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 Pier scour problem is close related to the safety of bridges. The Federal Highway 

Administration of the United State also has a great interest in studying the relation 

between hydraulic loadings and scour depth. The current technological problem of 

directly measuring hydraulic loadings on a dynamic bed using physical experiments and 

the weak capacity to simulate the real scour processes with CFD methods inspired the 

development of a hybrid approach by combining them to study pier scour. 

 This research specifically focuses on the CFD part of the hybrid method. A series 

of three-dimensional (3-D) CFD models were developed with unsteady Reynolds 

Averaged Navier-Stokes equations and the k-ε  turbulence model to calculate wall shear 

stress distributions around piers under different kinds of flow conditions. These CFD 

models were verified and calibrated by comparing wall shear stress distributions with 

other CFD simulations, which use a DES turbulence model. 

 The CFD simulation results were applied to develop a decay function of 

dimensionless wall shear stress with relative scour depth. Combined with the previous 

physical experimental data, the decay function was updated to be an envelope function to 



	
  

more accurately describe the decay trend. The results of CFD modeling for water flows 

around a rectangular pier with a 30° attack of angle were used to verify the decay 

function and the envelope function. 

 With surveyed full-scale bathymetries of the Feather River Bridge, this hybrid 

approach and the decay function were applied to study the pier scour problem. The decay 

trend and the envelope decay function were verified with the results of CFD modeling for 

the full-scale models. Using the soil composition of each layer, the application of the 

decay function was preliminarily developed. 
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CHAPTER 1 Introduction 

1.1 Overview  

 The primary purpose of this research is to develop a hybrid approach by 

combining physical experimental methods and computational fluid dynamics methods 

(CFD) to study scour around complex-shaped piers. Based on the results of hydraulic 

loadings of the developed hybrid method, the relation between hydraulic loadings (wall 

shear stress) and scour (scour depth) is developed and applied to study the pier scour of 

the Feather River Bridge. In this Chapter, the significance of scour is demonstrated. A 

short history of CFD and a brief introduction of STAR-CCM+ are given. The background 

of this research is introduced. The objectives of this research are described. The outline of 

this dissertation is listed at the end of this chapter.  

 

1.2 Introduction of Bridge Safety and Scour 

 The safety of bridge is close related to human society activities. Therefore, 

reasons of bridge failure always attract researchers to study. Generally speaking, these 

reasons include overtopping, structural failure, debris accumulation, embankment erosion 

and scour (Annandale, 1993), which can be separated into two groups: functional and 

physical failures. For example, overtopping and debris accumulation lead to functional 

failures, which make bridges impassible. This kind of bridge failure is temporary and 

easily repaired at a relative low cost. Other factors like scour and embankment erosion, 

cause physical failures, which may seriously damage the structure of a bridge or have a 

serious negative influence on the capacity of stability of a bridge. This kind of bridge 
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failure is difficult to repair. Moreover, such repair is always requires expensive and time-

consuming.  

 

 

Figure 1.1 Relative contributions of factors of bridge failure (Annandale, 1993) 

 

 Figure 1.1 shows the relative contributions of different factors of bridge failure in 

South Africa, New Zealand and United States. Among the factors of bridge failure, scour 

is one of the most significant. In this research, the term “scour” is defined as follows. The 

earthen material in the immediate vicinity of hydraulic structures of a bridge, such as 

bridge piers, is removed when water flows around them, producing scour holes around 

them. If the amount of earthen material removed is large enough, a potential bridge 

failure may happen to threaten the safety of users. From 1989 to 2000, 15.51% of over 

500 studied failures of bridge structures were associated to scour (Wardhana, 2003). The 
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data of the implementation of a nationwide bridge scour assessment program in the 

United States revealed that 141,405 river bridges in the United States are susceptible to 

scour with unknown foundations or are scour critical (Pagan-Ortiz, 2002). Scour is the 

biggest single reason of bridge failure in the United States. In this research, pier scour is 

mainly considered. An example of bridge failure caused by scour is the collapse of the 

Schoharie Creek Bridge (Figure 1.2). The center span and east center span of the 540-ft-

long bridge over Schoharie Creek failed during a flood event in New York on April 

5th ,1987. This accident killed nine people with one person missing. This tragedy is the 

main reason that leads to the implementation of a nationwide bridge scour assessment 

program. 

 

 

Figure 1.2 Schoharie Creek Bridge, New York, failed by bridge pier scour in glacial till 

in 1987 (National Transportation Safety Board, 1988) 
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 Because of the serious negative influence of scour on the stability and 

hydrodynamic performance of bridges, the study of scour around the hydraulic structure 

elements of a bridge is a primary a focus of hydraulic studies. Such studies have two 

main applications. First, model bridge design is required to consider the vulnerability of 

the bridges to scour, no matter what kind of foundations it is on. Second, the replacement 

design of old bridges also requires a detailed assessment of its potential future scour, 

because an effective way to reduce the cost is to reduce the length of each pier. 

 Scour caused by water flow is a type of erosion. There are three kinds of basic 

necessary information to analyze scour: the quantification of the hydraulic loading on the 

riverbed, the quantification of the ability of the earthen material to resist this erosion 

capacity and the threshold relationship between them. Figure 1.3 shows the relation 

between hydraulic loading and scour. In Layer 1, the hydraulic loading is larger than the 

critical soil resistance. Therefore, earthen material is removed by the water flow and 

scour happens. In Layer 2 and Layer 3, hydraulic loading is still larger than the critical 

soil resistance, even though the hydraulic loading decays. Scour keeps going in these two 

layers. The hydraulic loading is not larger than the critical soil resistance in Layer 4, 

scour stops there and the maximum scour depth is approached. 
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Figure 1.3 Hydraulic loading decay function (Suaznabar et al., 2014) 

 

 The quantification of the resistive capacity of the earthen material is complex and 

is dependent on many physical and chemical properties. In this research, the riverbed was 

formed with clean, non-cohesive and coarse-grained sand. The critical shear stress, 𝜏!, is 

a widely used physical quantity to indicate the capacity of the sand to resist erosion 

capacity. 𝜏! is the shear stress on the surface of the soil, at which particles of earthen 

material begin to move. There are several approaches to estimate its value, such as Guo’s 

relation (2002). Practicing Engineers often use wall shear stress, average velocity and 

stream power as indicators to quantify the capacity of water erosion. 
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1.3 Development of A Computational Fluid Dynamics Method and Introduction of 

STAR-CCM+  

 The computational fluid dynamics (CFD) method is developed to numerically 

solve fluid dynamic problems by using numerical methods and algorithms. The 

fundamental basis of CFD is to solve the Navier-Stokes equations with defined boundary 

conditions and initial flow conditions. A typical procedure of a classical CFD code 

includes the following five steps. First, the physical boundaries are defined, which 

constitute the CFD geometry. Then the volume of the geometry occupied by the fluid is 

divided into a mesh of small cells. After meshing the geometry, appropriate physical 

models are activated to simulate fluid flow, like turbulence models, wall functions, 

equations of motion and special conservation and boundary conditions. Initial flow 

conditions are then applied to resolve the initial flow field. The time step and physical 

time (unsteady case) or number of iterations (steady case) is defined as the conditions to 

finish the CFD simulation. After successfully finishing the steps above, the CFD code 

begins to iteratively solve the given fluid dynamics problem. The postprocessor is used to 

visualize and analyze CFD simulation results. 

 CFD methods were first developed to solve the linearized potential equations. In 

the 1930s, two-dimensional (2-D) CFD methods were developed by using conformal 

transformations of the flow around a cylinder to the flow around an airfoil (Milne-

Thomson, 1973). From 1957 to 1960, a series of CFD methods to simulate transient 2-D 

fluid flows were developed in the Los Alamos National Laboratory. In 1957, the Particle-

In-Cell method (PIC) was developed by Harlow to treat transient, compressible flows of 

multiple materials with no restrictions on interfacial deformation (Harlow, 1957 and 
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Evans et al., 1957). In 1966, the Fluid-In-Cell method (FLIC) was developed to address 

particle fluctuations and large memory requirements (Gentry et al., 1966). In 1963, 

Fromms and Harlow developed vorticity and stream function methods to resolve 

problems of strongly incompressible contorting (Fromms and Harlow, 1963). In 1965, the 

Marker-And-Cell method (MAC) was developed to simulate incompressible, free surface 

flows (Harlow and Welch, 1965). The development of CFD methods is associated with 

growth of computer technology. The powerful computer capacity to deal with floating 

point numbers and huge storage space of contemporary computers make it possible to 

develop three-dimensional (3-D) CFD methods. The first 3-D CFD method is the panel 

method (Hess and Smith, 1967). Today, many kinds of CFD methods based on this 

method have already been fully developed and are commercially available. The ultimate 

target of a CFD method developer is to find out a better approach to accurately resolve 

Navier-Stokes equations. Now, there are a number of commercial CFD programs with 2-

D and 3-D CFD codes, like Flow3D, FLUENT, ANSYS-Fluid and STAR-CCM+. These 

commercial CFD codes offer an economic way to calculate parameters of a fluid field 

and obtain details to analyze it.  

 STAR-CCM+ developed by CD-adapco Inc. is one of the most advanced 

commercial CFD codes. The “CCM” stands for “computational continuum mechanics”. It 

is based on the finite volume method (FVM) and applied to simulate fluid flows in and 

around objects. There are many special functions in STAR-CCM+, which make it 

friendly to users. One of the most significant advances is the client-server architecture, 

which reduces the need for expensive computers by allowing users to prepare a CFD 

model and do postprocessor on a normal computer while doing expensive math on a 
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remote super computer. Another outstanding function of STAR-CCM+ is the world’s 

first commercially available polyhedral meshing algorithm, which has a stronger capacity 

to obtain accurate results for fluid-flow problems than other kinds of meshes with a 

similar number of cells, even though it increases the cost of time to mesh geometry 

(Brezzi et al., 2007). Another advanced function of STAR-CCM+ is the built-in surface 

repair tools, which can cut down the time of geometry preparation. For example, “surface 

wrapper” can automatically repair surfaces of CAD geometries by filling any holes, 

overlaps and cracks. Currently, STAR-CCM+ has already been widely used for a range 

of industrial and research applications including heat transfer, multiphase flows, reacting 

flows, discrete element modeling, aero-acoustics, optimization and fluid-structure 

interaction. In this research, STAR-CCM+ 8.04 and 9.06 was applied to simulate water 

flows around complex-shaped piers under different flow conditions to study the decay 

function of wall shear stress. 

 

1.4 Research Background 

 An emergency study of the pier scour problem of the Feather River Bridge 

conducted by Kevin Flora inspired this research. This bridge was also used as an example 

to verify the results of this research and to develop the approach to apply the results.  

 The Feather River Bridge (Br. No. 18-0009) is on Route 20 in Sutter County, 

California. Pier 22 of this bridge in the main channel, as shown in Figure 1.4, has 

experienced scour and has been considered to be scour critical since 2001. This pier was 

also believed to be more vulnerable than other piers (like Piers 21 and 23) along the main 

channel banks, as shown in Figure 1.4. Moderately high releases from upstream Oroville 
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Reservoir in 2011 produced water flows that flowed out of the banks of the channel, 

especially the east bank. The peak discharge of this flow was estimated to be 44500 cfs 

and the maximum water surface elevation (WSE) was about 56.4ft. The bathymetry from 

about 1500ft upstream of the bridge to about 2700 feet downstream of the bridge was 

surveyed to reveal a substantial scour hole around Pier 22. 

 

 

Figure 1.4 Cross-sections of Feather River surveyed in 2007 and March 2011 

 

 A 2-D hydraulic model for this pier has already been done for an emergency scour 

study conducted by Flora. The water flow was modeled by using March 2011 flow rate 

and the downstream WSE. Additionally, an estimated Q100 flow rate and downstream 

WSE were modeled with the 2007 topography. Table 1.1 shows these two kinds of flow 
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conditions. MF stands for “March Flow” and is assumed as the normal flow condition. 

Q100 is the flow condition of the flood event. 

 

Table 1.1 Flow conditions 

Event Name Flow Rate (𝑓𝑡!/𝑠) Flow Depth (𝑓𝑡) 

March 2001 MF 44,500 31.4 

Q100 Q100 160,800 51 

 

 As shown in Figure 1.5, the left one is the original Pier 22. This pier includes four 

parts. Form top to bottom, they are a small elliptic cylinder, a large elliptic cylinder, a 

rectangular foundation and 90 square H-piles. To restore the capacity of the stability to 

Pier 22, a pier retrofit scheme (the right one in Figure 1.5) was taken. This design was to 

surround the existing pile cap with 10 4-foot diameter CISS piles. They were tied into the 

existing pile cap with a new pile cap, which covers the previous one.  The serious scour 

problem forced prompted the retrofitted design was taken and finished in December, 

2011 
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Figure 1.5 Geometries of the original Pier and the retrofitted pier 

 

 A series of physical experiments using 1:60 scaled pier models of the original Pier 

22 and the new retrofitted design were conducted to surveyed scoured bathymetries 

around these piers under scaled flow conditions in the hydraulic laboratory of the Federal 

Highway Administration (FHWA), Mclean, Virginia.  CFD methods were applied to 

simulate these physical experiments to develop a hybrid approach to study the relation 

between hydraulic loading and scour. The bathymetric data surveyed in 2007 (before the 

flood event) and in 2011 (after the event) was used to construct full-scale CFD models. A 

decay function was applied to study the pier scour problems of the Feather River Bridge. 

 

Original Pier Retrofit Pier 

Original pilecap with 90 square H-
piles was retrofitted with10 4-foot 
diameter X 180-foot long CISS 
Piles tied into a new enlarged 
Pilecap 
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 1.5 Objectives of Research 

 The current physical experimental method confronts problems to directly measure 

any of the three indicators of water erosion capacity, especially wall shear stress on a 

dynamic bed. In other words, it is almost impossible to precisely survey wall shear stress 

in time or space due to the dynamic nature of the channel response to the scour and 

transport of the material. At the same time, since the mechanism and the theoretical 

solutions of scour are not yet fully developed, the CFD method has a weak capacity to 

simulate the real process of scour. Currently, a model to simulate scour process was 

conducted by using CFD methods to calculate wall shear stress and developing the 

dynamic bed with the empirical correlation of critical shear stress to iteratively deform 

the bathymetry under supercritical shear stress conditions (Tulimilli et al., 2011). But this 

approach does not yet represent the real scour process and the simulated flow is one-

phase flow. 

 In this research, the physical experimental method and CFD method were 

combined to develop a hybrid method to study scour and to reveal the relation between 

wall shear stress and scour. The objectives of this research include the following major 

parts. 

(1) The whole scour process is separated into five parts in the physical 

experiments and the scoured bathymetries around piers are surveyed to create 

the original CAD models for CFD simulations. 

(2) CFD models are developed to simulate three-dimensional (3-D) two-phase 

(air and water) laboratory models and to calculate wall shear stress 
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distributions and values around complex-shape piers under different kinds of 

flow conditions; 

(3) A decay function or an envelope function of wall shear stress around 

complex-shape piers is developed by combining CFD wall shear stress data 

and previous physical experimental data (Annandale 2006); 

(4) CFD simulation results of water flows around a rectangle pier with 30°  attack 

angle are used to verify the decay function; 

(5) CFD models are developed to simulate water flows in full-scale Feather River 

Bridge models to obtain wall shear stress distributions around Pier 22, verify 

the decay function and find out the applications of this function in the real 

world. 

 

1.6 Dissertation Outline 

 The dissertation consists of seven chapters. The background of this research is 

described in Chapter 1, in which the significance of studying bridge scour and 

development of the CFD method are also introduced. Chapter 2 is the literature review 

about the related knowledge about pier scour, decay function of hydraulic loading and 

CFD modeling for open-channel flows. Chapter 3 briefly introduces the physical 

experiment section of the hybrid approach. Chapter 4 discusses the CFD section of the 

hybrid approach, which includes the development, validation and calibration of CFD 

models of all cases in the physical experiment section. The simulation results of wall 

shear stress are also represented in this chapter. The development, calibration and 

validation of the decay function of wall shear stress are discussed in chapter 5. CFD 
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modeling for the full-scale Feather River Bridge is discussed in detail in Chapter 6, which 

also preliminarily discusses the application of the developed decay function. The 

conclusions of this research and suggested future works are given in Chapter 7.  

  



	
   15	
  

CHAPTER 2 Literature Review 

2.1 Overview 

 In order to develop a decay function of wall shear stress with the hybrid approach 

of a physical experimental method and a CFD method, the literature review about the 

decay function of hydraulic loading, the physical experimental method and CFD method 

for open-channel flows is beneficial. In this chapter, current work about the decay 

function of hydraulic loading is summed up and the CFD method for open-channel flow 

is reviewed. This chapter also does a brief overview about the physical experimental 

method to study local pier scour. 

 

2.2 Pier Scour  

 The process of scour around a bridge pier is time dependent. The maximum scour 

depth will be attained when the erosion capacity of the water flow and the resistance 

capacity of the earthen material to erosion are in equilibrium (Melville B W and Chiew, 

1999). In the past several decades, research of pier scour mechanism was mainly about 

water flows around regular-shape piers by using physical experimental methods or data 

collected in the field. The physical experiment study of pier scour conducted by Chabert 

(1956) was considered to be the oldest and most complete research on this field (Oliveto 

and Hager, 2002). A series of physical experiments modeling water flows around a 

circular cylinder with a sandy bathymetry were conducted to study the scour mechanism 

(Melville, 1999). In order to have a better understanding of pier scour process, physical 

experiments were designed to study the local scour around a cylindrical pier with beds 

composed of uniform and layers of uniform sediments (Ettema, 1980). With these 
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outstanding studies, many equations were developed to estimate the maximum scour 

depth (Breusers et al., 1977; Richardson and Davis, 2001; Melville and Sutherland, 1988). 

Moreover, the significant influence of the foundation of a pier on the scour began to be 

noticed by some researchers, like Shen et al. (1966). The methods to estimate the scour 

depth for piers with foundations were developed (Jones et al., 1992 and Parola et al., 

1996). The physical experimental method to study scour around a pier with a live-bed 

were developed as a powerful approach to study pier scour mechanism (Melville, 1984). 

However, current studies mainly relay on physical experimental methods and data 

collected in the field and their focuses are to understand the scour mechanism and 

estimate the maximum scour depth. Hence, there is a lack of study of the relation 

between hydraulic loading and scour.  

 

2.3 Critical Shear Stress 

 The capacity of earthen material to resist water flow erosion is one of the three 

kinds of basic information to study scour. Since critical shear stress is used by many 

numerous erosion models as an important soil parameter governing detachment by runoff 

(Léonard et al., 2004), it was used as the indicator of the capacity of earthen material to 

resist water flow erosion. 

 There are two major types of earthen material, physical gels and chemical gels. 

Thus, the quantification of the resistive capacity of the earthen material has a complex 

relation with many physical and chemical properties itself. There are many studies to 

estimate or measure the critical shear stress. For example, Gilley et al. (1993) developed 

a method to identify critical shear stress and critical flow rate required to initiate rilling 
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on selected sites. Physical experiments were conducted to measure critical shear stress for 

entraining fine sediments in a boundary layer (Vanoni, 1964). A simple function to 

calculate critical shear stress for cohesive bottom sediments was developed with a series 

of physical experiments (Otsubo and Muraoka, 1988). An approach to calculate critical 

shear stress for sand and mud mixtures was developed by Ahmad et al. (2011). 

 In this research, the earthen material of the riverbed is clean, coarse-grained sand. 

This material is a typical kind of non-cohesive physical gel. There are several reasonable 

approaches to estimate the value of the critical shear stress. The first time in history to 

study the critical shear stress of this kind of earthen material is the work by Shields in 

1936. After that, his work was developed by other researchers, such as Papanicolaou et al. 

(2002), Dancey et al. (2002) and Dey (2003). An approach to calculate the critical shear 

stress, 𝜏!, of non-cohesive sediment on a flat bed was given by Guo (2002), as shown in 

Eq.2.1 and Eq.2.2 

 

!!
!!!! !!!"

= !.!"
!∗
+ 0.054[1− 𝑒𝑥𝑝  (− !∗!.!"

!"
)]   (2.1) 

 

𝑑∗ = [ !!/!!! !
!!

]!/!𝑑!"     (2.2) 

 

where 𝑑!"  is mean diameter of sediment, 𝜌! is density of sediment, 𝜌 is density of water, 

g is gravity acceleration, 𝑑∗ is the dimensionless diameter and 𝜐 is kinetic viscosity of 

water. The critical shear stress of non-cohesive particles on a slope also has relation with 

the slope and flow direction. 
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2.4 Boundary Flow 

 The interaction between water flow and earthen materials occurs in the boundary 

region. And it determines whether particles move or remain in place. So the water flow in 

the boundary region plays a significant role, which heavily affects the magnitude of wall 

shear stress. For a smooth riverbed, the viscous sub-layer facilitates the interaction 

between water flow and the fixed boundary. For a rough bed, because of the phenomenon 

known as bursting (Einstein and Li, 1956; Kim et al., 1971; Offen and Kline, 1974 and 

Offen and Kline, 1975), the viscous sub-layer is less stable in a rough turbulence flow 

and the value of wall shear stress is obvious larger than the value calculated with 

Newton’s law of viscosity, 𝜏 = 𝜇 !"
!"

. Moreover, the water flow around piers is often 

complex, which increases turbulence intensity and the erosion capacity of the water. And 

this results in the scour around the pier, which may causes bridge failures.  

 

 

Figure 2.1 Flow at the boundary 
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 Figure 2.1 shows the water flow process in the boundary region for a turbulence 

flow (Annandale, 2006). It separates the boundary flow in a turbulence flow into eight 

parts: (1) one assumes there is a stable viscous sub-layer at first; (2) a perturbation is 

imported into the laminar sub-lawyer because of the rough bed and the viscous sub-layer 

becomes instable; (3) the hairpin vortices are developed and their most downstream ends 

lifted upwards;(4) the high-velocity sweeps of water flow into the space below the 

hairpin vortices; (5) this water flow interacts with the bed and leads to a high-pressure 

zone; (6) at the same time, the developed hairpin vortex moves downstream and the 

central part breaks loose and creates an eddy, whose flow direction cannot be predicted; 

(7) the eddies which flow toward the bed collide with it and lead to a low-pressure zone 

(Hofland et al., 2005);(8) the two remaining legs of the hairpin vortex temporarily attach 

to the low-pressure zone of the bed created by the vortex itself. The small vertices are 

low-velocity streaks. The negative pressure within these vortices can suck sediment 

upward and make it easy for the sediment to be removed by the water flow.  

   

2.5 Decay Function of Hydraulic Loading 

 A study conducted by FHWA expressed the decay trend of the erosion capacity of 

the water flow with the increase of scour depth (Smith and Annandale, 1997). The results 

of the FHWA research (Annandale and Smith, 2001) identifies that the magnitude of the 

erosion capacity of water can be estimated as a function of scour depth.  

 



	
   20	
  

 

Figure 2.2 2-D stream powers at the base of a scour hole versus dimensionless scour 

depth from FHWA 

 

 As shown in Figure 2.2, P is the local stream power on the bed, which is equal 

to  𝑈𝜏!.   𝑈 is the average velocity in the channel and 𝜏! is the wall shear stress. 𝑦!  is 

variable scour depth. 𝑃! is the approach stream power, which can be estimated with 

Eq.2.3 and Eq.2.4. 

 

𝑃! = 7.853𝜌(!!
!
)!.!      (2.3) 

 

𝜏! = 𝜌𝑔𝑅!𝑠       (2.4) 

 

where 𝑅! is the hydraulic radius( in a wide channel, 𝑅! is the flow depth ) and s is the 

energy slope. The maximum possible scour depth,𝑦!"# , around a pier under the given 
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initial flow condition can be estimated with the bridge scour depth equation, Eq.2.5 

(Arneson et al., 2012).  

 

!!"#
!

= 2𝐾!𝐾!𝐾!(
!
!
)!.!"𝐹𝑟!.!"    (2.5) 

 

where 𝑦!"# is the maximum scour depth, y is the approach flow depth, a is the width of 

the bridge and Fr is the Froude number. 𝐾! is a correction factor associated with the pier 

nose shape. 𝐾! is a correction factor associated with water flow with the flow attack 

angle 𝜃 .𝐾! is a correction factor associated with the bed condition. This means the 

maximum scour depth for a live bed with given clean-water flow conditions is a constant. 

Moreover, the average flow velocity,    𝑈, is a constant for a uniform flow, while the 

energy slope s, density of water 𝜌 and the hydraulic radius 𝑅! (or water depth y) are also 

constant. Therefore, the decay function of stream power with relative scour depth can 

also be treat as the decay function of wall shear stress with relative scour depth. Since the 

indicator of non-cohesive particles to resist the erosion capacity is critical shear stress, the 

wall shear stress is a better indicator of the water erosion capacity, which can be directly 

obtained by using CFD method. Another important conclusion based on Figure 2.2 is that 

when the value of the local stream power decays to the approach stream power, scour 

stops and maximum scour depth is attained. 

 

2.6 CFD Modeling for Open Channel Flow 

 The open-channel flows, which are turbulent, have two prominent characteristics: 

they are always turbulent and the motion of the free surface is one of the most complex 
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natural processes. In order to develop an accurate CFD model for open-channel flow, it 

should include appropriate mathematical models to simulate the free surface and the 

turbulent flow. The Volume of Fluid method (VOF) is a free surface technique of the 

CFD method, which can model two or more immiscible fluids by solving a single set of 

momentum equations and tracking the volume fraction of each kind of these fluids 

(ANSYS-Fluent user guide). Noh and Woodward (1976) first gave out the initial VOF 

method based on the earlier Mark-And-Cell (MAC) and it was developed further by Chen 

et al. (1997). Currently, the most widely used VOF method was developed by introducing 

a Piecewise-Linear Interface Calculation (PLIC). The VOF method developed by Hirt 

and Nichols (1981) is utilized in STAR-CCM+ to capture the motion of the free surface. 

The details of the VOF in STAR-CCM+ were discussed by Samir and Milovan (2013) in 

Star Japanese Conference. Figure 2.3 is an example of the application of VOF method, 

which simulates the process of a droplet falling on a water free surface. The black area is 

water and the white area is air (http://en.wikipedia.org/wiki/Volume_of_fluid_method). 
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Figure 2.2 An illustration of CFD simulation by using VOF  

 

 Even though the physical experimental research about turbulence in air flows 

began in the 1950s by using hot-wire anemometry, the difficulties in applying 

anemometry to typical water flows led to the start of basic research on open channel 

turbulence in the 1970s (Nezu, 2005). The current experimental techniques to study open 

channel flow are expensive, tedious and sometimes unfeasible. Even though there have 

been many new methods in this area, CFD is still an inexpensive alternative, that reduces 

the time and cost to study open-channel. There are two main sources of difficulties of 

numerical open channel flow: (1) the proper recognition of the complex physical flow 

processes; (2) and the mathematic descriptions of this process and the solution of the 

derived equations (Szymkiewicz, 2010).  
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 One of the core parts of a CFD modeling for open-channel flow is to resolve or 

simulate turbulence. Turbulence is often considered to be formed with a wide range of 

eddies with different length scales (Pope, 1962). The energy of turbulence translates from 

large-scale eddies to smaller ones, which is well known as the Richardson energy cascade. 

According to Kolmogorov’s hypothesis (1941), most of the energy is stored in the large 

eddies, which is transferred to smaller eddies by the nonlinear mechanism of vortex 

stretching. Finally, the energy is dissipated by viscous forces in the smallest eddies, 

whose length can be estimated with Eq. 2.6 (Landahl and Mollo-Christensen, 1992) 

 

𝜂 = (!
!

!
)!/!      (2.6)  

 

where 𝜖 is the average rate of dissipation, and 𝜐 is the kinetic viscosity of the fluid.  

The direct numerical simulation (DNS) is a kind of CFD method, in which the 

Navier-Stokes equations are numerically solved by resolving all of the spatial scales of 

the turbulence, from the Kolmogorov scale to the integral scale (Orszag, 1970). This also 

requires the size of mesh cell to be very small so that the number of mesh cells is very 

large. Therefore, DNS models have very high requirements for storage space and 

computational time cost, even though the Reynolds number of the simulated fluid flow is 

very small. To reduce the storage requirement and computational time cost, the large 

eddy simulation method (LES) was developed. In 1963, this mathematical model for 

turbulence was initially used to simulate atmospheric air currents (Smagorinsky, 1963). 

LES imports a filter size ∆ to separate eddies in two groups: large eddies and smaller 

eddies. LES directly resolves large eddy, whose scales are between the domain size L and 
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∆. LES models smaller eddies, whose scales are smaller than ∆. Figure 2.4 shows the 

differences between DNS and LES (Rodi et al., 2013), E(k) is the energy spectrum and k 

is the wavenumber. The main obvious difference between LES and DNS is caused by the 

different approaches to handle smaller eddies, which are considered to be homogeneous 

in LES. The advantage of LES is that it has the capacity to capture complex flows with a 

relative small computational time cost and storage space than DNS.  

 

 

Figure 2.3 Differences between DNS and LES 

 

 Many engineering studies require, however, little knowledge of the instantaneous 

turbulent flow features. These features means of semi-empirical formulations, rather 

requiring a detailed characterization of the time averaged spatial flow structure equations, 
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such as Reynolds-averaged Navier-Stokes (RANS) equations (Ferreira et al., 2011) can 

be used to do this. The RANS equations are time-average equation of motion for fluid 

flows. Reynolds decomposition is the foundation of this numerical method, which 

separates the time-average and fluctuating parts of a physical quantity (Müller, 2006). 

RANS equations are often used to describe turbulence flows by offering approximate 

time-average solutions to Navier-Stokes equations. The unsteady RANS (uRANS) model 

is a kind of CFD method, which is an alternative approach to LES for industrial flows 

(Davidson, 2006). The uRANS equations are the usual RANS equations, but with the 

transient (unsteady) term retained. Despite the time dependence, and large vertical 

structures, uRANS is not a simulation of the turbulence, only of its statistics (Iaccarino, 

2003).  In the RANS model, the resulting equations for the mean quantities are essentially 

identical to the original equations, except that an additional term now appears in the 

momentum transport equation. This additional term is a tensor quantity, which is known 

as the Reynolds stress tensor (Eq.2.7). 

 

    (2.7) 

 

 The detached eddy simulation method (DES) is a hybrid model to simulate 

turbulence by combining RANS and LES, which was first developed by Spalart et al. 

(1997). In near-wall regions and where the turbulence length is less than the grid 

dimension (size of mesh cell), RANS is used to simulate the turbulence there. And in the 
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regions with fine enough mesh, LES is activated to resolve the flow field. The advantage 

of this method is that some eddies are still resolved even with a coarse mesh. In Figure 

2.5, the mesh of the left frame is coarse and the right frame is much finer.  Therefore, 

more details of the airflow are captured on the right side. Some eddies close to the wing 

are still captured on the left side and the simulation results of both side are general 

symmetry. 

 

 

Figure 2.4 Contour of the instantaneous vorticity magnitude (Squires, 2004) 

 

 Among DNS, LES, DES, and RANS/uRANS, the high requirements for computer 

capacity of DNS, LES and DES make them unsuitable to simulate industrial flows. The 

previous studies prove that the results of 3-D CFD models with uRANS models and 

appropriate free surface models to simulate open channel flow general agree with the 

measured data (Wu et al., 2000). In STAR-CCM+, the combination of a uRANS model 
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and the VOF model is widely utilized to simulate open-channel flows, like Xie (2011) 

and Zhai (2012).  
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CHAPTER 3 Description of Physical Experiments 

3.1 Overview 

 The main task of the physical experiments in this research is to obtain scoured 

bathymetries around different piers under different flow conditions. In this chapter, the 

experimental arrangements and devices are described. The method to scaled the flow 

conditions of March Flow (MF) and Q100 is introduced. The scoured bathymetries were 

surveyed with a laser point distance sensor. These surveyed data of bathymetries and 

models of piers are combined to create the original CAD models in SOLIDWORKS for 

CFD simulations. All physical experiments were conducted by Mr. Oscar Suaznabar in 

TFHRC Hydraulics Research Laboratory. 

 

3.2 Physical Models 

 A series of physical experiments were designed to represent the scour process 

around the scaled original pier of Feather River Bridge under flow conditions of the 

normal state (MF) and the flood event (Q100). The experiments with the scaled 

retrofitted pier were conducted to simulate the future scour process around it. Each of the 

whole scour process was separated into five parts to obtain bathymetries with different 

scour depths. The shape of the bathymetry with the maximum equilibrium scour hole 

around the scaled original pier under the scaled normal flow condition (MF) of the 

physical experiment should be similar to the one observed in the field, which is also the 

standard to verify and calibrate the design of the physical experiment. 
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3.2.1 Physical Experiment Devices 

 These physical experiments were conducted in the tilting flume in the FHWA J. 

Sterling Jones Hydraulics Research Laboratory. As shown in Figure 3.1, the title flume is 

1.82-m-wide by 21.3-m-long (6-ft-wide by 70-ft-long) with a sediment recess in the 

middle for local scour modeling. It has a total pumping capacity of 22,712L/min with 

variable-frequency drives capable of simulating in-flow hydrographs. The automated 

flume carriage is an automated three-axis positioning system, which is instrumented to 

position probes at any location with suitable sensors to measure physical quantities of 

interest.  

 

Figure 3.1 Tilting flume in FHWA hydraulic laboratory 

(http://www.fhwa.dot.gov/publications/research/infrastructure/hydraulics/12022/004.cfm). 
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 In this research, a point laser distance sensor was instrumented on the automated 

flume carriage to survey the distance between the bed and the sensor, as shown in Figure 

3.2. These data are automatically converted into the elevation of each point on the bed. 

The original bed elevation was set prior to the test run and maintained the same for all 

cases of the same pier model under the same flow condition. Therefore, the difference 

between the surveyed elevation and the original one is the final bathymetric change, 

which was converted into the bathymetry CAD model in SOLIDWORKS. In order to 

eliminate the negative influence of water on the laser distance sensor, these elevation data 

was surveyed after the water was drained. 

 

 

Figure 3.2 Point laser distance sensor 
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 The piers in these experiments are 1:60 scaled pier models of the original Feather 

River Bridge pier and the retrofitted one, which were created with a 3-D printing 

technique. To simplify this research, the bed was formed with coarse non-cohesive clean 

sand (d50=1mm). And the original shape of the bed of all cases was flat. 

 

3.2.2 Scaled Flow Conditions 

 In these physical experiments, Frounde similarity was applied to calculate the 

flow conditions. The Froude number (Fr) was maintained the same for these two kinds of 

flow conditions, 𝐹𝑟! = 𝐹𝑟!, where suffix M is for model and suffix P means prototype. 

The flow rate (average velocity) and the flow depth are two main flow conditions in this 

research. The physical experimental flow conditions were calculated as Eq.3.1 and Eq.3.2 

(a)(b). 

 

𝐹𝑙𝑜𝑤  D𝑒𝑝𝑡ℎ:  𝐷! = 𝜆𝐷!       (3.1) 

 

𝐹𝑙𝑜𝑤  𝑟𝑎𝑡𝑒:  𝑄! = 𝑄!𝜆!/!       (3.2a) 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒  𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦:  𝑉! = 𝑉!𝜆!/!    (3.2b) 

 

where λ is the length scale factor. Since the geometry scale factor of the piers was 1:60, λ 

was set as  𝜆 = !!
!!
= !

!"
. 𝐷! is the prototypic flow depth, whose reference is the top of the 

pile cape of the original pier.  It is necessary to point out that the flow depth here is not 

the depth from the water surface to the deepest point of the bathymetry. From Table 1.1, 
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the depth of March 2011 is 31.4  𝑓𝑡  (9.6𝑚), so the depth of March 2011 in the experiment 

is !.!!
!"

= 0.16𝑚. The depth of Q100 is 51  𝑓𝑡  (15.5𝑚), so the depth of March 2011 in the 

experiment is !".!!
!"

= 0.26𝑚. The inlet average velocities of MF and Q100 in these 

experiments are different from the calculated ones. The reasons are that the earthen 

material of the physical experiments is different from the Feather River and the width of 

the tilting flume is fixed as 1.82m. Thus the average inlet velocities of these two kinds of 

flow conditions need some necessary adjustments to ensure these physical experiments 

work well. The final data of the flow depth and average flow velocity of scaled flow 

conditions are shown in Table 3.1. 

 

Table 3.1 Flow conditions 

Flow Condition Name Depth (m) Average Velocity (m/s) 

MF 0.16 0.34 

Q100 0.26 0.41 

 

3.2.3 Additional Information 

 The scour process around a given pier under certain flow conditions was 

separated into five parts by observing: flat bed, 25% scour, 50% scour, 75% scour and 

maximum equilibrium scour. Since the bathymetries of cases with a flat bed are known, 

there are 16 cases need to do physical experiments to surveyed the scoured bathymetries  

(2 flow conditions X 2 kinds of piers X 4 kinds of bathymetries). In this research, there 

are four groups and totally 20 cases, as shown in Table 3.2. The relative scour depth of 
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each case was defined as 𝑌∗ =
!!

!!"#
, where 𝑌! is the scour depth of each case and 𝑌!"# is 

the maximum scour depth under a certain flow condition around a given pier. 
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Table 3.2 Physical experiment cases 

Group Case Name Pier Flow Condition Relative scour depth 

MF_O 

MF_O_0 

The original pier MF 

0% 

MF_O_25 29.04% 

MF_O_50 45.19% 

MF_O_75 60.49% 

MF_O_100 100% 

MF_R 

MF_R_0 

The retrofitted pier MF 

0% 

MF_R_25 44% 

MF_R_50 57.58% 

MF_R_75 76.38% 

MF_R_100 100% 

Q100_O 

Q100_O_0 

The original pier Q100 

0% 

Q100_O_25 32.97% 

Q100_O_50 50.14% 

Q100_O_75 60.08% 

Q100_O_100 100% 

 

Q100_R 

Q100_R_0 

The retrofitted pier Q100 

0% 

Q100_R_25 42% 

Q100_R_50 65.24% 

Q100_R_75 74.49% 

Q100_R_100 100% 
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3.3 Physical Experimental Results 

 Figure 3.3 is a comparison of the shape of the scour hole between the Feather 

River and the physical experiment. The two upper graphs are Feather River bathymetry 

surveyed by sonar and the bottom two graphs are the experimental ones. The shape of the 

scour hole of the maximum equilibrium scour, which was obtained in the flume, is close 

to the one observed in the Feather River.  In both of them, the depth of the scour hole is 

larger in the area around the leading edge of the pier and relative small in the area around 

the tailing edge. This is the evidence that the physical experiment design does a good job 

of representing the scour process around the original pier of the prototype Feather River 

Bridge. Thus, to a certain degree the scour, process around the retrofitted pier in the 

experiments is reliable to study the future scour around it. 

 

 

Figure 3.3 Comparison between Feather River and experimental scour hole shapes 
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 SOLIDWORKS was applied to create original CAD models by importing the 

surveyed bathymetry elevation data and pier models. Figure 3.4 shows the original CAD 

models of Group MF_O. The other surveyed scoured bathymetries around piers are in 

Appendix A. The original CAD model is not a closed volume, but the CFD method 

requires that the geometry of the model has closure. Therefore, five extra surfaces (four 

walls around the surveyed bathymetry and the top) were added to each original CAD 

model to create a closed volume. 
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Figure 3.4 Original CAD models of MF_O 
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Figure 3.4 (continue) Original CAD models of MF_O 

	
  

3.4 Summary 

 The physical experiments conducted by Mr. Oscar Suaznabar accurately represent 

the scour process around Pier 22 of the Feather River Bridge and represent a credible 

scour process around the retrofitted design. The scoured bathymetry of each case was 

surveyed and used to create an original CAD model for CFD simulations. In Chapter 4, 

the approach of using these original CAD models to develop CFD models is detailed.  

The validation and calibration of these CFD models are also discussed in the next chapter. 
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CHAPTER 4 Development of the CFD models 

4.1 Overview 

 The greatest advantage of the CFD method is that it provides information of 

indicators of water erosion capacity. With the original CAD models, which are based on 

the data of the surveyed bathymetries, a series of three-dimensional (3-D) CFD models 

was developed to simulate water flows of cases in the physical experiment and directly 

quantify the water erosion capacity in STAR-CCM+, especially wall shear stress 

distributions. Figure 4.1 is a general procedure of the development of a CFD model in 

STAR-CCM+. In this chapter, these steps are discussed in detail. Moreover, the 

validation and calibration of CFD models are also included in this chapter. Before 

discussing the development of CFD models, there are two nouns must be defined. 

“Physical time” is the time that the CFD model simulates. “Computational time” is the 

time that the CFD model takes to finish the simulation. 
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Figure 4.1 Procedure of development of CFD model in STAR-CCM+ 

 

4.2 CFD Geometry   

 The geometry of STAR-CCM+ defines the flow domain of a CFD model. It must 

be a closure volume and as close to the simulated object as possible. In the physical 

experiments of this research, since the range of measurement of the automated three-axis 

positioning system does not cover the whole area of the sediment recess, researchers 

mainly surveyed the bathymetry around the pier. Therefore, the width and the length of 

the original CAD models are different from the size of the tilting flume. Additionally, 

extra inlet and outlet channels are necessary to eliminate the potential influence of the 

boundary conditions on the inlet and outlet surfaces. Also, the height of the final CFD 

geometry should be large enough to allow air and water to flow through the domain. Only 

after these necessary adjustments on the original CAD model, does it satisfy the 

requirements of STAR-CCM+ and is close to the physical experiments. These necessary 
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adjustments on the original CAD model inevitably cause some small perturbations, which 

cause the bathymetry of the final CFD geometry to be different from that of the physical 

experiment. Hence, additional CFD simulations were designed to analyze and eliminate 

the influence of these perturbations. 

 

4.2.1 Approaches to Modify Original CAD Models 

 In STAR-CCM+, there are two approaches to adjust the imported original CAD 

model to the target one. One approach is the built-in CAD function, which allows users to 

directly modify the CAD model. The other approach is “extruder”, which is a kind of 

mesh model and does not change the original CAD model.  

With the built-in CAD function, the face sketch of a selected surface can be 

created and extruded to a body. The size of the extruded body is thoroughly under the 

control of users to approach the target size. The advantage of this approach is that all the 

necessary adjustments work on the original CAD model. Therefore, the adjusted CAD 

model can be exported for other studies in other software. While, based on the capacity of 

the computer and the complexity of the shape of the surface sketch, this approach takes a 

relatively long time and requires a large amount of storage. At the same time, the final 

CFD geometry also increases the workload to mesh it. As shown in Figure 4.2, the upper 

model is the bathymetry of an original CAD model and the lower one is the bathymetry 

of the final CFD geometry of this CAD model.  It is obvious that the width of this initial 

CAD model was enlarged to match the size of the tilting flume.  
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Figure 4.2 Bathymetries of an original CAD model and its final CFD geometry 

 

 The “extruder” is a newly developed approach to adjust the imported original 

CAD model.  The introduction of extruder in STAR-CCM+ User Guide is quoted as 

following. “When one activates and enables the extruder meshing model for the selected 

specific boundaries, it performs an additional volume meshing step to enlarge the model 

when the core mesh and, optionally, prism layer mesh has been generated.” This 

approach requires users to set the supplied values for the number of layers, extrusion 

magnitude and stretching, and determine the direction of extending, either in the normal 

or a specified direction. Then, based on the given information, the volume mesh is 

extruded and extends the original domain to the target one. The main advantage of this 

approach is that it allows users to control the number of cells of mesh in the extended 

zones. Moreover, this approach requires the imported CAD model to be meshed first and 
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then extruded. Therefore, it does not require extra time to modify the imported CAD 

model. However, this approach does not work on the CAD model, so the final CFD 

geometry cannot be used by other software. As shown in Figure 4.3, the upper one is an 

original CAD model and the lower one is its extruded mesh result. The mesh result 

enlarges the imported original CAD model to the target size. Compared with the CFD 

geometry in Figure 4.2, this approach actually expends the mesh of the original CAD 

model instead of the CAD model itself.  

 

 

 

Figure 4.3 Bathymetries of an initial CAD model and its extruder mesh result 

 

 Since the flow domain of CFD simulation essentially determined by the mesh, 

these two kinds of approaches are equivalent. Both of them were applied in this research 

to optimize each case. Figure 4.4 is an example of the final CFD geometry with the name 

of each surface (top surface is hidden). It also clearly shows the extra perturbations on the 
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bathymetry, which were imported by modifying the original CAD model. The earthen 

material in the physical experiments is sand (𝐷!" = 1𝑚𝑚). So the roughness height of 

the bathymetry of CFD geometry was empirically set as 2 mm. The boundary type of 

each face specified in the CFD model is shown in Table 4.1.  

 

Table 4.1 Boundary conditions 

Boundary Name Type Note 

inlet Velocity Inlet - 

outlet Pressure Outlet - 

Top Symmetry Plane - 

sides Wall Non-slip; Smooth 

pier Wall Non-slip; Smooth 

bed Wall Non-slip; Rough; Roughness Height = 2mm; 

 

 

Figure 4.4 Final CFD geometry of Case Q100_O_50 
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4.2.2 Influence of Perturbations 

 The main source of these little perturbations is those necessary adjustments on the 

original CAD models, because the shape of the bathymetry of the extruded area is 

determined by the shape of the boundary of the bathymetry of the original CAD model. 

Since the shape of the bathymetry of the upstream may cause the water flow to be 

different from that in the physical experiment, it is possible that these perturbations have 

a serious negative influence, which may causes these CFD models to have a weak 

capacity to simulate the physical experiments. Thus additional CFD simulations were 

designed to analyze and eliminate the influence of these perturbations.  

To simplify the study about these perturbations, a comparison between CFD 

models with a flat bathymetry with and without these perturbations was conducted. As 

shown in Figure 4.5, bathymetry of the right panel has some perturbations and that of the 

left is a completely flat bed. Since these perturbations are not obvious in the geometric 

diagram, a mesh diagram is an alternative. For the complete flat bed, the size and shape 

of the mesh cell in the non-near-wall region (the region in the red rectangle) are uniform, 

while this uniformity does not exist in the mesh of the case with perturbations.  
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Figure 4.5 Meshes of the flat bed with and without perturbations 

 

 The roughness height of these two cases is 2 mm. The turbulence model used for 

these two CFD models is the unsteady RANS K-Epsilon model, and the physical time 

was set to 20s. The VOF model was selected to simulate the free surface. As shown in 

Figure 4.6, the velocity distribution of this plane and the values of the points on this plane 

are used to analyze the influence of these perturbations. This figure also represents the 

states of the free surfaces of these two cases. There is not an obvious difference between 

them. 
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Figure 4.6 Location of the plane and state of the free surface 

 



	
   49	
  

 

Figure 4.7 Velocity distributions on the plane 

 

Figure 4.7 is a comparison of the velocity distribution between the case with a 

completely flat bed and the case for a bed with small perturbations. The main differences 

of these two cases are in the near-wall region and in the region close to the free surface. 

The difference in the region near the free surface is mainly caused by the VOF model and 

size of the mesh cell. The average velocity of these points for the case with the flat bed 

(𝑈!) is 0.4082 m/s and the average velocity of the other case (𝑈!) is 0.4087 m/s. The 

percent error is about 0.119% (error= !!!!!
!!

∗ 100%). The average of the error of 

velocity of each point is 3.60% and the standard deviation is 0.0317. The velocity error is 

larger than 10% for approximately 2.78% of the points. Moreover, about 50% of such 
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points are in the region close to the free surface. Based on the statistical analysis of the 

velocity distributions of these two cases, the influence of the perturbations is limited and 

negligible. Therefore, the bathymetry of the final CFD geometry does a good job of 

representing the physical experiment, even though the necessary adjustments import 

unwanted perturbations. 

 

4.3 Mesh 

 There are two main challenges to mesh these CFD geometries. First, the irregular 

shapes of the scour hole and pier have a strong requirement for the shape and size of cells 

to maintain the shape with an appropriate number of mesh cells. Another problem is that 

there is a major difference among the sizes of different parts of the geometry. For 

example, the width of the tilting flume is 1.82 m and the thickness of the square H pile is 

only 0.2 mm. Therefore, denser meshes in regions around those small-size parts and near 

walls were necessary to maintain the shape of the CFD geometry and relatively coarse 

meshes in the regions far from the pier were necessary to restrict the number of mesh 

cells. Moreover, in order to avoid the negative influence of rapidly changing sizes of 

mesh cells, a smooth transform from large cells to small cells was strongly recommended.  

The procedure of meshing in STAR-CCM+ has two steps: (1) creating a surface 

mesh for the CAD model or optimizing imported surface mesh; (2) creating the volume 

mesh based on the surface mesh. STAR-CCM+ offers three kinds of surface mesh 

models, “Surface Wrapper”, “Surface Remesher” and “Automatic Surface Repair”. Based 

on the quality of the imported geometry, one or more of them are activated to mesh the 

surface of the geometry to provide a quality discretized mesh that is suitable for CFD. In 
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this research, the quality of the imported original CAD models created by 

SOLIDWORKS was good enough, so only “Surface Remesher” was activated to generate 

the surface mesh. To do volume mesh for these CFD models, “Thin Mesher” and “Prism 

Layer Mesher” were activated. The “Thin Mesher” generates a prismatic layered volume 

mesh for thin geometries, where good quality cells are required to capture the solid 

material thickness adequately. Even though this mesh model increases the computational 

time and requires storage space more than other mesh models, like “trimmer”, it has a 

better capacity to mesh the complex shape of the scour hole around the pier and obtains 

more accurate results than other mesh models with a similar number of mesh cells. The 

“Prism Layer Mesh” was selected as an optional model, because the function of this 

model can generate a denser (or coarser) mesh in near-wall regions and set a specific cell 

size to satisfy the requirements of wall function and roughness function. The volumetric 

control was activated to set a specific size of mesh cell to maintain the shape of the 

leading and trailing edges of the pier, the interjection of the upper half and lower half of 

the pier and the shape of the H piles. The volumetric control was also applied to ensure 

the transform of size of mesh cells smooth. As shown in Figure 4.8, Cylinder 1 and 

Cylinder 2 define the pier regions and Block 1 covers the H piles, in which a denser mesh 

is needed to maintain the shape of the geometry. Block 2 covers the imported original 

CAD model. The mesh in these areas is denser enough to maintain the shape of the scour 

hole and interjection of the upper half and lower half of the pier.  
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Figure 4.8 Volumetric controls of Case MF_O_50 

 

The base size of these CFD models is set as 2 cm. In Cylinder 1, Cylinder 2 and 

Block 1, the custom size is 10% of the base size and the custom size of Block 2 is 50% of 

the base size. The size of the refined cells are 5%~25% of the base size.  The number of 

mesh cells is about 12.3 million. Since the geometries of these CFD models are complex, 

it is possible that there are some potential problems in the mesh results, which may lead 

to the CFD simulation crash. Therefore, the procedure called “remove invalid cells” in 

STAR-CCM+ was taken to avoid these problems before running the simulation.  

Figure 4.9 is an example of mesh under the setup described above. This mesh has 

a good capacity to capture the shapes of the leading and tailing edges of the pier and the 

H piles. There are three kinds of sizes of mesh cells: the smallest mesh cells around the 

pier; the middle-size mesh cells mesh the original CAD model; and the largest mesh cells 
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in the regions distant from the pier. With this kind of mesh cell distribution, the transform 

of the sizes of the mesh cells is relative smooth.  Even though this kind of mesh satisfies 

the requirements of the geometry, the physical models also have additional requirements 

for the cell size. This will be discussed in the following sections.  

    

 

Figure 4.9 Mesh of Case MF_O_50 

 

4.4 Physical Models  

 The CFD models were developed to simulate the open-channel flows of the 

physical experiments. Using an appropriate turbulence model, free surface model and 

wall function is the most significant task to ensure the accuracy of these models. All 

active physical continua models are shown in Figure 4.10. These physical models can be 

separated into four groups: (1) free surface model; (2) turbulence models; (3) wall 

function and (4) others. The models of the first three groups are the main physical models 
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to simulate water flows. The models in the fourth group are required or strongly 

recommended by models in the first three groups. 

 

 

Figure 4.10 Physical continua models 

 

 “Volume of Fluid” (VOF) was activated to simulate the free surface. Since the 

focus of the CFD model is to obtain wall shear stress distributions and values around the 

pier and the water depth is large enough to eliminate the influence of the motion of the 

free surface on the bed, the most significant purpose of VOF is to guarantee the water 

flow in the geometry is open-channel flow. VOF in STAR-CCM+ (version 9.06 and 

before) is only available for unsteady simulations. This leads to a conflict between the 

physical experiment and the CFD model. In the physical experiment, the shape of the 

bathymetry actually is the state of the bathymetry at a certain moment. While, the 

unsteady CFD simulation is generally used to model a process of the fluid flow. Thus a 

long physical time is required for these CFD models to approach a quasi-steady state. 
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In this research, the realizable K-Epsilon model and RANS mode were activated 

to simulate turbulent flow. The Realizable K-Epsilon model is a successfully recent 

developed turbulence model (Shih, 1994), which is recommended for use with RANS to 

simulate unsteady turbulent flow (STAR-CCM+ user guide, 2012). This model was 

developed from the standard K-Epsilon model. The main advantage is that a critical 

coefficient of this model is expressed as a function of mean flow and turbulence 

properties, which was assumed as a constant in the standard K-Epsilon model. Therefore, 

this model satisfies certain mathematical constraints on the normal stresses consistent 

with the physics of real turbulence.  

“Two-layer All y+ Wall Treatment” was applied to simulate water flows in near-

wall regions. The wall functions are a set of semi-empirical functions used to satisfy the 

physics of water flows in near-wall regions. It has a close relation with the distribution of 

wall shear stress. In STAR-CCM+, there are three kinds of wall functions: (1) high y+ 

wall treatment for coarse mesh (2) low y+ wall treatment for fine mesh and (3) all y+ 

wall treatment. The third wall function is a hybrid treatment that attempts to emulate both 

the first and second functions. With this model, one does not have to go through the 

simulations and specify which walls need to use the low y+ wall treatment and which 

walls need to use the high y+ wall treatment. Moreover, the velocity vectors given by 

combining the two-layer model and any turbulence model are physically meaningful 

(Kim J Y et al., 2005). 

There are also some other physical models in Figure 4.10. Some of them are 

preconditions of the physical models in the first three groups or auto-selected by STAR-

CCM+ itself after activating other physical models. For example, “Multiphase Mixture” 
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is a precondition of VOF and “Multiphase Equation of State” was auto-selected with 

VOF.  Some of them were strongly recommended to ensure these CFD models work. For 

example, “Cell Quality Remediation” is a physical model to eliminate the cells whose 

volume is zero or even negative, which causes the simulation to crash or the discrete 

governing equations to not converge. 

 

4.5 Necessary Setup 

The flow condition of each CFD simulation came from the physical experiments. 

Before running the CFD simulations, there are still some necessary steps. One of the most 

important settings of the CFD model to simulate the open-channel flow is to define the 

initial regions of water and air. STAR-CCM+ allows users to define field functions, 

which are powerful for accessing field data and sharing a particular set of properties. The 

initial regions of air and water and the inlet velocity values of air and water need to be 

separately defined. Table 4.2 shows these user field functions and Figure 4.11 shows the 

initial solution of Case Q100_O_50. 

 

Table 4.2 User field defined for the initial flow condition 

Name Function Definition 

water Define water domain $$Position [1] <= water_depth? 1: 0 

air Define air domain 1-$water 

v Define velocity 
[$$Position[1]<water_depth?average_inlet_

velocity:0,0,0] 
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Figure 4.11 Initialize solution for the Case Q100_O_50 

 

 Another problem is that the wall shear stress result calculated with the built-in 

STAR-CCM+ wall shear stress field function always contains a non-zero component 
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normal to the wall. So the function is more appropriately called “Wall Stress”, which also 

widely exists in other commercial CFD codes. CD-adapco technical states that the 

quantity of wall shear stress is more appropriately to be calculated with Eq.4.1. 

 

𝜏! = 𝜏 !"
|!|

       (4.1) 

 

where dA is the area vector, |𝐴 | is the area of the mesh cell and 𝜏 is the stress tensor on 

the wall. In turbulent flows using wall functions, the tangential component of 𝜏  is 

subtracted off and replaced with the tangential component computed from wall functions 

(https://wiki.anl.gov/tracc/STAR-CCM%2B_Technical_Notes). Table 4.3 shows the 

calibration of wall shear stress by using user field functions, part (a) of which calculates 

the normal component of wall shear stress and part (b) calculates the tangential 

component of wall shear stress.  The tangential component was used as the CFD 

modeling result. 

 

Table 4.3 User fields defined for wall shear stress 

(a) Normal component of wall shear stress 

Property Value 

Type Vector 

Dimensions Stress 

Function Name sigmaW 

Definition dot($$WallShearStress,unit($$Area))*unit($$Area) 
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Table 4.3 (continue) User fields defined for wall shear stress 

(b) Tangential component of wall shear stress 

Property Value 

Type Vector 

Dimensions Stress 

Function Name tauWS 

Definition $$WallShearStress-$$tauWS 

 

4.6 Validation and Calibration of CFD Models 

 There are still three major questions that need to be answered. First, the size of 

mesh cell needs to be analyzed to optimize these CFD models. Second, since these CFD 

simulations are unsteady, an appropriate physical time is needed not only to make sure 

these cases become quasi-steady, but also to take a relatively short computational time. 

Finally, the activated mesh and physical models need to be verified and calibrated to 

ensure the CFD models accurately represent the physical experiments.  

 

4.6.1 Influence of Size of Mesh Cell 

 The realizable K-Epsilon model of RANS does not specify a required for mesh 

size. However, there are still some requirements that need to be satisfied. First, the shape 

of the CFD geometry must be maintained, which has already been discussed in detail in 

Section 4.3. Moreover, STAR-CCM+ requires the height of the first cell on the surface 

edge to be larger than the roughness height of this surface. Therefore, the size of these 

cells in the CFD models should be larger than 2 mm, because the roughness height of the 
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bathymetry is 2 mm. Additionally, “All y+ Wall Treatment” of STAR-CCM+ is 

recommended to be used in the range of y+ is between 20 and 200 by users, out of which 

the results may not be guaranteed to be accurate. The following equations were applied to 

estimate the height of the first cells next to the bathymetry. 

 

 𝑅𝑒 = !!!!!    
!

       (4.2a) 

 

𝐶! = [2𝑙𝑜𝑔!" 𝑅𝑒 − 0.65]!!.!;𝑤ℎ𝑒𝑟𝑒  𝑅𝑒 < 10!   (4.2b) 

 

𝜏! = 𝐶! ∗
!
!
𝜌𝑈!!       (4.2c) 

 

𝑢∗ = !!
!

       (4.2d) 

 

ℎ = !!!
!!∗

       (4.2e) 

 

where 𝜌 is the density of water, 𝑈!  is the average inlet velocity, 𝜇  is the dynamic 

viscosity, 𝑅! is the hydraulic radius, 𝑦! is the dimensionless wall distance of the first cell 

on the bathymetry and h is the height of this cell. Since the width of the flume (18.3 m) is 

much larger than the water depth (0.16m or 0.26m), the hydraulic radius here was 

replaced with water depth. Table 4.4 shows the estimation of wall distance for these two 

kinds of flow conditions. The roughness height is in the estimated range. The h value of 

the current mesh is 2.5 mm, which is acceptable. 
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Table 4.4 Estimation of wall distance 

Flow Condition 
Inlet Velocity 

(m/s) 

Water Depth 

(m) 
𝑦! Re 

H 

(mm) 

MF 0.34 0.16 20~200 61000 0.92~9.2 

Q100 0.41 0.26 20~200 120000 0.82~8.2 

 

 Other CFD simulations with two other kinds of meshes were conducted to analyze 

the influence of cell size. The current mesh is called a “fine mesh”. One kind of mesh 

was generated by doubling the base size of the “fine mesh”, called a “coarse mesh”. 

Another one was generated by halving the base size of the “fine mesh”, called a “very 

fine mesh.” Therefore, the h values of the coarse mesh and very fine mesh are about 5 

mm and 1.25 mm, both of which are in estimated the range. Table 4.5 gives the amount 

of cells of these three kinds of mesh. 

 

Table 4.5 Number of mesh cells 

- coarse mesh fine mesh very fine mesh 

Number 237259 1239933 2427206 

 

 Even though a small number of mesh cells reduces the computational time and 

required storage space, the coarse mesh has poor capacity to capture the shape of the 

CFD geometry. As shown in Figure 4.12 (A), the original shape of the leading edge of 

the pier is elliptical, while there is an obvious shape change after meshing. Figure 4.12 (B) 
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shows the shapes of the H piles after meshing become irregular and some unwanted sharp 

curves are imported. Moreover, as shown in Figure 4.12 (C), the transition from large 

cells to small cells is not as smooth as for the fine mesh. Therefore, this kind of mesh is 

not an ideal mesh for these CFD models and the simulation results based on this mesh are 

doubtful and unacceptable. 

 

 

Figure 4.12 Coarse mesh 

 

 Generally speaking, the smaller size of mesh cell is, the more accurate the CFD 

simulation is. The “fine mesh” and the “very fine mesh” are compared in Figure 4.13. 

Both of them have a good capacity to capture the complex shape of the CFD geometry. 

The number of mesh cells of the “very fine mesh” is almost two times of that of the “fine 
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mesh”. Thus, the “very fine mesh” has higher requirements for storage space and takes a 

longer computational time for the CFD model to approach a quasi-steady state. 

 

 

 

Figure 4.13 Fine mesh and very fine mesh 

 

 In Figure 4.14, the wall shear stress distributions of these two cases are very close 

to each other. So the influence of the size of these two kinds of mesh cells on the 
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accuracy of the CFD model is not very obvious. But the file size of the “very fine mesh” 

is about 1.9 GB, while that of the “fine mesh” is only about 1.4 GB. And with the same 

physical time, the computational time of the case with the “very fine mesh” is 48020 

seconds, which is more than twice that of the case with the “fine mesh” (22942 seconds). 

There are still some differences between the computed wall shear stress distributions in 

some areas. One of the main reasons is the influence of the height of the first cells next to 

the bathymetry. The minimum height of the cells next to the bathymetry must be larger 

than the roughness height. In this research, the roughness height is 2 mm. The height of 

the cells next to the bathymetry of the “very fine mesh” is only about 1.25 mm. Thus the 

“very fine mesh” has a relatively weak capacity to accurately calculate the wall shear 

stress distribution and values.  Therefore the “very fine mesh” is not an appropriate mesh 

for these CFD models, yet. 
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Figure 4.14 Wall shear stress distributions of these two cases 
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 Even though the “fine mesh” was taken for these CFD models, it is still possible 

to have another kind of mesh, which not only satisfies all requirements but also has a 

relative low requirement for computer capacity. Because the “fine mesh” has a good 

capacity to capture the CFD geometry and accurately calculate wall shear stress 

distributions with an acceptable computational time, to find out the most appropriate 

mesh does not make too much sense. Figure 4.15 is another example of the fine mesh. 

 

 

Figure 4.15 Mesh of the case MF_O_75 
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4.6.2 Quasi-Steady State 

 As discussed above, there is an inconsistancy in these CFD models: the VOF 

model requires the CFD simulation to be unsteady, and the surveyed bathymetry is the 

state at a certain moment, for which a steady CFD model is more suitable. Therefore, a 

long physical time is necessary for these CFD models to approach quasi-steady state. The 

preliminary simulation results show that the shear stress distribution regularly vibrates 

with time under the quasi-steady state. This vibration can be explained with the well-

known Karman vortex stress theory. For cases with a flat bed, this phenomenon is more 

obvious, as shown in Figure 4.16.  Even though there are some differences among the 

wall shear stress distributions at different moments, the shear stress distribution around 

the pier are very similar to each other. So 20 seconds is a long enough physical time for 

cases with a flat bed to become quasi-steady. 

 

 

Figure 4.16 Wall shear stress distribution of Case Q100_R_0 
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Figure 4.16 (continue) Wall shear stress distributions of Case Q100_R_0  

 

 For cases with a surveyed bathymetry, the scour hole around the pier inhibits this 

phenomenon, as shown in Figure 4.17. After 20 seconds of physical time, the wall shear 

distribution around the pier does not have an obvious difference at different moments. 
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Figure 4.17 Wall shear stress distributions of Case Q100_R_50 
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Figure 4.17 (continue) Wall shear stress distributions of Case Q100_R_50 

 

Based on Figure 4.16 and Figure 4.17, after 20 seconds physical time, these 

unsteady cases become quasi-steady and the wall shear stress distribution around pier is 

relative steady and reflects the state of the case in the physical experiment.  In order to 

further prove 20 of seconds physical time is long enough for CFD models to become 

quasi-steady, the wall shear stress values around the pier of five cases of Group MF_O 

were exported every 0.1 second from 20s (physical time) to 25s (physical time). The 

time-averaged wall shear stress and the root mean squares (RMS) were calculated to 

analyze whether these CFD simulations have already been quasi-steady after 20s 

(physical time). Table 4.4 shows that the maximum RMS of each of these five cases is 
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very close to zero. Therefore, these simulations have already been quasi-steady, and the 

wall shear stress distributions and values were taken as the final simulation results.  

 

Table 4.6 Maximum RMS of wall shear stress of MF_O 

Case Max RMS of Wall Shear Stress 

MF_O_0 5.70023∗ 10!! 

MF_O_25 3.86178∗ 10!! 

MF_O_50 3.86∗ 10!! 

MF_O_75 8.6474∗ 10!! 

MF_O_100 1.38748∗ 10!! 

 

4.6.3 Validation and Calibration of CFD Models  

 The combination of unsteady RANS model and VOF model is widely used by 

hydraulic researchers to simulate open-channel flow. There are many examples listed in 

Chapter 2.  To verify and calibrate the physical models of these CFD simulations, they 

were applied to simulate the open-channel flow around a rectangle pier with 30° attack 

angle. And the simulation results were used to compare with the previous CFD models, 

which were developed by using DES models in Argonne National Laboratory. The 

bathymetries of these cases were surveyed from previous physical experiments. The 

properties of DES code determine that it has a better capacity to capture eddies and 

simulate the turbulent flow than unsteady RANS model. The geometries of these 

simulations are shown in Figure 4.18.  
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Figure 4.18 Bathymetries around the rectangle pier 
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Figure 4.18 (continue) Bathymetries around the rectangle pier 

 

Since the shape of this pier is regular and the shapes of the sour holes are not as 

complex as those around the Feather River Bridge pier model, “Trimmer” was activated 

as the volume mesh model to simplify the simulation and restrict the time cost. After 20 

seconds of physical time, the CFD simulations become quasi-steady. The wall shear 
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stress distributions around the pier of these cases are shown in Figure 4.19. The wall 

shear stress distributions of CFD simulations with DES are in Figure 4.20. 

 

 

 

Figure 4.19 Wall shear stress distributions (RANS) 
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Figure 4.20 Wall shear stress distributions (DES) 

 

 Compared with the results simulated by using RANS model and DES model, the 

wall shear stress distributions around the pier are similar to each other. Since DES 

resolves eddies whose lengths are larger than the filter size, the wall shear stress 

distribution calculated with this model reflects the fluctuation of the turbulent flow. This 

leads to the differences between shear stress distributions in some areas in detail. The 

differences of wall shear stress values mainly come from the difference between the 

algorithms of these two turbulence models and wall functions. This difference can be 

calibrated with an appropriate numerical method in the postprocessor.  Therefore, the 

activated unsteady RANS models of these CFD models can simulate the open-channel 
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flows around the scaled original pier and the scaled retrofitted design in the physical 

experiments.  

   

4.7 Summary 

 In this Chapter, the development of CFD models for this research was described 

in detail by following the general procedure of the CFD method in STAR-CCM+. 

Related problems, which may occur during the development of CFD models, were 

discussed and resolved to eliminate potential mistakes. The influence of different kinds of 

mesh was analyzed to optimize these CFD models. Compared the simulation results 

using unsteady RANS model and DES model, the open-channel flow simulated with 

unsteady RANS model is reliable. All CFD simulations were conducted with the mesh 

models and physical models described in this chapter. The simulation results are listed in 

Chapter 5. And the development of the decay function of wall shear stress is discussed in 

the next chapter. 
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CHAPTER 5 Development of Decay Function of Wall Shear Stress 

5.1 Overview 

 In this chapter, all simulated wall shear stress distributions of the physical 

experiments are presented to study the decay trend of wall shear stress with scour. Based 

on the simulation results of these CFD models, a decay function was developed to 

describe the relation between wall shear stress and scour depth. In order to calibrate this 

function to more accurately describe this trend, an envelope decay function was 

developed by combining the CFD data and the data of the previous physical experiments 

conducted by Annandale (Annandale and Smith, 2001). The simulation results of the 

CFD modeling for water flows around the rectangular pier, which were used to verify the 

physical models in Chapter 4, were used to verify these two decay functions.  

 

5.2 Development of Decay Function of Wall Shear stress 

 The wall shear stress distribution on the bathymetry of each case, which was 

calibrated with the approach in Section 4.5, were directly exported from STAR-CCM+ 

after finishing the CFD simulation.  The five wall shear stress distributions of each group 

listed in Table3.2 were put together to analyze the trend of wall shear stress with sour. 

The wall shear stress values of selected points around the pier were taken to develop an 

appropriate function to describe this trend. Furthermore, the wall shear stress 

distributions on a flat bed under the same flow conditions around the scaled original and 

retrofitted piers were used to analyze the influence of the retrofitted design. The wall 

shear stress distributions around a given pier under the flow conditions of MF and Q100 
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were taken to verify the rapid increase of the water erosion capacity when a flood event 

occurs.  

 

5.2.1 Wall Shear Stress Distributions  

 Figure 5.1 exhibits the wall shear stress distributions of Group MF_O. For the 

case with a flat bed (MF_O_0), the area with large shear stress is around the foundation 

of the pier. Therefore, scour first begins in this area. The particles of the earthen material 

in this area are removed by the water flow and a small scour hole forms in this area. For 

Case MF_O_25, the scour hole imparts shape-change, which increases wall shear stress 

values in some areas. But the shear stress values around the pier are smaller than those of 

MF_O_0. In Case MF_O_50, both the area and the depth of the scour hole become larger, 

while the area with large wall shear stresses become smaller and the values around the 

pier also become smaller. For Case MF_O_75, both of the area with large wall shear 

stresses and the values around the pier become even smaller. Finally, the wall shear stress 

distribution of Case MF_O_100 shows that there is not an area with obvious large wall 

shear stresses around the pier. Thus, it is very possible that scour stopped there, which  

These distributions reflect a clear decay trend of wall shear stress with scour, which is the 

expected result based on the literature review in Chapter 2. 
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Figure 5.1 Wall shear stress distributions of MF_O 
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Figure 5.1 (continue) Wall shear stress distributions of cases in Group MF_O 

  

 The cases in this research can also be separated into two groups: cases with a flat 

bed and cases with a scoured bathymetry. For cases with a scoured bathymetry, the 

critical shear stress of clean non-cohesive sand is related not only to the 𝑑!", but also to 

the location of the particle and the water flow direction. The bathymetries surveyed from 

the physical experiments shows that the particles in the area with the largest scour depth 

can be considered to be on a flat bed. So the critical shear stress of sand there is only 

related to the 𝑑!". Moreover, the areas with the largest scour depth in cases with the same 

pier under the same flow conditions appear in nearly the same area. Therefore, the wall 
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shear stress values on these areas were picked as the final CFD simulation results of such 

cases. For cases with a flat bed, the maximum values of wall shear stress near the area, 

where the maximum scour depth would appear, were used as the final CFD simulation 

results. The given relative scour depth (𝑌∗ ) of MF_O and the wall shear stress 

amplification 𝜏∗  were plotted together to study the decay function of wall shear stress, 

which is also called the dimensionless wall shear stress. 𝜏∗ was calculated with Eq.5.1, 

where 𝜏  is the wall shear stress value of the final CFD simulation and 𝜏! was calculated 

with Eq.2.4. 

 

𝜏∗ =
!
!!

       (5.1) 

 

The hydraulic radiuses (Rh) of MF and Q100 were given in Table 5.1. 

 

Table 5.1 Hydraulic radiuses of MF and Q100 

Flow Conditions Water Depth  

(m) 

Channel Width  

(m) 

Hydraulic radiuses, Rh  

(m) 

MF 0.16 1.82 0.136 

Q100 0.26 1.82 0.202 

 

 Using the average approach velocity, Manning’s n and initial flow depth, Eq.2.4 

can be written as Eq.5.2. 
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𝜏! =
(!")!

!!
!/! 𝜌𝑔      (5.2) 

 

 The necessary data of Group MF_O is in Table 5.2 and the wall shear stress 

amplification and relative scour depth were plotted in Figure 5.2. 

 

Table 5.2 Wall shear stress data of MF_O 

 𝑌∗ 
𝜏! 

(Pa) 

𝜏! 

(Pa) 
𝜏∗ 

MF_O_0 0% 1.512 0.395 3.832 

MF _O_25 29.04% 0.680 0.395 1.723 

MF _O_50 45.19% 0.572 0.395 1.449 

MF _O_75 60.49% 0.491 0.395 1.244 

MF _O_100 100% 0.359 0.395 0.910 
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Figure 5.2 Decay Trend of wall shear stress of Group MF_O 

 

 The simulation results of Group MF_R reflect a similar decay trend of wall shear 

stress as that of Group MF_O. Figure 5.3 shows the geometry (left) and its wall shear 

stress distribution (right) of each case of Group MF_R. The scour first begins in the area 

with large wall shear stresses around the new cap of the retrofitted design of Case 

MF_R_0. And the shape change of the bathymetry increases the wall shear stress there in 

some areas. But the wall shear stress value around the retrofitted pier becomes smaller. 

Then the values of the wall shear stress around the pier decrease with the increase of 

scour depth. Finally, the wall shear stress around the pier is no longer large enough to 

keep moving earthen material particle. Therefore, it is very possible that scour stops at 

this moment. Other wall shear stress distributions are in Appendix B. The related data of 

Group MF_R are in Table 5.3.  
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Table 5.3 Wall shear stress data of MF_R 

 𝑌∗ 
𝜏! 

(Pa) 

𝜏! 

(Pa) 
𝜏∗ 

MF_R_0 0% 2.176414 0.395 5.514 

MF_R_25 44% 0.864434 0.395 2.190 

MF_R_50 57.58% 0.774307 0.395 1.962 

MF_R_75 76.38% 0.70098 0.395 1.776 

MF_R_100 100% 0.541842 0.395 1.373 
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Figure 5.3 Geometries and wall shear stress distributions of cases in Group MF_R 

Flat%Bed% Flat%Bed%

∼!25%! ∼!25%!
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Figure 5.3(continue) Geometries and wall shear stress distributions of Case MF_R  

 

The given relative scour depth (𝑌∗) of group MF_R and the wall shear stress 

amplifications 𝜏∗  were plotted together with the data of Group MF_O in Figure 5.4. 

The decay curves of Group MF_O and MF_R are similar to each other and share many 

similar properties. First, these two curves are nearly similar to each other by observing. 

This is evidence that they are controlled by the same mechanism. Both of these two 

curves rapidly decay initially and then the decay rate subsides.  

∼!75%! ∼!75%!

Maximum'Equilibrium'Scour' Maximum'Equilibrium'Scour'
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Figure 5.4 Decay trends of MF_O and MF_R 

 

The influences of the retrofitted design and the flood event on the water erosion 

capacity were studied with these wall shear stress distributions. In order to eliminate the 

influence of different scour depths, the shear stress distributions of cases with a flat bed 

were used. The influence of the retrofitted design on the water erosion capacity was 

analyzed by comparing wall shear stress distributions of MF_O and MF_R, as shown in 

Figure 5.5. The area with large wall shear stresses around the retrofitted pier is obviously 

larger than that around the original pier. Therefore, this retrofitted design actually 

enhances the water erosion capacity under the same flow conditions and the same 

bathymetry.  So the main purpose of this design is to restore the capacity of the stability 

of Pier 22, rather than to fix the pier scour problem. 
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Figure 5.5 Wall shear stress distributions of MF_O and MF_R 

 

Based on common sense, the flood event has a strong capacity to rapidly increase 

the water erosion capacity. Comparison of the wall shear stress distribution of MF_O_0 

MF_O_0&

MF_R_0&
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with that of Q100_O_0 (Figure 5.6) shows that the area with large wall shear stresses is 

markedly enlarged. It is very possible that the particles of earthen material in the area 

near the leading edge of the pier move faster and more easily when the flood event occurs. 

 

 

 

Figure 5.6 Wall shear stress distributions of Q100_O and Q100_R 

MF_O_0&

Q100_O_0&
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5.2.2 Decay Function 

 Table 5.4 shows all necessary data to develop the decay function of wall shear 

stress amplification with relative scour depth. The relative scour depths were directly 

surveyed and calculated with the physical experiments. The wall shear stress 

amplification of each case was calculated with Eq.5.1 and Eq.5.2.  

 

Table 5.4 Wall shear Stress Data 

 Case 𝑌∗ 
𝜏! 

(Pa) 

𝜏! 

(Pa) 
𝜏∗ 

MF_O 

 

MF_R_0 0.00% 1.512 0.395 3.832 

MF_R_25 29.04% 0.680 0.395 1.723 

MF_R_50 45.19% 0.572 0.395 1.449 

MF_R_75 60.49% 0.491 0.395 1.244 

MF_R_100 100.00% 0.359 0.395 0.910 

MF_R 

 

MF_R_0 0.00% 2.176 0.395 5.514 

MF_R_25 43.90% 0.864 0.395 2.190 

MF_R_50 57.58% 0.774 0.395 1.962 

MF_R_75 76.38% 0.701 0.395 1.776 

MF_R_100 100.00% 0.542 0.395 1.373 
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Table 5.4 (continue) Wall shear Stress Data 

 Case 𝑌∗ 
𝜏! 

(Pa) 

𝜏! 

(Pa) 
𝜏∗ 

Q100_O 

 

MF_R_0 0.00% 2.501 0.463 5.406 

MF_R_25 32.97% 1.410 0.463 3.048 

MF_R_50 50.14% 1.130 0.463 2.443 

MF_R_75 60.08% 0.981 0.463 2.121 

MF_R_100 100.00% 0.780 0.463 1.687 

Q100_R 

 

MF_R_0 0.00% 2.971 0.463 6.423 

MF_R_25 42.28% 0.673796 0.463 1.457 

MF_R_50 65.24% 0.588158 0.463 1.272 

MF_R_75 74.49% 0.321077 0.463 0.694 

MF_R_100 100.00% 0.360172 0.463 0.779 

 

 These data were plotted together in Figure 5.7 to develop the decay function. 

There are two basic requirements for this function. When the relative scour is 100%, the 

wall shear stress amplification should be equal to 1. When the relative scour is 0, the wall 

shear stress amplification was set as the average of value of cases with a flat bed, which 

is 5.056.  Based on the literature review in Chapter 2 and the shape of the decay curve in 

Figure 5.4, the decay function was assumed to be an exponential function (Eq.5.3) 

 

 !
!!
= 𝑎 ∗ 𝑒𝑥𝑝  (𝑏 ∗ !!

!!"#
)    (5.3) 
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And it should satisfy the following conditions:  

 

   !
!!
= 𝑎 ∗ 𝑒𝑥𝑝 𝑏 ∗ 100% = 1  

     

   !
!!
= 𝑎 ∗ 𝑒𝑥𝑝 𝑏 ∗ 0% = 𝑎 = 5.056          

         

Therefore, the decay function of wall shear stress is  

 

                          !!
!!
= 5.056 ∗ 𝑒𝑥𝑝  (−1.621 ∗ !!

!!"#
)      (5.4) 

 

 

Figure 5.7 Decay function of wall shear stress 
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5.3 Calibration of the Decay Function 

 Even though the physical experimental method has a weak capacity to directly 

measure hydraulic loading indicators, a series of physical experiments was designed to 

indirectly calculate these indicators by Annandale to study the relation between hydraulic 

loading and scour. These physical experiments include cases with different regular-shape 

piers under different kinds of flow conditions. The bathymetries of these cases were non-

cohesive clean sand with different 𝑑!" values. In this dissertation, these data are called 

Annandale data. In order to use these data to calibrate the developed decay function, the 

relative scour depth and wall shear stress amplification of each case of Annandale data 

needs to be calculated first and then plotted with the CFD data together. 

 

5.3.1 Approach to Calculate Potential maximum Scour Depth 

 The Annandale data include the wall shear stress, inlet velocity, Darcy friction 

factor which can be converted into Manning n, flow depth and scour depth. However, the 

potential maximum flow depth of each case must be calculated with the following 

equation (Eq.2.5), 

 

  
𝑦!"#
𝑦 = 2𝐾!𝐾!𝐾!(

𝑎
𝑦)

!.!"𝐹𝑟!.!" 

 

where 𝑦!"# is the maximum scour depth, y is the approach flow depth, a is the width of 

the bridge and Fr is the Froude number. 𝐾! is the correction factor of pier nose shape. 
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Table 5.5 shows the values of 𝐾! of some kinds of common pier nodes, which are shown 

in Figure 5.8.  

 

Table 5.5 𝑲𝟏 values of some common pier nodes 

Shape of Pier 

Nose 

𝐾! 

(a) 1.1 

(b) 1 

(c) 1 

(d) 1 

(e) 0.9 

 

 

Figure 5.8 Common shapes of pier noses 
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 𝐾! is the correction factor of water flow with an attack angle 𝜃 , which is also 

called as the hydraulic skew angle of water flow.  The value of 𝐾!  is calculated with 

Eq.5.5.  

 

𝐾! = (𝑐𝑜𝑠 𝜃 + !
!
𝑠𝑖𝑛 𝜃)!.!"    (5.5) 

 

L is the length of the pier and a is the width of the pier node, which is shown in Figure 

5.8. 𝐾! is the correction factor for the bed condition. Since the plane bed (flat bed) is the 

most common condition of the bridge sites for the flood frequencies employed in the 

scour design, the value of 𝐾! is obtained for the case of a plane bed. The value of 𝐾! is 

shown in Table 5.6. Since the bed condition of all cases in the table of the Annandale 

data is clear sand in a uniform water flow, the value of 𝐾! is 1.1.  

 

Table 5.6  𝑲𝟑 values 

Bed Condition Dune Height, H,  (ft) 𝐾! 

Clear-Water Scour N/A 1.1 

Plane Bed and 

Anti-Dune Flow 

N/A 1.1 

Small Dunes 2 < 𝐻 < 10 1.1 

Middle Dunes 10 ≤ 𝐻 < 30 1.2~1.1 

Large Dunes 𝐻 ≥ 30 1.3 
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 Based on the equations and values above, the potential maximum scour depth of 

each case was calculated. The relative scour depth was calculated with the surveyed scour 

depth and the calculated maximum scour depth. The wall shear stress amplification 𝜏∗ of 

each case was calculated using the relevant physical quantities.  

 

5.3.2 Envelope Decay Function 

 The wall shear stress amplification and relative scour depth of the Annandale data 

and CFD simulation results were plotted together in Figure 5.9. The Annandale data also 

clearly reflect a decay trend of wall shear stress with scour depth. When the scour depth 

is approximately the maximum depth, the shear stress amplification is approximately 1. 

Moreover, the CFD data are located in the range of the Annandale data, which is another 

evidence that these CFD models accurately simulate the water flows of the physical 

experiments. 
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Figure 5.9 Shear stress amplification v.s. relative depth 

 

 On the other hand, the developed decay function does not have a good capacity to 

represent the decay trend of wall shear stress of both CFD data and Annandale data. 

While, the maximum difference between the data points and the decay function is about 

100%. Therefore, an envelope decay function is a more appropriate option, which should 

cover most points in Figure 5.9. A safety factor 2 was imported into the decay function to 

develop the envelope function (Eq.5.6) 

 

!!
!!
= 10.112 ∗ 𝑒𝑥𝑝  (−1.621 ∗ !!

!!"#
)    (5.6) 
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 Some conclusions can be obtained from Figure 5.10, which includes the envelope 

decay function, the decay function, CFD data and the Annandale data. First, this envelope 

decay function of wall shear stress covers almost all points (about 95%) of the Annandale 

data and CFD data. Second, when the relative scour depth is smaller than 40%, the 

envelope function has a relative large gap from CFD and most Annandale data. And 

when the relative scour depth is larger than 40%, the envelope decay function is close to 

CFD and Annandale data.  

 

 

Figure 5.10 Decay function of wall shear stress of Annandale data and CFD data 

	
  

5.4 Validation of the Decay Function 

 In Chapter 3, CFD models of water flows around the rectangular pier with a 30° 

attack angle were conducted to verify the physical models of these CFD models. The wall 
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shear stress values around this pier were used to verify the envelope decay function, and 

the relative scour depths of these cases were calculated with the bathymetry elevation 

values of these CFD models. These data were also plotted together with the Annandale 

data and the CFD data in Figure 5.11.  

 

 

Figure 5.11 CFD data of rectangular pier with Annandale data and CFD data 

 

 As shown in Figure 5.11, the data of CFD modeling for the rectangular pier were 

enclosed by the envelope decay function and these data are also close to the decay 

function. This means the envelope decay function of wall shear stress adequately 

describes the relation between wall shear stress amplification and relative scour depth.  
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5.5 Summary  

 In this chapter, a decay function of wall shear stress was developed with the CFD 

modeling results for the physical experiments. In order to calibrate this decay function 

and more accurately describe the decay trend, the Annandale data were used to modify 

the decay function and develop an envelope function. Since the envelope function covers 

most of the CFD data and Annandale data, it was applied to describe the relation between 

wall shear stress amplification and relative scour depth.  The envelope function and decay 

function were verified with the CFD modeling results of water flows around a rectangular 

pier with a 30° attack angle.  In the next chapter, CFD models of the full-scale Feather 

River Bridge simulate water flows around the original pier and retrofitted design. These 

were developed to calculate wall shear stress distributions. And the developed envelope 

function and decay function were also applied to study the pier scour problem. 
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CHAPTER 6 Preliminary CFD Study of Pier Scour of the Feather River Bridge 

6.1 Overview 

 In this research, the preliminary CFD study of pier scour of the Feather River 

Bridge is discussed. In order to apply the envelope decay function of wall shear stress to 

study the pier scour problems in the real world, there are two main questions that remain 

to be answered. First, full-scale CFD models need to be developed to verify the decay 

trend and decay function of wall shear stress. Second, the applications of the decay 

function need to be developed. 

 In this chapter, CFD models of the full-scale Feather River Bridge is developed to 

obtain wall shear stress distributions on the bathymetries, which were surveyed before 

and after the flood event. The flow conditions of the normal state (MF) and the flood 

event (Q100) were given by the Feather River Emergency Scour Study. The CFD 

simulation results are presented in this chapter to analyze the relation between wall shear 

stress and scour depth around Pier 22 of the Feather River Bridge and verify the decay 

function. The application of the decay function in the real world was developed by taking 

the Feather River scour study as an example.  

 

6.2 Development of CFD Models 

 The development of CFD models of the full-scale Feather River Bridge also 

follows the procedure in Figure 4.1. The physical models in these CFD simulations are 

the same as those of CFD models of the physical experiments. Even though there are two 

piers (the original and retrofitted pier), two kinds of flow conditions (MF and Q100) and 

two bathymetries (surveyed before and after the flood event), only four cases were 
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simulated in this research. These CFD cases are shown in Table 6.1, in which B2007 is 

the bathymetry surveyed before the flood event and B2011 is the one surveyed after the 

flood event.  These four cases were separated into two groups. Cases in Group A have 

already occurred in the real world. They are used to verify the decay trend of wall shear 

stress and find out the applications of the decay function.  The case in Group B is used to 

study the influence of the retrofitted design. 

 

Table 6.1 CFD models of full-scale Feather River Bridge 

Group Case Bathymetry Pier Flow Condition 

A 

O_B2007_MF B2007 Original MF 

O_B2007_Q100 B2007 Original Q100 

O_B2011_MF B2011 Original MF 

B R_B2007_MF B2007 Retrofitted MF 

   

6.2.1 Geometry 

 Similar to the CFD models of the physical experiments in Chapter 4, the original 

CAD models of these four cases were created with data of the surveyed bathymetries and 

the CAD models of the original and retrofitted piers in SOLIDWORKS. Walls around the 

surveyed bathymetry and a top wall cover the flow domain were added to form a closure 

volume to satisfy the requirements of CFD method. Before importing these original CAD 

models into STAR-CCM+, some adjustments are strongly recommended to avoid 

potential problems caused by the geometry. Figure 6.1 is an example of the original CAD 
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model (B2011). The shape of this bathymetry was directly created with the surveyed data 

in SOLIDWORKS.   

 

 

Figure 6.1 Original CAD model of B2011 

 

 This original CAD model exhibits the shapes of pier scour and the abutments of 

the Feather River Bridge. In order to reduce the time required to survey the bathymetry, 

the surveyor collected a large data point density around Pier 22 and a relative small one 

in other areas. The result of this action is intuitively reflected by the sizes of the triangles.  

This also results in some sharp curves in the shape of the bathymetry, some of which are 

identified by red circles. They may have a series negative influence on the convergence 

of the CFD model or even lead to a CFD model crash. Therefore, these sharp curves need 

to be eliminated to create the final CFD geometry. However the shape of the bathymetry 

must be maintained. Figure 6.2 is the final CFD geometry of B2011. The shapes of the 

bathymetry in the red circles are much smoother than those of the original CAD model, 
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which is the result of eliminating the sharp curves. Compared to the original CAD model, 

the final CFD geometry includes almost all details of pier scour and abutment scour.  

 

 

Figure 6.2 Final CFD geometry of B2011 

  

B2011 was assumed as the scour bathymetry and B2007 was used as the 

bathymetry without scour. Figure 6.3 demonstrates the differences between elevations of 

these two bathymetries. At A and B, there are two obvious scour holes after the flood 

event. The reason of scour at B is a kind of abutment scour. Scour at A is pier scour, 

which is the focus of this research. 
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Figure 6.3 Bathymetries of B2007 and B2011 

 

 Figure 6.4 is an example of the final CFD geometry with the name of each surface 

(top surface is hidden). Table 6.2 shows the boundary type of each face specified in the 

CFD model. In this research, the earthen material was assumed as clean, non-cohesive 

and coarse sand (d50=2mm) to simplify the research. The roughness height of the 

bathymetry of CFD geometry was empirically set as 4 mm.  

 

 

Figure 6.4 Final geometry of O_B2011_MF 
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Table 6.2 Boundary conditions 

Boundary 

Name 

Part of original CAD 

model 
Type Note 

inlet inlet 
Velocity Inlet/ 

Mass Flow Inlet 
- 

outlet outlet Pressure Outlet - 

Top Top Symmetry Plane - 

sides sides Wall Non-slip; Smooth 

pier 

piers of Feather River 

Bridge 
Wall Non-slip 

Smooth 
Pier 22 Wall 

bed 

riverbed 

Wall 

Non-slip 

Rough 

Roughness Height 

= 4mm 

west bank 

east bank 

 

6.2.2 Mesh 

 The challenges described in Section 4.3 also exist in the full-scale Feather River 

CFD models, while the huge size of the model makes it even more challenging. The size 

of the geometry is about 1500 m X 100m X 5m. Therefore, in order to restrict the number 

of mesh cells, the geometry was separated into two areas: a core area and non-core area. 

The core area is defined by volumetric control to set a denser mesh, as shown in Figure 
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6.5. This area covers Pier 22 and the river channel from about 400 m upstream of Pier 22 

to about 250 m downstream of Pier 22. The wall shear stress distribution, water flow and 

free surface in this area were needed to be accurately simulated by these CFD models. 

The other area was defined as a non-core area, where a coarse mesh was set.  

 

 

Figure 6.5 Core area of CFD model 

 

 Since the quality of the CAD models created in SOLIDWORKS is sufficient, 

“Surface Remesher” was activated to generate a surface mesh for these four cases. “Prism 

Layer Mesher” was selected to mesh the near-wall region. For Case O_B2011_MF, the 

H-piles are exposed in the water flow, which requires the volume mesh models to 

properly capture the solid material thickness. Therefore, “Thick Mesher” was used. For 

the other three cases, “Polyhedral Mesher” was utilized to mesh the irregular shape of the 

surveyed bathymetries. This model has the same function to set a prismatic layered 

volume mesh as “Thickness Mesher” and takes a relative short time to finish meshing for 

a similar number of mesh cells. Besides the volumetric control defined in the core area, 
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there are another two kinds of volumetric controls, as shown in Figure 6.6.  A denser 

mesh was set in these cylinders to maintain the shapes of the leading and trailing edges. 

Block 2 defines a smaller volume in the core area, where an even denser mesh was set to 

more finely simulate the water flow. For Case MF_B2011_MF, another volumetric 

control (Block 3) was set to mesh the H-piles group. 

 

 

Figure 6.6 Volumetric Controls 

 

The base size of the mesh is 10 m. For the cylinders and Block 3, the custom size 

is 1% of the base size and the custom sizes of Block 1 and Block 2 are 25% and 10% of 

the base size. The size of the refined cells are 0.1%~1% of the base size in the core area.  

Figure 6.7 shows the mesh of Case O_B2011_MF. Even though many actions were taken 

to restrict the number of mesh cells, the number of mesh cells was still about 10 million. 
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Figure 6.7 Mesh of Case O_B2011_MF 

 

 The roughness height of the bathymetry was set as 4 mm. Therefore, the height of 

the first cell on the surface edge is required to be larger than 4mm by the rough function 

in STAR-CCM+. The range of y+ recommended by users to use “All y+ Wall Treatment” 

is from 20 to 200. So the wall distances of MF and Q100 are estimated with Eq.4.2 

(Table 6.3). However, the estimated wall distances and the requirements of the roughness 

function are conflictive.   

 

Table 6.3 Estimation of wall distance 

Flow Condition 
Inlet Velocity 

(m/s) 

Water Depth 

(m) 
𝑦! Re 

H 

(mm) 

MF 1.463 9.571 20~200 1.57∗ 10! 0.35~3.5 

Q100 2.134 15.545 20~200 3.7∗ 10! 0.25~2.5 
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Since the requirement of the roughness function is more closely related to the 

accuracy of the CFD simulation results, y+ of first cell on the bathymetry must be outside 

of its recommended range. The minimum y+ values of these two kinds of flow conditions 

calculated with the roughness height is about 250 for MF and 350 for Q100, for which 

“High y+ Wall Treatment” is more appropriate. STAR-CCM+ user guider points out that 

the “All y+ Wall Treatment” is a hybrid method of “Low y+ Wall Treatment” and “High 

y+ Wall Treatment”.  It is designed to give results similar to the low-y+ treatment 

as 𝑦+  → 0 and to the high-y+ treatment for  𝑦+  > 30. Hence, “All y+ Wall treatment” 

was still activated to maintain the consistency of physical models of all CFD models in 

this research. Moreover, the study of the wall function and y+ conducted by CFD team of 

Leading Engineering Application Providers (LEAP) in Australia expresses that the 

simulation results by using the three current kinds of wall functions agree with each other 

very well in the overlapping range of y+, as shown in Figure 6.8. 

(http://www.computationalfluiddynamics.com.au/turbulence-part-3-selection-of-wall-

functions-and-y-to-best-capture-the-turbulent-boundary-layer/).   
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Figure 6.8 Comparison of different wall functions 

 

6.2.3 Flow Conditions, Physical models and Necessary Setup 

The flow conditions of the full-scale Feather River Bridge include water depth, 

flow rate and average velocity, as shown in Table 6.4. The water depth and flow rate are 

two physical quantities which can be directly measured in the field. The average 

velocities of these two kinds of flow conditions were calculated with the 2-D hydraulic 

modeling conducted by Flora. Even though the value of flow rate for each flow condition 

was directly surveyed and was considered to be closer to the real state, the calculated 

average velocity of the 2-D simulations conducted by Flora also describes the water flow. 

Therefore, the flow rate and the average velocity are considered to be equivalent. And the 

average velocity was used as the initial conditions for the physical models of these CFD 

models. The boundary type of the inlet surface can be set as “Velocity Inlet” or “Mass 

Flow Rate” to optimize each case. Figure 6.9 shows the initial free surfaces of MF and 

Q100.  
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Table 6.4 Flow conditions 

Flow 

Condition  
State 

Flow Rate 

(𝑚!/𝑠) 

Flow Rate 

(𝐾𝑔/𝑠) 

Flow Depth 

(𝑚) 

Average 

Velocity 

  (𝑚/𝑠) 

MF 
Normal 

state 
1260.1 1.257∗ 10! 6.98 1.463 

Q100 
Flood  

event 
4454.3 4.443∗ 10! 15.545 2.134 

 

 

Figure 6.9 Initial free surface 

 

The method used to calibrate the wall shear stress described in Section 4.5 was 

also used in these four CFD models. User defined functions were created to define the 

initial regions and initial flow velocity of air and water (Table 6.5). The average_velocity 

is the value of the physical quantities of flow conditions. But the water_depth is the water 

depth from water surface to the foundation of the original pier. The physical models of 
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these CFD models are exactly the same as the ones used in the CFD models of the 

physical experiments, which are shown in Figure 4.10. 

 

Table 6.5 User defined function of CFD models of full-scale Feather River Bridge 

Name Function Definition 

water Define water domain $$Position[1] <=water_depth? 1 : 0 

air Define air domain 1-$water 

v Define velocity 
[$$Position[1]< water_depth? 

average_velocity:0,0,0] 

 

6.3 CFD Simulation Results 

 As discussed in Chapter 4, only when the unsteady CFD simulation becomes 

quasi-steady, can the wall shear stress distributions around Pier 22 be used taken as the 

simulation result to analyze its relation with scour.  

 

6.3.1 Physical Time  

 In order to ensure that unsteady CFD simulation results are close to the real 

situation, a relative long physical time is necessary for them to be quasi-steady. However, 

a long physical time also significantly increases the computational time, especially for 

these four cases. Therefore, an appropriate physical time is necessary not only to ensure 

that the CFD simulation is quasi-steady, but also restrict the computational time. 

Currently, the physical time was set to 600 seconds. As shown in Figure 6.10, the wall 
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shear stress distributions around Pier 22 of O_B2007_MF at different moments agree 

with each other very well, which means 600s physical time is long enough for the 

unsteady CFD simulation to be quasi-steady 

 

 

 

Figure 6.10 Wall shear stress distributions around Pier 22 at different moments 
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Figure 6.10 (continue) Wall shear stress distributions around Pier 22 at different moments  

 

6.3.2 Wall Shear Stress Distributions  

 Figure 6.11 is the wall shear stress distribution of Case O_B2007_MF. Location 

A shows the high wall shear stress around Pier 22, which initiates pier scour. The form 

drag caused by the shape of the bathymetry increases the wall shear stress in some areas, 

like location C. The reason for the high wall shear stress in locations B and D is that the 

width of Feather River becomes narrow there. It is also a reason that leads to high wall 

Pier%22%

Physical%Time=607s%

Pier%22%

Physical%Time=610s%
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shear stress at location E. The other reason is the interaction between the hydraulic 

structures and the water flow. The water flow direction changes downstream of the bridge. 

So interactions between the water flow and the bank in location F are intense and the wall 

shear stress there is obviously larger. The high wall shear stress in location G is mainly 

due to the coarse mesh. Since the mesh in location G is not fine enough, the VOF model 

has a negative influence on the wall function, which makes CFD simulations of wall 

shear stress unreliable in that location. Since area G is distant from Pier 22, its potential 

negative influence on the shear stress distribution around Pier 22 is negligible.  

 

 

Figure 6.11 Wall shear stress distribution of Case O_B2007_MF 
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Figure 6.12 shows a comparison between wall shear stress distributions around 

Pier 22 using B2007 and B2011under normal flow conditions. Before the flood event, the 

wall shear stress is large around the pier and leads to pier scour. During the flood event, 

the wall shear stress on the entire bathymetry rapidly increases, as shown in Figure 6.13. 

Therefore, the flood event speeds up the process of pier scour and produces the 

bathymetry surveyed in 2011. After the flood event, even though wall shear stress in 

some small areas become larger, the wall shear stress distribution around Pier 22 still 

shows a clear decay trend. Changes in the bathymetry increase the wall shear stress in 

some areas. 

 

 

 

 

 

 

 

 

 

 

 

 



	
   118	
  

 

 

 

Figure 6.12 Wall shear stress distributions of O_B2007_MF and O_B2011_MF 
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Figure 6.13 Wall shear stress distributions of O_B2007_MF and O_B2007_Q100 
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 In chapter 4, the simulation results reveal that the retrofitted design actually 

enhances the erosion capacity of water flow.  The simulation results of the full-scale 

Feather River Bridge also demonstrate this. Figure 6.14 is a comparison between wall 

shear stress distributions around Pier 22 of O_B2007_MF and R_B2007_MF. The 

influence of the shape of the bathymetry and flow conditions have already been 

eliminated by using the same conditions for both cases. Therefore, the main source of the 

differences between the wall shear stress distributions is the pier shape. The area with 

high wall shear stress is obvious larger around the retrofitted pier and the maximum shear 

stresses are also much larger.  
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Figure 6.14 Wall shear stress distribution of O_B2007_MF and R_B2007_MF 
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6.4 Application of Decay Function of Wall Shear Stress 

 Application of the envelope decay function requires two tasks. First, the decay 

function of the wall shear stress (both of the decay function and enveloped function) 

needs to be verified with the simulation results of the CFD models of the full-scale 

Feather River Bridge. Second, an approach needs to be developed to apply the decay 

function to resolve engineering problems about pier scour. 

 

6.4.1 Validation of Decay Function  

 As shown in Figure 6.3, the bathymetry around Pier 22surveyed before the flood 

event (B2007) is almost flat, so it was considered as the one without any scour hole. This 

means the relative scour depth of B2007 is 0%. Two follow-up surveys after the flood 

event confirmed the scour depth. Therefore, the bathymetry surveyed after the flood 

event (B2011) was considered to be the scoured bathymetry. Thus, the relative scour 

depth of this bathymetry was considered to be close to 100%. This means the local wall 

shear stress is close to the approach wall shear stress. The simulation results of Case 

O_B2007_MF and Case O_B2011_MF represent the change of wall shear stress with 

scour in the real world. 

 The approach to used wall shear stress data is the same as the one described in 

Chapter 5. For the cases with B2007, the maximum wall shear stress around Pier 22 was 

used for future analysis. The locations of these points also need to be close to each other. 

And for the case with B2011, the wall shear stress value of the point with the maximum 

scour depth around Pier 22 was used.  
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Table 6.6 Wall shear stress data 

Case Wall Shear Stress 

(Pa) 

Scour Depth 

(m) 

O_B2007_MF 21.103 0 

O_B2007_Q100 39.396 0 

O_B2011_MF 2.723 7.695 

 

 The method of calculating the approach wall shear stress values for MF and Q100 

are as followed. Since the width of the river is much larger than the water depth and the 

convenient approach to accurately calculate the hydraulic radius of river is not fully 

developed, the hydraulic radius is replaced with the water depth. Even though the average 

velocity of each flow condition in this research was calculated by previous 2-D hydraulic 

simulations and the flow rate was directly surveyed, they are considered to be equivalent 

and the average velocity was used. Moreover, there are many convenient and accurate 

approaches to survey average velocity, like the Acoustic Doppler Current Profiler (ADCP) 

method (Yao, 2002).  

 The approach to determine the Manning n of sand (𝑑!" = 4mm) is complex. Since 

the value of Manning n mainly relates with the surface roughness, the amount of 

vegetation and channel irregularity (Chaudhry, 2007), this value of given sand can be 

treated as a constant. Annandale data gives Darcy friction factors of different kinds of 
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sand with different hydraulic radiuses. The values of Manning n for the sand were 

calculated with Eq.6.1 (Yen, B. C. 1992).  

 

𝑛 = 0.0926𝑓!.!𝑅!!.!"     (6.1) 

 

 The calculated data of Annandale data is shown in Table 6.7. With these data, the 

linear interpolation method was applied to estimate the Manning n of the sand (𝑑!"  =4 

mm).  

 

Table 6.7 Manning n of sand 

 𝑑!"  

(mm) 

Manning n 

Annandale Data 1.2 0.0134 

2.4 0.0139 

5.0 0.0155 

Estimated data 4.0 0.0147 

 

 Therefore, the values of approach wall shear stress of these two kinds of flow 

condition were calculated with Eq.5.2 and are shown in Table 6.8. 

 

 

 

 



	
   125	
  

Table 6.8 Approach wall shear stress 

Flow 

Condition 

Water Depth 

(m) 

Average Velocity 

(m/s) 

Manning n 

(𝑑!" = 4 mm) 

𝜏! 

(Pa) 

MF 9.571 1.463 0.0147 2.137 

Q100 15.545 2.134 0.0147 3.868 

 

 The wall shear stress amplification and relative scour depth of cases in Group A 

are shown in Table 6.9. These data was plotted together with the decay function and the 

envelope decay function in Figure 6.15. There are three conclusions. First, since these 

three data are covered by or very close to the envelope decay function, the enveloped 

decay function does a good job of representing the relation between wall shear stress and 

scour depth. Second, the cases with non-scoured bathymetry are not accurately predicted 

with the decay function. Finally, the value of the wall shear stress amplification of 

O_B2011_MF is close to 1. Therefore, it is very possible that the process of scour around 

Pier 22 stops there, which also confirms the assumption of this bathymetry. 

 

Table 6.9 Wall shear stress amplification and relative scour depth 

Case Wall Shear Stress 

Amplification 

Estimated Relative 

Scour Depth 

O_B2007_MF 9.875 0 

O_B2007_Q100 10.185 0 

O_B2011_MF 1.274 About 100% 
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Figure 6.15 Validation of decay function 

 

6.4.2 Applications of the Decay Function 

 There are two possible applications of the decay functions given information of 

soil constituting of each layer near the given pier. First, the necessary depth of the 

foundation can be estimated when designing a new bridge. Second, the local wall shear 

stress estimated with the decay function can be used to compare with the critical shear 

stress of the earthen material to determine whether actions are necessary to fix the pier 

scour problem. In fact, these two kinds of potential application share the same approach 

to apply the decay function. The pier scour study of Feather River Bridge was taken as an 

example to show these two applications. 
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 The information about what soils constitute each layer near Pier 22 was given by 

the report of Feather River Emergency Scour Study. The value of critical shear stress of 

earthen material in each layer was calculated with Guo’s equations (Eq.2.1 and Eq.2.2).  

 

Table 6.10 Erodibility of the soil at Pier 22 

Elevation 

(ft) 

Depth, y! 

(m) 

d!"  

(mm) 

Critical Shear Stress 

(Pa) 

12.92 6.730 2 1.529 

-0.68 10.875 2 1.529 

-2.68 11.485 12 11.239 

-5.98 12.491 12 11.239 

-10.98 14.015 0.25 0.182 

-15.68 15.447 0.2 0.166 

-18.68 16.362 100 92.838 

-21.48 17.215 150 139.190 

-21.68 17.276 150 139.190 

-40.98 23.159 178 165.147 

-45.68 24.591 - 0.000 

Note: (1) Elevation of the foundation of the original pier is 35ft; 

(2) column 2=|column 1 -35|*0.3048(m). 

 

 Based on the calculated critical shear stress of the soil and the CFD simulations of 

the wall shear stress, the critical shear stress at the elevation of -18.68ft is obviously 
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larger than the local shear stress. Therefore, it is very possible that the pier scour stops in 

this layer. The scour depth at this elevation was used as the maximum scour depth (y!"#). 

So the relative scour depth of each layer can be calculated with !!
!!"#

. The approach wall 

shear stress of MF and Q100 are shown in Table 6.8. With the envelope decay function of 

wall shear stress (Eq.5.6), local shear stress value around Pier 22 of different flow 

conditions were calculated and shown in Table 6.11. 

 

`Table 6.11 Estimated local wall shear stress with the envelope function 

Elevation 

(ft) 

Depth,  y! 

(m) 

Relative Scour 

Depth 

Local Wall Shear 

Stress of MF 

(Pa) 

Local Wall 

Shear Stress of 

Q100 

(Pa) 

12.92 6.730 41.13% 12.742 20.751 

-0.68 10.875 66.47% 8.323 13.555 

-2.68 11.485 70.19% 7.818 12.732 

-5.98 12.491 76.34% 7.051 11.482 

-10.98 14.015 85.66% 6.029 9.818 

-15.68 15.447 94.41% 5.204 8.474 

-18.68 
16.362 

(y!"#) 
100.00% 4.737 7.715 

 

 As shown in Figure 6.16, the decay curve of the local wall shear stress of MF has 

three intersections with the curve of the critical shear stress (A, B and C). Point A and B 
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mean that the scour depth around Pier 22 under MF can reach the elevation of -0.68 ft. 

However, the thickness of this layer is only 2 feet, which may be not enough for water 

flow to be uniform and steady. Moreover, the estimated local wall shear stress value is 

not much smaller than the critical shear stress (!!
!!
≈ 67%). Hence, the soil of this layer 

was considered to be removed, but the speed of scour is slow. Point C clearly shows that 

the pier scour stops at the elevation of -18.68 ft. For Q100, the estimated local wall shear 

stress becomes close to the critical shear stress at elevation of -6 ft (Point E). With 

appropriate actions to enlarge the critical shear stress of soil in this layer, the pier scour 

can be stopped here. Moreover, since the estimated wall shear stress and critical shear 

stress are very close to each other at Point E, an economic design to fix the scour problem 

is feasible. Point D shows that pier scour also stops at the elevation of -18.68 ft. The 

Feather River Emergency Scour Study Report gives similar conclusions with a much 

more complex method, as shown in Figure 6.17.  
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Figure 6.16 Erodibility of the soil at Pier 22 

	
  

	
  
	
  

Figure 6.17 Erodibility of the soil at Pier 22 in the emergency study   
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6.5 Summary 

 In this chapter, the CFD models of the full-scale Feather River Bridge were 

developed. Wall shear stress distributions around Pier 22 on the bathymetries before and 

after the flood event under the same flow conditions were used to verify the decay trend 

of wall shear stress. The simulation results of O_B2007_MF, O_B2007_Q100 and 

O_B2011_MF were plotted with the decay function and envelope decay function. The 

envelope decay function covers all three data points. So, the envelope function is 

sufficient to the relation between wall shear stress and scour in the real world. The 

possible applications of the envelope function were also discussed in this chapter. 

However, limited by the number of the full-scale CFD models, this research is a kind of 

preliminary research. 
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Chapter 7 Conclusion and Future Work 

7.1 Overview 

 Since scour has already been the biggest single reason of bridge failure in the 

United States, the study of pier scour and abutment scour attracts many researchers.  The 

previous physical experiments conducted by Annandale states that there is a decay trend 

of hydraulic loading with scour. However, the current technology of physical 

experimental method faces problems of directly measure the hydraulic loading on a 

dynamic bed. CFD method cannot accurately simulate the scour process. A hybrid 

approach using a physical experimental method and a CFD method was developed to 

study the relation between wall shear stress and scour. In this dissertation, the 

development, validation and calibration of CFD models of this hybrid approach were 

discussed in detail. Based on the results of the developed hybrid approach, an envelope 

decay function of dimensionless wall shear stress and relative scour depth was developed 

and applied to analyze the pier scour problems. In this chapter, the conclusions of this 

dissertation are listed. The limitations of this research method are discussed. Future 

related works are discussed at the end of this chapter. 

 

7.2 Conclusions 

 This dissertation can be generally separated into three parts: (1) CFD modeling 

for the physical experiments; (2) the development of the decay function of wall shear 

stress; and (3) development of CFD models of  the full-scale Feather River Bridge to 

verify the decay function and discuss its applications. 
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7.2.1 CFD Modeling for Physical Experiments 

 With the surveyed bathymetries of a set of physical experiments, a series of CFD 

models were developed to simulate these cases. There are several conclusions achieved in 

this process. First, with an appropriate physical time, the unsteady CFD model developed 

in STAR-CCM+ represents the steady state results well. Second, the wall shear stress 

distributions around the pier clearly show a decaying trend of hydraulic loading (wall 

shear stress) with scour. The comparison between CFD simulation results using a DES 

model and unsteady RANS model shows that the wall shear stress distribution of these 

two kinds of models generally agree with each other, even though the results of the DES 

model include more details. During this process, a hybrid approach that combines a 

physical experimental method (to survey the scoured bathymetry) with a CFD method (to 

simulate water flow and calculate local shear stress) was finally developed to study pier 

the scour problem. 

 

7.2.2 Decay Function and Envelope Function 

 To simplify the research, the bathymetry was formed with non-cohesive, clean 

and coarse sand (d!" = 1mm). In order to eliminate the potential influence of form drag 

caused by the shape change of the bathymetry, the value of wall shear stress on the point 

with the largest scour depth of each case was used to develop a decay function of 

dimensionless wall shear stress (!!
!!

) with relative scour depth ( !!
!!"#

). Even though this 

decay function was developed with the CFD simulation results of complex-shape piers, 

the CFD modeling results for a rectangular pier with a 30° attack angle indicate that this 

function also is good for describing the decaying trend of wall shear stress around a 
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regularly-shaped pier. The previous physical experimental data was used in this research 

to verify and calibrate this decay function. These data show that an envelope function is a 

safer option for describing the decaying trend. Therefore, a safety factor (2) was imported 

into the decay function to produce an envelope function, which includes almost all points 

(95%) of the current CFD data and previous experimental data. 

  

7.2.3 CFD modeling for full-scale Feather River Bridge 

 The developed hybrid approach developed in this research was applied to study 

pier scour problem around Pier 22 of the Feather River Bridge. The bathymetries around 

Pier 22 before and after the flood event were surveyed with a sonar system. With these 

bathymetries, CFD models were developed to simulate water flows in the real world and 

calculate wall shear stress distributions around Pier 22. The bathymetry surveyed before 

the flood event was assumed to be non-scoured and the bathymetry after the flood event 

was assumed to be scoured. The wall shear stress distributions of CFD models were used 

to verify the decaying trend. The data points collected during these simulations are also 

within the envelope decay function. This suggests the envelope decay function can be 

applied to study other pier scour problems. With the analysis of the constituents of 

earthen material in each layer, this function can be applied to estimate the necessary 

depth of the foundation of a new pier or used to determine whether actions are needed to 

fix the pier scour problem around a given pier under given flow conditions.   
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7.3 Limitations 

 After this research, a hybrid approach to study pier scour was finally developed 

and an envelope decay function was developed to describe the relation between wall 

shear stress and scour. However, there are still some limitations of this research. First, 

this research does not actually develop the theories of scour. The developed method in 

this dissertation is still a kind of empirical method. Second, the figure, which includes the 

previous physical experimental data and CFD data, shows that the CFD wall shear stress 

values may be smaller than the true-values, even though this potential error is not obvious. 

This may be caused by the setting of the boundary type and the algorithm of the wall 

function and roughness function in STAR-CCM+. For CFD models of the full-scale 

Feather River Bridge, the extensive domain requires a relatively large base size to restrict 

the number of mesh cells. Generally speaking, a CFD model with denser mesh will 

provide more accurate simulation results. But, a denser mesh also requires more 

computer capacity. In this research, the mesh of the full-scale Feather River Bridge is not 

very fine. And the number of CFD models with a full-scale surveyed bathymetry around 

a bridge pier is not large enough. So, the study of application of the decay function in the 

real world is preliminary. 

 

7.4 Future Work 

 In the future, there are some recommended studies to update the current research 

projects. There are also some studies in relation to the current research projects.  

 (1) The hybrid approach developed to study the scour problem in the research are 

still needs to be verified and improved. Therefore, additional similar physical 
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experiments and CFD models are recommended to be designed to better establish this 

hybrid approach. Moreover, more data are needed to verify and calibrate the decay 

function of wall shear stress. 

 (2) The current CFD simulation results, not only the CFD simulations of this 

research, express a potential problem. Even though the simulated wall shear stress 

distribution is reliable in STAR-CCM+, it is very possible that the calculated value of this 

software may be smaller than the truth-value. Therefore, more accurate wall functions 

and roughness functions are needed. Other kinds of turbulent models are worth to use to 

verify and calibrate the CFD models. 

 (3) In the current research, there are only two kinds of bathymetries surveyed in 

the field. In order to develop a better approach to apply the decay function to study pier 

scour problems, more bathymetries around bridge piers need to be surveyed to develop 

full-scale CFD models. 

 In summary, the future research should focus on two aspects. First, better physical 

models, especially wall functions and roughness function, are necessary to more 

accurately simulate water flows around piers. Second, more data are needed to make the 

conclusions and approach in this dissertation more established. The purpose of this 

research and potential future studies focus on developing a kind of empirical method for 

engineering applications to study pier scour problems.  
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APPENDIX A. Scour Bathymetries around Piers 
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Scoured bathymetries around the original pier under the normal flow condition 

(Cases in Group MF_O) 

Note: the scale of each picture is different 
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Scoured bathymetries around the retrofitted pier under the normal flow condition 

(Cases in Group MF_R) 

Note: the scale of each picture is different 
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Scoured bathymetries around the original pier under the flow condition of the flood event 

(Cases in Group Q100_O) 

Note: the scale of each picture is different 
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Scoured bathymetries around the retrofitted pier under the flow condition of the flood 

event 

(Cases in Group Q100_R) 

Note: the scale of each picture is different 
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APPENDIX B. Wall Shear Stress Distribution of Cases of the Physical Experiment 

  



	
   160	
  

Wall shear stress distributions around the original pier under the normal flow condition 

(Cases in Group MF_O) 
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Wall shear stress distributions around the retrofitted pier under the normal flow condition 

(Cases in Group MF_R) 
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Wall shear stress distributions around the original pier under the flow condition of the 

flood event 

(Cases in Group Q100_O) 
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Wall shear stress distributions around the retrofitted pier under the flow condition of the 

flood event 

(Cases in Group Q100_R) 
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Glossary 

 

|A| = Area of mesh cell; 

a = Width of the pier node 

dA  = Area vector; 

d!" = Mean diameter of sediment; 

d∗ = Dimensionless diameter; 

D!  =  Model flow depth; 

D!  =  Prototypic flow depth; 

Fr = Froude number; 

f = Darcy friction factor 

g =  Gravitational acceleration; 

h = Height of  the first cell on the bathymetry; 

K!  = Correction factor of pier nose shape; 

K!  = Correction factor of water flow; 

K!  = Correction factor of bed condition; 

L = Length of the pier; 

P = Stream power; 

P!   = Approach stream power 

Q!  =  Model flow rate; 

Q!  =  Prototypic flow rate; 

R!   = Hydraulic radius; 

  U   = Average velocity; 
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U!  = Average inlet velocity; 

V!  =  Model average velocity; 

V!  =  Prototypic average velocity; 

y  = Water depth; 

y!   =  Scour depth; 

y!  = Dimensionless wall distance; 

y!"# = Maximum possible scour depth; 

ϵ  = Average rate of dissipation; 

τ  = Stress tensor on the wall; 

τ!  = Approach wall shear stress; 

τ! = Critical shear stress;  

τ! =  Local wall shear stress; 

η = Smallest eddy length; 

θ = Attack angle; 

λ  = Length scale factor; 

µμ  = Dynamic viscosity; 

υ  = Kinetic viscosity of water; 

ρ  = Density of water;  

ρ!  = Density of sediment; 
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