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Understanding the factors underpinning to food web structure and stability is a long-

standing issue in ecology. This is particularly important in a context of global climate 

change, where rising environmental temperatures may impact the way species 

interact, potentially leading to changes in food web structure and to secondary 

extinctions resulting from cascading effects. In order to understand and predict these 

changes, we need to hone our comprehension on the way predators and their prey 

interact. Recent studies suggest that, in order to do so, we need to focus on the traits 

controlling those interactions, such as body size. Mean body size and its intraspecific 

variation can in turn be affected by temperature, a pattern known as the temperature-

size rule. To understand how warming may affect predator-prey interactions and 

through them, food web structure and dynamics, we thus first need to understand how 

traits, their within species variation, and temperature, may jointly affect these 

interactions. Here, I address these unknowns using both empirical and theoretical 

tools. I have shown that variation in the traits controlling predator-prey interactions 

may determine the strengths of these interactions, and through them, their stability 

and overall dynamics. I have also shown this to be truth for species living as 

metapopulations, where variation in the traits controlling migration plays an important 

role in determining their chance of persisting. Moreover, I showed empirically that 

many of these findings hold in a freshwater predator-prey system, and based on 

empirical results on how temperature affects body size and its variation, I made 

predictions as to how warming may affect interaction strengths in this system. I thus 

found evidence of temperature determining the way predators and their prey interact, 

leading to important changes in the body size structure of entire food webs across 

aquatic ecosystems. My results highlight how intraspecific variation has important yet 

largely overlooked ecological effects, and how these effects can be mediated by 

environmental temperature.  
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OVERVIEW 

 

1. THE PROBLEM 

One of ecology’s most pressing goals is to predict how ecosystems will 

respond to global climate change. Understanding the structure and stability of 

complex networks of interacting species is crucial for the accuracy of these 

predictions, but refining this understanding is a challenging task. The structure of 

food webs – collections of species and their feeding interactions – ultimately depends 

on the interplay between multiple levels of biological complexity, from individuals to 

ecosystems. Recent studies argue that to successfully understand food web structure 

we need a mechanistic understanding of how prey and predator traits affect their 

feeding interactions, as these are ultimately determined by the traits involved in the 

processes of finding, capturing and consuming prey. To hone our capacity to predict 

how food webs will respond to future climates we thus need to address the following 

questions: how do ecological processes scale up from predator and prey individuals 

and their traits to ecosystems? How do these effects cascade across levels of 

biological complexity to determine food web structure? And, how will global climate 

change alter the way in which this happens? My research aims at addressing these 

questions by using tools and approaches at the interface between theory and data. 

  

2. PHENOTYPIC VARIATION AND PREDATOR-PREY INTERACTIONS 

 While evolutionary biology has long recognized individual-level phenotypic 

variation as the key to understand evolution, ecology has historically dismissed 

individual variation as uninformative noise around mean values of interest. However, 

individual variation can have important effects on ecological processes in a number of 
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circumstances, especially when these processes have a non-linear dependence upon 

underlying traits. Whether and how this variation may affect predator-prey 

interactions was, however, poorly understood (Gibert et al 2015).  

My theoretical work showed that individual variation in the traits controlling 

attack rate and handling time (e.g. body size) can decrease interaction strengths 

between consumers and resources, and, through that, increase stability and species 

persistence (Gibert and Brassil 2014, Gibert & DeLong 2015). This effect, however, 

is mediated by the difference between the mean trait value in the population and the 

optimal value (i.e. the phenotypic mismatch). This suggests that both current and past 

selection acting on traits, as well as ecological determinants of such traits (like 

temperature in the case of body size) may play a major role in modulating how 

phenotypic variation affects predator-prey interactions (Gibert et al 2015). I have also 

shown that phenotypic variation in traits involved in migration can also affect the 

persistence of species that live as metapopulations (Gibert 2016), that is, collections 

of populations that share migrants.  

All in all, my theoretical work has shown that phenotypic variation in traits 

that have a functional effect on ecological processes can have, per se, important yet 

largely overlooked impacts on ecological dynamics.  

 

3. THE JOINT EFFECT OF TEMPERATURE AND PHENOTYPIC VARIATION 

 Understanding the effect of temperature on predator-prey interactions is 

crucial to predict how global warming may affect the structure and dynamics of food 

webs. Through its effects on metabolic rates, temperature sets the pace at which 

myriad ecological processes occur, including how predators and prey interact. I have 

shown that temperature affects the speed at which animals move by incorporating 
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how metabolic rates scale with body size into biomechanical models of animal 

movement. By doing so, I have shown that temperature increases the speed at which 

animals move in predictable ways (Gibert et al 2016). The temperature-dependence of 

animal movement has important consequences for predator-prey interactions due to 

the dependence of predator attack rates on animal velocity. Based on this, I have 

shown that temperature determines how strongly predators interact with their prey, 

thus affecting the stability and persistence of predator-prey systems within food webs 

(Gibert et al 2016).   

 Temperature can directly determine both mean body size and its intraspecific 

variation in ectotherms (a process known as the temperature-size rule), and mediate 

predator-prey interactions through its effect on animal movement. Variation in body 

size, for example, can also alter predator-prey interactions, whenever attack rates and 

handling times depend nonlinearly upon body size. Thus, variation and temperature 

may jointly affect predator-prey interactions, but how or whether this occurs in nature 

is largely unknown. I was awarded a Doctoral Dissertation Improvement Grant from 

NSF to test whether the joint effect of temperature and variation in body size can be 

detected empirically in a freshwater predator-prey system. Thus far, my results 

suggest that both mean body size and its variation determine the parameters 

controlling foraging rates between the copepod predator Eucyclops agilis and the 

protist prey Paramecium caudatum, and that, when this variation is not taken into 

account, the overall effect of temperature on interaction strengths may be 

underestimated (Gibert & DeLong, in prep). Lastly, whether the effects of 

temperature on pairwise predator-prey interactions scale-up to entire food webs is by 

and large unknown, but my results suggest that temperature has important effects on 
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food web body-size structure, by altering predator-prey body size ratios in specific 

ways (Gibert & DeLong 2014).    

 

4. FUTURE STEPS  

 So far, I have shown 

that phenotypic variation in 

traits controlling predator-

prey interactions can 

determine their strength and 

dynamics (Gibert & Brassil 

2014, Gibert & DeLong 

2015, Fig 1). This variation 

can also affect the 

persistence of 

metapopulations (Gibert 

2016), and can be detected 

empirically using simple experiments (Gibert & DeLong, in prep, Fig 1). 

Furthermore, the effect of phenotypic variation may be mediated by environmental 

temperature (Gibert & DeLong, in prep, Fig 1). Temperature can, in and of itself, 

directly affect predator-prey interactions through its effect on animal movement 

(Gibert et al. 2016) as well as on the body-size structure of complex networks of 

interacting species like food webs (Gibert & DeLong 2014, Fig 1). How phenotypic 

variation may directly or indirectly affect the structure and dynamics of entire food 

webs (and not just pairwise predator-prey interactions), as well as how temperature 

may mediate this effect, are, however, largely unknown (Fig 1). 

Fig. 1: Diagram showing how phenotypic variation and 
temperature can have effects across levels of biological 
organization, as well as how my work has contributed in 

our understanding of these processes. 
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  I was awarded a James S. MacDonnell Foundation Postdoctoral Fellowship 

in Complex Systems to address this exact problem. For the next three years I will be 

assessing 1) how phenotypic variation influences predator connectivity (i.e. the 

number of feeding interactions of a predator within a food web), 2) how it determines 

predator trophic level, and, 3) how these ideas can be tested with empirical data. Next, 

I can make predictions as to how temperature may increase or decrease both species 

connectivity and trophic level based on its effect on variation in body size, and then 

test these predictions using food web data across latitudinal gradients. By doing so, I 

hope to contribute to our understanding of how traits and their variation may interact 

with temperature to determine food web structure, and thus help predict the response 

of complex food webs to rising global temperatures.  

 A major challenge to making any of these predictions, and thus, to our ability 

to take appropriate action in response to rising temperatures, is the fundamental 

impossibility to test any of them in natural conditions, this is, with actual large, 

complex food webs. My 5 to 10 year career plan is to develop an empirical system 

where these predictions can be tested: that is, an “ecosystem in a jar”. Ecosystems 

associated with moss along temperate forests may be exactly what I am looking for. 

Indeed, moss provides habitat to hundreds of species, from decomposers to top 

predators, from both aquatic and terrestrial communities. Species diversity can border 

on the hundreds, and organisms range from aquatic protists (a system with which I 

have experience), to small invertebrates such as mites and tardigrades. Both field and 

lab experiments can be performed, such as artificial warming experiments using small 

field greenhouses, or by transferring plaques of moss to the laboratory to put them in 

growing chambers at controlled temperatures. Also, individuals within species can be 

counted and their traits (e.g. body size) can be measured under the microscope. It is 
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therefore possible to assess not only how temperature may alter food web structure, 

but also how it may alter entire intraspecific trait distributions for entire communities. 

The composition of each community can also be manipulated in the lab by changing 

the number and identity of the species living in a given moss plaque, which opens-up 

multiple lines of inquiry in this system.  

As a post-doctoral associate I plan on starting to develop such a system, a task 

that will probably take about 5 years to be completed. Moss ecosystems would allow 

me to answer some of the most pressing ecological issues of our time. These answers 

not only are greatly needed, but near impossible to obtain without an “ecosystem in a 

jar” like moss. During my career I thus hope to address fundamental questions in 

ecology at the interface between theory and data with important implications for a 

world where temperatures are on the rise.  

!

!
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CHAPTER 1 

 

INDIVIDUAL PHENOTYPIC VARIATION REDUCES INTERACTION 

STRENGTHS IN A CONSUMER-RESOURCE SYSTEM 

 

Jean P. Gibert & Chad E. Brassil 

 

Key-words: Intraspecific variation, interaction strengths, species persistence, stability, 

invasion. 

 

ABSTRACT 

Natural populations often show variation in traits that can affect the strength of 

interspecific interactions. Interaction strengths in turn influence the fate of pairwise 

interacting populations and the stability of food webs. Understanding the mechanisms 

relating individual phenotypic variation to interaction strengths is thus central to 

assess how trait variation affects population and community dynamics. We 

incorporated non-heritable variation in attack rates and handling times into a classical 

consumer-resource model to investigate how variation may alter interaction strengths, 

population dynamics, species persistence and invasiveness. We found that individual 

variation influences species persistence through its effect on interaction strengths. In 

many scenarios, interaction strengths decrease with variation, which in turn affects 

species coexistence and stability. Because environmental change alters the direction 

and strength of selection acting upon phenotypic traits, our results have implications 

for species coexistence in a context of habitat fragmentation, climate change, and the 

arrival of exotic species to native ecosystems. 
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INTRODUCTION 

Individuals of the same population often show extensive variation in 

morphology (Bolnick et al. 2003), phenology (Dupont, Trojelsgaard & Olesen 2011), 

behavior (e.g. Tinker, Bentall & Estes 2008), and resource utilization (e.g. Estes et al. 

2003). This variation can arise from underlying genetic diversity (Lynch & Walsh 

1998), or be plastic and result from environmental variability and genotype by 

environment interactions (Fordyce 2006). The importance of genetic and phenotypic 

variation within populations has long been recognized by evolutionary biology, as 

heritable individual variation constitutes the raw material upon which natural 

selection can act (Dobzhansky 1937). Despite a long tradition of considering variation 

in ontogenetic stages and size within populations, ecological theory has largely 

overlooked individual variation in its broader sense (Lomnicki 1988). Populations are 

generally treated as collections of homogeneous individuals and mean demographic 

parameters, such as mortality or attack rates, are generally used to study population 

and community dynamics (Sherratt & MacDougall 1995). However, mean 

demographic rates can be misleading (Inouye 2005), as individual variation may 

affect demographic parameters and ecological attributes in multiple ways (Bolnick et 

al. 2011; Pettorelli et al. 2012).  

Extensive individual phenotypic and dietary variation has been described for 

several organisms such as carnivorous marine mammals (e.g. Harcourt 1993), 

pollinating insects (Dupont et al. 2011), marine and fresh water fishes (e.g. Vander 

Zanden et al. 2000), as well as several bird species (e.g. Golet et al. 2000). However, 

only a handful of these studies assessed the effect of individual variation upon 

demographic or ecological traits (e.g. Lloyd-Smith et al. 2005, Melbourne & Hastings 

2008). For example, individual variation in resource utilization among southern sea 
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otters (Enhydra lutris nereis) structures population-level consumer-resource networks 

in predictable ways (Tinker et al. 2012). This dietary variation leads to differences in 

energy intake among individuals, as well as to differences in individual mortality rates 

through differential pathogen exposure (Tinker et al. 2008; Johnson et al 2009). 

Another study showed that the mean reproductive rate of sockeye salmons 

(Oncorhyncus nerka) increases over long time spans with increasing individual 

variation in life-history traits through a portfolio effect (Greene et al. 2010). Finally, 

coexistence could theoretically increase with increasing levels of individual variation 

in attack rates in apparent competition systems with heritable trait variation 

(Schreiber, Bürger & Bolnick 2011), and stability could be enhanced whenever 

behavioral variation is included in consumer-resource systems (Okuyama 2008). 

Together, these results suggest that the consequences of individual phenotypic 

variation for population and community dynamics can be important. 

Populations embedded in large, complex networks of interacting species such 

as food webs, often show variation in anti-predator defense (Duffy 2010), competitive 

ability (Lankau & Strauss 2007), or resource utilization (e.g. Estest et al. 2003), all of 

which can affect interspecific interactions (Pettorelli et al. 2012). The strength of 

these interactions influences the fate of pairwise interacting populations (e.g. Wootton 

& Emmerson 2005) and food web stability (e.g. May 1972; Allesina & Tang 2012). 

Thus, any factor influencing interaction strengths could affect species persistence and 

stability in consumer-resource systems. To fully understand food web stability as well 

as population and community dynamics, we need to assess the effects of individual 

variation on ecological attributes that determine the strength of consumer-resource 

interactions.  
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Bolnick et al. (2011) identified several mechanisms through which individual 

variation could affect interaction strengths, including adaptive and stochastic eco-

evolutionary feedbacks, increased food-web connectivity, portfolio effects, 

phenotypic subsidy and Jensen’s inequality. The latter, a mathematical rule, implies 

that mean interaction strengths can differ from the interaction strength of the mean 

individual of the population whenever the variable trait or attribute has purely 

concave up or down effects on interaction strengths (Jensen 1906; Ruel & Ayres 

1999), like attack rates or handling times do (Bolnick et al. 2011). Typically, 

interaction strengths have been assumed to be functions of mean attack rates and 

handling times, but, because of Jensen’s inequality, this approach may miss crucial 

aspects of population and community dynamics. For example, individual variation in 

attack rates may decrease mean interaction strengths, while individual variation in 

handling times may increase mean interaction strengths (Fig. 1a, b, Bolnick et al. 

2011). However, because attack rate and handling times are not independent from 

each other (DeLong & Vasseur 2012), it is important to understand what would 

happen when there is individual variation in both ecological attributes at the same 

time, as it may occur in a natural system.  

In this study, we address how non-heritable individual variation in attack rates 

and handling times affect interaction strengths within consumer-resource interactions, 

and how this in turn can affect consumer-resource dynamics, species coexistence and 

overall stability. To do so, we included individual variation in traits controlling attack 

rate and handling time in classic consumer-resource models to assess how different 

levels of individual variation might affect ecological dynamics, species persistence 

and stability in simple consumer-resource models. By doing so, this study answers the 

following questions: what is the effect of individual variation on interaction strengths? 
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How does this effect alter ecological dynamics and stability? We found that 

individual variation in attack rate and handling time can increase species persistence 

and stability through its effect upon interaction strengths. This has in turn important 

implications for the conservation of endangered species and the management of exotic 

ones. 

 

MATERIALS AND METHODS 

Interaction strengths in classic consumer-resource models 

In a consumer-resource interaction model, consumer populations grow 

through ingesting a resource, which affects the growth rate of that resource (e.g. 

Rosenzweig & MacArthur 1963). The rate of change of resource and consumers over 

time can be modeled as: 

dR
dt

= r(R)! f (R,C)

dC
dt

= ! f (R,C)! g(C)
 ,             (1) 

where f (R,C)  and g(C)  are the mortality rates for resource and consumers 

respectively, and r(R)  and ! f (R,C)  are the reproductive rate of resource and 

consumers respectively. The functional form of f (R,C)  is typically assumed to be the 

same for both consumers and resources, but its magnitude is scaled in the consumer 

equation by an efficiency parameter, ! , that can take any non-negative real value. 

May defined interaction strengths (IS, from now on) in systems like (1) as the change 

in the rate of change of one of the species relative to a small change in the other 

species’ density. Here we use May’s definition on a per-capita basis, as advocated by 
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Wooton & Laska (1998), i.e. ISR =
1
R
!dRdt
!C

 for resource and ISC =
1
C
!dC dt
!R

 for 

consumers. Applying this definition to (1), we obtain: 

ISR = !
1
R
" f (R,C)

"C
                           (2) 

ISC =
!
C
! f (R,C)

!R  
.                 (3) 

If we further assume a Holling type II functional response (Holling 1959), where 

f (R,C) = !RC
1+! " R

, we can get expressions for these interaction strengths that depend 

on the main parameters controlling the consumer-resource interaction: 

ISR (!,") = !
!

1+! " R
      (4) 

ISC (!,") = #
!

1+! " R( )2
,                          (5) 

where !  denotes the predator’s attack rate and !  its handling time. Because attack 

rates and handling times are ecological attributes that depend on phenotypic traits, it 

is possible to incorporate variation in those traits into (4) and (5).  

 

Incorporating individual variation 

In a previous theoretical study, attack rates were assumed to depend on the 

value, x , of a quantitative trait (Schreiber et al. 2011). Here, we assumed that both 

attack rate and handling time depend on the value of a normally distributed 

quantitative trait with mean x  and variance ! 2 . The probability density function of 

such a trait is: 
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p(x, x ) = 1

2!" 2
exp !

x ! x( )2

2! 2

"

#
$
$

%

&
'
'
.            (6) 

Following (Schreiber et al. 2011), we assumed the predator’s attack rate, !(x) , to be 

maximal at a given optimal trait value x =!" , and to then decrease away from that 

maximum in a Gaussian way: 

                                                   !(x) =!max exp !
x !"!( )2

2# 2
"

#
$
$

%

&
'
'

,                      (7)  

where !max  is the maximal attack rate and ! determines how steeply the attack rate 

declines away from !"  (Fig. 1c). We further assumed the handling time, !(x) , to be 

minimal at a given optimal value x =!" , and to increase away from that minimum in 

a Gaussian way:  

                                                   !(x) =!max ! !max !!min( )exp !
x !"!( )

2

2# 2
"

#

$
$

%

&

'
'
,           (8) 

where !max  and !min  are the maximal and minimal handling times respectively, and 

!  determines how steeply the handling time increases away from !"  (Fig. 1d).  

The assumed functional forms for the attack rate and the handling time have 

been reported for a variety of organisms when body size is considered as the 

underlying trait of interest (Rall et al. 2012).  Our model also assumes that the attack 

rate and the handling time have inverse functional forms: while attack rate goes down 

as the trait moves away from the optimum, handling time goes up. The latter is 

justified by recent empirical work in protists revealing that attack rate and handling 

time are negatively correlated (DeLong & Vasseur 2012).  

We define d 2! = x !"!( )2  and d 2! = x !!"( )
2 , as the squared distance between 

the mean trait in the population and the optimal value. The optimal value is set by past 
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and existing selective pressures, and is the value at which attack rate is maximal and 

handling time is minimal (referred to as phenotypic mismatch). Phenotypic mismatch 

can be seen as a measure of how well adapted the predator species is at attacking and 

handling a particular resource. The larger the mismatch is, the smaller the attack rate 

and the larger the handling time. Phenotypic mismatch has been shown in other traits 

to affect ecologic interactions and speciation (Raimundo et al. 2014), as well as 

individual fitness (Anderson, Terblanche & Ellis 2010). However, it does not need to 

be the same for both attack rate and handling time, but was assumed to be so for 

simplicity throughout the main text (but see Appendix I and II for different 

assumptions).  

To get mean interaction strengths, we thus integrated interaction strengths 

across the nonlinearity of the functional response and the underlying trait distribution 

as:  

ISR (!,") = !
1
R

"
"C

RC!(x)
1+!(x)"(x) R

p(x, x )
!#

#

$ dx
%

&
'

(

)
* ,       (9) 

ISC (!,") =
!
C

"
"R

RC!(x)
1+!(x)"(x) R

p(x, x )
#$

$

% dx
&

'
(

)

*
+

 
.       (10) 

Using Leibniz integration rule, the derivatives can be passed under the integral sign 

and (9) and (10) can be simplified as: 

ISR (!,") = !
!(x)

1+!(x)"(x) R
p(x, x )

!"

"

# dx ,                  (11) 

ISC (!,") = !
!(x)

1+!(x)"(x) R( )2"#

#

$ p(x, x ) dx .              (12) 

Equations (11) and (12) depend on individual variation (! 2 ) as well as phenotypic 

mismatch (d2) and can be estimated numerically either at equilibrium (when C and R 

are constant), or instantaneously (for any given time t).  
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General dynamics  

To explore the effect of individual variation on consumer-resource interactions 

and species persistence through interaction strengths, we explored the dynamics of a 

Rosenzweig-MacArthur consumer-resource model (Rosenzweig & MacArthur 1963). 

We analyzed the behavior of the model under varying levels of individual variation 

using:   

dR
dt

= rR 1! R
K

"

#
$

%

&
'!

RC!(x)
1+!(x)"(x) R

p(x, x )
!(

(

) dx

dC
dt

= #
RC!(x)

1+!(x)"(x) R
p(x, x )

!(

(

) dx !mC
 ,                   (13) 

where K is the carrying capacity for the resource, m is the mortality rate of the 

consumer and all other parameters are as explained before. Our main objective is to 

tie the dynamic effect of phenotypic variation on attack rate and handling time 

through their effect on interaction strengths.  

 

General questions 

In this study we specifically addressed the following questions: first, does 

individual variation affect the magnitude of the interaction strength between 

consumers and resources? We addressed this question by evaluating equations (11) 

and (12) under increasing levels of individual variation. We also assessed how 

sensitive interaction strengths were to variation in attack rate and handling time by 

quantifying their elasticity for varying levels of individual variation (Appendix III).  

Second, if individual variation affects interaction strengths, it can potentially affect 

population dynamics through the latter. So, would individual variation affect species 

persistence in a consumer-resource interaction? And, would individual variation 

affect the stability of consumer-resource interactions? To address these, we derived 
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the conditions for consumer persistence. We also used model (13) to assess how 

individual variation affected the consumer resource-dynamics, and found approximate 

minimal levels of variation needed to achieve stable dynamics. Our approach mimics 

what is observed in the field (e.g. Matthews et al. 2010), where normally distributed 

quantitative traits affect the individual use of resources through attack rates and 

handling times (e.g. Robinson 2000). However, both trait distributions and ecological 

attributes may not be symmetric in nature; for example, trait distributions may be log-

normal (e.g. Gows, Gaston & Chown 2011) and attack rates may be asymmetric 

(Vucic-Pestic et al. 2010). We therefore explored three other possible scenarios: (1) 

trait distributions are asymmetric (Appendix IV), (2) handling time and attack rate are 

asymmetric functions of the underlying trait x  (Appendix V) and (3) both the trait 

distribution and the functions relating handling time and attack rate to the underlying 

phenotypic trait are asymmetric (Appendix VI).  

 

RESULTS 

Interaction strengths 

When phenotypic mismatch is small ( d! ~ 0  and d! ~ 0 ), interaction strengths 

decay in both consumers and resources with increasing individual variation (Fig. 2a). 

This is also true under varying resource levels (Fig. 2b). In contrast, if phenotypic 

mismatch is sufficiently large ( d! >> 0  or d! >> 0 ), interaction strengths first 

increase with variation, and then decrease (Fig, .c), which is also true for varying 

resource levels (Fig, 2d). These effects seem to increase with resource levels in all 

cases (Fig. 2b, d). Increasing phenotypic mismatch leads to smaller interaction 

strengths across all levels of variation (Fig. 2a, c). Our results are robust to changes in 

the underlying assumptions such as incorporating asymmetric trait distributions 
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(Appendix IV), incorporating asymmetric attack rates and handling times (Appendix 

V), or both asymmetric distributions and asymmetric attack rates and handling times 

(Appendix VI). These results are robust to changes in parameter values (Appendix 

VII). Notice, however, that asymmetric distributions alone enlarge the range of 

possible scenarios where interaction strengths decrease with individual variation 

while the opposite is true for asymmetric attack rate and handling time, regardless of 

the underlying distribution (Apendices S4, S5 and S6). 

 

Persistence and Stability 

For a consumer to be able to persist, the following inequality must hold: 

    !
d
K !(x)

1+!(x)!(x) K
p(x, x )

!"

"

# dx

IR R=K

! "##### $#####
>1 .              (14) 

Notice that the absolute value of the interaction strength experienced by the resource 

at its carrying capacity (i.e. IR R=K ) from equation (11) is embedded in (14). We 

know that IR R=K  depends on individual variation (! 2 ) such that (14) is: 

!
d
IR ("

2 )
R=K

>1 .                           (15) 

Hence, if phenotypic mismatch is small ( d! ~ 0  and d! ~ 0 ), the consumer is less 

likely to persist since IR (!
2 )

R=K
 decreases monotonically with individual variation 

and (16) becomes less likely to hold (Fig. 3a). When phenotypic mismatch is large (

d! >> 0  or d! >> 0 ), the likelihood of consumer persistence gets larger at first and 

then decreases (Fig. 3b), following the effect of individual variation on interaction 

strengths (Fig. 2). The larger the phenotypic mismatch, however, the less likely the 
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persistence criteria will be met, as the interaction strength becomes consistently 

smaller with variation (Fig. 2). 

Increasing phenotypic mismatch decreases consumer persistence regardless of 

individual variation (Fig. 4a). Increasing levels of variation can counter this effect by 

rescuing consumers from extinction under some conditions, and by stabilizing 

consumer-resource interactions (Fig. 4a). For a given level of phenotypic mismatch, 

an increase in individual variation can be accompanied by a change in persistence; 

from non-coexistence to coexistence, and a change in dynamics; from limit cycles to 

oscillatory dynamics to non-oscillatory dynamics (Figs. 4a, 4b, first and second rows). 

Increasing individual variation not only increases stability, but decreases interaction 

strengths concomitantly (Fig. 4b, third row). Both phenotypic mismatch and 

individual variation affect species coexistence through altering resource and consumer 

isoclines: the consumer isocline shifts to the right while the resource isocline moves 

up with increasing levels of individual variation (Fig. 4b first row). Nevertheless, 

extremely large values of individual variation can drive consumers to extinction, as 

they are no longer able to ingest resource at a high enough rate (Appendix VII, also 

equation (15)). Although Jensen’s inequality predicts opposite effects of variation in 

attack rate and handling time when considered independently (Figs. 1a, 1b), the 

effects of individual variation upon the consumer-resource dynamics seem to be 

mainly driven by variation in the attack rate (Appendix III). 

These numerical results are in accordance with our analytic predictions, where 

the condition for stability can be approximated as:  

! 2 >
"max # K$max % ! d$max( )

% + d$max
!# 2 ,                            (16) 
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whenever variation on attack rates has a larger effect on dynamics than that of 

handling time, phenotypic mismatch is small (d! ~ 0  and d! ~ 0 ), and variation is 

small enough (Appendix VIII for the derivation). Here, d stands for the consumer 

death rate. In this case, the system is stable if individual variation is larger than a 

certain quantity that increases with the maximal attack rate (!max ), the carrying 

capacity (K) and the digestive efficiency (! ). Notice that (16) is similar to the CV 

rule of Hassel et al. (1991), where the coefficient of variation needs to be larger than 1 

for a spatially variable consumer-resource parasitoid interaction to be stable.   

Combined, these results suggest that the effect of variation in attack rates is 

dominant over that of handling times (Appendix III), which leads to a reduction in 

interaction strengths (Fig. 2), and an increase in coexistence and stability (Fig. 3), 

unless variation is too large (Equation (15), Fig. 3). 

 

DISCUSSION 

Individual variation in demographic parameters is pervasive in most systems 

(Bolnick et al. 2003), but only a handful studies have addressed the potential effects 

of this variation on population dynamics and species persistence (Okuyama 2008) or 

eco-evolutionary dynamics (Schreiber et al. 2011, Vasseur et al. 2011). Here, we 

show that non-heritable individual variation may drive ecological consumer-resource 

interactions through its effect on interaction strengths, as suggested by recent 

empirical studies (Agashe 2009, Jones & Post 2013). This effect may vary with the 

environment, and should be different for species with different levels of phenotypic 

mismatch, ultimately caused by past and existing levels of stabilizing selection. In 

what follows we propose testable predictions with respect to a possible trade-off 

between persistence and biological invasiveness mediated by phenotypic variation. 
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Finally, we show that the effect of individual variation through Jensen’s inequality 

may strongly depend on assumptions regarding the functional form of ecological 

attributes, which underlines the need for more accurate estimates of trait and 

ecological attribute distributions using empirical and experimental approaches.   

Interaction strengths, selection and whole community effects 

Although individual variation can increase species persistence in the eco-

evolutionary dynamics of an apparent competition system (Schreiber et al. 2011), the 

mechanisms through which this happens are unclear. Classical models of consumer-

resource interactions suggest that larger interaction strengths destabilize equilibrium 

densities, and bring species closer to extinction thresholds, potentially leading to 

species extinction (Rosenzweig & MacArthur 1963). Our results are consistent with 

these classic studies, and by showing how individual variation can reduce interaction 

strengths, we provide a mechanistic explanation as to why interacting species with 

larger levels of variation seem to persist more than those with smaller levels of 

variation (Newman & Pilson 1997; Imura, Toquenaga & Fuji 2003).  

However, our results also suggest that the effect of individual variation on 

interaction strengths depends on the levels of phenotypic mismatch between 

consumers and resources, and these are ultimately controlled by existing and past 

selective pressures (e.g. Fellowes, Kraajiveled & Godfray 1998; Nuismer, 

Gomulkiewicz & Ridenhour 2010). Small phenotypic mismatch can lead to large 

interaction strengths when variation is small, and can result from strong stabilizing 

selection. In contrast, large phenotypic mismatch reduces interaction strengths can 

result from weak stabilizing selection, a trade-off with another trait, or a recent 

environmental shift leading to maladaptation. Also, because constant environments 

can impose strong stabilizing selection and fluctuating environments can impose 
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weak stabilizing selection (Gavrilets & Hastings 1994, Zhang & Hill 2005), our 

results suggest that the effect of individual variation may be environment-dependent.  

Our results could have important implications for food web theory. For 

example, interaction strengths have also long been known to drive the stability of 

large, complex networks of interacting species such as food webs (e.g. May 1972, 

Allesina & Tang 2012). Because individual variation affects interaction strengths, our 

results suggest that, to fully understand why complex food webs are stable in nature, 

we may need to take into account individual variation. For example, weak interaction 

strengths have been suggested to increase overall stability (McCann, Hastings & 

Huxel 1998), and we show here that weak interaction strengths occur with high 

individual variation or phenotypic mismatch. Hence, stable food webs may be 

characterized by species with high levels of individual variation and small phenotypic 

mismatch between consumers and resources, or by a mixture of species with low and 

high levels of individual variation, provided that phenotypic mismatch is large enough 

among species. Conversely, unstable food webs may be characterized by species with 

low levels of individual variation and small phenotypic mismatch. Testing some of 

these ideas in empirical food webs could strongly advance our understanding of how 

large complex food webs persist in nature despite their structural instability. 

Unfortunately, this may not be currently feasible.  

Individual variation and biological invasions 

We showed that variation can affect interaction strengths and species 

persistence. In what follows we argue that this could have important consequences for 

the establishment of biological invaders. For small phenotypic mismatch between 

consumers and resources, interaction strength decreases monotonically with variation 

(Fig. 2a), which results in an increase in resource persistence but an eventual decrease 
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in consumer persistence (Fig. 3a). The antagonistic effects of individual variation on 

persistence and stability suggest that invasive consumers able to invade and persist 

may have intermediate levels of variation whenever phenotypic mismatch is small 

(Fig. 3a). This prediction can be tested readily in the field, and is in line with previous 

empirical findings on invasive weeds (Genton, Shykoff & Giraud 2005). Whenever 

phenotypic mismatch is large, however, the hump-shaped relationship between 

variation and interaction strengths (Fig. 2c) may lead to successful invasive 

consumers with either low or high individual variation, both of which have been 

reported in the field (Estoup et al. 2001; Kolbe et al. 2004, respectively).  

Invasive species can enter a new environment with a single or a few 

individuals, and could therefore have low individual variation during the 

establishment phase (Facon et al. 2006). If phenotypic mismatch is small, the 

interaction strength with native resource species may be high, and their effect upon 

native diversity may be devastating. Furthermore, failed attempts to eradicate the 

invasive species may just reduce the individual variation of the invasive species even 

more, resulting in stronger interaction strengths and deteriorated native species 

persistence. If phenotypic mismatch is large, however, even with moderately high 

levels of variation, interaction strengths could be quite low. In this case, eradication 

attempts could effectively reduce individual variation even more, resulting in weaker 

interaction strengths and improved species persistence provided that phenotypic 

mismatch does not change much over time. Finally, our results strengthen previous 

findings suggesting that the probability of a successful invasion depends on 

underlying variation (Jones & Gomulkiewicz 2012) and stress the need for taking 

individual variation into account in order to devise better management policies 

regarding invasive species. 
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Jensen’s inequality and a plea for empirical estimation of trait variability  

Because of Jensen’s inequality it has been previously suggested that attack 

rates and handling times could have opposite effects on interaction strengths when 

individual trait variation was taken into account in each attribute independently (Figs. 

1a, 1b this paper, Bolnick et al. 2011). Although variation in the traits controlling the 

attack rate seems to have more profound effects upon ecological dynamics than in 

those controlling the handling time, our findings also suggest that these predictions 

are contingent on the specific functional forms through which attack rate and handling 

time depend on underlying phenotypic trait variation. Hence, our results emphasize 

the need for gathering estimates about how ecologically relevant traits distribute in 

real populations, and assessing the functional form of their effect upon ecological 

attributes.  

One possible way of doing so is to use controlled microcosm experiments of 

consumer and resource protists (e.g. DeLong & Vasseur 2013), where attack rates and 

handling times could be directly measured while underlying phenotypic variation is 

manipulated. These systems are particularly well suited for quantifying entire trait 

distributions (DeLong 2012) and are thus prime candidates to test some of our ideas. 

However, previous mesocosm studies assessed the effect of variation in defense traits 

in algal populations, showing that variation in defense mechanisms could alter 

biological dynamics (Yoshida, Hairston & Ellner 2004). Hence, while very difficult, it 

is not impossible to gather some of this information in fairly complex empirical 

systems.   

Conclusions 

Our results are in accordance with previous theoretical studies that have 

shown that increased behavioral variation (Okuyama 2008) and variation in the use of 
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space by parasitoids in heterogeneous landscapes (Hassell et al. 1991), are mostly 

stabilizing. Moreover, we derived conditions for stability that are qualitatively similar 

to those derived by Hassel and collaborators, which together suggest that there is a 

minimal threshold of variation below which ecological dynamics become highly 

unstable. We also note that spatial or environmental heterogeneity, as considered in 

the work by Hassel et al. (1991), can induce differences in space use among 

individuals. This variation in space use ought to be regarded as a type of individual 

phenotypic variation and we thus argue that these converging results may be due to 

variation decreasing interaction strengths through Jensen’s inequality.  

Other researchers have explored consumer-resource dynamics in the case 

where there is behavioral variation in foraging rates (Okuyama 2008), however, our 

approach differs from theirs in several important ways: first, we explicitly modeled 

variation in underlying quantitative phenotypic traits controlling attack rates and 

handling times, only making assumptions grounded on biological data; second, we 

accounted for the potential effects of phenotypic mismatch, or the difference between 

mean trait in the population and the adaptive peak; and last, we have drawn a 

mechanistic link between individual variation and population dynamics by exploring 

its effect on interaction strengths, which are the ultimate link to connect pairwise 

models to whole food web dynamics and stability (e.g. May 1972; Allesina & Tang 

2012).   

Overall our study shows that individual variation can affect species 

persistence and coexistence between consumer and resource through its effect on 

interaction strengths. Moreover, the effect of individual variation on interaction 

strengths depends on phenotypic mismatch and thus, on current and past selective 

pressures. This has important implications for species persistence embedded in food 
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webs or the arrival of invasive species to native ecosystems. Finally, this study 

underlines the need for accurately estimating the distribution of ecologically relevant 

phenotypic traits, as well as their functional relationship with ecological attributes, in 

order to test our predictions of how individual variation affects the ecology and 

persistence of interacting populations.  
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CHAPTER 2 

 

INDIVIDUAL VARIATION DECREASES INTERFERENCE COMPETITION 

BUT INCREASES SPECIES PERSISTENCE 

 

Jean P. Gibert & John P. DeLong 

 

Key-words: Interference competition, Individual variation, Intraspecific variation, 

Species persistence, Stability, Competition. 

 

ABSTRACT 

Interference competition is thought to stabilize consumer-resource systems. The 

magnitude of interference is linked to that of attack efficiency: when both levels are 

intermediate, populations are maximally stable and have high competitive ability. 

Individual variation can affect ecological dynamics through its effect on attack 

efficiency and handling time. Because interference has a non-linear effect on 

consumer foraging rates, individual variation in mutual interference can strongly 

affect ecological dynamics. Here, we explicitly incorporate individual variation in 

attack efficiency, handling time and interference into a dynamic consumer-resource 

model and show that variation increases species coexistence by depressing attack 

efficiency to a greater extent than predator interference. We argue that this differential 

effect of variation affects the equilibrium densities of consumers and their prey, thus 

altering their competitive ability. Intermediate levels of variation can maximize both 

consumer persistence and competitive ability. Our results show the importance of 
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quantifying individual variation in natural populations for understanding the 

persistence and stability of species within communities.  

 

INTRODUCTION 

A major goal of ecology is to understand the factors underpinning species 

coexistence and stability in complex ecosystems (May 1972, 1973; McCann, Hastings 

& Huxel 1998; Allesina & Tang 2012). Seminal work by Tilman showed that when 

two competing species share a common resource, the one that can reduce resource 

density the most will outcompete the other (Tilman 1982, 1986). However, the ability 

to reduce resource density and persist may depend upon the factors controlling 

interaction strengths and consumer-resource interactions. A number of these factors 

have received a lot of attention, including foraging behavior (Schmitz, Beckerman & 

O’Brien 1997; Abrams & Matsuda 2004), consumer and resource body sizes (Vucic-

Pestic et al. 2010) and relative velocities (Pawar, Dell & Savage 2012; DeLong 

2014), prey defense mechanisms (Yoshida, Hairston Jr & Ellner 2004; Hammill, 

Petchey & Anholt 2010), and environmental temperature (O’Connor 2009; Gibert & 

DeLong 2014; Dell, Pawar & Savage 2014). And while all these factors are 

important, the underlying assumption in ecology has historically been that populations 

are homogeneous collections of individuals and that mean trait values are sufficient 

for understanding ecological processes (Lomnicki 1988). Unfortunately, whenever 

non-linear relationships between underlying traits and ecological processes of interest 

occur, using mean trait values can be misleading (Inouye 2005; Bolnick et al. 2011). 

Because non-linearities are common in consumer-resource interactions, overlooking 

individual phenotypic variation may impair our capacity to fully understand species 

persistence and competitive ability in natural communities.   
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Populations often show individual-level phenotypic variation in anti-predator 

defenses (Duffy 2010), competitive ability (Lankau & Strauss 2007), or resource 

utilization (e.g. (Bolnick et al. 2003; Estes et al. 2003)). Because interspecific 

interactions ultimately occur between individuals, individual phenotypic variation can 

affect interspecific interactions in multiple ways (Pettorelli et al. 2011). For instance, 

individual-level dietary specialization among southern sea otters (Enhydra lutris 

nereis) induces changes in the structure of the population-level resource utilization 

network, which in turn can alter the structure and dynamics of the food webs in which 

these organisms are embedded (Tinker et al. 2012). Individual variation also can 

affect the strength of consumer-resource interactions by changing the parameters of 

the functional response connecting species pairs ((Bolnick et al. 2011; Schreiber, 

Bürger & Bolnick 2011; Gibert & Brassil 2014), also see (Doebeli 1996) in an 

evolutionary context). In particular, increasing individual variation in attack 

efficiency (or attack rate) and handling time decreases interaction strengths, which in 

turn increases species persistence and stability (Gibert & Brassil 2014). Together, 

these results underscore the need to understand how individual level phenotypic 

variation affects ecological processes and, through that, the structure and dynamics of 

entire communities. 

Interaction strengths can be influenced by ‘mutual’ interference competition 

among predators by dampening resource uptake at higher consumer densities (Arditi 

et al. 2004). Therefore, mutual interference is thought to stabilize the dynamics of 

consumer-resource interactions (Arditi et al. 2004; Forrester et al. 2006; DeLong & 

Vasseur 2011, 2013). Interference is often thought to occur through behavioral 

mechanisms associated with territoriality and aggressiveness (Connell 1961; Kennedy 

& White 1996; Forrester et al. 2006), but more generally, interference competition is 
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any form of interaction among consumers that inhibits foraging. Because interference 

is widespread among many different taxa, it may play an important role in stabilizing 

natural communities (Skalski & Gillooly 2001; DeLong & Vasseur 2011, 2013).  

The parameters of the functional response, including mutual interference, are 

driven by organism traits, and these traits may influence more than one parameter at a 

time. For example, body size influences both attack efficiency and handling time in 

several taxa (DeLong & Vasseur 2012a). Also, variation in different parameters can 

have opposite effects on foraging rates (Bolnick et al. 2011), so it may be important to 

link variation in underlying controlling traits to multiple parameters simultaneously 

(Pettorelli et al. 2011; Gibert & Brassil 2014). Recently, a positive trait-based link 

between attack efficiency and mutual interference was discovered for predatory 

protists, where predator velocity was thought to increase the magnitude of attack 

efficiency and interference competition simultaneously (DeLong & Vasseur 2013). 

Thus, while increasing individual variation can increase stability by lowering 

interaction strengths through attack efficiency, individual variation might also lower 

interference competition, potentially undermining the overall stabilizing effect. 

Because of this, the challenge now is to understand how individual variation in both 

mutual interference and attack efficiency influences the fate of interacting populations 

among natural communities. 

Our goal is to extend recent work about how individual variation alters 

consumer-resource dynamics by studying its impact upon linked ecological attributes 

such as attack efficiency, handling time and interference competition. Schreiber et al. 

(2011) explored the effect of individual-level heritable variation in attack efficiencies 

in eco-evolutionary dynamics, while Gibert and Brassil (2014) explored the 

simultaneous effect of non-heritable variation in the attack efficiency and the handling 
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time of a consumer-resource system. Here we incorporate non-heritable individual 

variation in mutual interference by taking into account its functional relationship with 

attack efficiency (DeLong & Vasseur 2013) and then we assess its effect upon the 

persistence and competitive ability of consumer-resource systems.  

 

METHODS 

The general model 

To include mutual interference among consumers, we used a Rosenzweig-

MacArthur consumer-resource model with a Hassell-Varley functional response 

(Rosenzweig & MacArthur 1963; Hassell & Varley 1969). The Hassell-Varley 

functional response introduces interference competition as a negative exponent, m, on 

the consumer density added to both numerator and denominator of the functional 

response (e.g. (Hassell & Varley 1969; Arditi & Akçakaya 1990; DeLong & Vasseur 

2011): 

dR
dt

= rR 1! R
K

"

#
$

%

&
'!C

!RCm

1+!"RCm

dC
dt

= # C !RCm

1+!"RCm !$C
,      (1) 

where r is the maximal growth rate of the prey, K its carrying capacity, !  is the 

conversion efficiency, !  is the mortality rate of the consumer,!  its attack efficiency, 

! its handling time, and m is the parameter that represents interference competition. 

If m = 0 , the model reduces to the classic Rosenzweig-MacArthur 

formulation, and if m = !1 , it reduces to the ratio-dependent formulation (e.g. (Arditi 

& Ginzburg 1989)). The level of interference, m, varies continuously in nature from 0 

to -2.5, although it frequently takes intermediate values (Abrams & Ginzburg 2000; 

DeLong & Vasseur 2011, 2013). In the case of the predatory protist Didinium 



!

!

(*!

nasutum preying upon Paramecium aurelia, the magnitude of m is linked to that of 

attack efficiency (! ) by:  

m = -0.26 ln(! ) - 0.67,       (2) 

which was determined by estimating the functional response of the consumer across 

replicate populations (DeLong & Vasseur 2013)(Fig 1-A). This relationship will later 

be used to introduce individual variation in interference. 

Individual variation 

Following previous theoretical studies we incorporated individual variation by 

assuming that both attack efficiency and handling time depend on the value of a 

normally distributed trait (Schreiber et al. 2011; Rall et al. 2012; Gibert & Brassil 

2014), x , with mean x , variance ! 2 , and probability density:   

p(x, x ) = 1
2!" 2

exp !
x ! x( )2

2! 2

"

#
$
$

%

&
'
'
.        (3) 

We assumed that the consumer’s attack efficiency !(x)  is maximal at a given 

optimal trait value x =!" , and decreases away from that maximum as: 

    !(x) =!max exp !
x !"!( )2

2# 2
"

#
$
$

%

&
'
'

,        (4)
 

where !max  is the maximal attack efficiency and ! 2 determines how steeply the attack 

efficiency declines away from !" (Fig. 1-B). The handling time, !(x) , was assumed 

to be minimal at a given optimal value x =!" , and to increase away from that 

minimum as:  

                                               !(x) =!max ! !max !!min( )exp !
x !"!( )

2

2# 2
"

#

$
$
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&

'
'
,      (5) 
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where !max  and !min  are the maximal and minimal handling time respectively, and 

! 2  determines how steeply the handling time increases away from !"  (Fig. 1-C).  

We defined the quantities d 2! = x !"!( )2  and d 2! = x !!"( )
2 , as the distance 

between the mean trait in the population and the optimal value at which attack 

efficiency is maximal and handling time is minimal (referred to as phenotypic 

mismatch; see (Schreiber et al. 2011) and (Raimundo et al. 2014) for similar 

definitions). Because the optimal value is set by past and existing selective pressures 

(Anderson, Terblanche & Ellis 2010), the phenotypic mismatch can be seen as a 

measure of how well adapted the consumer species is at attacking and handling a 

particular resource (Gibert & Brassil 2014). The larger the mismatch is, the smaller 

the attack rate and the larger the handling time.  

 We explored three scenarios. We first recapitulated some of the results of 

Gibert and Brassil (2014) as a baseline for comparison, by including variation in 

attack efficiency and handling time only. Second, we included only variation in 

mutual interference, and, third, we included individual variation in all three 

parameters simultaneously. For the first scenario (variation in attack efficiency and 

handling time), the consumer-resource model is: 

   

dR
dt

= rR 1! R
K

"

#
$

%

&
'!C

!(x)RCm

1+!(x)"(x)RCm
!(

+(

) p(x, x )dx

dC
dt

= #C !(x)RCm

1+!(x)"(x)RCm p(x, x )
!(

+(

) dx !$C
 ,                 (8)         

where m  is constant. For the second scenario (variation in interference only), the 

model is: 
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= !C "RCm " (x )( )

1+!"RCm ! (x )( )
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+(

) p(x, x )dx !!C
,      (9) 

where m !(x)( ) = !0.26 ln !(x)( )! 0.67  and all other parameters are as in (1). Notice 

that in this model, !  is only allowed to change with variation in the underlying trait 

x  inside of functionm !(x)( ) , but not outside of it. Because this is not realistic, we 

only do it as a way of understanding variation in mutual interference alone while 

acknowledging that variation ought to be considered in multiple parameters at the 

same time. This leads to the third scenario, where variation is now being considered 

in all three parameters simultaneously (variation in attack efficiency, handling time 

and interference): 

dR
dt

= rR 1! R
K

"

#
$
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'!C

!(x)RCm ! (x )( )

1+!(x)"(x)RCm ! (x )( )
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) p(x, x )dx

dC
dt

= !C "(x)RCm " (x )( )

1+!(x)"(x)RCm ! (x )( )
!(

+(

) p(x, x )dx !!C
.  (10) 

We analyzed these three scenarios for varying levels of phenotypic mismatch 

using intermediate values for the maximal attack efficiency and mutual interference, 

as this combination of parameters is thought to be the most likely in nature (DeLong 

& Vasseur 2013). Considering different combination of parameters does not 

qualitatively affect our results.  

The objective of our simulations was to assess the effect of individual 

variation on the equilibrium of the system (i.e. the intersection of the consumer and 

resource isoclines). Because of the way we incorporated individual variation in 

equations (8) to (10), solving for these isoclines (the conditions at which dR/dt=0 for 

the prey isocline, and the conditions at which dC/dt=0 for the predator isocline) and 
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their intersection is now impossible analytically, so it was done numerically. The 

farther away this equilibrium is from the axes, the less likely consumers and resources 

are to go extinct due to random fluctuations. Finally, to assess the effect of variation 

upon community structure, we investigated its effect upon the persistence of 

consumers through their equilibrium density, C*, as well as their competitive ability, 

through the equilibrium density of the resource, R*. Low equilibrium resource 

densities (R*) are associated with strong competitive ability of the consumers (Tilman 

1982, 1986). We therefore define the quantity 1/R* as a measure of competitive 

ability: the larger the quantity, the larger the competitive ability of the consumer and 

vice-versa.  

 

RESULTS  

 Overall, individual variation can have a strong effect on equilibrium densities 

and species persistence when interference competition is considered. The effect of 

individual variation on interference competition depends on the levels of phenotypic 

mismatch in the trait that controls the consumer-resource interaction (Fig. 2). This 

effect seems to be mediated mainly by the interplay between attack efficiency and 

interference competition and ultimately affects the equilibrium densities of the 

interacting pair, resulting in differential persistence and competitive ability for the 

consumer at different levels of individual variation (Fig. 3). 

Low phenotypic mismatch  

 When phenotypic mismatch is low ( d! ~ 0  and d! ~ 0 ), individual variation 

in attack efficiency and handling time increases equilibrium densities of both the 

consumer and the resource, moving them away from extinction thresholds (Fig. 2-A). 
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By doing so, individual variation potentially increases species persistence, as 

extinction due to demographic stochasticity is less likely to occur.  

When it occurs only in interference, individual variation reduces the 

equilibrium density of the consumer but increases that of the resource (Fig. 2-B). This 

makes consumers simultaneously less competitive due to a high R* and more prone to 

extinction due to a low C*. The change in equilibrium abundance for a given change 

in individual variation, however, is less pronounced than that observed when variation 

in both attack efficiency and handling time is considered (Fig. 2-A, B).  

The net effect of individual variation in interference competition, attack 

efficiency, and handling time combined is intermediate to the effect produced when 

individual variation is included only in interference competition or in both the attack 

efficiency and the handling time. This is because the effects are opposite of each 

other. Individual variation increases the equilibrium density of consumers and 

resources, moving them away from the extinction threshold (Fig. 2-C), which is 

qualitatively different from what happened when variation only in interference was 

included (Fig. 2-B). However, this effect is also less pronounced than in a scenario 

with variation only in attack efficiency and handling time (notice the magnitude of the 

change in Fig. 2-A) and more similar in magnitude to a scenario with variation only in 

interference (notice the magnitude of the change in Fig. 2-B). 

Large phenotypic mismatch  

 When phenotypic mismatch is large ( d! >> 0 ) in a scenario with variation in 

both attack efficiency and handling time, low levels of individual variation decrease 

equilibrium densities, but high levels of variation increase equilibrium densities for 

both consumers and prey (Fig. 2-D). These changes in equilibrium densities occur 
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much farther away from extinction thresholds than in a scenario with small 

phenotypic mismatch (Fig. 1-A), but are of larger magnitude.  

Individual variation in interference decreases the equilibrium density of the 

resource at first, but it then increases as variation gets larger (Fig. 2-E). This 

practically has no effect on consumer equilibrium densities and the overall effect of 

variation is comparatively small in magnitude.  

The net effect of individual variation in interference competition, attack 

efficiency, and handling time is, again, intermediate to the effect produced in the 

previous scenarios. Indeed, the densities for both resource and consumers behave as if 

only variation in attack efficiency and handling time was considered (Fig. 2-F, D), but 

these fluctuations are of a much smaller magnitude, as in a scenario with only 

variation in interference (Fig. 2-F, B). 

Interference, attack efficiency consumer persistence and competitive ability 

 Individual variation has the same overall effect on interference competition as 

it has on attack efficiency (Fig. 3). If phenotypic mismatch is low, both attack 

efficiency and interference competition decrease with individual variation, but the 

effect seems to be more pronounced on attack efficiency than on interference (Fig. 3-

A). When phenotypic mismatch is large, however, both attack efficiency and 

interference increase with variation at first, and then decrease (Fig. 3-A). The 

magnitude of this effect is comparable for both parameters. 

Because variation on attack efficiency and interference alters the equilibrium 

densities of both consumers and resources (Fig. 2), it will ultimately affect consumer 

persistence as well as its overall competitive ability. For the full model (equation 10), 

when phenotypic mismatch is low, the consumer equilibrium density, C*, increases 

with variation but its competitive ability, measured as 1/R*, decreases. Because 
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variation maximizes C* and 1/R* simultaneously whenever the absolute value of that 

difference is small, our results suggest that intermediate levels of variation maximize 

the consumer’s ability to persist (C*) and to compete (1/R*) (Fig. 3-B). When 

phenotypic mismatch is large, the consumer equilibrium density decreases with 

individual variation at first and then increases slowly. Consumer competitive ability, 

however, increases with variation and then decreases. Interestingly, intermediate 

levels of variation maximize the consumer’s ability to persist and to compete (Fig 3-

C), despite the larger phenotypic mismatch. 

 

DISCUSSION 

Variation and Interference 

Individual variation in traits controlling ecological attributes such as attack 

efficiency and handling time can increase species persistence in consumer-resource 

interactions (Bolnick et al. 2011; Gibert & Brassil 2014). In classic consumer-

resource models, an increase in the attack efficiency increases interaction strengths, 

resulting in a decrease of species persistence and overall stability (e.g. (Rosenzweig & 

MacArthur 1963)). Individual variation weakens interaction strengths by decreasing 

attack efficiencies, which in turn increases species persistence and stability (Gibert & 

Brassil 2014). Our results suggest that this effect also occurs when consumer 

interference is considered. Interference is generally stabilizing (Ginzburg & Jensen 

2008), so it might be expected that individual variation in interference alone could 

have destabilizing effects, potentially leading to species extinctions. However, it 

seems to either decrease consumer equilibrium densities and increase resource 

equilibrium densities, or have negligible effects on both. When we consider variation 

in attack efficiency and link that to mutual interference through their empirically-
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determined negative relationship (Fig 1-A), the net effect of variation is to increase 

species persistence. This may be due to a larger effect of individual variation in attack 

efficiency than in interference that would overcome the negative effect of variation in 

interference only. These results highlight the importance of considering possible 

functional relationships between dynamic parameters such as attack efficiency and 

interference as well as the importance of considering individual variation in the traits 

controlling these parameters in order to fully understand population dynamics and 

stability (Yodzis & Innes 1992; DeLong & Vasseur 2012b, 2013). 

Variation and competitive ability 

Our results also have important consequences for understanding community 

assembly. If phenotypic mismatch is low, the equilibrium resource density increases 

with individual variation, which decreases consumer competitive ability. If 

phenotypic mismatch is large, some variation can reduce resource density at first, 

momentarily increasing competitive ability. However, large phenotypic mismatch 

generally decrease competitive ability regardless of variation, meaning that poorly 

adapted species are in general poor competitors and populations that are already well 

adapted to their niche become less competitive when they become more variable. In 

the case of the Didinium-Paramecium system, after which our model is 

parameterized, if interference is too large, consumer uptake is heavily impaired, 

resulting in deterministic extinction (DeLong & Vasseur 2013). If interference is low, 

however, equilibrium densities increase up to a point where the competitive ability of 

the populations is reduced (Tilman 1982, 1986; DeLong & Vasseur 2013). A similar 

rule might apply to individual variation when it affects both attack efficiency and 

interference. If variation is too small, populations are close to their extinction 

threshold. If variation is too large, their equilibrium densities increase to a point 
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where it may impair their competitive abilities, threatening their persistence in the 

community. Variation in interference thus seem to counter the effect of variation in 

attack efficiency, naturally leading to the existence of an intermediate amount of 

variation that both minimizes the chance of extinction and maximizes the competitive 

ability of populations in a community.  

Eco-Evolutionary feedbacks 

Individual variation can be important for ecological dynamics, but it also is the 

raw material upon which natural selection acts (Dobzhansky 1937). In addition, 

evolutionary processes have been increasingly recognized to occur at ecological 

timescales, altering ecological processes and dynamics as they unfold (Thompson 

1998; Grant & Grant 2002; Hairston Jr et al. 2005). The interplay between ecological 

and evolutionary processes, or eco-evolutionary feedbacks, thus needs to be 

considered in future work. In this sense, individual variation has been recognized to 

increase species coexistence in eco-evolutionary dynamics (Schreiber et al. 2011; 

Vasseur et al. 2011), but variation has been assumed to be constant through time. 

However, phenotypic variation generally scales with mean trait values, a pattern 

known as Taylor’s power law (Taylor 1961) and prevalent across systems and taxa 

(DeLong 2012). Thus, individual variation in a given trait will track the evolution of 

the mean trait value, potentially leading to changes in community structure due to 

alterations in competitive ability that are a consequence of changes in individual 

variation that track the evolution of underlying traits. This makes it paramount to also 

track the evolution of variation over time to understand eco-evolutionary and the 

stability and persistence of ecological systems in nature.  

 The effect of individual variation may also depend on the strength of selection 

acting on the traits that control the consumer-resource interaction (Yoshida et al. 
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2003; Gibert & Brassil 2014). Strong stabilizing selection may reduce individual 

variation through time, with consequences for population stability and competitive 

ability. Unstable and uncompetitive populations will not fare well in communities, 

which implies that selection that reduces variation and increases mean fitness within 

populations may have negative effects for the population in a community. Populations 

may thus be the subject of antagonistic effects of natural selection (Raimundo et al. 

2014). Together, this suggests that the interplay between ecological and evolutionary 

processes is central to understanding how communities are structured in nature 

(Thompson 2005; Bolnick et al. 2011; Guimarães, Jordano & Thompson 2011; 

Fontaine et al. 2011). Individual variation may be the key to bridging the gap between 

ecology and evolution. 

Underlying controlling traits 

Considering what traits operate as ‘controlling’ traits that influence parameters 

such as attack efficiency, handling time, and interference is also important. For 

instance, the amount of variation in the controlling trait is linked to mutation rates, the 

amount of phenotypic plasticity and the strength of selective forces operating on the 

trait. Thus, by identifying probable controlling traits, we may have a deeper grasp of 

the processes controlling the variation ultimately affecting consumer-resource 

dynamics. It is possible that some traits, such as body size, might act as ecological 

“magic traits”. In an evolutionary context, “magic traits” traits are involved in both 

mating and ecological activities, and when they experience disruptive selection they 

can lead to adaptive speciation (Gavrilets 2004; Raimundo et al. 2014). Ecological 

“magic traits” would be traits influencing many dynamic parameters at once (e.g. 

(DeLong & Vasseur 2012b)), while other traits only influence a limited set of 

parameters, if any. Specific links between traits, their optima, and dynamic population 
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parameters are needed to fully understand how individual variation influences 

consumer-resource dynamics. Identifying such traits and quantifying their distribution 

and their effect upon ecological processes of interest should be a major goal of 

ecology in the upcoming future (Pettorelli et al. 2011; Violle et al. 2012a; b; Gibert & 

Brassil 2014).  

Testable predictions from the theory of individual variation 

 To help moving toward that goal, we can make some simple testable 

predictions as to how individual variation can affect interaction strengths in a system 

with interference competition. If the per-capita foraging rate of a consumer preying 

upon a resource is:  

f (R,C) = !RCm

1+!"RCm 9! ! ! !!(11) 

 
then, we can find an expression for the average foraging rate that explicitly depends 

upon individual variation by integrating over the functional response and the 

underlying trait distribution. We thus get:  

f (R,C) = !(x)RCm

1+!(x)"(x)RCm
!"

+"

# p(x, x )dx 9! ! !!(12) 

where m can be a function of the attack efficiency or a constant. In this case, we can 

see that while under some conditions increasing individual variation reduces foraging 

rates and thus, interaction strengths, this effect increases with resource density (Fig. 4-

A) and decreases with consumer density (Fig 4-B, C). These predictions can be tested 

in foraging experiments where the resource and consumer densities are manipulated 

in the same way it would be done for quantifying the parameter of mutual 

interference, m (DeLong & Vasseur 2013). A measure of individual variation across 

treatments and one or several traits such as body size, would need to be quantified as 

well. The latter is particularly doable in microcosms with protists (DeLong 2012; 
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DeLong & Vasseur 2013)or mesocosm experiments with metazoan grazers and algae 

(Fussmann, Ellner & Hairston Jr 2003; Yoshida et al. 2003, 2004).  

Conclusion 

 Because of their effect on population persistence and stability, understanding 

the interplay between individual variation and interference competition is central in 

ecology. Using dynamic models that explicitly take into account individual variation, 

we have shown that increasing individual variation simultaneously affecting attack 

efficiency, handling time and mutual interference can increase species persistence and 

stability as well as consumer competitive ability. Moreover, as variation is affected by 

selection, we argue that evolutionary processes may deeply affect the way 

communities are structured. Finally, our results underscore the need for 

comprehensive studies that quantify the level of individual variation in natural 

populations, making specific testable hypotheses as to how individual variation can 

interact with resource and consumer densities to alter foraging rates and through that, 

interaction strengths.  
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FIGURES 

 

Figure 1: A. Plot of the empirically observed relation between the coefficient of 

mutual interference (m) and the attack efficiency (! ) in replicate populations of 

Didinium nasutum preying upon Paramecium aurelia (modified from DeLong and 

Vasseur 2013). As attack efficiency increases, mutual interference becomes stronger. 

B. Plot of the assumed relation between the attack efficiency (! ) and the underlying 

phenotypic trait (x). C. Plot of the assumed relation between the handling time (! ) 

and the underlying phenotypic trait (A and B are modified from Gibert & Brassil 

2014).    
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Figure 2: Phase-plane plots of consumer and resource isoclines for different levels of 

individual variation where the isoclines (values at which a species does not grow or 

decline) for consumers and resources are represented for different levels of individual 

variation. The intersection of the isoclines marks the equilibrium densities.  Panels in 

the left column refer to cases with low phenotypic mismatch, and panels in the right 

column to cases with large phenotypic mismatch. For the panels in the top row 

individual variation was only considered in attack efficiency and handling time. In the 
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second row, individual variation in interference competition only was considered. In 

the third row, individual variation in attack efficiency, handling time, and interference 

is included. Variation in attack efficiency and handling time increases equilibrium 

densities (intersection moves away from axes) whenever mismatch is small, and 

decreases then increases densities whenever mismatch is large. Variation in mutual 

interference results in a small effect. The latter explains why variation in attack 

efficiency, handling time and interference results in a tempered version of the first 

case. Parameter values kept constant across all plots: !max= 1.38, !max = 0.08, !min= 

0, e = 0.15 , r =1.9 , K = 841 , ! = 0.1 , ! =1, ! = 1, d! = 0. Parameters that changed: 

A. d! = 0, ! 2 =0 (grey, dashed), ! 2 =2.26 (grey), ! 2 =14.19 (black); D. d! = 2, ! 2

=0 (grey, dashed), ! 2 =1.31509 (grey), ! 2 =16.7242 (black); C., D., E., and F. as in 

A. but for d! = 0 for C. and E. and d! = 2 for E. and F.  
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Figure 3:  A. Plot of the attack efficiency (grey) and interference competition (black) 

against individual variation under low phenotypic mismatch (solid) and large 

phenotypic mismatch (dashed). Variation decreases attack rates to a larger extent than 

interference competition when mismatch is small, and the effect on both parameters is 

comparable when mismatch is large. Parameter values as in Figure 2. B. Plot of the 

absolute value of difference between consumer equilibrium density, C*, and 

consumer competitive ability 1/R*, as a function of individual variation under low 

phenotypic mismatch. Variation maximizes both simultaneously whenever the curve 

is at its lowest point. C. Same as in B but for large phenotypic mismatch. Parameter 

values as in Figure 2. 
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Figure 4: Plots of the effect of individual variation and either resource (A) or 

consumer density (A and B: foraging rate as in equation 8, C: foraging rate as in 

equation 10) upon foraging rates (gray scale). Individual variation and consumer and 

resource densities have a joint effect upon foraging rates, and should thus not be 

studied separately: foraging rates increase with resource density, decrease with 

consumer density, and decrease with individual variation. Parameter values as in 

Figure 2. R and C where kept constant and equal to 1 whenever the other variable was 

varied.  
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CHAPTER 3 

 

THE EFFECT OF PHENOTYPIC VARIATION ON METAPOPULATION 

PERSISTENCE  

 

Jean P. Gibert 

 

Key-words: Extinction risk, Individual variation, Migration, Trait variation, 

Variability 

 

ABSTRACT 

Demographic stochasticity (due to the probabilistic nature of the birth-death process) 

and demographic heterogeneity (between-individual differences in demographic 

parameters) have long been seen as factors affecting extinction risk. While 

demographic stochasticity can be independent of underlying species traits, 

demographic heterogeneity may strongly depend on phenotypic variation. However, 

how phenotypic variation can affect extinction risk is largely unknown. Here, I 

develop a stochastic metapopulation model that takes into account the effects of 

demographic stochasticity and phenotypic variation in the traits controlling 

colonization rates to assess what the effect of phenotypic variation may be on the 

persistence of the metapopulation. Although phenotypic variation can lead to a 

decrease in metapopulation persistence under some conditions, it also may lead to an 

increase in persistence whenever phenotypic mismatch – or the distance between the 

optimal trait value and the population mean – is large. This mismatch can in turn arise 

from a variety of ecological and evolutionary reasons, including weak selection or a 
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recent history of invasion.  Last, the effect of phenotypic variation has a deterministic 

component on colonization rates, and a stochastic component on persistence through 

colonization rates, but both are important to understand the overall effect. These 

results have important implications for the conservation of threatened species and 

management practices that may historically have overlooked phenotypic variation as 

unimportant noise.   

 

INTRODUCTION 

 Understanding the factors leading to extinction is a central goal in ecology 

(e.g., (Gilpin & Hanski 1991; Lande 1993; Kendall & Fox 2003; Melbourne & 

Hastings 2008)). This understanding is crucial when it comes to making informed 

decisions about the management of endangered species or sets of species in 

threatened communities and ecosystems (Gilpin & Hanski 1991). Many factors 

influencing extinction risk have been identified, including abiotic factors (e.g., 

pollution), biotic factors (e.g., invasive species) as well as exogenous factors (i.e., that 

are external to the focal population) and endogenous factors (i.e., that are related to 

internal population level processes, (Roughgarden 1975; Melbourne & Hastings 

2008). 

Stochasticity in population growth and dynamics has long been seen as a 

major factor increasing extinction risk (May 1973; Chesson 1981; Fox & Kendall 

2002). The sources of this stochasticity are many, and they can be broadly divided 

into two classes: demographic – or stochasticity in population growth due to the 

random nature of the birth-death process –, and environmental – or random 

fluctuations in environmental conditions that lead to fluctuations in the number of 

births and deaths – (e.g., (Caswell 2001, 2009; Lande, Engen & Sæther 2003; Engen 
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et al. 2005)). Although both types of stochasticity can increase extinction risk, 

demographic stochasticity is mainly a problem for small populations (Caswell 2001), 

while environmental stochasticity can affect much larger populations (Caswell 2001; 

Melbourne & Hastings 2008). 

Another source of stochasticity in population growth is demographic 

heterogeneity (Conner & White 1999; Fox & Kendall 2002; Kendall & Fox 2003; Fox 

2005; Vindenes, Engen & Saether 2008; Vindenes & Langangen 2015). This source 

of stochasticity occurs whenever there are actual differences among individuals (e.g., 

the traits they have) that lead to systematic differences in their chance of surviving 

and reproducing, as opposed to differences in the chance of surviving and reproducing 

due to the randomness of births and deaths, as it is the case in demographic 

stochasticity (Melbourne & Hastings 2008). How demographic heterogeneity affects 

extinction risk is an active area of research and has been shown to have opposite 

effects on extinction risk. Indeed, heterogeneity can reduce extinction risk (Conner & 

White 1999; Fox & Kendall 2002; Fox 2005), increase it (Robert, Sarrazin & Couvet 

2003) or both increase and decrease extinction risk (Kendall & Fox 2003; Vindenes et 

al. 2008; Melbourne & Hastings 2008). 

Demographic heterogeneity can arise from a number of factors including 

geographic or habitat heterogeneity (e.g., (Gates & Gysel 1978; Menge et al. 1994; 

Landis et al. 2005)), frailty effects and reproductive heterogeneity (Vaupel & Yashin 

1985; Fox et al. 2006; Kendall et al. 2011), and both genetic and phenotypic variation 

(Chesson 1981). Ecologists have historically dismissed phenotypic variation as noise 

around mean trait values of interest (Lomnicki 1988). But even populations that are 

made of clones (i.e., individuals that share the same genetic makeup) will have slight 

differences in the way genes are expressed (e.g., (Price, Qvarnström & Irwin 2003)), 
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leading to potentially important amounts of phenotypic variation (Lomnicki 1988; 

Sherratt & MacDougal 1995). More importantly, there are strong reasons to expect 

ecological effects of variation per se whenever there exists a concave down or 

concave up relationship between a focal trait and the ecological process of interest 

through Jensen’s inequality (Jensen 1906; Ruel & Ayres 1999; Gibert & Brassil 2014; 

Gibert & DeLong 2015). Phenotypic variation thus has the potential to alter 

demographic heterogeneity and stochasticity, and through that, have consequences for 

the persistence of populations with considerable phenotypic variation. 

This paper assesses whether phenotypic variation in traits controlling 

ecological processes can have important effects on metapopulation persistence. 

Phenotypic variation has recently been shown to influence an enormous set of 

parameters and processes (Bolnick et al. 2011; Araújo, Bolnick & Layman 2011; 

Violle et al. 2012a; Gibert et al. 2015), including predator-prey interactions (through 

for example, attack rate, handling time and mutual interference,(Okuyama 2008, 

2013; Pettorelli et al. 2011; Gibert & Brassil 2014; Gibert & DeLong 2015), dietary 

variation (Snowberg, Hendrix & Bolnick 2015), disease dynamics (Lloyd-Smith et al. 

2005), food web structure (Svanbäck et al. 2015), tri-trophic interactions (Hughes et 

al. 2015), as well as trait evolution (Fisher 1930; Dobzhansky 1937; Frank 2012) and 

eco-evolutionary dynamics (Schreiber et al. 2011; Vasseur et al. 2011). In all cases, 

phenotypic variation was found to be largely stabilizing and to potentially increase 

population persistence.  

Here I address how underlying phenotypic variation in traits that control 

dispersal, such as wing length or body size, might affect the persistence of a 

metapopulation model with demographic stochasticity. I argue that this effect may be 

mediated through deterministic consequences of the occurrence of phenotypic 
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variation in the parameters controlling the dynamics of the system, which in turn 

result in a stochastic effect on metapopulation persistence.  

 

METHODS 

Generalities 

In metapopulations, persistence results from the balance between two main 

parameters: colonization and extinction rates (Levins 1969). Because the local 

extinction rate is largely dependent upon patch size (MacArthur & Wilson 1967; 

Laurance 2005; Arroyo-Rodríguez et al. 2009), I assume that phenotypic variation 

will mainly affect colonization rates and have no effect on extinction rates. 

Colonization rates depend in turn on the distance colonizers must travel (Levins 1969; 

Gibert et al. 2013) and on the production of colonizers (Alonso & McKane 2002), 

which is a function of demographic parameters and is thus ultimately determined by 

phenotypic variation, as has been shown empirically in three-spined sticklebacks 

(Laskowski et al. 2015). To address how phenotypic variation in the traits 

determining colonization rates affect persistence, I used two models: the first 

considers external migration from a mainland only whenever the metapopulation goes 

extinct; the second considers migration from a mainland as a process that can occur 

anytime. 

The models  

For the first model, I reformulated an already existing stochastic 

metapopulation model (Gurney & Nisbet 1978) to track the total number of occupied 

patches over time for a species living in a space consisting of N identical patches with 

no spatial correlation. I later modified this model (see section “Incorporating 

phenotypic variation”) to take phenotypic variation into account. The model assumes 



!

!

*"!

that at each infinitesimal time step, there is a chance for an empty patch to be 

colonized and for an occupied patch to become unoccupied through local extinction. 

These one-step transition probabilities are independent of the state of the system at 

previous time steps and can be written as: 

    C(n+1| n) = cn 1! n
N

"

#
$

%

&
'dt ,       (1) 

    E(n!1| n) = endt ,         (2) 

where C(n+1| n) is the probability that an unoccupied patch is colonized, E(n!1| n)

is the probability that an occupied patch becomes unoccupied, N is the total number of 

patches in the metapopulation, n is the number of occupied patches, c is the 

colonization rate and e is the extinction rate (Levins 1969; Alonso & McKane 2002). 

We define C(1 | 0) ! ! dt , which can be seen as a chance of receiving migrants from 

outside the metapopulation if the metapopulation was to go extinct. As !  decreases, 

the stationary probability of extinction tends to 1. Setting ! ! 0 , however, does not 

preclude the metapopulation from going extinct because 1) !  can be arbitrarily small 

and 2) even if !  is large, its final effect will depend on the relative values of all other 

colonization and extinction transition probabilities. I nevertheless assessed the effect 

of !  in the dynamics of the model (see results) for thoroughness. This model would 

apply to scenarios where external migration from the continent is so negligible 

compared to C(n+1| n)  (i.e., C(n+1| n) >> ! ), that effectively the only time the 

external migration impacts dynamics is when the metapopulation as a whole goes 

extinct. It could also apply in situations where humans monitor the status of a 

metapopulation, and supply propagules when the metapopulation goes extinct either 

intentionally or unintentionally, which may be of relevance in management and 

conservation scenarios. Last, I imposed a boundary at n=0, by defining
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C(0 |!1) = E(!1| 0) " 0 , since patch occupancy cannot be negative. To simplify 

notation, I will refer to C(n+1| n)  as Cn , to C(n | n!1)  as Cn!1 , to E(n!1| n)  as En  

and to E(n | n+1)  as En+1  from now on. 

 Under these conditions, the master equation controlling the change in the 

distribution of occupied sites (P(n, t) ) over time can be written as:  

dP(n, t)
dt

= Cn!1P(n!1, t)+En+1P(n+1, t)!P(n, t) Cn +En( ) ,     (3) 

where the probability of finding n occupied patches at time t increases with the 

probability that a colonization event occurred multiplied by the probability of having 

n-1 occupied sites (Cn!1P(n!1, t) ), increases with the probability that an extinction 

event occurred multiplied by the probability of having n+1 occupied sites (

En+1P(n+1, t) ), and decreases with the probability of having both an extinction or a 

colonization event multiplied by the probability of having exactly n occupied sites (

P(n, t) Cn +En( ) ,(van Kampen 1981). The stationary distribution ( t!" ) can be 

found by recurrence (Appendix IX), and is equal to: 

P(n,!) = C0…Cn"1

E1…En

P(0,!) ,        (4) 

 with 

P(0,!) = 1

1+ C0…Cn"1

E1…Enn=1

N

#
.       (5) 

Using Eqs. (1) and (2) and assuming ! =1 for simplicity, the stationary distribution 

for the model becomes (Appendix X): 

P(n,!) =

1
nen

c
N
"

#
$

%

&
'
n(1

)(N )
)(N ( n+1)

1+ 1
nen

c
N
"

#
$

%

&
'
n(1

)(N )
)(N ( n+1)n=1

N

*
,      (6) 
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where !  is the Gamma function. The mean number of occupied patches can then be 

found as:  

 n =

1
en

c
N
!

"
#

$

%
&
n'1

((N )
((N ' n+1)

1+ 1
j e j

c
N
!

"
#

$

%
&
j'1

((N )
((N ' j +1)j=1

N

)n=1

N

) .     (7) 

The mean number of occupied patches increases in this model with increasing 

colonization rate (Fig. 1a) and decreases with increasing extinction rate (Fig. 1b), as 

expected from classic Levin’s model (Levins 1969). The model is the continuous-time 

Markov chain counterpart to Gurney and Nisbet’s (1978) stochastic Langevin 

equation model, based on Levins’ metapopulation model (Levins 1969). Even though 

my particular formulation has not been explored before, its behavior should in all 

respects be equivalent to that of Gurney and Nisbet (1978).  

 The second model I explored is a continuous-time Markov chain model 

developed by Alonso and McKane (2002), which, contrary to the previous one, 

assumes that the metapopulation can receive external migration from a mainland at 

any time. In that case, the probability that a colonization event occurs in a time lapse 

dt is 

C(n+1| n) = cn 1! n
N

"

#
$

%

&
'dt +m(N ! n)dt ,      (8) 

where m is the migration rate from the continent, and everything else is an in the first 

model. The number of occupied patches is approximately (Alonso & McKane 2002): 

    n !
N
2
1" m" e

c
+ 1+ m" e

c
#

$
%

&

'
(
2

+ 4me
c2

#

$

%
%

&

'

(
(

.     (9) 

 This approximation is particularly useful because once I incorporate phenotypic 

variation the mean number of occupied patches rapidly becomes difficult if not 
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impossible to compute numerically. In what follows, I modify these models to 

account for phenotypic variation in a trait that determines colonization rates.   

Incorporating phenotypic variation 

Building upon previous work (Schreiber et al. 2011; Gibert & Brassil 2014; 

Gibert & DeLong 2015), I incorporated phenotypic variation by assuming the 

existence of a normally distributed trait x with probability density function p(x, x,! 2 )

, that determines colonization rates in a Gaussian way: 

c(x) = cmax exp !
1
2
(! ! x)2

" 2
"

#
$

%

&
' ,      (10) 

where cmax  is the maximal colonization rate, !  represents a trait value at which 

colonization is optimal, and !  controls the rate at which colonization rates decrease 

away from the optimum value. This functional form is common in traits controlling 

dispersal such as body size (Manzaneda, Rey & Alcántara 2009) or wing length 

(Pulido & Widmer 2005), and can arise from either stabilizing or conflicting selection 

in the traits controlling dispersal (Manzaneda et al. 2009). Gaussian functional forms 

such as the one assumed here are also common in theoretical papers studying how 

traits and their evolution might affect metapopulation dynamics (Hanski & Mononen 

2011; Hanski, Mononen & Ovaskainen 2011). Notice that colonization rates are 

defined at the metapopulation level, so the trait distribution considered is also defined 

across local populations. Using (10) it is possible to calculate the mean colonization 

rate as, 

c = c(x)p(x, x,! 2 )dx
!"

"

# ,      (11) 

which convolves nicely to: 
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    c =
cmax!
! 2 +" 2

exp ! 1
2

d 2

! 2 +" 2

"

#
$

%

&
' ,    (12) 

where d 2 = (! ! x )2 , hereafter referred to as phenotypic mismatch following previous 

work (Raimundo et al. 2014; Gibert & Brassil 2014; Gibert & DeLong 2015). Notice 

that while selection can reduce mismatch, it is not certain that it will. Indeed, whether 

mismatch will decrease ultimately depends on a number of other factors, including, 

but not limited to, whether selection is strong, whether there is antagonistic selection 

on the trait (e.g., imposed by other interacting species or environmental differences 

across patches that makes moving between patches deleterious) or whether the trait is 

plastic. Changes in !  affect how sensitive colonization rates are to changes in both 

phenotypic mismatch and phenotypic variation. Because c  is an explicit function of 

phenotypic variation (! 2 ), it is now possible to assess the effect of the latter in the 

mean number of occupied sites as well as in their variance for both models. Using (7) 

and (12), n  becomes for the first model:   

n =

1
en

c
N

!

"
#

$

%
&

n'1
((N )

((N ' n+1)

1+ 1
j e j

c
N

!

"
#

$

%
&

j'1
((N )

((N ' j +1)j=1

N

)n=1

N

) ,   (13) 

while for the second model it becomes: 

n !
N
2
1" m" e

c
+ 1+ m" e

c

#

$
%%

&

'
((

2

+ 4 me
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%
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.   (14) 

 Alternatively, phenotypic variation can be incorporated in a different way. For 

the first model, by plugging (10) into (7), and convolving the whole with the trait 

distribution we get: 
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   n =

1
en

c(x)
N

!
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((N ' n+1)
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j e j

c(x)
N

!
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((N )
((N ' j +1)j=1
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) p(x, x,! 2 )dx
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+ .   (15) 

For the second model, the expression reads:  

n !
N
2
1" m" e

c(x)
+ 1+ m" e

c(x)
#

$
%

&

'
(

2

+ 4 me
c(x)2

#

$

%
%

&

'

(
(
p(x, x,! 2 )dx

")

)

* .  (16) 

Equations (15) and (16) are not always numerically computable, so in some cases I 

had to adjust the range of parameters studied. Comparing the two ways in which I 

incorporated phenotypic variation helped with assessing how robustly we can predict 

the effects of phenotypic variation on metapopulation persistence. 

 

RESULTS 

I explored two different scenarios, one where phenotypic mismatch is zero (

d 2 = 0 ), and one where phenotypic mismatch is larger than zero (d 2 > 0 ). In the first 

model, it can be seen that, for d 2 = 0 , the mean number of occupied patches goes 

down with phenotypic variation (Figs. 2a-d). This is true for both ways of 

incorporating phenotypic variation (Figs. 2a, b vs Figs. 2c, d), different 

metapopulation sizes (Figs. 2a, c) and values of the parameter!  (Figs. 2b, d). The 

effect of phenotypic variation on mean occupancy, however, is different when 

phenotypic mismatch is large ( d 2 > 0 ): mean occupancy increases at first, and then 

decreases (Figs. 2e-h). These results also hold for the Alonso and McKane model 

(Fig. 3). When exploring the effect of variation using (16), however, it was not 

possible to analyze all scenarios explored for the first model, which is why I do not 

show results on how varying !  affects mean occupancy for that model, or why the 
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range of values analyzed for phenotypic variation is slightly smaller in this case as 

well (i.e., Figs. 3c, f).  

Last, I explored how joint changes in parameters could affect metapopulation 

persistence. When phenotypic variation and phenotypic mismatch vary together in the 

first model, mean occupancy decreases as they jointly increase, and is maximal when 

there is no phenotypic variation or mismatch (Fig. 4a). This shows that phenotypic 

mismatch may be detrimental for metapopulation persistence in a case where 

underlying traits control colonization rates in a gaussian fashion, as is assumed here. 

This effect of variation and mismatch is not qualitatively affected by considering 

external migration (as in the second model, Figs. 4b, c), and is not qualitatively 

affected by the value of !  either (external migration when metapopulation goes 

extinct as explained for the first model, Fig. 4d). Even in the range of values where !  

has a strong effect (! ! 0 ), phenotypic variation generally decreases occupancy if 

phenotypic mismatch is small. 

  

DISCUSSION 

 My results show that phenotypic variation can have both negative and positive 

impacts on extinction risk in metapopulations, which is consistent with what past 

studies have shown about the effect of demographic heterogeneity (Chesson 1981; 

Conner & White 1999; Fox & Kendall 2002; Kendall & Fox 2003; Fox 2005; 

Vindenes et al. 2008; Melbourne & Hastings 2008). Regarding the positive effect of 

phenotypic variation, my results are also in line with what others have shown in 

deterministic models (Schreiber et al. 2011; Vasseur et al. 2011; Gibert & Brassil 

2014; Gibert & DeLong 2015). These results also suggest that the effect of 

phenotypic variation can strongly depend on other important factors, such as, 
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phenotypic mismatch, which is ultimately controlled by past and present selection 

acting on the traits controlling dispersal. Indeed, it is this parameter that ultimately 

determines whether the effect of phenotypic variation is positive or negative. Hence, 

to fully understand the effect of phenotypic variation on extinction risk, we may need 

to also understand how it interplays with past and current selection acting on the traits 

that control the process of interest, as recent studies argue (Hairston Jr et al. 2005; 

Hanski et al. 2011; Schreiber et al. 2011; Gibert et al. 2015). 

 Phenotypic mismatch, or the difference between the optimal and the mean trait 

value in the population can result from selection acting on a focal trait (Fellowes, 

Kraaijeveld & Godfray 1998; Nuismer, Gomulkiewicz & Ridenhour 2010). Indeed, 

low levels of phenotypic mismatch may result from strong stabilizing selection 

constantly pushing to maintain the trait on or near an optimal value (Nuismer et al. 

2010). Large levels of mismatch may result from weak selection (Nuismer et al. 

2010), or from a recent history of invasion of the species to its current habitat or 

location (Jones & Gomulkiewicz 2012). Here, we show that this phenotypic mismatch 

can have important consequences for the survival of a metapopulation, since at low 

levels of mismatch, phenotypic variation decreases mean occupancy and increases the 

chance that the metapopulation will go extinct, while at larger levels of mismatch, 

phenotypic variation can have the opposite effect. Because phenotypic mismatch may 

change over time through rapid evolutionary change of the traits controlling dispersal, 

these results suggest the possibility that eco-evolutionary feedbacks may have 

important consequences for metapopulation persistence, as other studies stressed 

(Hanski & Mononen 2011; Hanski et al. 2011).  

 It is possible that selection may reduce phenotypic mismatch over time, which 

eventually would lead to a scenario that could gradually erode phenotypic variance. It 
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is thus important to contemplate mechanisms that could maintain phenotypic variation 

over time for the results of this paper to hold for metapopulations under strong 

stabilizing selection. Such possible mechanisms include all classic evolutionary 

processes such as gene flow from outside the metapopulation, mutation and 

pleiotropy (e.g., (Mitchell-Olds, Willis & Goldstein 2007)). However, depending on 

how heritable the traits are, it is possible that some if not most of the variation in the 

traits controlling dispersal might arise through phenotypic plasticity, which will not 

be eroded by selection, even though it can fuel evolutionary change as well (Price et 

al. 2003). Thus, even in scenarios under strong stabilizing selection, it is possible to 

still find core levels of irreducible phenotypic variation and phenotypic mismatch, 

with potentially important ecological effects on the persistence of metapopulations. 

 It has also been empirically shown that phenotypic variation controls dispersal 

capacity in the three-spine stickleback Gasterosteus aculeatus (Laskowski et al. 

2015). Together with my findings, these results suggest that individual phenotypic 

variation may be a key yet largely overlooked factor when it comes to devising 

conservation and management plans for threatened metapopulations. For example, by 

not taking phenotypic variation into account, the probability of extinction of a 

metapopulation might be largely underestimated if the phenotypic mismatch is small, 

or largely overestimated if the mismatch is large. Moreover, the increasing 

temperatures associated with global warming are likely to affect the mean body size 

of some if not most ectothermic species (Daufresne, Lengfellner & Sommer 2009; 

Sheridan & Bickford 2011), with important consequences for food web body size 

structure (Gibert & DeLong 2014). Yet, little is known as to how warming may affect 

variation in body size even though there are strong reasons to believe that both the 

mean and variance of body size can change with temperature, as it was empirically 
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shown in a protist system (DeLong 2012). Together, these results further emphasize 

the need for a deeper understanding of the effect of phenotypic variation upon 

ecological processes, and how these effects may be potentially mediated by 

environmental temperature.  

 Importantly, the effect described here occurs through two important but 

distinct components: first, there is a deterministic effect of phenotypic variation on 

colonization rates, then, this deterministic effect leads to a stochastic effect of 

phenotypic variation on metapopulation persistence through colonization rates (which 

determines demographic stochasticity in these models). Our results thus highlight the 

importance of considering the joint effect of both deterministic and stochastic effects 

in regulating the fate of natural populations. Notice, however, that we may not be able 

to separately quantify their effects in nature, as the deterministic effect of phenotypic 

variation on colonization rates is a prerequisite for the stochastic effect of phenotypic 

variation on metapopulation persistence. These two components of the overall effect 

of phenotypic variation occur sequentially and are fundamentally linked, which makes 

their separate quantification potentially challenging. Both ought to be considered 

together as a complex pathway through which phenotypic variation affects 

persistence. 

It is important to notice as well that my model depends on a number of 

parameters whose values will affect the results shown here. For example, the value of 

! , the parameter that controls the sensitivity of the colonization rates to changes in 

phenotypic variation, is arbitrary in my models, and larger values of the parameter 

will lead to scenarios where no effect of phenotypic variation may be observed. Also, 

the effects described here strongly depend on the total number of patches considered 

(Fig. 2, Fig. 3), with larger populations needing larger levels of phenotypic mismatch 
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to show a similar change in the total number of occupied sites. Last, it is interesting to 

notice that the two models explored showed qualitatively similar but quantitatively 

different responses to phenotypic variation (Fig. 2 vs Fig 3). In Levins’ model (Eqs. 

(13) and (15)), the effect of phenotypic variation was much stronger than in Alonso 

and McKane’s (Equations. (14) and (16)). This is because of the way both models 

depend on c: the Levins’ model can be roughly seen as parabolic function of c of the 

form 
ci

i=1

N

!

1+ ci
i=1

N

!
, thus tending faster and faster to 1 with increasing N; Alonso and 

McKane’s model, on the other hand, goes to 1 as 1! 1
c

, which does so at a slower 

pace. This difference in the concavity of both functions with respect to c leads to a 

difference in how much they respond to variation in the parameter. The faster the 

function tends to 1, the stronger their concavity with respect to c and the stronger they 

respond to variation in that parameter, as a previous study also suggested (Inouye 

2005). 

 Overall, this paper shows that the effect of phenotypic variation may be more 

complex than meets the eye. Indeed, phenotypic variation underlies demographic 

heterogeneity, but its effects on metapopulation persistence depends on other factors 

such as phenotypic mismatch as well as its deterministic effects on the parameters 

controlling the dynamics of interest. At low levels of mismatch, phenotypic variation 

decreases persistence, but at larger levels of mismatch, the pattern can be reversed. 

This paper emphasizes the fact that both phenotypic variation and phenotypic 

mismatch may need to be taken into account when devising conservation plans of 

endangered species living in patches connected by migration in a context of global 

change.  
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FIGURES 

 

Fig 1: Plot of the probability density associated to the number of occupied patches 

from Eq. (6). We can see how an increase in colonization rate (c) leads to an increase 

in the mean number of occupied patches while an increase in extinction rate (e) leads 

to a decrease in the mean number of occupied patches. In red, our canonical 

parameter set for comparison: c = 1.4, e = 0.6, ! = 1  and N = 50. In yellow, 

everything as in red but for e = 0.6. In blue, everything as in red but for c = 2.2. 

 



!

!

+$!

 

Fig 2: a-d. Plots of the mean number of occupied patches (< n > ) in the first model 

against phenotypic variation (! 2 ) for varying levels of the total number of patches 

(N) (a and c), varying levels of the parameter !  (b and d), and low phenotypic 

mismatch ( d 2 = 0 ). Plots a and b were obtained using Eq. (13) and plots c and d were 

obtained using Eq. (15). e-h. Same as in a-d but for large phenotypic mismatch (

d 2 = 1.3 ). Other parameters: cmax  =  2.2, e  = 0.6, ! = 1and!  = 1.0 (unless otherwise 

stated), N = 50 (unless otherwise stated). 
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Fig 3: a-c. Plots of the mean number of occupied patches (< n > ) in the second model 

against phenotypic variation (! 2 ) for varying levels of the total number of patches 

(N) (a and c), varying levels of the parameter !  (b), and low phenotypic mismatch (

d 2 = 0 ). Plots a and b were obtained using Eq. (14) and plot c was obtained using Eq. 

(16). e-f. Same as in a-c but for large phenotypic mismatch (d 2 = 1.3 ). All other 

parameters as in Fig. 1. 
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Fig 4: a. Contour plot of how the mean number of occupied patches (grey tones, white 

numbers), changes as a function of phenotypic mismatch (d2) and phenotypic 

variation (! 2 ) for the first model. b. Same as in a but for migration rate (m) and 

phenotypic variation for the second model. c. Same as in b but for phenotypic 

mismatch and migration rate. d. Surface showing how the effect of phenotypic 

variation on mean occupancy changes with ! , for low phenotypic mismatch ( d 2 = 0 ). 

All other parameters as in previous figures 
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CHAPTER 4 

 

THE JOINT EFFECT OF BODY SIZE, INTRASPECIFIC VARIATION AND 

THEIR CHANGE WITH TEMPERATURE ON A FRESHWATER PREDATOR-

PREY SYSTEM 

 

J.P Gibert & J.P. DeLong 

 

Key-Words: Traits, Warming, Individual Variability, Consumer, Resource 

 

ABSTRACT 

Understanding the factors underpinning food web structure and stability is a long-

standing issue in ecology. This understanding, however, ultimately hinges on honing 

our comprehension of the factors influencing predator-prey interactions. Mean body 

size is an important determinant of predator-prey interactions, and although 

intraspecific variation in body mass has long been dismissed as noise around mean 

values of interest, recent studies suggest that it may play a larger role than previously 

thought. Moreover, although temperature can influence both the mean and variance of 

body size, how body size, body size variation, and temperature jointly affect predator-

prey interactions is not known. Here, we address this issue in a freshwater copepod-

protist predator-prey system using an integrative approach that tests mathematical 

models with empirical data from foraging trials. We show that mean body size plays a 

major role in determining the parameters of the predator functional response, which 

leads to important and predictable effects of intraspecific variation, per se, on those 

parameters. Moreover, these effects are mediated by temperature, and we make 
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testable predictions as to how increasing average temperatures resulting from global 

climate may lead to an increase in interaction strengths between copepods and their 

prey. Because copepods are a major intermediate predator in aquatic food webs, our 

results suggest that the structure and dynamics of complex food webs may be 

determined by the joint effect of mean body size and variation in body size, mediated 

by environmental temperature. These results are central for our understanding of how 

natural systems will respond to increasing temperatures. 

 

INTRODUCTION 

 Food webs are complex systems influenced by myriad factors such as species 

diversity (May 1972; Allesina & Tang 2012), the strength of feeding interactions 

(Paine 1992; McCann et al. 1998), and environmental conditions (Binzer et al. 2012; 

Gibert & DeLong 2014). Assessing how food webs persist in nature is thus a 

challenging task that requires a fine-grained understanding of the factors influencing 

food-web building blocks, that is, the predator-prey interactions themselves. Many 

behavioral, physiological and biomechanical processes play a central role in 

determining the strength of predator-prey interactions (e.g. (Kennedy & White 1996; 

Hammill et al. 2010; Riede et al. 2011; Schmitz & Price 2011; Jonsson 2014; 

DeLong, Hanley & Vasseur 2014a). Yet how population-level patterns are affected by 

processes occurring at the individual level, such as traits individuals have, and their 

variation within populations, has been largely overlooked in ecology (Lomnicki 1988; 

Bolnick et al. 2011).  

 One striking exception is long-term focus on how body size affects predator-

prey interactions. Body size often determines the diet (e.g. (Schneider, Scheu & Brose 

2012)) and trophic level of predators (e.g. (Riede et al. 2011)), as well as the 
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parameters of the functional response (e.g. (DeLong & Vasseur 2012b)). Body size 

thus plays a paramount role in determining how predator-prey interactions occur, 

especially in gape-limited organisms (Arim, Bozinovic & Marquet 2007). Body size 

can be extremely plastic in nature (David, Legout & Moreteau 2006), which can lead 

to large amounts of variation within populations (Giometto et al. 2013). Traits that 

directly affect ecological processes, such as body size, are also likely to affect those 

processes at the population scale via their intraspecific variation. Indeed, variation in 

traits like body size has been shown theoretically to affect predator-prey interaction 

strengths and dynamics (Gibert & Brassil 2014; Gibert & DeLong 2015), as well as 

eco-evolutionary dynamics (Schreiber et al. 2011; Vasseur et al. 2011). Empirical 

support for these findings are mixed, however, with some studies showing no effect of 

intraspecific variation (Ingram, Stutz & Bolnick 2011) and others showing important 

effects on predator-prey interactions (Pettorelli et al. 2011; Hughes et al. 2015; 

Cronin et al. 2016).  

 Both body size and its variation within populations can change dramatically 

over short periods of time (DeLong, Hanley & Vasseur 2014b), responding to 

changes in resource availability (e.g. (Anholt & Werner 1998)) or predation (e.g. 

(MacLeod et al. 2007)). Abiotic factors such as temperature can also influence body 

size. Indeed, organisms generally become smaller at warmer temperatures, a pattern 

known as the temperature-size rule (Sheridan & Bickford 2011; DeLong 2012; 

Forster, Hirst & Atkinson 2012). This is particularly important in the context of global 

climate change where future average temperatures are expected to rise by about 3ºC. 

Changes in body size ostensibly due to global climate change are already occurring in 

disparate taxa (Ozgul et al. 2009; Hoffmann & Sgrò 2011) and are expected to 

become more prevalent as temperature continues to increase. Because temperature 
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can affect both mean body size and its intraspecific variation (DeLong 2012), to 

properly understand how climate change may affect predator-prey interactions and, 

through such changes, the structure and dynamics of food webs, we need to assess the 

joint effects of changes in mean and variance in body size caused by warmer 

temperatures.   

  Here we assess how predator body size and its intraspecific variation affect 

the interaction between the predator copepod Eucyclops agilis and the protist prey 

Paramecium caudatum. To do so, we used foraging experiments to test whether body 

size affects any of the parameters of the predator functional response using foraging 

experiments. Second, we used mathematical models to predict the effect of variation 

in body size given assumed functional relationships between body size and the 

parameters of the functional response, and we tested those predictions against our 

data. Finally, we used empirical estimates of mean change in body size with 

temperature for copepods to predict how the interaction strength between Eucyclops 

agilis and Paramecium caudatum might change for different possible scenarios of 

future temperatures. 

Copepods and protists are abundant and important consumers and prey at 

multiple trophic levels within aquatic food webs (Fryer 1957; Novich et al. 2014; 

Kalinoski & DeLong 2015). Copepods are generalist predators that play a central role 

as primary and secondary consumers in aquatic food webs and, as such, are thought to 

be one of the main carbon sinks in the oceans (Jónasdóttir et al. 2015). Copepods thus 

play a major role in turning over energy and matter across ecosystems, making our 

model system and results of relevance to understand the effect of trait-mediated 

temperature effects on food web structure and dynamics.  

 



!

!

"+!

METHODS 

Study system 

We used the copepod Eucyclops agilis preying on the protist Paramecium 

caudatum. P. caudatum is a ~300µm long highly mobile bacterivorous protist. 

Protists such as P. caudatum are important components of aquatic food webs and are 

often eaten by copepods (Fryer 1957). Cyclopoid copepods like E. agilis are highly 

mobile generalist predators, capable of eating a wide range of prey items, from 

detritus to other cylops (Fryer 1957; Kalinoski & DeLong 2015). Both species were 

collected from a pond at the Spring Creek Prairie Audubon Center, ~30 km southwest 

of Lincoln, NE, USA (Novich et al. 2014). P. caudatum were maintained in 

laboratory cultures for months prior to the experiment, while E. agilis was collected 2 

days before they were used in foraging trials and kept in pond water with food ad 

libitum at room temperature (~23°C) until experiments started.  

Foraging trials  

 We set up foraging experiments using a factorial design with three predator 

densities (1, 2 and 3 ind/2ml) and five prey densities (6, 12, 18, 24 and 30 ind/2ml). 

Each density combination was replicated four times, for a total of 60 trials. Copepods 

were acclimated for 5 minutes in Petri dishes with 2 ml of filtered and autoclaved 

pond water (collected from the same Spring Creek Prairie site) at room temperature 

(~23°C) prior to the start of the trial, after which prey were introduced to the dish to 

begin the foraging trial. We only used adult cyclops to control for potential 

ontogenetic diet shifts. Foraging trials lasted for 10 minutes, after which remaining 

prey were counted. Trials were conducted in four consecutive days and all 

combinations of predator and prey levels were run once every day across four 

consecutive days. No copepods were used more than once. 
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After foraging trials, the cyclops were euthanized and photographed 

individually using a Leica stereomicroscope, and body length was measured, as a 

proxy for body size, from the beginning of the prosome to the tip of the caudal ramus. 

Cyclops grow in molts (Williamson & Reid 2009), so unless a molt was observed in 

the petri dish after a foraging trial (none were), there was no growth in body length 

during the 10 minute foraging trials. These individual measurements were used to 

calculate the standing mean and variance in body length within each trial. 

The effect of mean body length on the parameters of the functional response  

We used the Rogers predator equation, which is a type II functional response 

that takes into account prey depletion (Rogers 1972; Bolker 2011): 

Re = R0 !
W !0"R0e

!!0 (t!"R0 )( )
!0"

,       (1) 

where Re  is the number of prey individuals/2ml eaten in time t, R0  is the initial prey 

density, !0 is the attack rate of the predator, !  is its handling time, and W is the 

Lambert W  function, which for f (x) = xex  satisfies W f (x)( ) = x . To incorporate 

interference competition, we set !0 =!C
m  following previous studies (DeLong & 

Vasseur 2013), where !  is the maximal attack rate in the absence of interference, and 

m is the coefficient of mutual interference, which typically ranges from 0 to -2, where 

m=0 represents the scenario where there is no interference (Arditi & Ginzburg 1989; 

DeLong & Vasseur 2013).  

Using the estimated foraging rates across all combinations of predator and 

prey levels, we can estimate the parameters of the functional response in (1). 

Unfortunately, doing so would only yield one set of parameters (attack rate, handling 

time and interference), making it impossible to assess how body size and its variation 

affect them. To do so, we devised a procedure than makes use of the natural variation 
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in mean body length and its variation across foraging trials to our advantage, by 

bootstrapping the data from the individual foraging trials 5,000 times (i.e. sampling 

data points with replacement). By doing so, we generated 5,000 pseudo-replicated 

datasets that we used to fit equation (1), obtaining a set of parameters, (the attack rate 

(! ), the handling time (! ), and the coefficient of mutual interference (m)) from each, 

as well as an average body length (calculated among all data points within a bootstrap 

replicate), median variance in body length and day of trial. For each bootstrap 

replicate, we thus obtained the three parameters controlling the predator-prey 

interaction as well as the average and intraspecific variation in body length associated 

with that particular set of parameters. We disregarded any bootstrap replicate that 

yielded parameter estimates in the upper or lower 1% of the distribution in any one of 

the parameters. We used this bootstrapped data to assess how mean body size and its 

variation affected the parameters of the functional response.  

Previous theoretical work suggested that mean body size can affect all three 

parameters of the functional response in specific ways (DeLong 2014). While the 

attack rate has been shown to scale with body mass across pairs of interacting species 

(Rall et al. 2012), whether that relationship is expected within any given pair of 

predator and prey species is largely unknown. Indeed, attack rates have been 

empirically shown to be a hump-shaped functions of predator-prey body size ratios 

(Vucic-Pestic et al. 2010; Rall et al. 2012). Since predator-prey body size ratios 

increase with predator body size, we would then expect a hump-shaped relation 

between attack rate and body size within species, as many theoretical studies often 

assume (Aljetlawi 2004; Schreiber et al. 2011; Gibert & Brassil 2014; Allhoff et al. 

2015; Nonaka et al. 2015). We therefore model that relationship as follows: 
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!(x) =!amp exp !
x !"!( )2

2! 2
"

#
$
$

%

&
'
'
+"min ,      (2) 

where !amp  is a shape parameter that controls the height of the function, !min  is the 

minimal attack rate, !"  is the body size at which the attack rate is maximal (i.e. 

optimal body size), and !  controls how fast the attack rate declines with body size as 

we move away from the optimal value ((Gibert & Brassil 2014), Fig 2a). Interference 

is often linked to attack rates by a logarithmic function, m(x) = ! log("(x))+# , where 

!  and ! delta are system-specific (DeLong & Vasseur 2013). Using the bootstrapped 

data, we found that relationship to be !  = – 0.56± 0.0057 SE and !  = – 0.38± 0.0038 

SE (Appendix IX). The attack rate therefore specifies interference, which also ends-

up being hump-shaped (Fig 2b). Finally, the handling time has also been shown to be 

a concave-up function of predator-prey body size ratios, and thus a concave-up 

function of predator body size (Rall et al. 2012), so we modeled it as: 

  !(x) =!max ! !max !!min( )exp !
x !"!( )

2

2# 2
"

#

$
$

%

&

'
'
,      (3) 

where !max  controls the height of the function, !min  is the minimal handling time, !"  

is the body size at which the handling time is minimal (i.e. optimal body size), and !  

controls how fast the function declines with body size way from the optimal value 

((Gibert & Brassil 2014), Fig 2c). To test how mean body size affects the parameters 

of the functional response, we fitted (2) and (3) to the bootstrapped data and then 

compared those fits to Generalized Additive Mixed Models (GAMM) with the 

parameter of interest as a response variable (e.g. attack rate), mean body length as the 

explanatory variable and day as a mixed effect. Additive models are useful in this way 

because they make no assumptions about the functional form of the relationship 
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between the parameters and either mean body size or variation in body size. A close 

match between our theoretical model and the GAMMs would suggest that our model 

captures in some way the effect of mean body size and its variation on the parameter 

of interest. Notice that the effect of interference is specified by (2). Thus, by fitting 2, 

we can simply parameterized the logarithmic relationship described above and 

compare that to the respective GAMM.  

The effect of variation in body length 

 Theory predicts that if there is a non-linear functional relationship between a 

trait and an ecological process, we should expect an effect of variation in that trait per 

se on the process (Bolnick et al. 2011; Gibert & Brassil 2014). Thus, fitting the 

models described in the previous section would show whether such an underlying 

nonlinear functional relation exists between body length and the parameters of the 

functional response. In what follows we show how the effect of variation in body 

length can be assessed given the underlying relationship with mean body length. To 

do so, we assumed body length (x) to be normally distributed 

p(x, x ) = 1
2!" 2

exp !
x ! x( )2

2" 2

"

#
$
$

%

&
'
'
9!! ! ! !!!!(4) 

where x  is the mean body length, and ! 2  is its variance. Then, following previous 

theoretical work (Gibert & Brassil 2014; Gibert & DeLong 2015), the mean attack 

rate can be found as:   

!(x) = !(x)p(x, x )dx
!"

+"

# .         (5) 

Equation (5) convolves nicely into:  

!(x) =
!amp"

" 2 +# 2
exp ! 1

2
d!
2

" 2 +# 2

"

#
$

%

&
'+!min ,     (6) 
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which is a function of variation in body length (! 2 ), and where d 2! = ("! ! x )
2 , 

hereafter referred to as phenotypic mismatch, increases as the predator becomes less 

effective at taking down that particular prey ((Gibert & Brassil 2014), Fig 2d). The 

effect of variation in mutual interference (m) can be found through: 

m(x) = ! log("(x))+![ ] p(x, x )dx
"#

+#

$ .      (7)
 

which can be solved numerically. Finally, the effect of variation in body length on the 

handling time can be found through:  

!(x) = !(x)p(x, x )dx
!"

+"

# ,         (8) 

which becomes 

!(x) =!max !
" !max !!min( )

! 2 +" 2
exp ! 1

2
d#
2

! 2 +" 2

"

#
$

%

&
' ,    (9) 

where d 2! = ("! ! x )
2  is the phenotypic mismatch with respect to handling time. The 

predator becomes less effective at handling a particular prey as the mismatch 

increases ((Gibert & Brassil 2014), Fig 2f). Using the fits between mean body size 

and the parameters of the functional response (i.e. equations (2), (3) and m(x) ), we 

parameterized (6), (7) and (9) to predict what the effect of variation in body length 

should be on the parameters of the functional response. We then tested how well those 

predictions did against GAMMs where each parameter was the response variable, and 

standing variation in body length was used as an explanatory variable with day as a 

random effect.  

The effect of temperature 

Freshwater organisms show, on average, between 1% and 2.5% decrease in 

body size with temperature per ºC (Forster et al. 2012). Also, as mean body size 



!

!

#'!

decreases, variation in body size decreases as well (DeLong 2012). Taking this into 

account, it is possible to assess how a change in mean body size and its variation may 

affect the mean interaction strength (IS) between E. agilis and P. caudatum. To do so, 

we use foraging rates as a proxy for interaction strengths (Laska & Wootton 1998; 

Novak & Wootton 2008), and write: 

IS = !(x)"(x)RC1+m(x )

1+!(x)"(x)RCm(x )
!"

+"

# p(x, x )dx ,    (10) 

which can be parameterized using the fits from equations (2) and (3) as well as the 

logarithmic relationship between attack rate and interference (m(x)). Equation (10) 

simply is the average foraging rate of the copepod assuming a type-II functional 

response and interference competition, that takes into account the effect of mean body 

size and its variation (Gibert & DeLong 2015). Assuming no changes in predator or 

prey densities, we assessed two different scenarios for the effects of size change on 

interaction strength: a scenario where only mean body length changed with 

temperature for E. agilis and a scenario where both body length and its variation 

changed. The size of the prey remained constant, simulating a situation where there is 

an asymmetrical response to temperature for predators and prey as suggested by 

previous studies (Dell et al. 2014).       

 

RESULTS  

Both average body length and standing variance in body length varied widely 

across foraging trials (Fig 3a,b). The fitted functional response has parameters !

=4.35  (CI: 1.31, 7.38), ! =0.026  (CI: 0.013, 0.039) and m=-1.14  (CI: -1.62, -0.65, 

Fig 3c), which implies that E. agilis showed rather large levels of interference 

competition (literature mean for m=–0.8, (DeLong & Vasseur 2013)). Mean body size 
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nonlinearly affected all three parameters of the functional response (GAMM smooth 

components pattack rate = 1.48*10-8, pinterference =3.87*10-14, phandling time = 0.0107), and 

there is good agreement between the model fits and GAMMs (Fig 4a-c). Both attack 

rate and interference mostly decline with body size in the range observed (Fig 4a,b), 

while handling time decreases at first and then increases (Fig 4a,b). The body size at 

which attack rate peaks (~1.34mm) is slightly different from that at which handling 

time is minimal (~1.38mm).  

GAMM models showed a nonlinear effect of variation in body length upon 

attack rate (smooth term pattack rate = 0.0087, Fig. 4d), a linear effect on interference 

(smooth term pinterference =0.133, Fig. 4e) and no effect on handling time (smooth term 

phandling time =0.85, Fig. 4f). With respect to the predicted effects of variation from (6), 

(7) and (8), we predicted a shallow hump-shaped function of variation on attack rate, 

however, GAMM fits suggest a much stronger hump-shaped relationship than we 

predicted, despite some visible overfitting (Fig 4d). For interference, our model 

predictions and the GAMM are in agreement at first, but while the model predicted a 

slight decrease at larger levels of variation, GAMM suggests an increase in 

interference throughout (Fig 4e). Both our model and the GAMM show no change 

with variation for handling time, but the theoretical model predicts much lower 

handling times throughout (Fig 4f).  

Last, our results show that a change in mean body size due to temperature can 

have important effects on interaction strengths, increasing them at first and then 

decreasing them (Fig 5, solid line). When a change in both mean body length and 

variation is taken into account, the increase and the decrease in interaction strengths 

are exaggerated (Fig 5, dashed line).   
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DISCUSSION 

 While the importance of body size for predator-prey interactions has long been 

recognized (Pimm, Lawton & Cohen 1991; Jonsson, Cohen & Carpenter 2005; Brose 

et al. 2006), its joint effect with variation in body size and how this might be affected 

by temperature is largely unknown. Here, we show that both mean body size (Fig 4a-

c) and intraspecific variation in body size (Fig 4d-f) play a major role in setting the 

parameters of the functional response in this freshwater predator-prey system. We 

also show that, by taking this information into account, we can predict how increasing 

temperatures associated with global climate change may affect the interaction strength 

between this pair of species (Fig 5). We expect an increase in average temperature to 

increase interaction strengths at first, then to decrease them, and this effect is stronger 

if the change in body size induced by increasing temperatures is accompanied by a 

change in its intraspecific variation (Fig 5). 

 The ecological effects of phenotypic variation are increasingly recognized as 

important, yet they are still largely overlooked for predator-prey dynamics (Benedetti-

Cecchi 2003; Bolnick et al. 2011; Gibert et al. 2015). Evidence showing important 

effects of phenotypic variation per se on ecological interactions is, however, rapidly 

increasing (Ingram et al. 2011; Hughes et al. 2015; Snowberg et al. 2015; Cronin et 

al. 2016), as is that of genetic variation (Agashe 2009; Steiner & Masse 2013). Our 

results add to this growing literature by showing that we can empirically detect the 

effect of phenotypic variation in predator body size on foraging rates with a simple 

experimental approach. Moreover, we show that predicting the effect of phenotypic 

variation is possible, and these predictions are qualitatively and quantitatively robust, 

despite some disagreement with predictions from our statistical models. We believe 

that the effect of phenotypic variation in the parameters of the functional response 
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may be weaker than that of mean body size. Our rather small sample size may thus 

partly explain the larger levels of disagreement observed between our model 

predictions and the data for the effect of variation on functional response parameters 

(Fig 4d-f), compared to the quite tight agreement between theory and data for mean 

body size effects (Fig 4a-c). 

 Body size has long been known to affect the parameters of the functional 

response (Vucic-Pestic et al. 2010; DeLong 2012; Pawar et al. 2012). While most 

studies suggest that attack rate scales positively with body size while handling time 

does the opposite (e.g. (DeLong & Vasseur 2012b)), whether this pattern holds within 

specific predator-prey systems, rather than across predator-prey pairs, is not known. 

Furthermore, theoretical studies often assume hump-shaped relationships between 

body size and some parameters of the functional response such as the attack rate (e.g. 

(Schreiber et al. 2011; Nonaka et al. 2015)), but empirical evidence for such a pattern 

is slim  (but see (Rall et al. 2010)). Here, we show that contrary to across species 

expectations, the attack rate goes down with body size in the range observed, and 

peaks on the lower end of the body size distribution, suggesting that smaller bodies 

copepods (e.g. juveniles), may have lower attack rates than do adults. This pattern is 

consistent with previous findings in copepods as well (Novich et al. 2014), potentially 

suggesting that some of the observed patterns across species may not be valid 

assumptions within species.  

 The strength of predator-prey interactions plays an important role in 

determining the stability of food webs (e.g. (McCann et al. 1998). Temperature has 

been shown to affect food web body size structure (Gibert & DeLong 2014) and 

dynamics (Binzer et al. 2012), showing an interactive effect with body size (Binzer et 

al. 2015). The specific mechanisms through which this interactive effect happens, 
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however, are largely unknown. Here, we show that interaction strengths can depend 

on both mean body size and its intraspecific variation, and that this effect can be 

mediated by temperature. With temperature regulating body size and its variation 

through the temperature-size rule (Atkinson 1994; DeLong 2012), our results suggest 

a potential mechanism through which temperature may lead to important shifts in 

food web body size structure and dynamics. Furthermore, we show how it is possible 

to predict future interaction strengths between E. agilis and P. caudatum under 

different scenarios. We believe that approaches like ours, firmly rooted in the natural 

history of the study system and coupled with novel theoretical approaches, are the key 

to understanding and predicting how natural ecosystems may be affected by 

increasing temperatures worldwide. 

 In conclusion, we designed simple foraging experiments using a copepod-

protist predator-prey system to show that body size and its intraspecific variation play 

an important role in setting the parameters of the functional response, consistent with 

what our theoretical expectations. Furthermore, we predicted how increasing 

temperature may affect the interaction strength between the pair of species through 

changes in both mean and variation in body size. These results have important 

implications for the structure and stability of food webs as climates change. 
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Figure 1: A. Eucyclops agilis. B. Paramecium caudatum
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Figure 2: (a) The assumed relation between body size and attack rate. (b) How 

interference depends on body size given the logarithmic relation with attack rate. (c) 

How handling time depends on body size. (d) The effect of intraspecific variation in 

body size on attack rate for different values of phenotypic mismatch ( d 2! ). (e) Same 

as in (d) but for interference competition. (f) The effect of variation in body size on 

handling time for varying phenotypic mismatch ( d 2! ).  
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Figure 3: (a) Distribution of average body sizes across all 60 foraging trials. (b) 

Distribution of variation in body size across trials. (c) Observed foraging rates (prey 

consumed/ml.hr) as a function of predator (ind/2ml) and prey density (ind/2ml). Red 

dots represent the measured forging rate for each trial, and the grey surface is the 

fitted functional response (equation (1), parameters: ! =4.35  (CI: 1.31, 7.38), !

=0.026  (CI: 0.013, 0.039) and m=-1.14  (CI: -1.62, -0.65) ). 
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Figure 4: (a)-(c) Dashed black line represents the fit of the model, while the solid line 

represents the prediction of the GAMM with its 95% confidence interval in grey. In 

(b), the dashed line is orange to indicate that the relationship was no fitted, but 

predicted from the fit of equation (1) in (a). (d)-(f) Dashed orange lines represent the 

predicted effect of variation in body length given the relationships in (a)-(c), and the 

solid lines represent the prediction of the GAMM with confidence intervals in grey. 

Conceptually, GAMM predictions can be seen as a way of collapsing all 4.277 data 

points into one line. Also, the actual data points are not shown for clarity purposes. 
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Figure 5: Predicted effect of temperature on interaction strengths (measured as prey 

consumed per milliliter per year) for two scenarios: change in mean body size only 

(solid), and a change in both mean body size and intraspecific variation (dashed). The 

rightmost point at which the curves intersect the x-axis represent the current average 

body size of E. agilis. Moving to the left from that point, the effect of temperature can 

be assessed assuming: a decrease of 1%.ºC-1, or a decrease of 2.5%.ºC-1, for copepods 

only. Black copepod silhouettes are not to scale and are there for visual guide only. 
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CHAPTER 5 

 

TEMPERATURE ALTERS FOOD WEB BODY-SIZE STRUCTURE 

 

Jean P. Gibert & John P. DeLong 

 

Key-word: Global warming, Temperature, Food web structure, Body-size ratios, 

Temperature-size rule 

 

ABSTRACT 

The increased temperature associated with climate change may have important effects 

on body size and predator-prey interactions. The consequences of these effects for 

food web structure are unclear because the relationships between temperature and 

aspects of food web structure such as predator-prey body size relationships are 

unknown. Here we use the largest reported dataset for marine predator-prey 

interactions to assess how temperature affects predator-prey body size relationships 

among different habitats ranging from the tropics to the poles. We found that prey 

size selection depends on predator body size, temperature, and the interaction between 

the two. Our results indicate that 1) predator-prey body size ratios decrease with 

predator size at below-average temperatures and increase with predator size at above-

average temperatures, and 2) that the effect of temperature on predator-prey body-size 

structure will be stronger at small and large body sizes and relatively weak at 

intermediate sizes. This systematic interaction may help to simplify forecasting the 

potentially complex consequences of warming on interaction strengths and food web 

stability. 
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INTRODUCTION 

Body size is a fundamental trait influencing multiple aspects of species 

ecology, including landscape use and locomotion (Lurgi, López & Montoya 2012), 

energetic requirements (Brown et al. 2004), and prey selection (Brose et al. 2006). 

Larger organisms tend to eat larger prey, a pattern that holds across ecosystems and 

taxa (Memmott, Martinez & Cohen 2000; Jonsson et al. 2005; Brose et al. 2006). The 

ratio of predator body size to prey body size affects predator-prey dynamics (Yodzis 

& Innes 1992; Kalinkat et al. 2013), interaction strengths (Berlow et al. 2009; Vucic-

Pestic et al. 2010), trophic position (Berlow et al. 2009; Riede et al. 2011), and the 

size structure and function of food webs (Cohen, Jonsson & Carpenter 2003). Because 

of this, body size is increasingly recognized as a factor influencing species persistence 

and the stability of complex food webs (Berlow et al. 2009; Yvon-Durocher et al. 

2011; DeLong 2014).  

 In addition, body size often declines with rearing temperature, a pattern known 

as the temperature-size rule (TSR) (Atkinson 1994; DeLong 2012). The TSR is 

widespread (Atkinson 1994) and could potentially affect the way species interact 

because smaller organisms tend to eat smaller prey (Brose et al. 2006). It has recently 

been proposed that increasing temperature will decrease average body size in food 

webs, leading to a reduction in the number of trophic levels and overall food-web 

connectivity (Daufresne et al. 2009; Brose et al. 2012). Hence, temperature could 

have important consequences for food web stability and species persistence. Because 

of increased global average temperatures due to human related activities (Houghton et 

al. 1996), the challenge now is to fully uncover the relationship between body size, 

temperature and food web body-size structure in order to predict and respond to 

warming-induced changes in ecological systems. To this end, we ask whether 
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temperature alters the relationship between predator and prey body size using the 

largest known dataset compiled for aquatic food webs (Barnes et al. 2008). 

 

METHODS 

Data set 

We used EcoData Retriever to download and prepare the dataset (Morris & 

White 2013). The data consists of 34 941 observations of predator-prey interactions 

from 27 locations, including shoreline to open ocean ecosystems from the poles to the 

tropics with different mean annual temperatures measured at sea level (Barnes et al. 

2008, 2010). The data include 93 different types of vertebrate and invertebrate 

predators ranging from 0.1 g to 415 kg, and 174 different types of vertebrate and 

invertebrate prey from 10-15 kg to 5 kg. In some cases, the original dataset had mass 

estimates derived from body length measurements (Brose et al. 2006; Barnes et al. 

2008). Temperatures were included as average temperature by location measured at 

sea level (Barnes et al. 2008).  

Data analysis 

Because a previous study analyzing this same dataset failed to find an effect of 

temperature, in order to assess the effect of temperature on the relationship between 

predator body mass and prey body mass, we compared three different linear mixed 

effects models aimed at controlling for the hierarchical structure of the data (package 

lme4 in R (Bates, Martin & Bolker 2011)). We log-transformed both predator and 

prey body sizes before analysis. The first model included prey body size as the 

response variable and predator body size as the predictor variable, with habitat type as 

a random intercept and predator identity (species) as a random slope. This also helped 

control for the error associated with the allometric estimates of predator body mass. 



!

!

$*!

The second model also considered the additive effect of temperature, with random 

effects as in the first model. The third model considered the interactive effect of 

predator body mass and temperature, with random effects as before. We selected the 

most plausible model using Akaike’s information theoretical criteria (Burnham & 

Anderson 2002). Finally, we compared the relationship between predator body mass 

and prey body mass with simple ordinary least squares (OLS) and reduced major axis 

(RMA) regression. RMA regression allows for error in the x-axis variable, so this 

comparison would allow us to determine whether accounting for error in predator 

mass estimates would qualitatively change our results. Since it did not, we report only 

the results from the linear mixed models.  

 

RESULTS 

The best model suggests that prey size increased with predator size, and that effect is 

temperature dependent (intercept = -10.66±1.43SE, slope = 0.43 to 1.43±0.16SE, 

table 1).  In short, prey size increases with predator size and temperature increases the 

intercept of the relationship (+0.33±0.03SE per degree ºC) but decreases its slope (-

0.04±0.01 per ºC). Hence, smaller predators tend to eat relatively larger prey at 

warmer temperatures than at lower temperatures, while the reverse was true for larger 

predators (Fig. 1). Note that a slope close to one implies that body-size ratios remain 

constant across the entire range of predator masses. In contrast, a slope < 1 indicates 

an increase in the ratios, and a slope > 1 indicates a decrease. Thus, our best model 

indicated that prey size depended on the interaction between temperature and predator 

body size (Table 1, Fig. 1). The cut-off at which the effect of temperature gets 

reversed is somewhere between a predator mass of 10g and 150g. 

 



!

!

$+!

DISCUSSION 

Consistent with previous studies, our results show that prey size increases with 

predator size (Memmott et al. 2000; Jonsson et al. 2005; Brose et al. 2006). Unlike 

previous studies (Barnes et al. 2010), however, we show that this relationship depends 

on the interaction between temperature and predator body size, as the slope of the 

curve becomes shallower and the intercept gets larger as temperature increases (Fig. 

1). The difference between our results and previous analyses with this data (Barnes et 

al. 2010) may simply be due to the fact that the previous analysis only controlled for 

the effect of location and not for the hierarchical structure of the data in terms of 

temperature across sites. We do not believe our results contradict their main 

conclusions, but they rather add an extra layer of understanding as to how predator 

body size and temperature can interact to yield particular body size ratios in any given 

location. The magnitude of the temperature effect changes with habitat, but the 

direction of the effect does not, indicating some generality across sites (Fig. 1). 

Although there is error in the estimates of body size for both predator and prey, and 

we were only able to consider average temperatures, our broad scale analysis clearly 

reveals that body size and temperature can have strong interactive effects on food web 

body size structure.  

 There are three important consequences of this change in body-size structure. 

First, the range of prey body sizes is narrower in warm habitats than in cold habitats 

(Fig. 1). Second, because trophic level increases with body size (Cohen et al. 2003; 

Riede et al. 2011) and temperature affects body size through the TSR (Daufresne et 

al. 2009; Gardner et al. 2011), the trophic level of some species may vary across 

temperatures. In warmer habitats, larger species may have down-shifted trophic levels 

while smaller species may have raised trophic levels, potentially decreasing the total 
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number of trophic levels in warmed food webs (see also (Brose et al. 2012)). Finally, 

species at intermediate trophic levels, which are those of intermediate body size, 

would be the least affected by this body size-temperature interaction. Importantly, 

warming affects the size of predators and their prey. Thus, to actually change the 

body-size structure of food webs, warming must have a differential effect on predator 

and prey size, with predators becoming smaller at a faster pace than their prey. There 

is yet to be any experimental evidence suggesting that this can happen in nature, 

although this pattern can be obtained through a differential effect of warming in 

predator and prey mobility (Lurgi et al. 2012), which has been in turn shown to 

greatly affect food web network structure (Gravel et al. 2013; Albouy et al. 2014). 

 The effect of temperature on the predator-prey body-size scaling may also 

influence interaction strengths and food web stability. Interaction strengths are 

relatively large at higher trophic levels because they increase with body mass, which 

increases with trophic level (Cohen et al. 2003; Berlow et al. 2009; Riede et al. 2011). 

Our results suggest that, with warming, larger species at higher trophic levels may eat 

relatively smaller prey, so these prey could experience larger interaction strengths 

than they would at colder temperatures. The opposite may be true for smaller 

predators. It has also been shown that the effect of temperature on interaction 

strengths depend upon asymmetries in the underlying parameters of the predator-prey 

interaction (Gilbert et al. 2014), which are often controlled by body-size (DeLong 

2012). Although there are many ways in which temperature may affect interaction 

strengths, and the temperature variation we report reflects spatial variation rather than 

warming, our results suggest that the potential effects of warming upon trophic 

interaction strengths may be trophic-level dependent. 
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 The link between temperature and body-size structure might be related to 

species identity across habitats, to differences in the way prey-selection occurs 

between species of different habitats (Brose et al. 2006) or to range shifts with 

temperature (Lurgi et al. 2012; Albouy et al. 2014). Finally, it can also be due to 

body-size changes of species occurring in different habitats due to differences in 

environmental temperatures (Atkinson 1994; Daufresne et al. 2009; Gardner et al. 

2011). If this is the case, smaller predators might be getting smaller with temperature, 

displaying the typical TSR pattern (Fig. 2). Large predators, however, might be 

getting larger with temperature (Fig. 2). Alternatively, smaller prey might be getting 

larger with temperature and larger prey might be getting smaller (Fig. 2). More 

focused analysis on body size and species identity across food webs at different 

temperatures are needed to tease this apart. 

 It is not clear why predator-prey body sizes scale the way they do in any 

system. In aquatic ecosystems, such as the ones analyzed here, gape-limitation may 

play an important role constraining food web body-size structure (Arim et al. 2007). 

If this is a driving mechanism, our results suggest that gape-limitation may be less 

important in warmer temperatures, as the slopes of the curves are shallower. Our 

results also suggest the possibility that there are limits to the slopes of these 

relationships, as the range of slopes observed across temperatures in this study 

matches the range observed across taxa, which varies from 0.5 for protists (DeLong & 

Vasseur 2012b) to 1.5 for mammalian terrestrial carnivores (DeLong & Vasseur 

2012a), and habitats, where it varies from 0.7 in stream food webs to about 2 in 

terrestrial food webs (Riede et al. 2011). 

Overall, our results suggest that temperature has an interactive effect upon 

predator-prey body-size relationships, where smaller predators tend to eat larger prey 
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at warmer temperatures and smaller prey at colder temperatures, while larger 

predators will do the opposite. This might lead to food webs with larger interaction 

strengths but fewer trophic levels in warm temperatures, while smaller interaction 

strengths and more trophic levels could be expected in colder food webs. Thus, we 

have shown that temperature has strong consequences for food web body-size 

structure, and very likely stability as well, which in turn has important implications 

for species persistence in the context of global warming. 
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FIGURES & TABLES 

 

Table 1: Model selection for the mixed effects linear models 

Model K AICc Delta_AICc AICcWt 

log(prey mass) ~ log(predator mass) * temperature 8 153682.8 0.00 1 

log(prey mass) ~ log(predator mass) + temperature 7 153839.2 156.40 0 

log(prey mass) ~ log(predator mass) 6 153859.1 176.32 0 
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Figure 1: Left; prey body size (log) against predator body size (log) across marine 

habitats. Red (Tº=29ºC), black (Tº=15ºC) and blue lines (Tº=-1.3ºC) represent 

predicted curves from the best mixed effects linear model. 95% confidence intervals 

are displayed in grey. Right; same as in left for a subset of the habitats studied 

(coastal bay is not significant). 
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Figure 2: The effect of temperature on prey and predator body size. Red and blue 

lines represent the slope of the predator-prey body size relationship for warm (red) 

and cold (blue) temperatures. Black arrows represent body size changes with 

temperature. 
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APPENDIX I 

 

EXPLORING PARAMETER SPACE 

 

 In this section we assess how robust our results are to a change in parameter 

values. We did so by exploring other possible values for d! , d! , !  and ! . For 

changes in d!  and d!  our qualitative results hold, but an increase in d!  seems to 

have a less pronounced effect than one in d!  (Fig. S1-1; also see Appendix 3). As !  

and!  increase, the effect of individual variation decreases (Fig. S1-2). This occurs 

because the attack rate and the handling time become constant, and largely 

independent of the value of the controlling trait. Small !  or !  leads to a large 

dependency of the attack rate and the handling time upon the underlying trait value, 

and hence, to an increased effect of individual trait variation (Fig. S1-3). 
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Fig S1-1: Plots of interaction strength against increasing individual variation (gray: 

resource, black: consumer). (a) ! = 1, !max = 2, !min= 1, ! =3, ! = 1, d! = 2, d! = 0. 

(b) same as (a) but for d! = 0, d! = 2.  
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Figure S1-2: Plots of interaction strength against individual variation measured as ! 2

. Parameter values: (a) ! = 1, !max = 2, !min= 1, ! =3, ! = 1, d! = 0, d! = 0. (b) same 

as (a) but for ! =1, ! = 3. (c) same as (a) but for ! =3, ! = 3. 
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Figure S1-3: Plots of interaction strength against individual variation measured as ! 2

. Parameter values: ! = 1, !max = 2, !min= 1, ! =0.1, ! = 0.1, d! = 0, d! = 0.  
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APPENDIX II 

 

MEAN ATTACK RATE AND MEAN HANDLING TIME 

 

 In what follows we show how the mean attack rate and the mean handling 

time change with increasing levels of individual variation. While attack rate decreases 

with individual variation whenever phenotypic mismatch is small, handling time 

increases (Fig. S2-1a). When phenotypic mismatch is large, however, attack rate 

increases at first with variation and then decreases, and the opposite is true for 

handling time (Fig. S2-1b). 

 

 

Figure S2-1: Plots of how mean attack rate (black) and mean handling time (grey) 

change with individual variation under small phenotypic mismatch (a) and larger 

phenotypic mismatch (b). Parameter values: (a) !max = 2, !max = 2, !min = 1, ! = 0.5, !

=1, ! = 1, d! = d" = 0 ; (b) same as in (a) but for d! = d" = 2 . 
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APPENDIX III 

 

ELASTICITY 

 

The elasticity is a measure of model sensitivity defined as the absolute value 

of ! log( f ) ! log(a) , where f  is the function of interest (interaction strength in this 

case), and a  is the parameter of interest (attack rate or handling time in this case). 

The larger the elasticity, the more sensitive the function is to a change in the 

parameter.  

The effects of individual variation upon consumer-resource dynamics seem to 

be mainly driven by variation in the attack rate, as its elasticity is generally larger than 

that of the of handling time regardless of phenotypic mismatch or individual variation 

(Fig. S3-1). Although Jensen’s inequality predicts opposite effects of variation in 

attack rate and handling time when considered independently (Fig. 1a, 1b), interaction 

strengths incorporating individual variation in both attack rate and handling time 

simultaneously seem to mainly be affected by variation in attack rate. 
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Fig S3-1: Plot of the elasticity of the interaction strengths for with respect to the 

attack rate (black) and the handling time (gray). (a) ! = 1, !max = 2, !min = 1, ! =1, !

= 1, d! = 0, d! = 0. (b) same as (a) but for d! = 2. (c) same as (a) but for d! = 2. 
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APPENDIX IV 

 

ASYMMETRIC TRAIT DISTRIBUTION 

 

 In the main text we assumed the trait that controls the ecological interaction 

through its effect on attack rate and handling time to be normally distributed. 

However, the distribution of some traits is highly asymmetric and skewed (Gouws et 

al. 2011). In this section, we break this assumption by incorporating an asymmetric 

distribution (log-normal distribution, Fig. S4-1). We show that the effect of individual 

variation is not largely affected by the choice of the underlying trait distribution but 

the range of scenarios at which interaction strength decreases with individual 

variation becomes larger when asymmetry is taken into account.  

 Here, we assumed both attack rate and handling time to depend on the value of 

a log-normally distributed trait with location parameter x  and scale parameter ! 2 . 

Then its density in the population is: 

                                     
Lp(x, x ) = 1

x 2!" 2
exp !

log(x)! x( )2

2! 2

"

#
$
$

%

&
'
'
.                 (1) 

Note that as both the location and scale parameter control the shape of the 

distribution, the variance of the distribution, and hence, individual variation, now 

depends on both parameters. For simplicity, we focus on the case where only ! 2  

varies. We have numerically integrated IR,L (!,")  and IC,L (!,")  to find the 

interaction strength with varying levels of individual variation ! 2  as: 

IR,L (!,") = !R
!(x)

1+!(x)"(x) R
Lp(x, x )

!"

"

# dx                           (2) 
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IC,L (!,") = # C
!(x)

1+!(x)"(x) R( )2!"

"

# Lp(x, x ) dx
!!!!!!!!!!!!!!!!!!!!!!!

(3) 
!

We found that the interaction strength has a qualitatively similar behavior with 

respect to individual variation than in the case with a symmetric distribution. This is, 

there is a range of scenarios at which the interaction strength decreases monotonically 

with individual variation, and a range of scenarios at which the interaction strength is 

maximized by intermediate values of individual variation (see main text). Indeed, 

there is an optimal amount of individual variation that maximizes interaction strength 

when trait mismatch is large, if the average trait value in the population is smaller 

than the selective optimum (d! << 0 or d! << 0 , Fig S4-2a), and this behavior is also 

quantitatively comparable to the one obtained with a symmetric trait distribution. The 

interaction strength still decreases with individual variation whenever trait mismatch 

is small (d! ~ 0  and d! ~ 0 , Fig S4-2b), but this is also true for cases where the 

average trait value in the population is larger than the selective optimum (d! >> 0 or 

d! >> 0 , Fig S4-2c). Thus, asymmetric trait distributions can increase the range of 

scenarios in which interaction strengths decreases with individual variation. 
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Figure S4-1: Plot of a symmetric distribution (e.g. normal) and an asymmetric 

distribution 

 (e.g. log-normal). The log-normal distribution used in the supplementary material 

mainly differs from the normal distribution used in the main text in that it the former 

is more skewed than the latter.   
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Figure S4-2: Plots of interaction strength against individual variation measured as ! 2

. Phenotypic mismatch is large (a) and (c), and small in (b). Parameter values: (a) ! = 

1, !max = 2, !min= 1, ! =1, ! = 1, d! = -2, d! = 0. (b) same as (a) but for d! = 0. (c) 

same as (a) but for d! = 2. 
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APPENDIX V 

 

ASYMMETRIC FUNCTIONAL FORMS FOR ATTACK RATE AND HANDLING 

TIME 

 

 In the main text, we assumed the attack rate and handling time to be non-

linear, yet symmetric functional forms of the underlying controlling quantitative 

phenotypic trait. However, these ecological attributes could be asymmetric, as found 

in most thermal response curves (Vasseur et al. 2014). The asymmetry of these 

functional forms generally arise from important physiological or biomechanical 

constrains (Vucic-Pestic et al. 2010), which need to be taken into account to 

accurately describe the non-linear relationship between underlying phenotypic traits 

and the ecological attributes they influence. In this section, we break the assumption 

of symmetry for the attack rate and the handling time, by incorporating asymmetric 

functional forms (Fig. S5-1). We found that the asymmetry in attack and handling 

times can have a quantitative effect in the way individual variation affects interaction 

strengths, mostly by reducing the range of possible scenarios in which interaction 

strength decreases monotonically with increasing individual variation.  

 The now asymmetric predator’s attack rate, !asymm (x) , can be assumed to be 

maximal at a given optimal trait value x =!" , and to decrease away from that 

maximum at a different rate depending on the direction. Such a scenario can be 

modeled by:  

!asymm (x) =!max !!max exp !
log(x)! log("! )( )2

2# 2
"

#
$
$

%

&
'
'

,     (4) 
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where !max  is the maximal attack rate (Fig. S5-1a) and the rest of the parameters are 

as described in the main text. Similarly, the predator’s handling time, !asymm (x) , is 

minimal at the given optimal value x =!" , and increases away from that minimum at 

a different rate depending on the direction like:   

!asymm (x) = !max !!min( )exp !
log(x)! log("! )( )

2

2# 2
"

#

$
$

%

&

'
'
,        (5) 

where !max  and !min  are maximal and minimal handling times respectively (Fig. S5-

1b) and the rest of the parameters are as described in the main text. Because of the 

asymmetry, it is now impossible to derive analytic expressions for the mean 

(asymmetric) attack rate and handling times, so we have numerically integrated 

IR,asymm (!,")  and IC,asymm (!,")  to find the interaction strength with varying individual 

variation ! 2
 as: 

IR,asymm (!,") = !R
!asymm (x)

1+!asymm (x)"asymm (x) R
p(x, x )

!"

"

# dx                      (6) 

IC,asymm (!,") = # C
!asymm (x)

1+!asymm (x)"asymm (x) R( )
2

!"

"

# p(x, x ) dx
!!!!!!!!!!!!!!!!!!

(7) 

 Overall, we found that the asymmetry in attack rate and handling time seems 

to preclude a monotonically decreasing relation of interaction strengths with 

individual variation. If phenotypic mismatch is large enough and the average trait 

value in the population is smaller than the selective optimum ( d! << 0 or d! << 0 ), 

both the symmetric and the asymmetric case predict a hump shaped relationship 

between interaction strengths and individual variation. If phenotypic mismatch is 

small (d! ~ 0  and d! ~ 0 ), interaction seems to only increase with individual 

variation when asymmetric attack and handling rates are considered, rather than 
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showing a monotonic decrease as with symmetric attack rates and handling times 

(Fig. S5-2b). Finally, if the average trait value in the population is larger than the 

selective optimum ( d! >> 0 or d! >> 0 ), both the symmetric and the asymmetric case 

are congruent.  

 

 

 

Figure S5-1: Plots of attack and handling time against a given quantitative phenotypic 

trait, where !"  and !"  are the optimal trait values for attack rate and handling time 

respectively. Note that the ecological attributes are now asymmetric with respect to 

the trait of interest in contrast to what was assumed in the main text (Fig. 2, main 

text). 
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Figure S5-2: Plots of interaction strength against individual variation measured as ! 2

. Phenotypic mismatch is large in (a) and (c), and small in (b). Parameter values: (a) 

! = 1, !max = 2, !min= 1, ! =1, ! = 1, d! = -3, d! = 0. (b) same as (a) but for d! = 0. 

(c) same as (a) but for d! = 3. 
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APPENDIX VI 

 

ASYMMETRIC TRAIT DISTRIBUTIONS, AND ASYMMETRIC ATTACK RATE 

AND HANDLING TIME 

 

In this section, we incorporate asymmetric trait distributions as well as 

asymmetric attack rate and handling times by means of equations (1), (4) and (5) of 

the supporting information. Because of the asymmetry, it is now impossible to derive 

analytic expressions for the (asymmetric) attack rate and handling time, so we have 

numerically integrated IR,Lasymm (!,")  and IC,Lasymm (!,")  to find the interaction 

strength with varying individual variation ! 2
 as: 

IR,Lasymm (!,") = !R
!asymm (x)

1+!asymm (x)"asymm (x) R
Lp(x, x )

!"

"

# dx                   (8) 

IC,Lasymm (!,") = # C
!asymm (x)

1+!asymm (x)"asymm (x) R( )
2

!"

"

# Lp(x, x ) dx             (9) 

The results for asymmetric distribution and asymmetric attack rate and 

handling time are comparable to those found in Appendix S5. Specifically, whenever 

phenotypic mismatch is large enough and the average trait value in the population is 

smaller than the selective optimum ( d! << 0 or d! << 0 ), the symmetric and the 

asymmetric cases yield comparable predictions (Fig. S6-1a). Conversely, the 

interaction strength seems to be maximized by intermediate levels of individual 

variation whenever phenotypic mismatch is small ( d! ~ 0  and d! ~ 0 ), but this 

differs from what is predicted by the symmetric case (Fig. S6-1b). Finally, whenever 

the average trait value in the population is larger than the selective optimum ( d! >> 0
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or d! >> 0 , Fig. S6-1c), both symmetric and asymmetric cases are congruent. Overall, 

it seems that asymmetric relationships between the attack rate and the handling time 

with the underlying controlling quantitative trait precludes interaction strengths to 

decrease with individual variation, but the opposite is truth whenever only 

asymmetric distributions are considered. 

 

Figure S6-1: Plots of interaction strength against individual variation measured as ! 2

. Phenotypic mismatch is large in (a) and (c), and small in (b). Parameter values: (a) 

! = 1, !max = 2, !min= 1, ! =1, ! = 1, d! = -2, d! = 0. (b) same as (a) but for d! = 0. 

(c) same as (a) but for d! = 5. 
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APPENDIX VII 

 

CONSUMER PERSISTENCE 

 

Large values of individual variation can lead to consumer extinction (Fig S7-1), as 

suggested by eqn 14 and eqn 15 of the main text. 

 

Figure S7-1: Outcome of the consumer-resource interaction as a function of 

individual variation (! 2 ) and phenotypic mismatch between preys and predators ( d 2

). In the black region, consumers go extinct but the resource survives, while in white 

and grey regions both consumers and resources coexist. Parameter values: !max = 2, 

!max = 2, !min = 1, ! = 0.5, ! =1, ! = 1, d! = d" , K=1, ! = 0.1. 
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APPENDIX VIII 

 

PERSISTENCE CONDITIONS 

 

Here we show that for those values of ! 2  for which coexistence is ensured, 

the larger ! 2
!is, the more stable the system becomes. To do so, we observe that, if ! 2  

is very small, then the following equality holds,  

!(x ) R
1+!(x )"(x ) R

=
RC!(x)

1+!(x)"(x) R
p(x, x )

!"

"

# dx 9!!!!!!!!!!!!!!!!!!!!!!(10) 

where: 

   !(x ) = !(x)p(x, x )
!"

"

# dx  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!=
!max "

# 2 +" 2
exp ! d!

2

2 (# 2 +" 2 )
"

#
$

%

&
' 9! ! !!(11) 

  !(x ) = !(x)p(x, x )
!"

"

# dx  

!!!!!!!!!!!!=!max !
" !max !!min( )

! 2 +" 2
exp !

d#
2

2 (! 2 +" 2 )

"

#
$

%

&
' 9! !!(12) 

and d! = x !"!  and d! = x !"! , are the distance between the mean trait in the 

population and the adaptive optimum (phenotypic mismatch). 

 Hence, assuming that individual variation is small enough, we can assess local 

stability of the dynamic system by replacing the functional response defined in the 

main text (in eqn 13 of the main text, or right side of eq. 10 in appendix) by the 

functional response evaluated at !(x )  and !(x ) , and by then calculating the Jacobian 

of the system at its equilibrium:  
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J
R*,C*

=

!
r d ! !K!"(x )#(x )+ d#(x ) 1+K"(x )#(x )( )"# $%

K !(x )"(x )# # ! d"(x )( )
!
d
!

r d
K"(x )

+! ! d#(x )
&

'
(

)

*
+ 0

&

'

(
(
(
(
((

)

*

+
+
+
+
++

.          (13) 

The system is stable, if and only if the determinant of J
R*,C*

 is positive but its trace is 

negative. The latter is true whenever:  

d < !
"(x )

 and !(x )< ! + d!(x )
K!(x ) ! + d!(x )( )

. We can now use (11) of the appendix to 

obtain:  

!max "

# 2 +" 2
exp ! d!

2

2 (" 2 +# 2 )
"

#
$

%

&
'<

$ + d!(x )
K!(x ) ! + d!(x )( )

.           (14) 

If phenotypic mismatch is small ( d!
2 ~ 0 ), we can rearrange the eq. 14 to obtain: 

! 2 >
"max # K$(x ) % ! d$(x )( )

% + d$(x )
!# 2 .       (15) 

Finally, if we further assume that variation in attack rate has a larger effect than that 

in handling time, as observed in appendix 3, we get eq. 3.3 of the main text:  

! 2 >
"max # K$max % ! d$max( )

% + d$max
!# 2 .       (16) 

Eq. 16 implies that for the system to be stable, individual variation needs to be larger 

than a certain amount. This is supported by our simulations (Fig 3, main text), as 

increasing variation forces the system through a Hopf bifurcation, from an attractive 

limit cycle to an attractor node. Although the limit cycle is orbitally stable, the 

population fluctuations underwent by both interacting species makes the system more 

likely to lose species due to demographic or environmental variability. 
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APPENDIX IX 

 

RELATION BETWEEN ATTACK RATE AND INTERFERENCE COMPETITION 

 

 

Figure 1: Plot of interferences against attack rate. The red line represents the fitted 

logarithmic relation between the two variables. 
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APPENDIX X 

EQUILIBRIUM SOLUTION OF THE MASTER EQUATION 

 

 In this appendix I show how Eq. (4) of the main text can be derived from Eq. 

(3). Assuming that as t!" , the system will go to a stationary distribution P(n,!) , 

we can set dP(n,!)
dt

= 0  and solve: 

    Cn!1P(n!1,")+En+1P(n+1,")!P(n,") Cn +En( ) = 0 .      (1) 

At n=0, C!1P(!1,")+E1P(1,")!P(0,") C0 +E0( ) = 0 . Because C!1 = 0 and E0 = 0  

(see main text), we obtain: 

P(1,!) = C0
E1
P(0,!) .        (2) 

At n = 1, we obtain: 

    P(2,!) = C1C0
E2E1

P(0,!) .       (3) 

So, by recurrence, we obtain: 

    P(n,!) = C0…Cn"1

E1…En

P(0,!)  .       (4) 

Now, P(0,!) can be determined from the normalization condition, P(n,!) = 1
n=0

N

" : 

P(0,!)+ P(n,!) = 1
n=1

N

" .       (4) 

Then, we replace with (4) to obtain: 

P(0,!)+P(0,!) C0…Cn"1

E1…En

= 1
n=1

N

# ,       (5) 

which reduces to, 



!
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P(0,!) = 1

1+ C0…Cn"1

E1…Enn=1

N

#
 .      (6) 
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APPENDIX XI 

 

CLOSED FORM EXPRESSION FOR P(n,!) !

!

In this appendix I show that by replacing Eqs. (1) and (2) from the main text in 

Eqs. (4) and (5) we can obtain the stationary distribution in Eq. (6) of the main text. 

Replacing (1) and (2) on (23), and assuming ! = 1  we obtain:!

 P(n,!) =
c 1" 1

N
#

$
%

&

'
()2c 1"

2
N

#

$
%

&

'
()…) (n"1)c 1" n"1

N
#

$
%

&

'
(

e)2e)…)ne
P(0,!) .     (1)  

Which can be rearranged as follows: 

P(n,!) = 1
en

c
N

N "1( )#2 c
N

N " 2( )#…#
(n"1)
N

c N " n+1( )
1#2#…#n

P(0,!) , 

! P(n,") = 1
en

c
N
#

$
%

&

'
(
n)1 N )1( )* N ) 2( )*…* N ) n+1( )

n
P(0,") , 

! P(n,") = 1
nen

c
N
#

$
%

&

'
(
n)1 N )1( )* N ) 2( )*…*1

N ) n+ 2( )*…*1
P(0,") , 

! P(n,") = 1
nen

c
N
#

$
%

&

'
(
n)1

*(N )
*(N ) n+1)

P(0,") .      (2) 

By replacing P(0,!) by (6) we obtain Eq. (6) of the main text.  
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