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 The need for accurate, real-time, reliable, and multi-scale soil water content 

(SWC) monitoring is critical for a multitude of scientific disciplines trying to understand and 

predict the earth’s terrestrial energy, water, and nutrient cycles.  One promising technique to help 

meet this demand is fixed and roving cosmic-ray neutron probes (CRNP). However, the 

relationship between observed low-energy neutrons and SWC is affected by local soil and 

vegetation calibration parameters. This effect may be accounted for by a calibrated equation 

based on local soil type and the amount of standing biomass.  However, determining the 

calibration parameters for this equation is labor and time intensive, thus limiting the full potential 

of the roving CRNP in large surveys and long transects, or its use in novel environments. In this 

work, our objective is to develop and test the accuracy of using globally available datasets (clay 

weight percent, soil bulk density, and soil organic carbon) to support the operability of the 

CRNP. Here, we develop a 1 km product of soil lattice water over the CONtinental United States 

(CONUS) using a database of in-situ calibration samples and globally available soil taxonomy 

and soil texture data. We then test the accuracy of the global dataset in the CONUS using 

comparisons of 61 in-situ samples of clay percent (RMSE = 5.45 wt. %, R2 = 0.68), soil bulk 



density (RMSE = 0.173 g/cm3, R2 = 0.203), and soil organic carbon (RMSE = 1.47 wt. %, R2 = 

0.175). In addition, we conduct an uncertainty analysis of the global soil calibration parameters 

using a Monte Carlo error propagation analysis (maximum RSME ~0.035 cm3/cm3 at a SWC = 

0.40 cm3/cm3). Fast growing crops (i.e. maize and soybeans) contribute to the CRNP signal 

primarily through the water within their biomass and this signal must be minimized for soil 

moisture retrieval. This was done by using a vegetation index derived from MODIS imagery as a 

proxy for standing wet biomass (RMSE < 1 kg/m2).  Lastly, we make recommendations to the 

design and validation of future roving CRNP experiments.   
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Chapter 1: Foreword 

 By the year 2050, over nine billion people are predicted to inhabit the Earth (United 

Nations, 2015). The monumental task of feeding the projected global population will require a 

near doubling of grain production (FAO, 2009). As of today, the majority (~2/3) of water 

consumption by humans is used for agriculture, where approximately half of all global food 

production comes from irrigated agriculture (Mekonnen et al., 2011). As such, an increase in 

food demand will put an even greater demand on fresh water resources, particularly an 

increasing reliance on groundwater (Mekonnen et al., 2011).  Food security in the coming 

decades will require accurate knowledge of existing water resources and the hydrologic cycle for 

effective water resource management.  Global food security is one of the challenges of the 21st 

century.  How we choose to meet this challenge will likely come to redefine our relationship 

with the environment and with each other.  The incorporation of new knowledge and 

technologies into modern agriculture will play a crucial role in meeting the food and water needs 

of the coming decades.  This thesis illustrates the improvement and potential of one such 

technology, and a glimpse of the future of precision agriculture. 
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Chapter 2: Incorporation of Globally Available Datasets into the 

Cosmic-ray Neutron Probe Method for Estimating Field Scale Soil 

Water Content 

2.1 Introduction 

The ability to model and forecast the hydrologic cycle will play a major role in effective 

water resource management in the coming decades. Currently, most land surface models (LSM) 

aimed at characterizing the fluxes of water, energy, and nutrients, have relied on either sparse 

point scale SWC monitoring networks (Crow et al. 2012) or remote sensing products with large 

pixel sizes (~36 km) and shallow penetration depths (e.g., ~ 2-5 cm for SMOS; Kerr et al., 2010 

and SMAP Entekhabi et al., 2010). A critical scale gap exists between these methods requiring 

innovative monitoring strategies (Robinson et al., 2008). Moreover, as LSMs continue to move 

towards highly refined spatial resolutions of 1 km or less (Wood et al., 2011), the need for 

accurate and spatially exhaustive SWC datasets continues to grow (Beven and Cloke, 2012). 

Estimating and monitoring SWC at the appropriate spatial and temporal scale for effective 

incorporation into LSMs has proven to be a difficult task. On one hand, monitoring networks at 

the regional (e.g., Nebraska Automated Weather Data Network; AWDN, Oklahoma Mesonet) 

and continental scales (Climate Reference Network; CRN, Soil Climate Analysis Network; 

SCAN) have continuously recording point sensors. However, these networks have limited spatial 

coherence due to the nature of point based SWC sensors only representing the point at which they 

are placed, and not the surrounding landscape (Vereecken et al., 2008). Techniques such as 

temporal stability analysis (Vachaud et al., 1985) can help improve the representativeness of the 

monitoring networks but require a priori spatial information. On the other hand, remote sensing 
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satellites using passive microwaves can monitor global SWC data every few days albeit with 

large spatial footprints (~36 km, Entekhabi et al., 2010; Kerr et al., 2010). In addition, passive 

microwaves lack significant penetration depths (~ 2-5 cm Njoku et al., 1996), limiting their 

effectiveness as a remote sensing input for full root zone coverage in LSMs.  

Alternatively, the field of geophysics offers a variety of techniques to help fill the spatial 

and temporal gaps between point sensors and remote sensing products (Robinson et al., 2008). 

Bridging this gap requires both novel geophysical techniques and integrated modeling strategies 

capable of merging both point and remotely sensed data into a unified framework (Binley et al., 

2015). One promising geophysical technique to help fill this need is fixed (Desilets et al., 2010, 

Zreda et al., 2012) and roving cosmic-ray neutron probes (CRNP; Chrisman et al., 2013, Dong et 

al., 2014), which measures the ambient amount of low-energy neutrons in the air. The low-

energy neutrons are highly sensitive to the mass of hydrogen, and thus SWC, in the near surface 

(Zreda et al., 2012). CRNP estimate the area-average SWC because neutrons are well mixed 

within the footprint of the sensor which typically has a radius of ~300 m and depths of ~12-76 

cm (Desilets and Zreda 2013, Kohli et al., 2015).  

To date, the CRNP method has been mostly used as a fixed system in one location to 

continuously measure SWC as part of a large monitoring network (Zreda et al., 2012, Hawdon et 

al., 2014). Recent advancements have allowed the CRNP to be used in mobile systems to 

monitor transects across Hawaii (Desilets et al., 2010), monitor entire basins in southern Arizona 

(Chrisman et al., 2013), compare against remote sensing products in central Oklahoma (Dong et 

al., 2014), and monitor ~140 agricultural fields in eastern Nebraska (Franz et al., 2015). In order 

to accurately estimate SWC, the CRNP method relies on a calibration function to convert 

observed low-energy neutron counts into SWC (Desilets et al., 2010, Bogena et al., 2013, see 
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Sec. 2.2 for full details). The calibration procedure requires site specific sampling of both soil 

and vegetation data in order to determine the required parameters. While the calibration of a 

fixed CRNP is fairly standardized (Zreda et al., 2012; Franz et al., 2012; Iwema et al., 2015, 

Baatz et al., 2015), the heterogeneous nature of soil and vegetation characteristics across a 

landscape makes the pragmatic calibration of the mobile CRNP a significant challenge. 

Specifically, the presence of water within vegetation and the soil minerals may alter the shape of 

the local calibration function and thus accuracy of SWC. The need for reliable, accurate, depth-

dependent, and localized soil and vegetation spatial information for use in the calibration 

function is critical in order to fully harness the potential of the CRNP to monitor landscape scale 

SWC across the globe. 

The objective of this study is to explore the utility and accuracy of currently available 

global soil and vegetation datasets (soil organic carbon, soil bulk density, soil clay weight 

percent, and crop biomass) for use in the calibration function. To accomplish our objective, we 

aimed to answer the following questions: 

1) Can global datasets of soil bulk density, soil organic carbon, and soil clay weight 

percent be used to in lieu of in-situ sampling within reasonable error for use in the CRNP 

calibration function? 

2) Can the use of remotely sensed vegetation products, specifically the Green Wide 

Dynamic Range Vegetation Index (GrWDRVI) be used to quantify fresh biomass with 

reasonably low error (< 1 kg/m2) for use in the CRNP calibration function? 

To answer these questions, we tested the accuracy of these datasets against in-situ sample 

datasets of the same parameters. Existing in-situ datasets from across the CONUS were then 
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combined with in-situ datasets from eastern Nebraska, which focused on fast growing crops of 

maize and soybean. Specifically, we tested the accuracy and use of a ~1 km global soil dataset 

(Shangguan et al., 2014). In addition, we examined the use of the Green Wide Dynamic Range 

Vegetation Index (GrWDRVI, Gitelson, 2004) derived from NASA’s MODIS sensor aboard the 

Terra satellite for use in estimating the amount of fresh crop biomass.  

 The remainder of this chapter is organized as follows: In the Methods section, the CRNP 

method is first presented, with emphasis on the integration of the calibration function and soil 

and vegetation parameters to convert observed low-energy neutron counts into SWC. Next, in-

situ methods for estimating the soil and vegetation calibration parameters are discussed, which is 

followed by discussions on the soil and vegetation products available globally at ~1 km 

resolution. In the Results section, we first compare the in-situ soil sampling against the global 

datasets. Next, we develop a 1 km CONUS soil lattice water map using in-situ samples. We then 

compare the GrWDRVI against in-situ samples from Nebraska to estimate the changes in maize 

and soybean fresh biomass. Lastly, we present an error propagation analysis investigating the 

potential uncertainty of using the global soil calibration data vs. local in-situ sampling. The paper 

concludes with a discussion on best practice recommendations for calibrating and validating a 

roving CRNP experiment. 

 

2.2 Methods 

2.2.1 Overview of the Cosmic-ray Neutron Probe 

The CRNP estimates area-averaged SWC via measuring the intensity of epithermal 

neutrons near the ground surface (Zreda et al. 2008, 2012). A cascade of neutrons with varying 
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energy levels are created in the earth’s atmosphere when incoming higher energy particles 

produced within supernovae interact with atmospheric nuclei (Zreda et al., 2012 and Kohli et al., 

2015). After fast neutrons are created, they continue to lose energy during numerous collisions 

with nuclei in air and soil, and become epithermal neutrons (i.e., the neutrons which are 

primarily measured by the moderated detector). The abundance of hydrogen atoms in the air and 

soil largely controls the removal rate of epithermal neutrons from the system (Zreda et al. 2012). 

Water in the near surface soil (i.e. SWC) is one of the largest source of hydrogen present in 

terrestrial systems (McJannet et al. 2014). Thus, relative changes in the intensity of epithermal 

neutrons are overwhelmingly due to changes in the SWC. However, the shape of the calibration 

function (see section 2.2) is modified by local soil and vegetation parameters (Zreda et al. 2012) 

reflecting the variation of background hydrogen levels across landscapes. 

Using a standard neutron detector with a 2.54 cm layer of plastic, Zreda et al. (2008) first 

described the support volume the detector measures to be a circle of ~300 m in radius with 

vertical penetration depths of 12 to 76 cm depending on SWC. Recent neutron transport 

modeling has further refined the footprint area to be a function of atmospheric water vapor, 

elevation (Desilets and Zreda, 2013), surface heterogeneity (Kohli et al., 2015), vegetation, and 

SWC.  Given the large measurement footprint area at tens of hectares, this non-invasive 

technique is an ideal complement to long-term surface energy balance monitoring around the 

globe. Currently, there are >200 fixed CRNP (personal communication with Darin Desilets of 

HydroInnova LLC, Albuquerque, NM) functioning in this capacity around the United States of 

America (Zreda et al., 2012), Australia (Hawdon et al., 2014), Germany (Baatz et al., 2015), 

South Africa, China, and the United Kingdom. The real-time SWC data provide critical 
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infrastructure for use in weather forecasting and data assimilation in LSMs (Shuttleworth et al., 

2013, Rosolem et al., 2014, Renzullo et al., 2014).  

In addition to the fixed CRNP measuring hourly SWC, a roving version of the CRNP has 

been used to reliably measure SWC at temporal resolutions as low as 1 minute (Chrisman et al., 

2013; Dong et al., 2014) providing the ability to make SWC maps over hundreds of square 

kilometers in a single day. Moreover, Franz et al. (2015) found that a combination of fixed and 

roving CRNP data in a statistical framework has the ability to form an accurate, real-time, and 

multiscale monitoring network. With the continued increase in observation spatial scales, the use 

of in-situ sampling in the traditional CRNP calibration procedure is no longer practical, thus 

requiring the use of alternative available datasets to improve its operability. The remainder of 

this work will first describe the availability of such global datasets and then test the accuracy of 

using the datasets in the CNRP calibration function.   

 

2.2.2 The Cosmic-ray Neutron Probe Calibration Function 

In order to convert observed epithermal neutron measurements into SWC, a series of 

correction factors and calibration functions have been developed.  Zreda (2012) describes in 

detail the correction factors needed for geomagnetic latitude, changes in incoming high-energy 

cosmic-ray intensity, and atmospheric pressure. Rosolem et al. (2013) further describes a 

correction factor for changes in absolute air humidity near the surface. Following these four 

correction factors, the corrected epithermal neutron counts can be converted into SWC. Desilets 

et al. (2010) proposed the original calibration function (Eq. 1) valid for mass based gravimetric 

measurements which Bogena et al. (2013) further expanded for volumetric water content. The 
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calibration function has been successfully tested against direct sampling and point sensor 

measurements with RMSE < 0.03 cm3/cm3 across the globe including arid shrublands in 

Arizona, USA (Franz et al., 2012), semi-arid forests in Utah, USA (Lv et al., 2014), to humid 

forests in Germany (Bogena et al., 2013), and across ecosystems in Australia (Hawdon et al., 

2014). The original calibration function proposed by Desilets et al., (2010) is: 

𝜃𝑇 = (
𝑎0

𝑁

𝑁0
−𝑎1

− 𝑎2)        (1) 

where 𝜃𝑇 (g/g) is the total gravimetric water content, 𝑎0 = 0.0808, 𝑎1= 0.3720, 𝑎2 = 0.1150 (see 

Desilets et al., (2010) for details), 𝑁(counts per time interval) is the aforementioned epithermal 

corrected neutron count rate, and 𝑁0 (counts per time interval) is the theoretical counting rate at a 

location with dry silica soils. Zreda et al. (2012) illustrated that:  

𝜃𝑇 = 𝜃𝑝 + 𝜃𝐿𝑊 + 𝜃𝑆𝑂𝐶        (2) 

where 𝜃𝑝 (g/g) is the gravimetric pore water content in the soil, 𝜃𝐿𝑊 (g/g) is the soil lattice water, 

and 𝜃𝑆𝑂𝐶 (g/g) is the soil organic carbon water equivalent. The volumetric soil water content, 

SWC, (cm3/cm3) is found by multiplying 𝜃𝑝 by 
𝜌𝑏

𝜌𝑤
, where 𝜌𝑏 (g/cm3) is dry soil bulk density and 

𝜌𝑤 = 1 g/cm3 is the density of water.  

To account for effects of time varying above-ground vegetation on the epithermal neutron 

counts (Franz et al., 2013; Coopersmith et al., 2014), Franz et al. (2015) proposed the following 

additional correction factor to 𝑁0: 

𝑁0(𝐵𝑊𝐸) = 𝑚 ∗ 𝐵𝑊𝐸 + 𝑁0(0)      (3) 
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where 𝑁0(0) is the instrument specific estimate of 𝑁0 with no standing biomass, 𝐵𝑊𝐸 is the 

biomass water equivalent (kg/m2 ~ mm of water/m2), and 𝑚 is the slope of the relationship 

between 𝑁0 and 𝐵𝑊𝐸, determined via in-situ calibration datasets. The 𝐵𝑊𝐸 is further defined 

as: 

𝐵𝑊𝐸 = 𝑆𝑊𝐵 − 𝑆𝐷𝐵 + 𝑆𝐷𝐵 ∗ 𝑓𝑊𝐸       (4) 

where 𝑆𝑊𝐵 is the standing wet biomass per unit area (kg/m2 ~ mm of water/m2), 𝑆𝐷𝐵 is the 

standing dry biomass per unit area (kg/m2 ~ mm of water/m2), and 𝑓𝑊𝐸 = 0.494 is the 

stoichiometric ratio of H2O to organic carbon (assuming organic carbon is cellulose, C6H10O5). 

Using nine in-situ calibration datasets for maize and soybean crops, Franz et al. (2015) found 

their roving CRNP had a statistically significant linear relationship between 𝑁0 and 𝐵𝑊𝐸 

yielding 𝑁0(0) = 518.34 counts per minute and 𝑚 = −4.9506 (R2 = 0.515 and p-value = 0.03). 

We note the coefficients are less suitable for forest canopies given the need for a neutron 

geometric efficiency factor described further in the supplemental material of Franz et al. (2013). 

We also refer the reader to Coopersmith et al. (2014) and Baatz et al. (2015) for further 

discussion of CRNP use in forest canopies. 

 

2.2.3 In-situ Soil and Vegetation Calibration Parameters 

The calibration function summarized in equations (1-4) requires depth-average estimates 

of three soil parameters, 𝜃𝐿𝑊, 𝜃𝑆𝑂𝐶 , and 𝜌𝑏, and two vegetation parameters 𝑆𝑊𝐵 and 𝑆𝐷𝐵. In 

order to estimate area-average soil parameters, Zreda et al. (2012) and Franz et al. (2012) 

recommended averaging 108 individual in-situ soil samples from 18 locations (every 60 degrees 

and radii of 25, 75, 200 m) and six depths (every 5 cm from 0-30 cm) within a CRNP footprint. 
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In light of recent modeling work (Kohli et al. 2015), this sampling pattern may need to be 

adjusted to be more representative of encountered conditions (such as shorter sampling distances 

due to reduced footprint area). Zreda et al. (2012) found that a composite sample of 1 g of 

material gathered from each of the 108 samples was adequate to estimate 𝜃𝐿𝑊 and 𝜃𝑆𝑂𝐶 . These 

composite samples can be analyzed directly for lattice water (g/g), soil total carbon (TC, g/g), 

and inorganic carbon (TIC, g/g) determined by measuring CO2 after the sample is acidified (e.g. 

by Actlabs of Ontario Canada, Analysis Codes: 4E-exploration, 4F-CO2, 4F-C, and 4F-H2O+/-). 

Franz et al. (2015) reported 𝜃𝑆𝑂𝐶 = (𝑇𝐶 − 𝑇𝐼𝐶) ∗ 1.724 ∗ 𝑓𝑊𝐸 , where 1.724 is a constant to 

convert total organic carbon into total organic matter and 𝑓𝑊𝐸 is given above. To estimate 𝜌𝑏 at 

each location, Zreda et al. (2012) used a 30 cm long split tube auger, which contained six 5 cm 

diameter by 5 cm length rings. All samples were then averaged to get a composite value.  

In order to estimate standing wet biomass (SWB) and standing dry biomass (SDB) in 

maize and soybeans, Franz et al. (2015) measured average plant density in 1 m2 quadrats at each 

of the 18 sampling locations. In a subset of six sites (randomly chosen one radius for each of the 

six transects) three plants were removed and placed in a paper bag for weighing within two hours 

(to minimize water loss). The plants were then dried for five days at 70o C and weighed again. 

Using the density of plants, wet weight, and dry weight, SWB and SDB can be determined at each 

site and averaged across the CRNP footprint. 

 

2.2.4 Global Datasets of Soil Properties 

Shangguan et al. (2014) compiled a thirty arc second (~1 km) Global Soil DatasEt 

(GSDE) with 34 soil parameters in 8 layers (0–0.045, 0.045–0.091, 0.091–0.166, 0.166–0.289, 
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0.289–0.493, 0.493–0.829, 0.829–1.383, and 1.383–2.296 m). In order to construct an average 

value relevant to the CRNP, we arithmetically averaged the top four layers in each grid location 

to form a composite value (~30 cm) over the CONUS. The GSDE contains estimates of soil bulk 

density and soil organic carbon. In order to construct a map of lattice water, we explored if any 

relationships existed between clay weight fraction and lattice water following the work of 

Greacen et al. (1981) using active neutron probe calibration procedures developed for Australian 

soils. In order to account for variations in chemical and physical weathering on lattice water 

(Zreda et al., 2012), we further partitioned the analyses based on soil order. A global soil order 

map with a resolution of five arc minutes (~ 8 km) containing 25 major soil classifications was 

first uploaded to ArcMap (ESRI, v. 10.2.2) and clipped to the CONUS. The 25 soil 

classifications were then categorized into 12 major classifications of U.S. soil taxonomy (see Fig. 

2.1, personal communication with Prof. M. Kuzila, University of Nebraska-Lincoln).  
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Figure 2.1: Map of soil taxonomic classification map over the Continental United States of 

America using the twelve USA soil taxonomic orders (data source FAO 2007 and personal 

communication with M. Kuzila. Note gelisols are not present in the CONUS). Black dots 

indicate 61 locations where we have in-situ composite/average samples for soil bulk density, soil 

lattice water, soil organic carbon, and clay weight fraction collected over a 12.6 ha circle and 

averaged over the top 30 cm (Table S2.1). 

 

The reduction from 25 to 12 soil classifications allowed us to generate larger sample sizes 

for each classification from the available calibration datasets. Using the available lattice water 

samples from Zreda et al. (2012) and additional samples collected in-situ over 2014, we analyzed 

if any statistically significant relationships existed between GSDE clay weight percent and 61 in-

situ lattice water samples for each of the US soil orders (Table S2.1). We note that this procedure 

could be used globally if in-situ lattice water samples were available for all 25 soil taxonomic 

groups. From these relationships, a map of the CONUS lattice water weight percent was 

developed by using either the mean value of the in-situ lattice water or the linear relationships 

between clay weight percent (from the GSDE) and the lattice water in-situ samples. 

Additionally, in-situ samples of soil organic carbon, bulk density, clay weight percent, and lattice 

water were compared against the same parameters derived from the GSDE.  
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2.2.5 Global Datasets of Vegetation Properties 

In order to estimate SWB and SDB, we downloaded remotely sensed 500 m MODIS 

reflectance data from NASA’s Terra satellite (http://earthexplorer.usgs.gov/). To calibrate and 

validate the in-situ vegetation data to the remotely sensed vegetation estimates, we sampled two 

different agricultural areas in eastern Nebraska. The MODIS reflectance data were used to 

generate various vegetation indices (see detailed information below), and then calibrated against 

historical biomass data (2003-2013) from 3 fields near Mead, NE. Each field is part of the 

AmeriFlux network (http://ameriflux.ornl.gov/) with data going back to 2001 (site description 

given in Suyker et al., 2005). Each field is approximately 65 ha.  Field 1 (Mead Irrigated/US-

Ne1, 41.1650°, -96.4766°) is irrigated with continuous maize. Field 2 (Mead Irrigated 

Rotation/US-Ne2, 41.1649°, -96.4701°) is irrigated with a rotation of maize and soybean. Field 3 

(Mead Rainfed/US-Ne3, 41.1797°, -96.4396°) is rainfed with a rotation of maize and soybean. 

At these three fields, destructive biomass samples were collected approximately every two weeks 

at 6 different locations in the field, typically consisting of 30-35 individual plants per sampling 

bout. From the destructive sampling bouts, we were able to compute SWB and SDB. The sites, 

with their long sampling records consisting of both rainfed and irrigated soybean and maize, are 

an ideal location for calibrating the remote sensing reflectance data and vegetation indices. In 

order to validate the derived vegetation index and coefficients from the above mentioned three 

sites, we used 4 bouts of destructive biomass sampling at two fields (each approx. 65 ha.) during 

2014 near Waco, NE (Franz et al. 2015). The fields were irrigated maize (40.9482°, -97.4875°) 

and irrigated soybean (40.9338°, -97.4587°). SWB and SDB were collected following the 

protocol described in section 2.3.  



14 
 

 A total of 924 MODIS images over the growing seasons (May to October) between 2003 

and 2014 were downloaded for calibration and validation of the corresponding destructive 

biomass samples at the five field sites in central and eastern Nebraska (note: MODIS images 

from the closest date to in-situ sampling were used with up to a 4 day offset). Using the Python 

Integrated Development Environment (v. 2.7.8) built into ArcGIS (v. ESRI, v. 10.2.2), we 

extracted the MODIS reflectance data in the green and near-infrared electromagnetic spectrum 

range. Next, we removed any pixels that were skewed by incidental cloud cover (Nguy-

Robertson & Gitelson, 2015). The resulting data were then transformed from separate reflectance 

images into the Green Wide Dynamic Range Vegetation Index (GrWDRVI; Gietelson, 2004): 

𝐺𝑟𝑊𝐷𝑅𝑉𝐼 =  
(0.1∗𝑁𝑒𝑎𝑟 𝐼𝑛𝑓𝑟𝑎𝑟𝑒𝑑−𝐺𝑟𝑒𝑒𝑛)

(0.1∗𝑁𝑒𝑎𝑟 𝐼𝑛𝑓𝑟𝑎𝑟𝑒𝑑+𝐺𝑟𝑒𝑒𝑛)
     (5)  

where near-infrared light (MODIS band 2) has wavelength between 841 and 876 nm and green 

light (MODIS band 4) has wavelength between 545 and 565 nm. The GrWDRVI has been shown 

to have better correlations with observed in-situ biomass as compared to other vegetation indices 

such as NDVI (Nguy-Robertson et al., 2012; Nguy-Robertson & Gitelson, 2015). We then 

investigated if any relationships existed between GrWDRVI and SWB and SDB.  

 

2.2.6 Error Propagation Analysis of GSDE Soil Properties 

We used a Monte Carlo analysis to estimate the expected uncertainty if the GSDE 

parameters were used instead of in-situ estimates. The statistical metrics of root mean square 

error (RMSE), mean absolute error (MAE), and bias were used to describe the error propagation 

in the Monte Carlo simulation experiment. Using the 61 CONUS in-situ samples and the GSDE 

soil properties, we estimated the mean difference and the covariance matrix for 𝜃𝐿𝑊, 𝜃𝑆𝑂𝐶 , and 
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𝜌𝑏. Using these data, we simulated 100,000 realizations of the “true” (i.e. from the in-situ 

sampling) and perturbed soil properties using a multivariate normal distribution. Using a range of 

observed neutron counts and solving equations (1-2) with the true and perturbed soil properties, 

we also estimated the true and perturbed SWC. In order to provide realistic constraints on the 

error propagation results, we assumed soil bulk density was constrained between 1.2-1.5 g/cm3, 

lattice water between 1-8 wt. %, soil organic carbon between 0-8 wt. %, and SWC between 0.03-

0.45 cm3/cm3. Simulated and calculated values outside of these bounds were either reset to the 

minimum or maximum value or removed from the Monte Carlo statistics. A minimum threshold 

of 70% of simulated cases was used to compute all error statistics for each case. We note that the 

effects of growing biomass were not included here given the lack of available calibration datasets 

at all sites, but could be incorporated in future work following a similar methodology. 

 

2.3 Results 

2.3.1 Comparison of In-situ and Global Soil Calibration Parameters 

The comparisons between observed clay weight percent, soil bulk density, soil organic 

carbon and the GSDE values are summarized in Table S2.1 and Figure 2.2 a, b, c for the 61 

sampling sites within the CONUS. Other than 1 outlier (south central Texas, 29.9492o, -

97.9966o, which is located on the border between vertisols and alfisol soils), the comparison 

between the mean observed and GSDE clay weight percent (of sites that had clay weight 

percent) behaved well excluding one outlier (RMSE = 5.45 wt. %, R2 = 0.68) considering the 

difference in scale and methods. The comparisons between soil bulk density (RMSE = 0.173 
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g/cm3, R2 = 0.203) and soil organic carbon as it was during the various 2011-2014 sampling 

campaigns, (RMSE = 1.47 wt. %, R2 = 0.175) generally followed the same positive trend.  

 

Figure 2.2: Comparison between 61 in-situ composite sample and GSDE value from the closest 

pixel for a) clay weight percent b) soil bulk density, and c) soil organic carbon. d) Comparison 

between in-situ lattice water and derived values using GSDE clay weight fraction and soil 

taxonomic orders. See Table 2.1 for summary of data by taxonomic group, Table S2.1 for raw 

data, and Table 2.2 for statistical summary of differences between in-situ and GSDE product. 

Note error bars denote +/- 1 standard deviation. 
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In order to construct a map of the CONUS lattice water, we investigated if any significant 

relationships existed between GSDE clay wt. % and observed lattice water for each US soil 

taxonomic group (Table 2.1) following the relationships described from observations in 

Australian soils (Greacen, 1981). We found that a significant linear relationship existed between 

clay wt. % and lattice water for all 61 sites (R2 = 0.183, p value <0.001). However, after 

partitioning the sites into soil taxonomic groups, only the mollisol taxonomic group yielded a 

statistically significant relationship (R2 = 0.539, p value <0.001). Therefore, in order to construct 

a CONUS lattice water map, we used the mean values for six taxonomic groups and neglected 

the remaining five taxonomic groups due to an inadequate number of samples (Figure 2.3). 

Figure 2.2d illustrates the comparison between the derived and observed lattice water for the 61 

CONUS sites (RMSE = 1.299 wt. %, R2 = 0.315). Table S2.1 summarizes the observed and 

GSDE values for all 61 sites and Table 2.2 summarizes the mean difference and covariance 

matrix between the in-situ values and GSDE values. The mean difference and covariance 

differences were used in the error propagation analysis described in section 2.6 and 3.3. We note 

that each of the mean differences followed a normal distribution (see Table S2.1 for in-situ and 

GSDE values). 
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USA Soil 

Taxonomic 

Group 

Mean 

Lattice 

Water 

(Wt. 

%) 

Std. 

Lattice 

Water 

(Wt. 

%) 

Number 

of 

Samples 

Linear 

Regression 

Slope 

Linear 

Regression 

Intercept 

Linear 

Regression 

R2     

Linear 

Regression 

p value 

GSDE 

Derived 

CONUS 

Lattice 

Water 

Product 

Alfisol 4.31 1.36 9 6.09 -0.11 0.086 0.44330 Mean 

Andisol NA NA NA NA NA NA NA NA 

Aridisol 2.73 1.36 10 4.82 -0.15 0.095 0.38607 Mean 

Entisol 1.47 0.93 5 2.48 -0.14 0.233 0.41064 Mean 

Gelisol NA NA NA NA NA NA NA NA 

Histosol NA NA NA NA NA NA NA NA 

Inceptisol 4.98 0.28 2 NA NA NA NA Mean 

Mollisol 3.18 1.22 24 1.03 0.11 0.539 0.00004 Linear 

Oxisol NA NA NA NA NA NA NA NA 

Spodosol 2.68 2.10 4 3.45 -0.11 0.020 0.85919 Mean 

Ultisol 2.82 2.33 6 0.28 0.20 0.229 0.33672 Mean 

Vertisol 5.18 NA 1 NA NA NA NA NA 

ALL 3.16 1.58 61 1.68 0.09 0.183 0.00066 NA 

 

Table 2.1: Summary of mean, standard deviation of in-situ lattice water samples organized by 

USA soil taxonomic groups. The table also summarizes a linear regression analysis using the 

GSDE clay percent and in-situ sample. The last column indicates how the 1 km CONUS lattice 

water map was generated. Note NA stands for not applicable because of a lack of data. 
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  Bulk Density (g/cm3) 
Lattice Water 

(Wt. %) 

Organic Carbon 

(Wt. %) 

Mean Difference of in-situ value 

- GSDE value 
-0.10035 -0.05789 -0.07077 

Covariance matrix of in-situ value - GSDE value 

  Bulk Density (g/cm3) 
Lattice Water 

(Wt. %) 

Organic Carbon 

(Wt. %) 

Bulk Density (g/cm3) 0.0386 -0.0567 -0.2077 

Lattice Water (Wt. %)   1.6745 0.3624 

Organic Carbon (Wt. %)     3.5810 

 

Table 2.2: Summary of mean difference between in-situ samples and GSDE values (Figure 2.3) 

for bulk density, lattice water and organic carbon. Bottom) Summary of covariance matrix of 

difference between in-situ values and GSDE values. The mean difference and covariance data 

were used in an error propagation analysis illustrated in Figure 2.6. 
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Figure 2.3: Derived 1 km resolution lattice water weight percent map using the GSDE clay 

percent and regression analyses organized by soil taxonomic classification. See Table 2.1 for 

estimates of the mean, standard deviation, and linear regression vs. clay percent organized by 

taxonomic group. Black dots indicate 61 locations where we have in-situ composite/average 

samples for soil bulk density, soil lattice water, soil organic carbon, and clay weight fraction 

collected over a 12.6 ha circle and averaged over the top 30 cm (Table S2.1). Missing areas 

indicate surface water bodies or soil taxonomic groups with no or limited in-situ lattice water 

sampling (see Table 2.1). 

 

2.3.2 Comparison of In-situ and Remotely Sensed Vegetation Calibration Parameters 

Using the 11 years of destructive vegetation sampling from 3 fields near Mead, NE, we 

found that the GrWDRVI was able to predict SWB when partitioning the data into maize and 

soybean, irrigated and rainfed, and green-up/mature and senescence periods of crop development 

(Figure 2.4 and Tables S2.2 and 2.3). Figure 2.4a and 2.4b illustrate the logistic functions that 

were used to predict SWB for maize green-up (RMSE = 0.88 kg/m2) and soybean green-up 
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(RMSE = 0.47 kg/m2). We note that SWB relationships with GrWDRVI indicate that GrWDRVI 

values less than 0.25 equated to the absence of SWB. During senescence, we found that a second 

order power law function fit the data well. We found the maize senescence functions (DOY> 

210) needed to be further partitioned by irrigated and rainfed conditions as limitations in soil 

water will occur more quickly with mature plants that utilize the entire root zone. The resulting 

functions for irrigated maize during senescence (RMSE = 0.75 kg/m2) and rainfed maize during 

senescence (RMSE = 0.92 kg/m2) behaved well. For the soybean senescence function 

(DOY>230), we found a single function behaved reasonably well for both irrigated and rainfed 

conditions (RMSE = 0.45 kg/m2). As expected from previous research (Ciganda et al, 2008; 

Peng et al. 2011), we found that the GrWDRVI was a poor predictor of SDB/percent water 

content of the vegetation. We will discuss these reasons and alternative strategies for estimating 

SDB in section 4.2. 
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  Green-up Senescense 

  
GrWDRI < 

0.25 
GrWDRI >= 0.25 

GrWDRI < 

0.25 
GrWDRI >= 0.25 

Maize 

Rainfed 

0 

y=8/(1+exp(-9.844(x-

0.501)))-0.618, RMSE = 0.88 

kg/m2 

0 

y=-1.354x^(-

1.351)+8.817, RMSE = 

0.75 kg/m2 

Irrigated 

y=-0.1348x^(-

2.875)+7.256, RMSE = 

0.92 kg/m2 

Soybean 

Rainfed 

0 

y=4/(1+exp(-7.542(x-

0.6085)))-0.247, RMSE = 

0.47 kg/m2 

0 

y=-0.1483x^(-

2.225)+3.243, RMSE = 

0.45 kg/m2 
Irrigated 

 

Table 2.3: Summary of derived equations estimating standing wet biomass from GrWDRVI for 

maize and soybean partitioned into irrigated and rainfed areas and green-up (DOY< 210 for 

maize, DOY<230 for soybean) and senescence. Destructive biomass data is aggregated from 3 

fields near Mead, NE between 2003-2013 (Table S2.2). We note that the maize and soybean 

functions were bounded to provide realistic behavior at the observed GrWDRVI and destructive 

vegetation sampling bounds.  See main text for details. 
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Figure 2.4: Relationship between GrWDRVI and observed standing weight biomass for maize 

(a, c) and soybean (b, d) partitioned into green-up (DOY< 210 for maize, DOY<230 for 

soybean) and senescence. Destructive vegetation data is aggregated from 3 fields near Mead, NE 

between 2003-2013 (Table S2.2). The regression coefficients and equations are summarized in 

Table 2.3. Note that the maize and soybean functions were subject to the constraints in order to 

provide realistic behavior at the observed GrWDRVI and destructive vegetation sampling 

bounds. See main text for details. 

 

Using the derived relationships from the three study sites near Mead, NE, we applied the 

equations to our two study sites near Waco, NE (~ 88 km from Mead, NE, Figure 2.5 and Tables 

2.4 and 2.5). Figure 2.5 illustrates the time series of SWB using the 8 day MODIS product and 

derived equations for both field sites. The figure also illustrates the observed destructive 

sampling for 4 different sampling bouts. With the limited data, we found the time series of SWB 
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calculated from the MODIS data followed the expected green-up and senescence SWB behavior 

for both the irrigated maize and soybean. The GrWDRVI derived SWB largely captured the 

maximum observed value for both the irrigated maize (6.58 kg/m2 vs. 6.2 kg/m2) and irrigated 

soybean (2.61 kg/m2 vs.1.81 kg/m2). The largest discrepancy was during the maize green-up 

period (DOY 183) where the observed value was 2.4 kg/m2 and ~4.0 kg/m2 calculated from the 

GrWDRVI. While the derived equations behaved well for this limited validation dataset, the 

equations should be tested at additional sites where other crop and soil types may influence the 

function coefficients.  Overall, the equations and regression fits resulting in RMSE < 1 kg/m2 are 

within the uncertainty of destructive biomass sampling in crops (Franz et al., 2013; 2015). By 

having general SWB relationships (for eastern Nebraska) through time using the 8 day MODIS 

data, this could allow for reasonable biomass corrections to N0 with minimal effects (<0.01 

cm3/cm3) on the overall estimation of SWC.  
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DOY 

(2014) 

GrWDRVI, 

Irrigated-Maize 

GrWDRVI- 

Irrigated 

Soybean 

Calculated Standing Wet 

Biomass- Irrigated Maize 

(kg/m2) 

Calculated Standing Wet 

Biomass- Irrigated 

Soybean (kg/m2) 

153 0.23 0.23 0.00 0.00 

161 0.24 0.24 0.00 0.00 

169 0.32 0.28 0.53 0.06 

177 0.57 0.54 4.69 1.25 

185 0.55 NA 4.33 NA  

193 0.63 0.63 5.63 1.91 

201 0.61 0.71 5.34 2.48 

209 0.55 0.73 6.50* 2.61 

217 0.57 0.74 6.58 2.67 

225 0.50 0.73 6.27 2.61 

233 0.47 0.74 6.07 NA  

241 0.40 0.68 5.38 2.89 

249 0.43 0.64 5.73 6.77 

257 0.27 0.47 1.44 6.07 

265 0.25 0.44 0.00 5.83 

281 0.21 0.28 0.00 2.02 

289 0.21 0.26 0.00 0.78 

297 0.20 0.25 0.00 0.00 

 

Table 2.4: Summary of 2014 GrWDRVI and calculated standing wet biomass for irrigated maize 

and irrigated soybean fields near Waco, NE. Note that the senescence equation was applied to 

DOY 209 for the irrigated maize field as planting date and development can vary locally. The 

drop in GrWDRVI between DOY 201 and 209 is a clear indicator of change in plant growth stage 

that can be used on a field by field basis. 
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DOY (2014), 

Irrigated Soybean 

Observed Standing Wet 

Biomass- Irrigated 

Soybean (kg/m2) 

DOY (2014), 

Irrigated Maize 

Observed Standing Wet 

Biomass- Irrigated 

Maize (kg/m2) 

167 0.19 161 0.13 

196 1.63 183 2.40 

211 1.81 217 6.22 

259 1.63 259 0.30 

 

Table 2.5: Summary of 2014 observed standing wet biomass for irrigated maize and irrigated 

soybean fields near Waco, NE. The observations represent the aggregation of 18 plants collected 

at 6 different locations across the field on the sampling date.  

 

 

Figure 2.5: Time series of standing wet biomass for two study sites (irrigated maize and 

irrigated soybean) near Waco, NE over the 2014 growing season. The graph contains the 

observed in-situ sampling in addition to the GrWDRVI estimates using the equations summarized 

in Table 2.3. See Table 2.4 for GrWDRVI values and Table 2.5 for in-situ estimates. 
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2.3.3 Error Propagation Analysis of GSDE Soil Properties 

In order to further assess the accuracy of our datasets, we synthetically altered the 

parameters via a Monte Carlo error analysis.  This was done using the GSDE soil parameters 

(𝜃𝐿𝑊, 𝜃𝑆𝑂𝐶 , and 𝜌𝑏) as compared to using local sampling (Figure 2.6). The analysis revealed that 

for the given bounds of 𝜃𝐿𝑊, 𝜃𝑆𝑂𝐶 , and 𝜌𝑏, the maximum RSME was around 0.035 cm3/cm3 at a 

SWC = 0.40 cm3/cm3. The asymmetric shape of all the curves is expected given the nonlinear 

calibration function given in Eq. (4) and the bounded nature of soil moisture. We found that 𝜌𝑏 

was by far the most sensitive parameter, followed by 𝜃𝐿𝑊 and then 𝜃𝑆𝑂𝐶 . We expect the 

influence of vegetation changes to be small on the overall accuracy of SWC (<0.01 cm3/cm3) 

given the low RMSE described in section 3.2 (< 1 kg/m2, which is ~1 mm of water or 0.0033 

cm3/cm3 for a soil depth of 300 mm), We also note the critical factor in the error propagation 

analysis is the assumed range of 𝜌𝑏, given that it is directly multiplied by the gravimetric water 

content in the calibration function. Therefore, future sampling efforts or evaluations of available 

datasets should seek to minimize the range of bulk density. 
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Figure 2.6: Propagation of error analysis using Monte Carlo simulations of 100,000 soil 

parameter datasets of true soil parameters (i.e. soil bulk density, lattice water, soil organic 

carbon) and perturbed parameters with matching mean differences and covariance matrix 

between in-situ samples and GSDE derived parameters (see Table 2.2). Three error metrics are 

presented across a range of neutron counts (and thus SWC values). Note that soil bulk density 

was constrained to 1.2-1.5 g/cm3, lattice water was constrained from 1-8 wt. %, soil organic 

carbon was constrained from 0-8 wt. %, and soil water content was constrained from 0.03-0.45 

cm3/cm3. Simulated and calculated values outside of these bounds were either reset to the 

minimum or maximum or removed from the Monte Carlo statistics. A minimum threshold of 

70% of simulated cases were used to compute error statistics. 

 

2.4 Discussion 

2.4.1 Global Soil Calibration Parameters 

The correlation between observed and GSDE clay content was very strong (Figure 2.2a) 

for all 61 sites in the CONUS except for the site in south central Texas. The site occurred near a 

transition from vertisol to alfisol soil taxonomic groups; the site may have been improperly 
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categorized (Table S2.1) or may have straddled a sharp gradient in clay contents. The strong 

correlation of the GSDE clay content with the observed values allowed us to use the GSDE clay 

content in understanding the correlation between clay content and lattice water organized by US 

soil taxonomic groups (Table 2.1). A strong correlation was only found for clay content and 

lattice water for the mollisol soil taxonomic group (see Greacen, 1981; Zreda et al., 2012). This 

strong correlation is significant because large portions of the Midwest and Great Plains regions 

of the United States are made up of mollisol soils.  Globally, mollisol soils comprise about 7% of 

the land surface (United Nations 2007) but contain some of the highest productive grassland and 

crop areas (i.e. Central USA, Argentina, Central Eurasia).  As such, the roving CRNP method 

remains applicable within grassland agricultural settings. No significant linear relationships with 

clay content were found for alfisol, aridisol, entisol, inceptisol, spodosol, or ultisol. Instead the 

mean value was assigned to the alfisol, aridisol, entisol, inceptisol, spodosol, and ultisol soil 

taxonomic groups when generating the CONUS map. We found the differences in most of the 

soil taxonomic mean values were statistically significant among different taxonomic groups 

given the small standard errors of the means (not shown but can be calculated from data in Table 

2.1). The current analysis did not contain enough samples for the soil taxonomic groups of 

andisol, gelisol, histosol, oxisol, or vertisol to perform a linear regression or assign a mean value. 

We recommend future work to consider repeating the analysis for a larger dataset using the FAO 

2007 (United Nations 2007) soil classification of all 25 groups (also classified for our sites in 

Table S2.1). Given the widespread interest in both the fixed and roving cosmic-ray technology, a 

database of lattice water and clay content for each site could be developed. In addition, 

warehouses like the Natural Resources Conservation Service (NRCS) in Lincoln, NE contain 

stored samples from around the USA. This warehouse with others around the globe could be 
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further sampled to help complete the global dataset for use by the cosmic-ray community. 

Finally, the NRCS regularly updates the Soil Survey Geographic Database (SSURGO), which 

contains higher spatial resolution and vertically resolved estimates of soil texture and structure 

(i.e. clay content and bulk density). With the defined regression relationships and soil taxonomic 

groups, better spatial maps of lattice water could be generated. This may become important for 

applications of the rover at scales less than 1 km, such as using it for applications in precision 

agriculture.   

The correlation between the observed and GSDE soil organic carbon was fairly poor, 

particularly at the high end (> 4 wt. %). The history of land use is critical in determining carbon 

pools and how they change through time (Post et al., 2000) and may not be well represented in 

the GSDE. However, we note that organic carbon has a relatively small impact on the calibration 

function as it is multiplied by several factors in the calibration equation. For rover survey 

experiments, we suggest that this be sampled with composite samples, particularly between sites 

with varying land use histories which can be identified using historical land cover maps.  

Observed in-situ soil bulk density and GSDE bulk density exhibited a positive 

relationship, albeit with low R2.  The poor fit and sensitivity of the parameter in the calibration 

function increases the importance of identifying the range and variability of bulk density within 

the rover sample domain. The variability shown here by the standard deviation of the bulk 

density for the individual point samples within the 28 ha sample domain varied between 0.1 and 

0.2 g/cm3. Moreover, minimizing the expected range of bulk density at a site is key given the 

propagation of error analysis presented in section 3.3. Thus, this result supports direct sampling 

at key locations (along gradients of land use, soil taxonomic groups, etc.) to constrain the range 

of expected bulk density values. We also suggest that for rover surveys in the USA (and 
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elsewhere), additional higher resolution datasets like SSURGO be used instead of the 1 km 

GSDE (in particular bulk density data as a function of depth), as significant small scale 

variability may be averaged out. This may be critical to account for in future roving CRNP 

research areas, such as precision agriculture or small scale watershed monitoring where 

significant soil texture variation may exist at short length scales. 

 

2.4.2 Global Remotely Sensed Vegetation Calibration Parameters 

The comparison of 11 years of destructive vegetation samples from maize and soybeans 

at 3 sites in eastern Nebraska indicated that the GrWDRVI was able to predict SWB in 

agricultural fields, especially when partitioned into green-up vs. senescence and irrigated vs. 

rainfed (Figure 2.4). However, as expected the GrWDRVI was unable to predict SDB. The main 

reason is as the plants begin to dry out during the late summer and early fall, leaves lose their 

chlorophyll and leaf structure beings to collapse thereby increasing reflected green and reducing 

near-infrared light (Ciganda et al. 2008; Peng et al. 2011). This is exaggerated by a change in the 

allocation of resources by the plant from leaves to grain, shifting where the majority of mass is 

located and thus weakening the capacity for the GrWDRVI to predict SDB. This biological 

investment of resources is more pronounced for maize than soybeans. As additional crops are 

included in this analysis, the location and development of the fruit and seed will impact the 

predictive relationships using vegetation indices. 

 While the developed regression relationships for maize and soybean (Table 2.3) were 

tested against independent biomass estimates from Waco, NE (Figure 2.5), we note that further 

validation is needed. In terms of a strategy for estimating SDB, we suggest that proxies such as 
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crop type and growth stage be used. Franz et al. (2013 and 2015) found that in early stages, 

maize and soybean had canopy water contents from 75-90 wt. %. By the end of senescence 

before harvest, the canopy water contents were down to 25-35 wt. %. If growth stage is not 

directly known, local meteorological observations, planting date, and crop variety can be used to 

compute proxies (e.g. growing degree days) or simulated from crop models (Allen et al. 1998). 

We note that having a reasonably accurate estimate of SWB and thus BWE (within ~ 1 kg/m2) is 

all that is required to have a relatively small impact (< 0.01 cm3/cm3) on the estimated SWC. 

Finally, we note that this methodology is not applicable to areas with woody biomass. Following 

Franz et al., (2013), Hawdon et al., (2014), Baatz et al., (2015), and Coopersmith et al., (2014) 

we suggest other vegetation relationships (i.e. BWE vs. N0) be defined. However, given the 

relatively small changes in BWE over the year in forests, we would expect small changes in N0 

through time. 

 

2.5 Summary and Conclusions 

In this chapter, we developed a framework using globally available datasets for 

estimating four (𝜃𝐿𝑊, 𝜃𝑆𝑂𝐶 , 𝜌𝑏 , 𝑆𝑊𝐵)  of the five key soil and vegetation parameters needed by 

the cosmic-ray neutron method for estimating SWC in fast growing vegetation areas such as row 

crop production in agricultural areas. The remaining crop vegetation parameter (SDB) can be 

fairly well approximated by crop type, growth stage or simulated with crop models. The 

accuracy of the GSDE soil database was tested against 61 calibration datasets from the CONUS. 

We found that the 1 km GSDE compares well against observed clay content (𝑅2 = 0.68) but 

much poorer against soil bulk density (𝑅2 = 0.203) and soil organic carbon (𝑅2 = 0.175). 

Surprisingly, of the six soil taxonomic groups we investigated, only mollisols showed a 
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statistically significant correlation with clay content. The remaining five soil taxonomic groups 

we investigated did show statistically significant different mean values.  These mean values were 

used to generate a map (not complete) of lattice water for the CONUS. From 11 years of 

destructive sampling of maize and soybean fields in eastern Nebraska, we found that the 8-day 

500 m resolution MODIS derived GrWDRVI was highly correlated to SWB, particularly when 

partitioning the fields into green-up vs. senescence and irrigated vs. rainfed (RMSE < 1 kg/m2). 

A propagation of error analysis indicated that the range of bulk density values was the most 

sensitive calibration parameter. For the selected ranges, we found the GSDE vs. local sampling 

resulted in a maximum RMSE of 0.035 cm3/cm3 at a SWC = 0.40 cm3/cm3. 

 With the continuing use of the roving CNRP we make the following recommendations on 

best calibration and use: 

1) Collect a series (minimum of 7) of full calibration datasets (𝜃𝐿𝑊, 𝜃𝑆𝑂𝐶 , 𝜌𝑏 , 𝑆𝑊𝐵, 𝑆𝐷𝐵) 

in differing land use and soil types to estimate the instrument specific slope and intercept 

for correction factor 𝑁0. 

2) In the rover sampling area, construct a map of land use including: vegetation/crop type, 

planting date, variety, rainfed vs. irrigated, and gravel vs. paved roads vs. natural areas. 

3) Collect a series of aggregate soil samples for soil organic carbon and lattice water around 

the survey area. The samples should be collected across land use, soil texture, and soil 

taxonomic groups. The GSDE or more local datasets like SSURGO in the USA can be 

used to select sites, cross validate samples, and fill in missing areas.  

4) Soil bulk density is the critical parameter in the calibration equations and overall 

accuracy of the cosmic-ray neutron method. Bulk density should be collected locally 
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wherever possible. More local datasets like SSURGO in the USA will likely perform 

better at smaller scales than the 1 km GSDE. 

5) SWC validation datasets should be collected to independently assess the accuracy of the 

rover survey results.  
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Chapter 3: Discussion on the Incorporation of Cosmic-ray Neutron 

Probe Soil Moisture Data into the Variable Infiltration Capacity 

Land Surface Model 

3.1 Soil Moisture and Modeling 

 Effective water resource management is an important part of food security.  This form of 

resource management requires an understanding of hydrologic processes on both a local and 

regional scale.  This information is often generated via hydrologic models aimed at predicting 

cycles of water, energy, and nutrients.  Hydrologic models and the knowledge they provide are 

likely to play a major role in future water management policy.  Soil moisture, is a key component 

in agricultural development and water management decisions.  It is equally important in the 

proper use of hydrologic models.   

The hydrologic cycle is connected to the energy budget of the surface of the Earth by the innate 

capacity of soil moisture to regulate latent heat flux (Houser et al., 1998).  Additionally, the 

presence of soil moisture in the root zone of vegetation plays a role in regulating precipitation 

patterns, streamflow generation, and evapotranspiration.  Due to the significant coupling of soil 

moisture to global hydrologic fluxes, accurate simulation or observation of subsurface water has 

been shown to be valuable in hydrologic modeling (Wang, 2014; Brunner et al., 2012; Jung et 

al., 2010; Koster et al., 2004; Nijssen et al., 2001).  Observations of soil moisture can be used in 

lieu of other parts of the water cycle (e.g. streamflow, evapotranspiration, storage, etc.) to 

validate the accuracy of models.  However, model parameterization via soil moisture is difficult 

due to the high variability of soil moisture in space and time.  Therefore, understanding the 

natural heterogeneity of soil moisture is a key challenge to predicting and describing 
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hydrogeophysical processes between the land and the atmosphere.  Spatial variability in soil 

moisture causes difficulty in obtaining measurements over large areas or at significantly high 

resolutions. Because of this, many standard models are lacking proper soil water content (SWC) 

information in terms of spatial and temporal resolution (Vereecken et al., 2008).  In addition, 

many models are moving towards higher spatial resolutions (~ 1 km, known as hyperresolution) 

while maintaining a regional or global scope (Wood et al., 2011).  This approach may be 

supplemented via the use of other satellite soil moisture data such as NASA’s SMAP and SMOS 

missions (Entekhabi et al., 2010; Kerr et al., 2010).  

This trend has driven a need for networks designed to monitor SWC on intermediate and large 

spatial scales (Hinnell et al., 2010; Robinson et al., 2008a; Robinson et al., 2008b; Day-Lewis 

and Lane, 2004; and Binley and Beven, 2003).  Many efforts have been made to characterize 

SWC over large spatial scales, consisting mainly of networks of in-situ point based sensors (e.g. 

Oklahoma Mesonet, Soil Climate Analysis Network (SCAN), Cosmic-ray Soil Moisture 

Observation System (COSMOS) etc.) arrayed across the world. 

Unfortunately, these networks have somewhat limited spatial coherence due to the nature of 

point based sensing only representing the point at which they are placed.  To date, our 

understanding of soil moisture information has been somewhat restricted to a scaling up of in-

situ point based measurements (Famiglietti et al., 2008; Crow et al., 2012; Robinson et al., 2008).  

This approach to data generation can carry inherent uncertainties capable of limiting the 

accuracy of the model in which they are used. 

Other SWC monitoring networks provide data at very large scales via the use of satellites [3, 9, 

and 36 km, NASA’s Soil Moisture Active Passive (SMAP) and Europe’s Soil Moisture and 

Ocean Salinity (SMOS) Satellites].  However, these approaches often cannot represent water 
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content deeper than ~ 2 cm and may often fail to capture the active root zone of the soil column 

(Jackson et al., 1997; Crow et al., 2012).  The contrast between point based sensors and satellite 

imagery continues to cause debate amongst hydrologists and water balance modelers. 

To develop SWC monitoring networks that possess the advantages of detailed point based 

measurements and large scale satellite systems, novel geophysical techniques are required (Zreda 

et al., 2012; Franz et al., 2012; Binley et al. 2015; Franz et al., 2015).  Geophysical strategies that 

are capable of merging point and remotely sensed data into a cohesive structure have the 

potential to minimize the disadvantages of networks currently in place.  Recent years have seen 

the emergence of the Cosmic-ray Neutron Probe (CRNP) as a viable technique for SWC 

monitoring and data merging over varying spatial scales (Zreda et al., 2012; Franz et al., 2012; 

Binley et al. 2015).  This hydrogeophysical method has been demonstrated to be functional on a 

small and large spatial scale within both agricultural and natural environments (Franz et al., 

2012; Zreda et al., 2012; Franz et al., 2015). 

This chapter seeks to address the advantages of the CRNP technique as a tool for the monitoring 

of SWC over differing spatial scales.  Specifically, the suitability of the CRNP for use as a SWC 

data generation tool within hydrological modeling will be discussed.  This concept will be 

presented within the framework of the Variable Infiltration Capacity Model (VIC) in terms of 

instrument resolution and data heterogeneity.  Most importantly, the applicability of the CRNP 

technology for water management in the coming decades will be explored. 

 

3.2 The Variable Infiltration Capacity Model 
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The VIC model is a commonly used hydrologic model first described by Wood et al. 

(1992) and Liang et al., (1994).  This model assumes that the capacity for precipitation 

infiltration into the soil column is a highly variable parameter due primarily to spatial changes in 

topography, soil type, and vegetation structure (Wood et al., 1992).  The VIC model attributes 

runoff generation and evapotranspiration to these parameters as well as their variability in space 

across a landscape or catchment.  Modeling water and weather cycles on a global scale via 

general circulation models (GCMs) often requires accurate representations of land-atmosphere 

interactions.  LSMs such as VIC are often connected to GCMs as a tool for effectively 

incorporating surface and sub-surface hydrological processes in weather and climate prediction 

(Liang et al., 1994; Liang et al., 1996; Manabe, 1969; Manabe et al., 1965).   

Parameterization of vegetation and infiltration is easier said than done due primarily to the large 

scale of GCMs and the difficulty of estimating land surface interactions such a scale (Wood et 

al., 1992).  This difficulty is typically mitigated via the use of remote sensing to generate 

observations for GCMs.  This has become more common as water science has progressed (Wood 

et al., 2011).   

The VIC model was originally designed to represent an area within a catchment as a single soil 

layer (Stamm et al., 1994).  Stamm et al., (1994), proposed that this approach is not adequate for 

LSMs or their subsequent incorporation into global models.  The single layer VIC approach was 

concluded to be inferior to a two layer approach (VIC-2L) that is better capable of characterizing 

surface evaporation and by extension the water cycle (Stamm et al., 1994).  The development of 

a two layer VIC model was conducted by Liang et al., (1994) and Liang et al., (1996).   Current 

versions of VIC have 3 soil layers and a canopy layer with up to 11 vegetation types plus bare 

soil. When tested in-situ, the VIC-2L model was able to accurately represent land surface 
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interactions and hydrologic flow.  This innovative approach to the VIC model was intended to 

take into account the heterogeneity of precipitation infiltration as well as variable vegetation 

characteristics (Liang et al., 1994, 1996).  Additionally, water drainage from upper layers of the 

soil to deeper layers, thus generating subsurface flow of groundwater was also considered (Liang 

et al., 1994; 1996).   

 

3.3 Modeling Applications of the Cosmic-ray Neutron Probe 

Like all hydrologic models, VIC requires accurate soil moisture data for its proper 

functioning.  Unfortunately, accumulating SWC data on the larger scales necessary for 

incorporation of VIC into GCMs is impractical with standard point based in-situ measurements.  

Large scale monitoring is possible via satellite techniques yet often lacks the appropriate 

resolution in both space and time as well as penetration depth.  The high spatiotemporal 

resolution of the CRNP as well as its capacity for large and small scale applications, provides a 

distinct advantage to other SWC monitoring strategies.   

The penetration “sight” of the CRNP (~30 cm) captures a greater extent of the active root zone 

responsible for much of the streamflow and hydrologic activity modeled within VIC.  This lends 

increased predictive power to the SWC data generated via the CRNP.  Understanding the SWC 

dynamics in the active root zone may provide the ability to more accurately model the hydrology 

of deeper soil layers in that, the more information available about the near surface the more 

confident predictions can be about deep percolation, infiltration, and sub-surface flow. 

Many hydrologic models rely on simulated or observational data organized in a grid cell manner.  

However, natural catchments are not regular shapes.  The CRNP in both its mobile and 

stationary form has the capacity to generate SWC information fitting the irregular area of any 
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particular natural watershed.  This minimizes any error associated with other forms of mapping 

such as satellite remote sensing and allows for models to predict water cycle behavior with 

greater accuracy. 

Once the calibration process has been performed (see sec. 1.2), the SWC information generated 

by the CRNP can be used to verify if a model is functioning correctly (model validation), 

provide the initial conditions of the model, or both.  These observational data can be 

incorporated from the first simulated day of a model until the end rather than relying solely on 

simulated SWC data.   

 

3.4 Summary and Conclusions 

This chapter discusses the advantages of the Cosmic-ray Neutron Probe for use as a soil 

water content observational tool.  Additionally, this use is examined from the context of 

incorporation as a validation and parameterization method within hydrologic models, in 

particular the Variable Infiltration Capacity model.  The importance of soil moisture in the global 

hydrologic cycle is investigated, as well as its importance in modeling as a validation tool. The 

advantages and disadvantages of traditional SWC monitoring networks are compared to the 

CRNP.  Specifically, the lack of appropriate resolution and penetration depth of satellites and the 

limited scale and area representation of point based measurement systems.  There is a need for 

accurate SWC data that can compete with the ever increasing resolution and scale of global 

circulation and land surface models.  Both effective water resource management and production 

agriculture is often performed with the use of water balance models.  This trend is likely to 

continue in the coming decades only increasing the need for SWC data that can be accessed in a 

versatile manner and at the scales and resolutions necessary.  The CRNP is a likely candidate to 
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fill this role.  As an emerging technology this method has great potential for use in a variety of 

situations from water balance modeling to agriculture and beyond.  
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Chapter 4: Conclusions 

 This thesis explores the use of the Cosmic-ray Neutron Probe as a tool for the monitoring 

and detection of soil water.  Specifically, its use as a mobile roving device capable of collecting 

soil water information over large spatial areas is shown.  Large globally available datasets are 

shown to be capable of incorporation into the calibration process of this technology with 

sufficiently small error.  This is shown to be a viable technique for accurate data generation via 

the mobile Cosmic-ray Neutron Probe.  The potential of this technology for incorporation into 

production agriculture and as a source of data for hydrologic modeling (specifically the Variable 

Infiltration Capacity model) is discussed.  The future of precision agriculture and water resource 

management is intrinsically tied to the future of global food security.  The Cosmic-ray Neutron 

Probe may play a part in addressing that challenge, so that ultimately more food can be produced 

with less impact on groundwater. 
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Table S2.1: Summary of in-situ and GDSE soil information for 61 CO 739 NUS study sites. 
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ID Year Month Day
Field 

Number
DOY

Crop (maize =1, 

soybean =2)

Observed 

Standing Wet 

Biomass (kg/m
2
)

GrWDRVI

1 2003 6 9 1 160 1 0.0142 0.2341

2 2003 6 14 1 165 1 0.0657 0.2880

3 2003 6 16 1 167 1 0.1203 0.2538

4 2003 6 23 1 174 1 0.5657 0.3779

5 2003 6 23 1 174 1 0.5657 0.4038

6 2003 7 2 1 183 1 1.9377 0.4422

7 2003 7 3 1 184 1 2.1399 0.4314

8 2003 7 10 1 191 1 3.7161 0.5567

9 2003 7 11 1 192 1 3.9499 0.5473

10 2003 7 13 1 194 1 4.4014 0.6025

11 2003 7 14 1 195 1 4.6135 0.6546

12 2003 7 25 1 206 1 5.8348 0.6320

13 2003 7 26 1 207 1 5.8745 0.5521

14 2003 7 28 1 209 1 5.9566 0.6874

15 2003 8 3 1 215 1 6.3009 0.6847

16 2003 8 8 1 220 1 6.6196 0.7314

17 2003 8 10 1 222 1 6.7314 0.6607

18 2003 8 15 1 227 1 6.9519 0.6544

19 2003 8 17 1 229 1 7.0154 0.6797

20 2003 8 24 1 236 1 7.1186 0.7305

21 2003 8 24 1 236 1 7.1186 0.7542

22 2003 8 29 1 241 1 7.0723 0.5934

23 2003 9 4 1 247 1 6.8942 0.5659

24 2003 9 6 1 249 1 6.8098 0.5607

25 2003 9 7 1 250 1 6.7634 0.5881

26 2003 9 15 1 258 1 6.3119 0.4932

27 2003 9 16 1 259 1 6.2474 0.5137

28 2003 9 23 1 266 1 5.7657 0.4029

29 2003 9 25 1 268 1 5.6224 0.4459

30 2004 5 14 1 135 1 0.0001 0.3030

31 2004 5 26 1 147 1 0.0099 0.2260

32 2004 5 27 1 148 1 0.0121 0.2181

33 2004 6 4 1 156 1 0.0447 0.3012

34 2004 6 7 1 159 1 0.0744 0.2508

35 2004 6 13 1 165 1 0.2736 0.3810

36 2004 6 14 1 166 1 0.3358 0.2920

37 2004 6 22 1 174 1 1.2104 0.4486

38 2004 6 23 1 175 1 1.3593 0.4623

39 2004 6 25 1 177 1 1.6765 0.4095

40 2004 6 30 1 182 1 2.5540 0.4751

41 2004 7 4 1 186 1 3.3007 0.6403

42 2004 7 4 1 186 1 3.3007 0.6422

43 2004 7 18 1 200 1 5.4594 0.8630

44 2004 7 18 1 200 1 5.4594 0.7199

45 2004 7 19 1 201 1 5.5565 0.6372

46 2004 7 20 1 202 1 5.6452 0.7349

47 2004 7 27 1 209 1 6.0302 0.7056

48 2004 7 27 1 209 1 6.0302 0.6560

49 2004 8 7 1 220 1 6.3285 0.6927

50 2004 8 8 1 221 1 6.3898 0.7879
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51 2004 8 14 1 227 1 6.8078 0.6629

52 2004 8 14 1 227 1 6.8078 0.7046

53 2004 8 21 1 234 1 7.0812 0.6656

54 2004 8 24 1 237 1 7.0732 0.6080

55 2004 8 29 1 242 1 6.9207 0.5006

56 2004 8 30 1 243 1 6.8723 0.6102

57 2004 9 6 1 250 1 6.4053 0.5378

58 2004 9 9 1 253 1 6.1544 0.4627

59 2004 9 13 1 257 1 5.7871 0.4812

60 2004 9 16 1 260 1 5.4913 0.4295

61 2004 9 24 1 268 1 4.6434 0.3402

62 2004 9 25 1 269 1 4.5335 0.3730

63 2004 9 29 1 273 1 4.0903 0.3232

64 2005 5 20 1 140 1 0.0030 0.2395

65 2005 5 23 1 143 1 0.0059 0.2315

66 2005 5 27 1 147 1 0.0099 0.2086

67 2005 6 8 1 159 1 0.0695 0.2297

68 2005 6 17 1 168 1 0.4827 0.3020

69 2005 6 21 1 172 1 0.8833 0.3204

70 2005 6 22 1 173 1 1.0093 0.3548

71 2005 6 28 1 179 1 2.0085 0.4625

72 2005 7 1 1 182 1 2.6499 0.5245

73 2005 7 5 1 186 1 3.5297 0.6603

74 2005 7 19 1 200 1 5.6120 0.6196

75 2005 7 23 1 204 1 6.0460 0.6211

76 2005 7 24 1 205 1 6.1454 0.5464

77 2005 7 28 1 209 1 6.4655 0.7880

78 2005 7 28 1 209 1 6.4655 0.7443

79 2005 8 8 1 220 1 6.3918 0.8040

80 2005 8 9 1 221 1 6.3643 0.7698

81 2005 8 18 1 230 1 6.4063 0.6796

82 2005 8 18 1 230 1 6.4063 0.6700

83 2005 8 27 1 239 1 6.2754 0.7065

84 2005 8 28 1 240 1 6.2360 0.5700

85 2005 8 31 1 243 1 6.0920 0.6162

86 2005 9 3 1 246 1 5.9121 0.5437

87 2005 9 9 1 252 1 5.4601 0.5195

88 2005 9 10 1 253 1 5.3746 0.4308

89 2005 9 16 1 259 1 4.8131 0.4055

90 2005 9 19 1 262 1 4.5067 0.3055

91 2005 9 26 1 269 1 3.7456 0.3327

92 2005 9 27 1 270 1 3.6331 0.3295

93 2005 10 2 1 275 1 3.0632 0.2827

94 2006 5 19 1 139 1 -0.0297 0.1685

95 2006 5 25 1 145 1 -0.0497 0.2069

96 2006 5 28 1 148 1 -0.0201 0.1867

97 2006 6 6 1 157 1 0.3309 0.2795

98 2006 6 9 1 160 1 0.5337 0.2743

99 2006 6 13 1 164 1 0.9028 0.3510

100 2006 6 13 1 164 1 0.9028 0.2862
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101 2006 6 20 1 171 1 2.1717 0.4411

102 2006 6 22 1 173 1 2.6630 0.5064

103 2006 7 1 1 182 1 4.7143 0.5563

104 2006 7 1 1 182 1 4.7143 0.5655

105 2006 7 6 1 187 1 5.3059 0.6522

106 2006 7 6 1 187 1 5.3059 0.4973

107 2006 7 15 1 196 1 5.6367 0.6933

108 2006 7 17 1 198 1 5.8326 0.6961

109 2006 7 20 1 201 1 6.1632 0.7199

110 2006 7 26 1 207 1 6.6937 0.6657

111 2006 7 29 1 210 1 6.7856 0.6482

112 2006 8 4 1 216 1 6.6857 0.7076

113 2006 8 5 1 217 1 6.6737 0.6857

114 2006 8 9 1 221 1 6.6727 0.6417

115 2006 8 14 1 226 1 6.6571 0.7834

116 2006 8 14 1 226 1 6.6571 0.6831

117 2006 8 23 1 235 1 6.6230 0.7158

118 2006 8 29 1 241 1 7.3285 0.6134

119 2006 8 30 1 242 1 7.4621 0.6097

120 2006 9 12 1 255 1 5.2796 0.5252

121 2006 9 13 1 256 1 4.5639 0.3806

122 2006 9 17 1 260 1 0.9844 0.3621

123 2007 5 17 1 137 1 0.0014 0.2153

124 2007 5 25 1 145 1 0.0366 0.2558

125 2007 6 7 1 158 1 0.4657 0.2564

126 2007 6 9 1 160 1 0.6425 0.3316

127 2007 6 16 1 167 1 1.6994 0.4618

128 2007 6 16 1 167 1 1.6994 0.4638

129 2007 6 20 1 171 1 2.7227 0.4299

130 2007 6 20 1 171 1 2.7227 0.5661

131 2007 6 30 1 181 1 5.4796 0.6388

132 2007 6 30 1 181 1 5.4796 0.5223

133 2007 7 4 1 185 1 6.0484 0.6777

134 2007 7 11 1 192 1 6.5392 0.7139

135 2007 7 13 1 194 1 6.6473 0.5690

136 2007 7 16 1 197 1 6.9077 0.6203

137 2007 7 20 1 201 1 7.5190 0.7427

138 2007 8 3 1 215 1 8.4266 0.7583

139 2007 8 4 1 216 1 8.3850 0.6563

140 2007 8 9 1 221 1 8.0865 0.6321

141 2007 8 10 1 222 1 8.0149 0.8552

142 2007 8 13 1 225 1 7.7918 0.7205

143 2007 8 14 1 226 1 7.7176 0.7158

144 2007 8 21 1 233 1 7.2583 0.7513

145 2007 8 28 1 240 1 6.8572 0.6983

146 2007 8 30 1 242 1 6.7389 0.6546

147 2007 9 2 1 245 1 6.5490 0.6447

148 2007 9 8 1 251 1 6.0985 0.5598

149 2007 9 11 1 254 1 5.8361 0.5083

150 2007 9 14 1 257 1 5.5544 0.4367
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151 2007 9 17 1 260 1 5.2580 0.4080

152 2007 9 22 1 265 1 4.7431 0.3819

153 2008 5 12 1 133 1 0.0032 0.2008

154 2008 5 15 1 136 1 0.0059 0.2480

155 2008 5 16 1 137 1 0.0066 0.2379

156 2008 5 17 1 138 1 0.0072 0.2933

157 2008 5 30 1 151 1 0.0197 0.3693

158 2008 6 6 1 158 1 0.1215 0.2591

159 2008 6 6 1 158 1 0.1215 0.4016

160 2008 6 13 1 165 1 0.4350 0.3162

161 2008 6 16 1 168 1 0.7172 0.3786

162 2008 6 20 1 172 1 1.4044 0.3930

163 2008 6 27 1 179 1 3.3107 0.5412

164 2008 7 2 1 184 1 4.6729 0.5467

165 2008 7 5 1 187 1 5.2829 0.5122

166 2008 7 10 1 192 1 6.0142 0.5479

167 2008 7 11 1 193 1 6.1372 0.6607

168 2008 7 15 1 197 1 6.6287 0.6740

169 2008 7 20 1 202 1 7.3795 0.6614

170 2008 7 22 1 204 1 7.6632 0.7143

171 2008 8 2 1 215 1 6.9763 0.6587

172 2008 8 3 1 216 1 6.8592 0.7607

173 2008 8 7 1 220 1 6.9166 0.6761

174 2008 8 12 1 225 1 7.6414 0.7182

175 2008 8 23 1 236 1 7.7514 0.6246

176 2008 8 26 1 239 1 7.6787 0.6999

177 2008 9 1 1 245 1 7.5914 0.5986

178 2008 9 4 1 248 1 7.5449 0.5137

179 2008 9 17 1 261 1 6.9029 0.4232

180 2008 9 20 1 264 1 6.6249 0.4193

181 2008 9 26 1 270 1 5.9702 0.3568

182 2008 9 27 1 271 1 5.8518 0.3688

183 2008 10 1 1 275 1 5.3630 0.3944

184 2008 10 1 1 275 1 5.3630 0.3619

185 2009 5 6 1 126 1 0.0012 0.2044

186 2009 5 9 1 129 1 0.0048 0.3441

187 2009 5 9 1 129 1 0.0048 0.1871

188 2009 5 18 1 138 1 0.0157 0.2354

189 2009 5 22 1 142 1 0.0216 0.2192

190 2009 5 29 1 149 1 0.1043 0.2607

191 2009 5 29 1 149 1 0.1043 0.2516

192 2009 6 3 1 154 1 0.2781 0.2463

193 2009 6 4 1 155 1 0.3210 0.2583

194 2009 6 23 1 174 1 3.6159 0.6315

195 2009 6 25 1 176 1 4.2540 0.5260

196 2009 6 30 1 181 1 5.0755 0.5956

197 2009 7 8 1 189 1 6.0977 0.6327

198 2009 7 9 1 190 1 6.2157 0.7121

199 2009 7 14 1 195 1 6.4540 0.7445

200 2009 7 23 1 204 1 6.5781 0.8890
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201 2009 7 25 1 206 1 6.7844 0.7442

202 2009 7 31 1 212 1 7.6585 0.7325

203 2009 8 2 1 214 1 7.9438 0.6470

204 2009 8 6 1 218 1 8.3569 0.6794

205 2009 8 8 1 220 1 8.4707 0.7749

206 2009 8 13 1 225 1 8.4861 0.8009

207 2009 8 14 1 226 1 8.4454 0.7182

208 2009 8 24 1 236 1 7.7446 0.7885

209 2009 8 24 1 236 1 7.7446 0.7323

210 2009 8 29 1 241 1 7.5281 0.6161

211 2009 9 6 1 249 1 7.2781 0.5925

212 2009 9 19 1 262 1 6.5190 0.4140

213 2009 9 20 1 263 1 6.4485 0.4076

214 2010 5 5 1 125 1 -0.0024 0.1842

215 2010 5 9 1 129 1 -0.0113 0.2375

216 2010 5 14 1 134 1 -0.0170 0.2129

217 2010 5 28 1 148 1 0.0459 0.2708

218 2010 6 3 1 154 1 0.1949 0.2644

219 2010 6 21 1 172 1 2.6735 0.4643

220 2010 6 22 1 173 1 2.9054 0.4916

221 2010 6 26 1 177 1 3.7858 0.5151

222 2010 7 1 1 182 1 4.5827 0.5435

223 2010 7 6 1 187 1 5.0019 0.6288

224 2010 7 10 1 191 1 5.1768 0.6755

225 2010 7 14 1 195 1 5.3844 0.6325

226 2010 7 19 1 200 1 5.8770 0.7341

227 2010 7 22 1 203 1 6.1989 0.6380

228 2010 7 27 1 208 1 6.5231 0.6086

229 2010 7 31 1 212 1 6.4746 0.7310

230 2010 8 3 1 215 1 6.4258 0.6329

231 2010 8 8 1 220 1 6.5904 0.6514

232 2010 8 11 1 223 1 6.6941 0.8213

233 2010 8 15 1 227 1 6.6517 0.5898

234 2010 8 16 1 228 1 6.6087 0.7755

235 2010 8 22 1 234 1 6.1415 0.6411

236 2010 8 25 1 237 1 5.8096 0.6097

237 2010 8 29 1 241 1 5.3143 0.5521

238 2011 5 30 1 150 1 0.0045 0.2269

239 2011 5 31 1 151 1 0.0055 0.2100

240 2011 6 6 1 157 1 0.0107 0.2071

241 2011 6 18 1 169 1 0.1998 0.3204

242 2011 6 25 1 176 1 0.6234 0.3199

243 2011 6 27 1 178 1 0.8151 0.3821

244 2011 6 29 1 180 1 1.0519 0.3401

245 2011 7 4 1 185 1 1.9021 0.5142

246 2011 7 8 1 189 1 2.8855 0.4458

247 2011 7 18 1 199 1 4.2897 0.6265

248 2011 7 19 1 200 1 4.2728 0.5421

249 2011 7 20 1 201 1 4.2513 0.7162

250 2011 7 26 1 207 1 4.5111 0.6249
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251 2011 8 3 1 215 1 6.0571 0.7659

252 2011 8 3 1 215 1 6.0571 0.7836

253 2011 8 9 1 221 1 6.4408 0.7268

254 2011 8 12 1 224 1 6.4579 0.8609

255 2011 8 18 1 230 1 6.4300 0.6696

256 2011 8 19 1 231 1 6.4221 0.7865

257 2011 8 24 1 236 1 6.3880 0.6770

258 2011 8 25 1 237 1 6.3839 0.6724

259 2011 9 1 1 244 1 6.3578 0.6494

260 2011 9 4 1 247 1 6.3328 0.6797

261 2011 9 6 1 249 1 6.3060 0.6636

262 2011 9 10 1 253 1 6.2183 0.6501

263 2011 9 19 1 262 1 5.8433 0.5168

264 2011 9 20 1 263 1 5.7875 0.5493

265 2011 9 22 1 265 1 5.6681 0.5433

266 2011 9 26 1 269 1 5.3995 0.4637

267 2011 10 1 1 274 1 5.0129 0.4303

268 2011 10 3 1 276 1 4.8458 0.4093

269 2012 5 5 1 126 1 0.0002 0.2812

270 2012 5 10 1 131 1 0.0076 0.2248

271 2012 5 14 1 135 1 0.0245 0.2068

272 2012 5 16 1 137 1 0.0352 0.2127

273 2012 5 17 1 138 1 0.0406 0.1975

274 2012 5 28 1 149 1 0.3507 0.3201

275 2012 5 28 1 149 1 0.3507 0.3280

276 2012 6 4 1 156 1 0.8039 0.4012

277 2012 6 4 1 156 1 0.8039 0.3511

278 2012 6 11 1 163 1 1.7223 0.4927

279 2012 6 12 1 164 1 1.9494 0.4509

280 2012 6 18 1 170 1 3.5064 0.5408

281 2012 6 24 1 176 1 4.3145 0.6611

282 2012 6 26 1 178 1 4.4159 0.5638

283 2012 6 27 1 179 1 4.4667 0.6519

284 2012 7 6 1 188 1 5.5607 0.7058

285 2012 7 10 1 192 1 6.3633 0.6079

286 2012 7 13 1 195 1 6.6639 0.7111

287 2012 7 17 1 199 1 6.5113 0.7457

288 2012 7 22 1 204 1 6.2296 0.6384

289 2012 7 26 1 208 1 6.2299 0.5379

290 2012 7 29 1 211 1 6.2854 0.6099

291 2012 8 2 1 215 1 6.3535 0.6243

292 2012 8 4 1 217 1 6.3616 0.5314

293 2012 8 5 1 218 1 6.3547 0.4382

294 2012 8 15 1 228 1 5.8971 0.4566

295 2012 8 21 1 234 1 5.5771 0.4611

296 2012 8 27 1 240 1 5.2967 0.3604

297 2013 5 15 1 135 1 0.0008 0.2460

298 2013 5 23 1 143 1 0.0115 0.3129

299 2013 5 27 1 147 1 0.0269 0.3123

300 2013 5 31 1 151 1 0.0621 0.2857
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301 2013 6 2 1 153 1 0.0898 0.3042

302 2013 6 3 1 154 1 0.1053 0.2748

303 2013 6 13 1 164 1 0.3942 0.3151

304 2013 6 14 1 165 1 0.5000 0.3613

305 2013 6 22 1 173 1 1.9206 0.3716

306 2013 6 28 1 179 1 2.9443 0.5345

307 2013 7 4 1 185 1 3.6886 0.5788

308 2013 7 9 1 190 1 4.2773 0.6434

309 2013 7 18 1 199 1 5.5428 0.6327

310 2013 7 22 1 203 1 5.9403 0.6116

311 2013 7 23 1 204 1 6.0125 0.5986

312 2013 8 17 1 229 1 6.0131 0.7582

313 2013 8 19 1 231 1 6.0136 0.7758

314 2013 8 23 1 235 1 6.0114 0.5968

315 2013 8 26 1 238 1 6.0173 0.7028

316 2003 6 9 2 160 1 0.0049 0.2362

317 2003 6 9 2 160 1 0.0049 0.3367

318 2003 6 14 2 165 1 0.0624 0.3207

319 2003 6 16 2 167 1 0.1382 0.2755

320 2003 6 23 2 174 1 0.8006 0.4571

321 2003 6 23 2 174 1 0.8006 0.4184

322 2003 7 2 2 183 1 2.7231 0.4854

323 2003 7 3 2 184 1 2.9681 0.4044

324 2003 7 11 2 192 1 4.6544 0.5867

325 2003 7 13 2 194 1 4.9685 0.6219

326 2003 7 14 2 195 1 5.1110 0.5391

327 2003 7 25 2 206 1 6.2933 0.6912

328 2003 7 26 2 207 1 6.3959 0.4683

329 2003 7 28 2 209 1 6.6108 0.6982

330 2003 8 3 2 215 1 7.3258 0.6054

331 2003 8 8 2 220 1 7.9875 0.6643

332 2003 8 10 2 222 1 8.2581 0.6007

333 2003 8 15 2 227 1 8.8827 0.6160

334 2003 8 17 2 229 1 9.0906 0.6494

335 2003 8 24 2 236 1 9.4833 0.6235

336 2003 8 24 2 236 1 9.4833 0.5790

337 2003 8 29 2 241 1 9.3938 0.5168

338 2003 9 4 2 247 1 8.9842 0.4947

339 2003 9 6 2 249 1 8.7977 0.4638

340 2003 9 7 2 250 1 8.6981 0.4358

341 2005 5 20 2 140 1 -0.0111 0.2373

342 2005 5 23 2 143 1 -0.0117 0.2176

343 2005 5 27 2 147 1 -0.0032 0.2712

344 2005 5 28 2 148 1 0.0011 0.2575

345 2005 6 8 2 159 1 0.1729 0.2642

346 2005 6 17 2 168 1 0.8001 0.3480

347 2005 6 21 2 172 1 1.3430 0.4189

348 2005 6 22 2 173 1 1.5117 0.3892

349 2005 6 28 2 179 1 2.7775 0.5404

350 2005 7 1 2 182 1 3.4557 0.5595
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351 2005 7 5 2 186 1 4.2280 0.6503

352 2005 7 7 2 188 1 4.5057 0.7392

353 2005 7 19 2 200 1 5.7477 0.5785

354 2005 7 23 2 204 1 6.2061 0.5810

355 2005 7 24 2 205 1 6.3018 0.5513

356 2005 7 28 2 209 1 6.5490 0.6651

357 2005 7 28 2 209 1 6.5490 0.6492

358 2005 8 8 2 220 1 6.6195 0.6555

359 2005 8 9 2 221 1 6.6421 0.6690

360 2005 8 18 2 230 1 6.8858 0.7100

361 2005 8 18 2 230 1 6.8858 0.6495

362 2005 8 27 2 239 1 6.9131 0.6294

363 2005 8 28 2 240 1 6.8888 0.5259

364 2005 8 31 2 243 1 6.7721 0.5948

365 2005 9 3 2 246 1 6.5821 0.4819

366 2005 9 9 2 252 1 6.0066 0.4156

367 2005 9 10 2 253 1 5.8910 0.4256

368 2005 9 16 2 259 1 5.1227 0.4180

369 2005 9 19 2 262 1 4.7125 0.3564

370 2007 5 17 2 137 1 0.0034 0.2531

371 2007 5 25 2 145 1 0.0438 0.3017

372 2007 6 9 2 160 1 0.5440 0.3262

373 2007 6 16 2 167 1 1.2516 0.4304

374 2007 6 20 2 171 1 1.8996 0.4332

375 2007 6 20 2 171 1 1.8996 0.5309

376 2007 6 30 2 181 1 4.8505 0.5876

377 2007 6 30 2 181 1 4.8505 0.5212

378 2007 7 4 2 185 1 5.2226 0.6207

379 2007 7 11 2 192 1 5.8544 0.6280

380 2007 7 13 2 194 1 6.2791 0.6450

381 2007 7 16 2 197 1 7.0098 0.5967

382 2007 7 20 2 201 1 7.8330 0.6642

383 2007 7 26 2 207 1 8.5960 0.6355

384 2007 8 4 2 216 1 9.1317 0.5834

385 2007 8 10 2 222 1 9.0101 0.6148

386 2007 8 13 2 225 1 8.8040 0.6047

387 2007 8 14 2 226 1 8.7208 0.6198

388 2007 8 21 2 233 1 8.0672 0.6760

389 2007 8 28 2 240 1 7.5059 0.5817

390 2007 8 30 2 242 1 7.3625 0.6079

391 2007 9 2 2 245 1 7.1511 0.5318

392 2007 9 8 2 251 1 6.7063 0.4523

393 2007 9 11 2 254 1 6.4539 0.4282

394 2007 9 14 2 257 1 6.1714 0.3965

395 2007 9 17 2 260 1 5.8624 0.3590

396 2007 9 22 2 265 1 5.3050 0.3847

397 2007 9 27 2 270 1 4.7193 0.3332

398 2009 5 9 2 129 1 0.0056 0.2681

399 2009 5 9 2 129 1 0.0056 0.2012

400 2009 5 18 2 138 1 0.0159 0.1949
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401 2009 5 22 2 142 1 0.0148 0.2041

402 2009 5 29 2 149 1 0.0715 0.2433

403 2009 6 3 2 154 1 0.2162 0.2475

404 2009 6 4 2 155 1 0.2475 0.2506

405 2009 6 23 2 174 1 3.7708 0.5688

406 2009 6 25 2 176 1 4.3396 0.6118

407 2009 6 28 2 179 1 4.8900 0.6709

408 2009 6 30 2 181 1 5.1955 0.6757

409 2009 7 8 2 189 1 6.6528 0.6257

410 2009 7 9 2 190 1 6.8003 0.7956

411 2009 7 14 2 195 1 7.2682 0.8181

412 2009 7 19 2 200 1 7.5344 0.7283

413 2009 7 23 2 204 1 7.8307 0.8416

414 2009 7 31 2 212 1 8.5778 0.7492

415 2009 8 2 2 214 1 8.6980 0.7284

416 2009 8 6 2 218 1 8.8259 0.7798

417 2009 8 8 2 220 1 8.8373 0.8025

418 2009 8 13 2 225 1 8.7296 0.7167

419 2009 8 14 2 226 1 8.6901 0.6846

420 2009 8 24 2 236 1 8.3622 0.7310

421 2009 8 24 2 236 1 8.3622 0.7382

422 2009 8 29 2 241 1 8.2928 0.5604

423 2009 8 30 2 242 1 8.2728 0.6456

424 2009 9 6 2 249 1 7.9916 0.5549

425 2009 9 19 2 262 1 6.9989 0.3791

426 2009 9 20 2 263 1 6.9099 0.4446

427 2010 5 14 2 134 1 0.0027 0.2194

428 2010 5 22 2 142 1 0.0148 0.2492

429 2010 6 17 2 168 1 1.1249 0.3569

430 2010 6 21 2 172 1 1.5130 0.3782

431 2010 6 22 2 173 1 1.6067 0.4335

432 2010 6 26 2 177 1 1.9547 0.4276

433 2010 7 1 2 182 1 2.4428 0.4322

434 2010 7 10 2 191 1 3.9981 0.5912

435 2010 7 14 2 195 1 4.7507 0.5590

436 2010 7 19 2 200 1 5.5207 0.6526

437 2010 7 22 2 203 1 5.8776 0.5873

438 2010 7 27 2 208 1 6.2834 0.5951

439 2010 7 31 2 212 1 6.4276 0.5413

440 2010 8 3 2 215 1 6.4464 0.5929

441 2010 8 8 2 220 1 6.3942 0.6180

442 2010 8 11 2 223 1 6.3617 0.7231

443 2010 8 15 2 227 1 6.3453 0.5953

444 2010 8 22 2 234 1 6.2976 0.6014

445 2010 8 25 2 237 1 6.2301 0.6133

446 2010 8 29 2 241 1 6.0695 0.5349

447 2010 9 3 2 246 1 5.7794 0.5510

448 2010 9 7 2 250 1 5.5049 0.5262

449 2011 5 30 2 150 1 0.0072 0.1922

450 2011 5 31 2 151 1 0.0083 0.2144
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451 2011 6 6 2 157 1 0.0086 0.1916

452 2011 6 7 2 158 1 0.0139 0.2426

453 2011 6 18 2 169 1 0.5082 0.3607

454 2011 6 25 2 176 1 1.0423 0.4897

455 2011 6 27 2 178 1 1.2559 0.4055

456 2011 6 29 2 180 1 1.5406 0.3711

457 2011 7 4 2 185 1 2.6856 0.5086

458 2011 7 8 2 189 1 3.8151 0.5959

459 2011 7 18 2 199 1 5.0942 0.6518

460 2011 7 19 2 200 1 5.1523 0.6277

461 2011 7 20 2 201 1 5.2320 0.7021

462 2011 7 26 2 207 1 6.0969 0.6874

463 2011 8 3 2 215 1 6.5961 0.8568

464 2011 8 3 2 215 1 6.5961 0.7557

465 2011 8 9 2 221 1 6.4575 0.6819

466 2011 8 12 2 224 1 6.4893 0.7991

467 2011 8 18 2 230 1 6.6813 0.6572

468 2011 8 19 2 231 1 6.7129 0.7555

469 2011 8 25 2 237 1 6.8212 0.6401

470 2011 9 1 2 244 1 6.7733 0.6359

471 2011 9 4 2 247 1 6.6975 0.6366

472 2011 9 6 2 249 1 6.6289 0.6947

473 2011 9 10 2 253 1 6.4513 0.5682

474 2011 9 19 2 262 1 5.8982 0.5320

475 2011 9 20 2 263 1 5.8274 0.5169

476 2011 9 26 2 269 1 5.3785 0.4790

477 2011 10 1 2 274 1 4.9833 0.4459

478 2011 10 3 2 276 1 4.8227 0.4033

479 2012 5 5 2 126 1 0.0007 0.2609

480 2012 5 10 2 131 1 0.0069 0.2168

481 2012 5 14 2 135 1 0.0230 0.1862

482 2012 5 16 2 137 1 0.0384 0.2255

483 2012 5 17 2 138 1 0.0486 0.1955

484 2012 5 28 2 149 1 0.4121 0.3467

485 2012 5 28 2 149 1 0.4121 0.3244

486 2012 6 4 2 156 1 0.9587 0.3803

487 2012 6 4 2 156 1 0.9587 0.3355

488 2012 6 11 2 163 1 1.8605 0.4483

489 2012 6 12 2 164 1 2.0860 0.4387

490 2012 6 18 2 170 1 3.7875 0.4613

491 2012 6 24 2 176 1 4.6225 0.5671

492 2012 6 26 2 178 1 4.7600 0.5939

493 2012 6 27 2 179 1 4.8385 0.6315

494 2012 7 6 2 188 1 6.2283 0.6455

495 2012 7 10 2 192 1 6.8497 0.6326

496 2012 7 13 2 195 1 6.8656 0.6642

497 2012 7 17 2 199 1 6.5693 0.6038

498 2012 7 22 2 204 1 6.5395 0.6479

499 2012 7 26 2 208 1 6.7559 0.6057

500 2012 7 29 2 211 1 6.9082 0.6142



56 
 

 

 

 

501 2012 8 2 2 215 1 7.0494 0.5676

502 2012 8 4 2 217 1 7.0833 0.5331

503 2012 8 5 2 218 1 7.0896 0.5282

504 2012 8 15 2 228 1 6.6870 0.5113

505 2012 8 19 2 232 1 6.3016 0.4375

506 2012 8 21 2 234 1 6.0952 0.4257

507 2012 8 27 2 240 1 5.5558 0.4086

508 2012 8 29 2 242 1 5.4155 0.3838

509 2012 8 30 2 243 1 5.3517 0.3555

510 2012 9 5 2 249 1 5.0379 0.2917

511 2012 9 8 2 252 1 4.9110 0.3168

512 2013 5 15 2 135 1 0.0000 0.2009

513 2013 5 23 2 143 1 0.0100 0.3129

514 2013 5 27 2 147 1 0.0293 0.2577

515 2013 5 31 2 151 1 0.0675 0.2729

516 2013 6 2 2 153 1 0.0958 0.2250

517 2013 6 3 2 154 1 0.1123 0.2455

518 2013 6 13 2 164 1 0.3657 0.2832

519 2013 6 14 2 165 1 0.4226 0.3288

520 2013 6 22 2 173 1 1.8810 0.4079

521 2013 6 28 2 179 1 3.5703 0.5366

522 2013 6 29 2 180 1 3.7654 0.4795

523 2013 7 4 2 185 1 4.3178 0.5239

524 2013 7 9 2 190 1 4.4218 0.6579

525 2013 7 16 2 197 1 5.3211 0.6520

526 2013 7 18 2 199 1 5.7599 0.6806

527 2013 7 23 2 204 1 6.5457 0.6546

528 2013 8 7 2 219 1 6.4347 0.6197

529 2013 8 10 2 222 1 6.7095 0.5603

530 2013 8 17 2 229 1 6.9161 0.7253

531 2013 8 26 2 238 1 6.4687 0.6490

532 2013 8 30 2 242 1 6.2736 0.5899

533 2013 9 2 2 245 1 6.1469 0.5858

534 2013 9 6 2 249 1 5.9771 0.5052

535 2013 9 9 2 252 1 5.8304 0.4296

536 2003 6 9 3 160 1 0.0197 0.3446

537 2003 6 14 3 165 1 0.0888 0.2817

538 2003 6 16 3 167 1 0.1669 0.2969

539 2003 6 23 3 174 1 0.7986 0.3802

540 2003 6 23 3 174 1 0.7986 0.3902

541 2003 6 26 3 177 1 1.2313 0.3533

542 2003 7 2 3 183 1 2.2682 0.4412

543 2003 7 11 3 192 1 3.8191 0.4689

544 2003 7 13 3 194 1 4.0646 0.4788

545 2003 7 14 3 195 1 4.1631 0.5877

546 2003 7 25 3 206 1 4.5673 0.4735

547 2003 7 26 3 207 1 4.5972 0.4539

548 2003 8 3 3 215 1 4.9179 0.5803

549 2003 8 8 3 220 1 5.1488 0.3940

550 2003 8 10 3 222 1 5.2265 0.4219
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551 2003 8 17 3 229 1 5.2963 0.4223

552 2003 8 20 3 232 1 5.1742 0.3914

553 2003 8 24 3 236 1 4.8288 0.3968

554 2003 8 24 3 236 1 4.8288 0.4422

555 2003 8 29 3 241 1 4.1705 0.3729

556 2003 9 4 3 247 1 3.2039 0.3846

557 2005 5 16 3 136 1 0.0149 0.2593

558 2005 5 20 3 140 1 0.0190 0.2634

559 2005 5 28 3 148 1 -0.0097 0.2719

560 2005 6 6 3 157 1 0.1248 0.4092

561 2005 6 8 3 159 1 0.2295 0.2433

562 2005 6 16 3 167 1 0.9782 0.3501

563 2005 6 17 3 168 1 1.0967 0.3070

564 2005 6 21 3 172 1 1.5922 0.3548

565 2005 6 22 3 173 1 1.7173 0.3905

566 2005 6 28 3 179 1 2.4077 0.5298

567 2005 7 1 3 182 1 2.6703 0.4721

568 2005 7 5 3 186 1 2.9222 0.5019

569 2005 7 5 3 186 1 2.9222 0.4907

570 2005 7 19 3 200 1 3.9885 0.5510

571 2005 7 23 3 204 1 4.4226 0.4722

572 2005 7 24 3 205 1 4.5197 0.3655

573 2005 7 28 3 209 1 4.8099 0.5552

574 2005 7 28 3 209 1 4.8099 0.5314

575 2005 8 8 3 220 1 4.8682 0.5283

576 2005 8 9 3 221 1 4.8764 0.6139

577 2005 8 18 3 230 1 5.0334 0.6858

578 2005 8 18 3 230 1 5.0334 0.7048

579 2005 8 27 3 239 1 4.8631 0.6498

580 2005 8 28 3 240 1 4.8240 0.4577

581 2005 8 31 3 243 1 4.6907 0.5388

582 2005 9 3 3 246 1 4.5395 0.5389

583 2005 9 9 3 252 1 4.2161 0.4625

584 2005 9 10 3 253 1 4.1622 0.3720

585 2005 9 16 3 259 1 3.8413 0.3765

586 2005 9 19 3 262 1 3.6821 0.3425

587 2005 9 26 3 269 1 3.3122 0.3281

588 2007 5 17 3 137 1 0.0024 0.2017

589 2007 5 18 3 138 1 0.0048 0.2821

590 2007 5 25 3 145 1 0.0280 0.3348

591 2007 6 7 3 158 1 0.2089 0.3181

592 2007 6 16 3 167 1 0.8946 0.3823

593 2007 6 16 3 167 1 0.8946 0.3758

594 2007 6 20 3 171 1 1.4571 0.3769

595 2007 6 20 3 171 1 1.4571 0.4355

596 2007 6 30 3 181 1 3.3049 0.4538

597 2007 7 11 3 192 1 4.2725 0.5729

598 2007 7 13 3 194 1 4.4264 0.5807

599 2007 7 16 3 197 1 4.7090 0.4325

600 2007 7 20 3 201 1 5.1310 0.6587
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601 2007 7 26 3 207 1 5.7039 0.5203

602 2007 8 2 3 214 1 6.0068 0.5152

603 2007 8 4 3 216 1 5.9867 0.6071

604 2007 8 10 3 222 1 5.7261 0.7102

605 2007 8 12 3 224 1 5.6040 0.5514

606 2007 8 13 3 225 1 5.5416 0.6003

607 2007 8 14 3 226 1 5.4800 0.5952

608 2007 8 21 3 233 1 5.1024 0.6689

609 2007 8 28 3 240 1 4.7626 0.5646

610 2007 8 30 3 242 1 4.6597 0.5810

611 2007 9 2 3 245 1 4.4966 0.5056

612 2007 9 8 3 251 1 4.1450 0.5235

613 2007 9 11 3 254 1 3.9602 0.4709

614 2007 9 14 3 257 1 3.7718 0.4025

615 2009 5 9 3 129 1 0.0009 0.2960

616 2009 5 9 3 129 1 0.0009 0.2546

617 2009 5 18 3 138 1 0.0085 0.2526

618 2009 5 22 3 142 1 0.0161 0.2412

619 2009 5 29 3 149 1 0.0743 0.2711

620 2009 5 29 3 149 1 0.0743 0.2325

621 2009 6 3 3 154 1 0.2091 0.2535

622 2009 6 23 3 174 1 3.7505 0.5408

623 2009 6 25 3 176 1 4.3881 0.5449

624 2009 6 28 3 179 1 4.9576 0.5282

625 2009 6 30 3 181 1 5.1814 0.5874

626 2009 7 6 3 187 1 5.7967 0.5331

627 2009 7 8 3 189 1 5.9160 0.6058

628 2009 7 12 3 193 1 5.9023 0.6888

629 2009 7 14 3 195 1 5.8591 0.5718

630 2009 7 23 3 204 1 6.4201 0.7094

631 2009 7 23 3 204 1 6.4201 0.5962

632 2009 7 31 3 212 1 7.0490 0.5570

633 2009 8 2 3 214 1 7.0837 0.5313

634 2009 8 6 3 218 1 7.0041 0.6206

635 2009 8 8 3 220 1 6.9038 0.6411

636 2009 8 13 3 225 1 6.6437 0.6408

637 2009 8 24 3 236 1 6.5925 0.5393

638 2009 9 6 3 249 1 5.9342 0.4091

639 2011 5 17 3 137 1 -0.0003 0.2102

640 2011 5 23 3 143 1 0.0010 0.2108

641 2011 5 30 3 150 1 0.0086 0.2469

642 2011 5 31 3 151 1 0.0107 0.3098

643 2011 6 6 3 157 1 0.0341 0.2381

644 2011 6 7 3 158 1 0.0402 0.2406

645 2011 6 15 3 166 1 0.1386 0.3813

646 2011 6 18 3 169 1 0.2153 0.3112

647 2011 6 27 3 178 1 0.9963 0.3421

648 2011 6 29 3 180 1 1.3940 0.3748

649 2011 7 4 3 185 1 2.6442 0.4955

650 2011 7 8 3 189 1 3.4764 0.4949
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651 2011 7 18 3 199 1 3.9639 0.5238

652 2011 7 19 3 200 1 3.9890 0.5840

653 2011 7 20 3 201 1 4.0192 0.6595

654 2011 8 3 3 215 1 5.2761 0.7360

655 2011 8 9 3 221 1 5.4756 0.5785

656 2011 8 12 3 224 1 5.4036 0.6798

657 2011 8 18 3 230 1 5.1691 0.5924

658 2011 8 19 3 231 1 5.1307 0.6727

659 2011 8 25 3 237 1 4.8985 0.5830

660 2011 8 28 3 240 1 4.7743 0.5525

661 2011 9 1 3 244 1 4.5982 0.5197

662 2011 9 4 3 247 1 4.4596 0.4774

663 2011 9 6 3 249 1 4.3645 0.4447

664 2011 9 10 3 253 1 4.1691 0.4137

665 2011 9 19 3 262 1 3.7132 0.3626

666 2011 9 20 3 263 1 3.6616 0.3375

667 2011 9 26 3 269 1 3.3501 0.3319

668 2011 9 29 3 272 1 3.1936 0.2890

669 2013 5 27 3 147 1 0.0029 0.2983

670 2013 5 31 3 151 1 0.0220 0.2847

671 2013 6 3 3 154 1 0.0782 0.3532

672 2013 6 13 3 164 1 0.4198 0.2916

673 2013 6 14 3 165 1 0.4064 0.3020

674 2013 6 28 3 179 1 1.5774 0.4025

675 2013 7 4 3 185 1 2.7877 0.4436

676 2013 7 9 3 190 1 3.6937 0.5307

677 2013 7 18 3 199 1 4.6783 0.6995

678 2013 7 20 3 201 1 4.7993 0.4304

679 2013 7 23 3 204 1 4.9782 0.5403

680 2013 8 7 3 219 1 6.1104 0.5491

681 2013 8 12 3 224 1 5.9754 0.6153

682 2013 8 23 3 235 1 5.5129 0.5157

683 2013 8 30 3 242 1 5.1589 0.4150

684 2013 9 2 3 245 1 4.9363 0.4057

685 2013 9 6 3 249 1 4.6061 0.3905

686 2013 9 9 3 252 1 4.3631 0.3499

687 2013 9 20 3 263 1 3.8177 0.4164

688 2013 9 20 3 263 1 3.8177 0.3788

689 2013 9 22 3 265 1 3.7735 0.3598

690 2004 6 13 2 165 2 0.0162 0.3044

691 2004 6 14 2 166 2 0.0191 0.2637

692 2004 6 22 2 174 2 0.0350 0.3197

693 2004 6 23 2 175 2 0.0357 0.2811

694 2004 6 25 2 177 2 0.0358 0.3144

695 2004 6 30 2 182 2 0.0399 0.2786

696 2004 7 4 2 186 2 0.0671 0.3044

697 2004 7 4 2 186 2 0.0671 0.3711

698 2004 7 18 2 200 2 0.5214 0.5293

699 2004 7 19 2 201 2 0.5687 0.4997

700 2004 7 20 2 202 2 0.6163 0.5225
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701 2004 7 27 2 209 2 0.9465 0.5270

702 2004 7 27 2 209 2 0.9465 0.5890

703 2004 8 7 2 220 2 1.4564 0.6307

704 2004 8 8 2 221 2 1.5087 0.7195

705 2004 8 14 2 227 2 1.8821 0.7482

706 2004 8 21 2 234 2 2.4353 0.7317

707 2004 8 24 2 237 2 2.6709 0.7502

708 2004 8 29 2 242 2 3.0040 0.5785

709 2004 8 30 2 243 2 3.0577 0.7100

710 2004 9 6 2 250 2 3.2791 0.6456

711 2004 9 9 2 253 2 3.2756 0.6406

712 2004 9 13 2 257 2 3.1607 0.5307

713 2004 9 16 2 260 2 2.9822 0.5407

714 2004 9 25 2 269 2 2.0090 0.4044

715 2004 9 29 2 273 2 1.4560 0.4102

716 2006 5 25 2 145 2 0.0072 0.2067

717 2006 5 28 2 148 2 0.0172 0.2401

718 2006 6 6 2 157 2 0.0323 0.2623

719 2006 6 9 2 160 2 0.0373 0.2532

720 2006 6 13 2 164 2 0.0563 0.2775

721 2006 6 13 2 164 2 0.0563 0.2466

722 2006 6 20 2 171 2 0.1202 0.2801

723 2006 6 22 2 173 2 0.1378 0.2873

724 2006 7 1 2 182 2 0.2933 0.3443

725 2006 7 6 2 187 2 0.4755 0.4193

726 2006 7 6 2 187 2 0.4755 0.3373

727 2006 7 15 2 196 2 0.9590 0.5310

728 2006 7 17 2 198 2 1.0897 0.5608

729 2006 7 20 2 201 2 1.3065 0.5781

730 2006 7 26 2 207 2 1.8392 0.7345

731 2006 7 29 2 210 2 2.1366 0.7055

732 2006 8 4 2 216 2 2.6367 0.7375

733 2006 8 5 2 217 2 2.7114 0.7138

734 2006 8 9 2 221 2 3.0404 0.7654

735 2006 8 14 2 226 2 3.5170 0.8410

736 2006 8 14 2 226 2 3.5170 0.8564

737 2006 8 23 2 235 2 3.6697 0.7500

738 2006 8 29 2 241 2 3.4337 0.7156

739 2006 8 30 2 242 2 3.3925 0.6755

740 2006 9 12 2 255 2 2.8308 0.5726

741 2006 9 13 2 256 2 2.7785 0.4360

742 2006 9 17 2 260 2 2.5443 0.4331

743 2006 9 19 2 262 2 2.4093 0.4506

744 2006 9 24 2 267 2 2.0115 0.4025

745 2006 9 26 2 269 2 1.8316 0.3589

746 2006 10 1 2 274 2 1.3471 0.2848

747 2008 5 30 2 151 2 0.0128 0.2240

748 2008 6 6 2 158 2 0.0266 0.2553

749 2008 6 6 2 158 2 0.0266 0.2303

750 2008 6 13 2 165 2 0.0440 0.2327
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751 2008 6 16 2 168 2 0.0647 0.2602

752 2008 6 20 2 172 2 0.0905 0.3076

753 2008 6 27 2 179 2 0.1233 0.3277

754 2008 7 2 2 184 2 0.2440 0.3018

755 2008 7 5 2 187 2 0.3517 0.4006

756 2008 7 10 2 192 2 0.4340 0.3939

757 2008 7 11 2 193 2 0.4330 0.4004

758 2008 7 15 2 197 2 0.4764 0.3915

759 2008 7 20 2 202 2 0.8040 0.4977

760 2008 7 22 2 204 2 1.0005 0.4997

761 2008 8 2 2 215 2 1.9237 0.6164

762 2008 8 3 2 216 2 1.9480 0.7016

763 2008 8 7 2 220 2 2.0672 0.7148

764 2008 8 7 2 220 2 2.0672 0.7371

765 2008 8 12 2 225 2 2.4633 0.7920

766 2008 8 23 2 236 2 3.0778 0.7330

767 2008 8 26 2 239 2 3.0645 0.6934

768 2008 9 1 2 245 2 3.1069 0.6354

769 2008 9 4 2 248 2 3.1869 0.5992

770 2008 9 17 2 261 2 3.1138 0.5101

771 2008 9 20 2 264 2 2.8151 0.3885

772 2008 9 26 2 270 2 1.8219 0.3212

773 2008 9 27 2 271 2 1.6234 0.2922

774 2004 6 14 3 166 2 0.0134 0.2933

775 2004 6 14 3 166 2 0.0134 0.2594

776 2004 6 23 3 175 2 0.0380 0.3301

777 2004 6 25 3 177 2 0.0448 0.3213

778 2004 7 4 3 186 2 0.1226 0.3559

779 2004 7 4 3 186 2 0.1226 0.3581

780 2004 7 12 3 194 2 0.3453 0.6006

781 2004 7 18 3 200 2 0.6065 0.4723

782 2004 7 19 3 201 2 0.6559 0.4548

783 2004 7 20 3 202 2 0.7070 0.5014

784 2004 7 27 3 209 2 1.1176 0.5328

785 2004 7 27 3 209 2 1.1176 0.5084

786 2004 8 7 3 220 2 1.8625 0.5756

787 2004 8 8 3 221 2 1.9122 0.7668

788 2004 8 14 3 227 2 2.0611 0.6124

789 2004 8 21 3 234 2 2.1907 0.6433

790 2004 8 24 3 237 2 2.3224 0.4894

791 2004 8 29 3 242 2 2.5749 0.6152

792 2004 8 30 3 243 2 2.6211 0.6369

793 2004 9 6 3 250 2 2.7796 0.6860

794 2004 9 9 3 253 2 2.7028 0.4600

795 2004 9 13 3 257 2 2.4156 0.5142

796 2004 9 16 3 260 2 2.0747 0.3410

797 2004 9 24 3 268 2 0.7721 0.3248

798 2004 9 25 3 269 2 0.5824 0.3250

799 2006 5 28 3 148 2 0.0111 0.3431

800 2006 6 6 3 157 2 0.0506 0.2366
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801 2006 6 9 3 160 2 0.0669 0.2497

802 2006 6 13 3 164 2 0.0799 0.2746

803 2006 6 13 3 164 2 0.0799 0.2721

804 2006 6 20 3 171 2 0.1145 0.3145

805 2006 6 22 3 173 2 0.1598 0.3373

806 2006 6 29 3 180 2 0.3795 0.3028

807 2006 7 1 3 182 2 0.4089 0.3220

808 2006 7 6 3 187 2 0.4707 0.4238

809 2006 7 6 3 187 2 0.4707 0.3264

810 2006 7 15 3 196 2 1.1710 0.5050

811 2006 7 17 3 198 2 1.3643 0.5042

812 2006 7 20 3 201 2 1.5198 0.5366

813 2006 7 26 3 207 2 1.7565 0.5846

814 2006 7 29 3 210 2 2.0207 0.5602

815 2006 8 4 3 216 2 2.5559 0.6355

816 2006 8 5 3 217 2 2.6215 0.6253

817 2006 8 9 3 221 2 2.8070 0.7757

818 2006 8 14 3 226 2 2.8771 0.8251

819 2006 8 14 3 226 2 2.8771 0.5998

820 2006 8 23 3 235 2 2.8740 0.8396

821 2006 8 30 3 242 2 2.8026 0.7065

822 2006 9 12 3 255 2 2.3503 0.5755

823 2006 9 13 3 256 2 2.3027 0.5311

824 2006 9 17 3 260 2 2.1021 0.4783

825 2006 9 19 3 262 2 1.9975 0.4769

826 2006 9 24 3 267 2 1.7283 0.3974

827 2006 9 26 3 269 2 1.6180 0.4000

828 2006 10 1 3 274 2 1.3374 0.3232

829 2006 10 7 3 280 2 0.9947 0.3019

830 2008 5 30 3 151 2 0.0098 0.2384

831 2008 5 31 3 152 2 0.0123 0.2631

832 2008 6 6 3 158 2 0.0273 0.2600

833 2008 6 6 3 158 2 0.0273 0.3786

834 2008 6 13 3 165 2 0.0458 0.2697

835 2008 6 16 3 168 2 0.0591 0.2736

836 2008 6 20 3 172 2 0.0944 0.2451

837 2008 6 27 3 179 2 0.1602 0.3592

838 2008 7 2 3 184 2 0.2069 0.3006

839 2008 7 5 3 187 2 0.2706 0.4011

840 2008 7 10 3 192 2 0.4728 0.3814

841 2008 7 11 3 193 2 0.5089 0.3924

842 2008 7 15 3 197 2 0.4885 0.4045

843 2008 7 20 3 202 2 0.2960 0.4536

844 2008 7 22 3 204 2 0.4258 0.5591

845 2008 8 2 3 215 2 0.8138 0.5241

846 2008 8 3 3 216 2 0.7651 0.7256

847 2008 8 7 3 220 2 1.1968 0.7963

848 2008 8 7 3 220 2 1.1968 0.7722

849 2008 8 12 3 225 2 2.1793 0.8285

850 2008 8 16 3 229 2 2.4206 0.6117
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851 2008 8 23 3 236 2 2.5001 0.6076

852 2008 9 1 3 245 2 2.8020 0.5683

853 2008 9 4 3 248 2 2.8931 0.5095

854 2008 9 17 3 261 2 2.5105 0.4559

855 2008 9 20 3 264 2 2.0774 0.3826

856 2010 5 28 3 148 2 0.0006 0.3465

857 2010 6 17 3 168 2 0.0589 0.3070

858 2010 6 21 3 172 2 0.0926 0.3478

859 2010 6 22 3 173 2 0.1027 0.2775

860 2010 6 26 3 177 2 0.1503 0.2703

861 2010 7 1 3 182 2 0.2250 0.3654

862 2010 7 6 3 187 2 0.3247 0.4275

863 2010 7 10 3 191 2 0.4411 0.3843

864 2010 7 14 3 195 2 0.5975 0.4626

865 2010 7 19 3 200 2 0.8444 0.5100

866 2010 7 27 3 208 2 1.3663 0.5716

867 2010 7 27 3 208 2 1.3663 0.5601

868 2010 7 31 3 212 2 1.7395 0.5261

869 2010 8 3 3 215 2 2.0382 0.6299

870 2010 8 8 3 220 2 2.3554 0.5602

871 2010 8 11 3 223 2 2.4110 0.5355

872 2010 8 15 3 227 2 2.4600 0.7649

873 2010 8 20 3 232 2 2.5629 0.5806

874 2010 8 22 3 234 2 2.6078 0.6878

875 2010 8 25 3 237 2 2.6685 0.6405

876 2010 8 29 3 241 2 2.7191 0.5513

877 2010 9 3 3 246 2 2.6955 0.7540

878 2010 9 7 3 250 2 2.5807 0.6091

879 2010 9 12 3 255 2 2.3260 0.6074

880 2010 9 14 3 257 2 2.1949 0.5725

881 2010 9 26 3 269 2 1.1684 0.3523

882 2010 9 28 3 271 2 0.9729 0.3262

883 2010 9 30 3 273 2 0.7750 0.3600

884 2012 5 28 3 149 2 0.0167 0.2216

885 2012 5 28 3 149 2 0.0167 0.2652

886 2012 6 4 3 156 2 0.0338 0.2726

887 2012 6 18 3 170 2 0.1359 0.2712

888 2012 6 24 3 176 2 0.3313 0.2626

889 2012 6 26 3 178 2 0.4225 0.3053

890 2012 6 27 3 179 2 0.4563 0.3302

891 2012 7 6 3 188 2 0.3472 0.4139

892 2012 7 10 3 192 2 0.4710 0.4006

893 2012 7 17 3 199 2 1.0977 0.4480

894 2012 7 22 3 204 2 1.2049 0.4651

895 2012 7 29 3 211 2 1.3682 0.4266

896 2012 8 4 3 217 2 1.5034 0.5105

897 2012 8 5 3 218 2 1.5148 0.3278

898 2012 8 15 3 228 2 1.7589 0.4280

899 2012 8 21 3 234 2 2.0125 0.4507

900 2012 8 27 3 240 2 2.2198 0.4436

901 2012 8 29 3 242 2 2.2569 0.3771

902 2012 8 30 3 243 2 2.2668 0.3124

903 2012 9 5 3 249 2 2.1688 0.3280

904 2012 9 8 3 252 2 2.0045 0.3427

905 2012 9 15 3 259 2 1.4007 0.2541

906 2012 9 19 3 263 2 0.9777 0.2671
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Table S2.2: Summary of observed standing wet biomass and MODIS derived GrWDRVI for 

each of the 3 fields near Mead, NE. 
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