of these MRSA strains has increased,
allowing these strains to persist in the community (72, 73). Anti-
biotics such as mupirocin (74) or rifampin (40, 75) drive resis-
tance by selecting for bacteria that have adapted their normal
physiological processes to permit growth in the presence of these

FIG 5 Exposure to daptomycin alters the metabolome of DapS strain 616 to a greater extent than that of DapNS strain 703. S. aureus cultures were challenged with
daptomycin at concentrations leading to a growth reduction of approximately 50% at the time of harvest after 2.5 h. Differences in the intracellular metabolomes
were examined by PCA of the 1D 1H-NMR spectra and are presented as a 2D LDA plot (A) and a dendrogram plot (B), both of which were generated from 3D
PCA scores. The ellipses correspond to the 95% confidence limits of a normal distribution for each cluster. Each dendrogram node is labeled with a P value; a
lower P value indicates greater separation between the clades.
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antibiotics. Interestingly, the transition to a low-level DapNS state
of the MSSA and MRSA strain pairs revealed similar generation
times of DapNS and DapS strains and a minimal fitness burden.
These data suggest that once DapNS strains have evolved, they have
the capability to persist in the environment. This is in contrast to
that of S. aureus strains with intermediate vancomycin suscepti-
bility, where resistance usually coincides with increased genera-
tion times (strain pair CB1663/CB1664 in Table 3) (60, 76). De-
spite the cross-resistance between vancomycin and daptomycin,
these differences indicate considerable variation in the adaptation
process and further underscore the need for a deeper understand-
ing of daptomycin nonsusceptibility and the subsequent develop-
ment of new strategies to counteract it.

Several studies have attempted to unravel the changes associ-
ated with the daptomycin nonsusceptibility phenotype on a global

scale by transcriptional and proteomic profiling (18, 22, 25, 26, 35,
36). Although the transcriptomes of different S. aureus strains
showed limited similarities, these studies all noted altered tran-
scription of genes involved in metabolism. These studies focused
on the gene and protein levels; however, metabolism is also influ-
enced by posttranscriptional and posttranslational regulation and
substrate and cofactor availability. That being said, these studies
described transcriptional and proteomic alterations that were
quite moderate, similar to our observation regarding the slightly
delayed transition of DapNS strains to the postexponential growth
phase (Fig. 1; see Fig. S1 in the supplemental material). This tran-
sition from rapidly dividing bacteria with an abundant supply of
nutrients to postexponential growth and catabolism of secondary

FIG 6 Metabolic alterations of S. aureus due to a daptomycin challenge. The
metabolomes of DapS strain 616 and DapNS strain 703 with (�) or without (�)
a daptomycin challenge were analyzed by 2D 1H-13C-HSQC after 2.5 h of
aerobic growth in TSB containing 13C-labeled glucose in three independent
experiments. The relative concentrations of the metabolites identified in three
independent replicates are shown on a color scale heat map, and hierarchical
clustering is depicted by dendrograms. The statistical significance of differ-
ences between the metabolite concentrations of treated and untreated DapS

(red) or DapNS (blue) bacteria or treated DapS and treated DapNS (black)
bacteria, determined by Student’s t test, is indicated (*, P � 0.1; **, P � 0.05).

FIG 7 Fluorocitrate increases the daptomycin susceptibility of DapNS strain
703. Fluorocitrate (A), daptomycin (B), or both fluorocitrate and daptomycin
(C) were added to the cultivation medium, Mueller-Hinton broth, at the con-
centrations indicated, and the OD600 was determined after 12 h of aerobic
growth. The data represent the mean and SEM of at least three independent
experiments. Strain 616 is represented by black bars, and strain 703 is repre-
sented by white bars.
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metabolites coincides with a fundamental metabolic switch from
substrate level phosphorylation and secretion of incompletely ox-
idized metabolites to activation of TCA cycle function and oxida-
tive phosphorylation in order to catabolize nonpreferred carbon
sources (61–63). The delay in the transition to TCA cycle-based
metabolism was evident from the decreased aconitase activities
and delayed acetate catabolism in the DapNS strains (Fig. 1B
and 2).

NMR metabolomics confirmed that the transition of S. aureus
to a daptomycin nonsusceptibility phenotype is associated with
altered physiology and metabolism (Fig. 3; see Fig. S2 in the sup-
plemental material). Specifically, the data suggest that daptomy-
cin nonsusceptibility coincides with a redirection of carbon flow
from the TCA cycle into the pentose phosphate pathway, provid-
ing intermediates for the biosynthesis of WTAs, peptidoglycan,
and nucleosides/nucleotides (Fig. 4 and 6; see Table S2 in the
supplemental material). This suggested that the function of
the TCA cycle is impaired in DapNS strains, which is supported by
the observations of Fischer et al. (35) showing that levels of sub-
units of the TCA cycle enzyme succinate dehydrogenase are lower
in DapNS strain 701 than in isogenic DapS strain 616. In addition,
they observed that the activities of the glycolytic enzymes enolase
and glyceraldehyde-3-phosphate dehydrogenase were higher in
the isogenic strain 701 (DapNS) pair than in strain 616 (DapS) (35).
Another factor potentially contributing to decreased TCA cycle
activity (Fig. 1 and 2) is the reported mutation in DapNS strains in
the upstream region of the gene for acetyl-CoA synthetase
(E.C.6.2.1.1), which is involved in the conversion of acetate to
acetyl-CoA (20). Importantly, the TCA cycle changes in some
DapNS strains can be exploited to increase the efficacy of dapto-
mycin in these strains (Fig. 7).

In S. aureus, WTA consists of peptidoglycan-anchored
N-acetyl-D-glucosamine, N-acetyl-D-mannosamine, glycerol-3-
phosphate, and polyribitol-phosphate (69). The extent to which a
thickened cell wall contributes to daptomycin nonsusceptibility is
still a matter of debate (23); however, we note that precursors of
WTA are increased in DapNS strains (Fig. 4). These precursors
include intermediates and derivatives of the pentose phosphate
pathway such as erythrose-4-phosphate, ribose, ribitol, and man-
nose. In addition, UDP-N-acetyl-D-mannosamine is most likely
synthesized from UDP-N-acetyl-D-glucosamine and both cell wall
precursors originate from the glycolytic intermediate fructose-6-
phosphate. UDP-N-acetyl-D-glucosamine is also a key intermedi-
ate required for the biosynthesis of the major structural polysac-
charides peptidoglycan PIA and capsule. Together, these data
suggest that intracellular concentrations of WTA precursors and
intermediates are increased in DapNS strains, which coincides with
decreased carbon flow through the TCA cycle. The increase in
WTA precursors is consistent with previous studies that demon-
strated increased transcription and production of WTA in DapNS

strains (33, 35). In addition, we observed an increase in the con-
centration of D-alanyl–D-alanine, which is important in the pro-
posed charge repulsion model of daptomycin nonsusceptibility
that involves increased D-alanylation of WTA (29, 30).

Alterations in the purine and pyrimidine metabolism associ-
ated with the daptomycin nonsusceptibility phenotype have been
reported previously (27, 35). Specifically, in vitro-derived DapNS

strains revealed a mutation in the ribose phosphate pyrophospho-
kinase gene, prs, which is involved in the biosynthesis of purines
and pyrimidines (36). Transcriptional profiling of DapNS strains

also indicated that the transcription of purine and pyrimidine
biosynthesis genes was reduced (36). Similarly, a strain with an
rpoB mutation conferring reduced susceptibility to daptomycin
exhibited lower transcription of genes in purine and pyrimidine
biosynthetic pathways (27). In contrast to the studies suggesting
that purine and pyrimidine biosynthesis was decreased in DapNS

strains, one study found that the purine biosynthesis protein
PurH was more abundant in DapNS strain 701 than in DapS strain
616 (35). These seemingly conflicting studies highlight the value
of a metabolomic approach, specifically, examination of the prod-
ucts of genes and enzymes. Consistent with the latter study (35)
nucleoside and nucleotide concentrations were significantly in-
creased in DapNS strains (Fig. 4).

The biosynthesis of purine bases (guanosine, adenosine) and
derivatives requires the synthesis of IMP, which is derived from
histidine, glutamine, and 5-phospho-D-ribosyl-1-pyrophosphate
(PRPP). Histidine and PRPP both require the activity of the PPP
for IMP synthesis, and the concentration of several associated me-
tabolites (i.e., erythrose-4-phosphate, ribose, ribulose-5-phos-
phate) has been significantly affected in DapNS strain 703 with or
without challenging the bacteria with daptomycin. Together with
orotate, PRPP is involved in the synthesis of UMP, a central inter-
mediate of pyrimidine metabolism (i.e., thymidine, cytosine, ura-
cil). Orotate synthesis itself requires carbamoylphosphate, an in-
termediate of amino acid degradation that can be further
metabolized to urea in the urea cycle. Some of the intermediates
related to pyrimidine synthesis; specifically, dihydroorotate and
the urea cycle metabolites arginine and citrulline, were identified
as major contributors to group separation between DapS and
DapNS strains by 1D 1H-NMR OPLS-DA analyses (see Table S2 in
the supplemental material).

Lastly, the concentration of betaine was significantly higher in
DapS strains than in DapNS strains. In bacteria, glycine betaine
confers osmoprotection and facilitates growth at high salt concen-
trations (77–79). Our observation is consistent with transcrip-
tional data of DapNS strains showing higher transcription of genes
involved in the uptake and/or synthesis of glycine betaine (36); in
other words, DapNS strains are trying to overcome this deficiency.
While this observation may be important, the advantage that this
bacterial adaptation confers has not been investigated in more
detail.

Conclusions. Vancomycin continues to be a drug of choice for
treating MRSA infections (80); hence, the emergence of vancomy-
cin-nonsusceptible strains is of great concern. While vancomycin-
resistant S. aureus (VRSA) isolates are rare, the prevalence of VISA
and heterogeneous intermediate-level vancomycin resistance
(hVISA) is increasing (81). When vancomycin is not a viable pa-
tient treatment option (e.g., when a patient is allergic to the drug
or the infection is due to VRSA or VISA), then daptomycin is a
therapeutic option (80). As a consequence of increased therapeu-
tic use of daptomycin, the in vivo development of daptomycin
nonsusceptibility has also increased (82). This in vivo develop-
ment of daptomycin nonsusceptibility has generated a limited
number of isogenic DapS and DapNS strain pairs that could be
used to gain insight into the metabolic changes associated with the
adaptive resistance transition. As expected (26, 28, 29), the tran-
sition to the daptomycin nonsusceptibility phenotype correlated
with an increased thickness of the peptidoglycan in most of the
nonsusceptible strains (Table 2), the exception being strain
Q2818, which is consistent with previous observations (22). Pep-
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tidoglycan contains the amino sugars N-acetylglucosamine and
N-acetylmuramic acid; hence, an increase in peptidoglycan thick-
ness would require increased availability of amino sugars. The
concentration of N-acetylglucosamine increased in DapNS strains,
and the concentrations of other potential amino sugar precursor
metabolites (e.g., UDP-glucose) were also increased (Fig. 4 and 6).
In other words, the transition to a daptomycin nonsusceptibility
phenotype coincides with increased carbon flow into amino sugar
biosynthesis. The alteration in carbon flow appears to be at the
expense of basal TCA cycle activity during the exponential growth
phase and maximal TCA cycle activity during the postexponential
growth phase (Fig. 2). Redirecting carbon flow away from the
TCA cycle can have deleterious fitness costs, specifically, a de-
creased ability to place progeny into the next generation (61).
DapNS strains have largely avoided this fitness cost (Table 4) by
maintaining sufficient TCA cycle activity to balance the need for
increased biosynthesis of cell wall components and bacterial
growth. This required balance may also explain why DapNS strains
do not arise more frequently.
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59. Nečas D, Klapetek P. 2012. Gwyddion: an open-source software for SPM
data analysis. Cent Eur J Physics 10:181–188. http://dx.doi.org/10.2478
/s11534-011-0096-2.

60. Nelson JL, Rice KC, Slater SR, Fox PM, Archer GL, Bayles KW, Fey PD,
Kreiswirth BN, Somerville GA. 2007. Vancomycin-intermediate Staphylo-
coccus aureus strains have impaired acetate catabolism: implications for
polysaccharide intercellular adhesin synthesis and autolysis. Antimicrob
Agents Chemother 51:616 – 622. http://dx.doi.org/10.1128/AAC.01057
-06.

61. Somerville GA, Chaussee MS, Morgan CI, Fitzgerald JR, Dorward DW,
Reitzer LJ, Musser JM. 2002. Staphylococcus aureus aconitase inactivation
unexpectedly inhibits post-exponential-phase growth and enhances sta-
tionary-phase survival. Infect Immun 70:6373– 6382. http://dx.doi.org/10
.1128/IAI.70.11.6373-6382.2002.

62. Somerville GA, Saïd-Salim B, Wickman JM, Raffel SJ, Kreiswirth BN,
Musser JM. 2003. Correlation of acetate catabolism and growth yield in
Staphylococcus aureus: implications for host-pathogen interactions. Infect
Immun 71:4724 – 4732. http://dx.doi.org/10.1128/IAI.71.8.4724-4732
.2003.

63. Gaupp R, Schlag S, Liebeke M, Lalk M, Götz F. 2010. Advantage of
up-regulation of succinate dehydrogenase in Staphylococcus aureus bio-
film. J Bacteriol 192:2385–2394. http://dx.doi.org/10.1128/JB.01472-09.

64. Duda RO, Hart PE, Stork DG. 2001. Pattern classification, 2nd ed. Wiley,
New York, NY.

65. Yu H, Yang J. 2001. A direct LDA algorithm for high-dimensional data—
with application to face recognition. Pattern Recognit 34:2067–2070. http:
//dx.doi.org/10.1016/S0031-3203(00)00162-X.

66. Xu Q-S, Liang Y-Z, Du Y-P. 2004. Monte Carlo cross-validation for
selecting a model and estimating the prediction error in multivariate
calibration. J Chemom 18:112–120. http://dx.doi.org/10.1002/cem.858.

67. Cramton SE, Gerke C, Schnell NF, Nichols WW, Götz F. 1999. The
intercellular adhesion (ica) locus is present in Staphylococcus aureus and is
required for biofilm formation. Infect Immun 67:5427–5433.

68. O’Riordan K, Lee JC. 2004. Staphylococcus aureus capsular polysaccha-
rides. Clin Microbiol Rev 17:218 –234. http://dx.doi.org/10.1128/CMR.17
.1.218-234.2004.

69. Xia G, Kohler T, Peschel A. 2010. The wall teichoic acid and lipoteichoic
acid polymers of Staphylococcus aureus. Int J Med Microbiol 300:148 –154.
http://dx.doi.org/10.1016/j.ijmm.2009.10.001.

70. Pereira MP, Brown ED. 2004. Bifunctional catalysis by CDP-ribitol syn-
thase: convergent recruitment of reductase and cytidylyltransferase activ-
ities in Haemophilus influenzae and Staphylococcus aureus. Biochemistry
43:11802–11812. http://dx.doi.org/10.1021/bi048866v.

71. Ender M, McCallum N, Adhikari R, Berger-Bächi B. 2004. Fitness cost
of SCCmec and methicillin resistance levels in Staphylococcus aureus. An-

timicrob Agents Chemother 48:2295–2297. http://dx.doi.org/10.1128
/AAC.48.6.2295-2297.2004.

72. Hiramatsu K, Cui L, Kuroda M, Ito T. 2001. The emergence and evo-
lution of methicillin-resistant Staphylococcus aureus. Trends Microbiol
9:486 – 493. http://dx.doi.org/10.1016/S0966-842X(01)02175-8.

73. Lee SM, Ender M, Adhikari R, Smith JM, Berger-Bächi B, Cook GM.
2007. Fitness cost of staphylococcal cassette chromosome mec in methi-
cillin-resistant Staphylococcus aureus by way of continuous culture. Anti-
microb Agents Chemother 51:1497–1499. http://dx.doi.org/10.1128/AAC
.01239-06.

74. Hurdle JG, O’Neill AJ, Ingham E, Fishwick C, Chopra I. 2004. Analysis
of mupirocin resistance and fitness in Staphylococcus aureus by molecular
genetic and structural modeling techniques. Antimicrob Agents Che-
mother 48:4366 – 4376. http://dx.doi.org/10.1128/AAC.48.11.4366-4376
.2004.

75. O’Neill AJ, Huovinen T, Fishwick CW, Chopra I. 2006. Molecular
genetic and structural modeling studies of Staphylococcus aureus RNA
polymerase and the fitness of rifampin resistance genotypes in relation to
clinical prevalence. Antimicrob Agents Chemother 50:298 –309. http://dx
.doi.org/10.1128/AAC.50.1.298-309.2006.

76. Sieradzki K, Leski T, Dick J, Borio L, Tomasz A. 2003. Evolution of a
vancomycin-intermediate Staphylococcus aureus strain in vivo: multiple
changes in the antibiotic resistance phenotypes of a single lineage of me-
thicillin-resistant S. aureus under the impact of antibiotics administered
for chemotherapy. J Clin Microbiol 41:1687–1693. http://dx.doi.org/10
.1128/JCM.41.4.1687-1693.2003.

77. Graham JE, Wilkinson BJ. 1992. Staphylococcus aureus osmoregulation:
roles for choline, glycine betaine, proline, and taurine. J Bacteriol 174:
2711–2716.

78. Miller KJ, Zelt SC, Bae J-H. 1991. Glycine betaine and proline are the
principal compatible solutes of Staphylococcus aureus. Curr Microbiol 23:
131–137. http://dx.doi.org/10.1007/BF02091971.

79. Kunin CM, Rudy J. 1991. Effect of NaCl-induced osmotic stress on
intracellular concentrations of glycine betaine and potassium in Esche-
richia coli, Enterococcus faecalis, and staphylococci. J Lab Clin Med 118:
217–224.

80. Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, Kaplan
SL, Karchmer AW, Levine DP, Murray BE, Rybak MJ, Talan DA,
Chambers HF. 2011. Clinical practice guidelines by the Infectious Dis-
eases Society of America for the treatment of methicillin-resistant Staph-
ylococcus aureus infections in adults and children: executive summary.
Clin Infect Dis 52:285–292. http://dx.doi.org/10.1093/cid/cir034.

81. Richter SS, Diekema DJ, Heilmann KP, Dohrn CL, Crispell EK, Riahi
F, McDanel JS, Satola SW, Doern GV. 2014. Activity of vancomycin,
ceftaroline, and mupirocin against Staphylococcus aureus from a 2011 na-
tional surveillance study in the United States. Antimicrob Agents Che-
mother 58:740 –745.

82. Bayer AS, Schneider T, Sahl HG. 2013. Mechanisms of daptomycin
resistance in Staphylococcus aureus: role of the cell membrane and cell wall.
Ann N Y Acad Sci 1277:139 –158. http://dx.doi.org/10.1111/j.1749-6632
.2012.06819.x.

Gaupp et al.

4238 aac.asm.org July 2015 Volume 59 Number 7Antimicrobial Agents and Chemotherapy

http://dx.doi.org/10.1063/1.1143970
http://dx.doi.org/10.2478/s11534-011-0096-2
http://dx.doi.org/10.2478/s11534-011-0096-2
http://dx.doi.org/10.1128/AAC.01057-06
http://dx.doi.org/10.1128/AAC.01057-06
http://dx.doi.org/10.1128/IAI.70.11.6373-6382.2002
http://dx.doi.org/10.1128/IAI.70.11.6373-6382.2002
http://dx.doi.org/10.1128/IAI.71.8.4724-4732.2003
http://dx.doi.org/10.1128/IAI.71.8.4724-4732.2003
http://dx.doi.org/10.1128/JB.01472-09
http://dx.doi.org/10.1016/S0031-3203(00)00162-X
http://dx.doi.org/10.1016/S0031-3203(00)00162-X
http://dx.doi.org/10.1002/cem.858
http://dx.doi.org/10.1128/CMR.17.1.218-234.2004
http://dx.doi.org/10.1128/CMR.17.1.218-234.2004
http://dx.doi.org/10.1016/j.ijmm.2009.10.001
http://dx.doi.org/10.1021/bi048866v
http://dx.doi.org/10.1128/AAC.48.6.2295-2297.2004
http://dx.doi.org/10.1128/AAC.48.6.2295-2297.2004
http://dx.doi.org/10.1016/S0966-842X(01)02175-8
http://dx.doi.org/10.1128/AAC.01239-06
http://dx.doi.org/10.1128/AAC.01239-06
http://dx.doi.org/10.1128/AAC.48.11.4366-4376.2004
http://dx.doi.org/10.1128/AAC.48.11.4366-4376.2004
http://dx.doi.org/10.1128/AAC.50.1.298-309.2006
http://dx.doi.org/10.1128/AAC.50.1.298-309.2006
http://dx.doi.org/10.1128/JCM.41.4.1687-1693.2003
http://dx.doi.org/10.1128/JCM.41.4.1687-1693.2003
http://dx.doi.org/10.1007/BF02091971
http://dx.doi.org/10.1093/cid/cir034
http://dx.doi.org/10.1111/j.1749-6632.2012.06819.x
http://dx.doi.org/10.1111/j.1749-6632.2012.06819.x
http://aac.asm.org

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2015

	Staphylococcus aureus Metabolic Adaptations during the Transition from a Daptomycin Susceptibility Phenotype to a Daptomycin Nonsusceptibility Phenotype
	Rosmarie Gaupp
	Shulei Lei
	Joseph M. Reed
	Henrik Peisker
	Susan Boyle- Vavra
	See next page for additional authors
	Authors


	Staphylococcus aureus Metabolic Adaptations during the Transition from a Daptomycin Susceptibility Phenotype to a Daptomycin Nonsusceptibility Phenotype
	MATERIALS AND METHODS
	Bacterial strains.
	Bacterial growth conditions.
	Determination of competitive fitness.
	Measurement of acetate and ammonium in culture supernatants.
	Aconitase activity assay.
	NMR sample preparation.
	NMR data collection and analysis.
	Peptidoglycan preparation.
	AFM imaging.

	RESULTS
	DapNS strains have a delayed transition into postexponential growth.
	Competitive fitness.
	Delayed transition into postexponential growth of DapNS strains correlates with decreased TCA cycle activity.
	DapS and DapNS strains have significantly different metabolic states.
	The transition to a daptomycin nonsusceptibility phenotype alters central, amino acid, pyrimidine, and purine metabolism.
	DapNS strain metabolism is minimally altered during growth in the presence of daptomycin.
	Metabolic intervention to increase the daptomycin sensitivity of DapNS strains.

	DISCUSSION
	Conclusions.

	ACKNOWLEDGMENTS
	REFERENCES


