
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Computer Science and Engineering: Theses,
Dissertations, and Student Research Computer Science and Engineering, Department of

Spring 5-3-2016

Why Do Record/Replay Tests of Web
Applications Break?
Mouna Hammoudi
University of Nebraska - Lincoln, mouna@cse.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/computerscidiss

Part of the Software Engineering Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Hammoudi, Mouna, "Why Do Record/Replay Tests of Web Applications Break?" (2016). Computer Science and Engineering: Theses,
Dissertations, and Student Research. 100.
http://digitalcommons.unl.edu/computerscidiss/100

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/77933635?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss/100?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages

WHY DO RECORD/REPLAY TESTS OF WEB APPLICATIONS BREAK?

by

Mouna Hammoudi

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfillment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professor Gregg Rothermel

Lincoln, Nebraska

May, 2016

WHY DO RECORD/REPLAY TESTS OF WEB APPLICATIONS BREAK?

Mouna Hammoudi, M.S.

University of Nebraska, 2016

Advisor: Gregg Rothermel

Software engineers often use record/replay tools to enable the automated testing

of web applications. Tests created in this manner can then be used to regression

test new versions of the web applications as they evolve. Web application tests

recorded by record/replay tools, however, can be quite brittle; they can easily break

as applications change. For this reason, researchers have begun to seek approaches

for automatically repairing record/replay tests. To date, however, there have been

no comprehensive attempts to characterize the causes of breakages in record/replay

tests for web applications. In this work, we present a taxonomy classifying the ways

in which record/replay tests for web applications break, based on an analysis of 453

versions of popular web applications for which 1065 individual test breakages were

recognized. The resulting taxonomy can help direct researchers in their attempts to

repair such tests. It can also help practitioners by suggesting best practices when

creating tests or modifying programs, and can help researchers with other tasks such

as test robustness analysis and IDE design.

iii

Acknowledgements

I would like to thank my advisor and my role model, Gregg Rothermel for making me

discover the universe of research, dedicating to me all the time I needed and answering

all of my questions and concerns. I would like to thank him for supervising me, guiding

me throughout this journey and giving me this amazing opportunity. This work would

not have been possible without him.

Also, I would like to thank Myra Cohen and Sebastian Elbaum for offering me

their time, serving on my master’s committee and for giving me feedback about this

work.

I would like to thank my sister, my mum and my dad for encouraging me, motivating

me and believing in me, this thesis would not have been possible without them.

Moreover, I would like to thank Wayne Motycka for installing some of the objects

of study used in this thesis.

This work has been partially supported by the National Science Foundation through

award IIS-1314365.

iv

Contents

Acknowledgements . iii

Contents iv

List of Figures vii

List of Tables viii

1 Introduction 1

2 Background 4

2.1 Record/Replay Tools . 4

2.2 HTML Elements, Attributes, and Text 7

2.3 Locators . 7

3 Empirical Process 9

3.1 Objects of Study . 9

3.2 Choice of Record/Replay Tool . 12

3.3 Selection of Versions/Commits . 13

3.4 Test Creation and Execution Process 13

3.5 Taxonomization Process . 15

3.6 Threats to Validity . 16

v

4 Taxonomy of Causes of Test Breakages 19

4.1 Breakage causes . 19

4.2 Granularity of Breakages . 20

4.3 Locators (Category 1) . 24

4.3.1 Attribute-Based Locators (Category 1.1) 24

4.3.1.1 Element Attribute not Found (Category 1.1.1) 24

4.3.1.2 Element Text not Found (Category 1.1.2) 28

4.3.2 Structure-Based Locators (Category 1.2) 29

4.3.2.1 Hierarchy-Based Locator Target not Found(Category

1.2.1) . 29

4.3.2.2 Index-Based Locator Target not Found (Category 1.2.2) 29

4.3.3 Values (Category 2) . 30

4.3.3.1 Invalid Text Field Input (Category 2.1) 30

4.3.3.2 Missing Value (Category 2.2) 30

4.3.3.3 Value Absent from Dropdown List (Category 2.3) . . 31

4.3.3.4 Unexpected Assertion Value (Category 2.4) 31

4.3.4 Page Reloading (Category 3) 31

4.3.4.1 Page Reload Needed (Category 3.1) 31

4.3.4.2 Page Reload no Longer Needed (Category 3.2) 32

4.3.5 User Session Times (Category 4) 32

4.3.5.1 User Session Made Longer (Category 4.1) 33

4.3.5.2 User Session Made Shorter (Category 4.2) 33

4.3.6 Popup Boxes (Category 5) . 33

4.3.6.1 Popup Box Added (Category 5.1) 33

4.3.6.2 Popup Box Deleted (Category 5.2) 34

vi

5 Results 35

6 Discussion 38

6.1 Prioritization of Breakages for Test Repair 38

6.2 Prioritization of Inspections . 38

6.3 Breakage Avoidance . 39

6.4 Breakage Prevention . 39

6.5 Bad Smells in Web Tests . 40

6.6 IDE Enhancements . 40

6.7 Root Cause Analysis . 41

7 Related Work 43

8 Conclusions and Future Work 47

A Data Per Version: 49

Bibliography 78

vii

List of Figures

2.1 Student car registration form . 5

2.2 HTML for the student car registration form in Figure 2.1 6

2.3 HTML code for version V (Upper Figure) and HTML code for evolved

version V’ (Lower Figure) . 8

4.1 Taxonomy . 23

viii

List of Tables

2.1 A Selenium Test . 5

3.1 Objects of Study . 10

5.1 Test Breakage Cause Counts per Taxonomy Category and Web Application

(Category 1.1.1 Not Expanded) . 36

5.2 Test Breakage Cause Counts per "Element Attribute not Found" Category

and Web Application (Category 1.1 Expanded) 37

A.1 Breakages Encountered for Each Pair of Versions of PHPFusion-Node 1.1.1

Not Expanded . 50

A.2 Breakages Encountered for Each Pair of Versions of PHPFusion-Node 1.1.1

Not Expanded (Continued) . 51

A.3 "Element Attribute not Found" Breakages Encountered for Each Pair of

Versions of PHPFusion . 52

A.4 "Element Attribute not Found" Breakages Encountered for Each Pair of

Versions of PHPFusion (Continued) . 53

A.5 Breakages Encountered for Each Pair of Versions of PHPAddressBook-Node

1.1.1 Not Expanded . 54

ix

A.6 Breakages Encountered for Each Pair of Versions of PHPAddressBook-Node

1.1.1 Not Expanded (Continued) . 55

A.7 "Element Attribute not Found" Breakages Encountered for Each Pair of

Versions of PHPAddressBook . 56

A.8 "Element Attribute not Found" Breakages Encountered for Each Pair of

Versions of PHPAddressBook (Continued) 57

A.9 Breakages Encountered for Each Pair of Versions of PHPAgenda-Node 1.1.1

Not Expanded . 58

A.10 "Element Attribute not Found" Breakages Encountered for Each Pair of

Versions of PHPAgenda . 59

A.11 Breakages Encountered for Each Pair of Versions of MyCollaboration-Node

1.1.1 Not Expanded . 60

A.12 "Element Attribute not Found" Breakages Encountered for Each Pair of

Versions of MyCollaboration . 61

A.13 Breakages Encountered for Each Pair of Versions of Joomla-Node 1.1.1 Not

Expanded . 62

A.14 Breakages Encountered for Each Pair of Versions of Joomla-Node 1.1.1 Not

Expanded (Continued) . 63

A.15 Breakages Encountered for Each Pair of Versions of Joomla-Node 1.1.1 Not

Expanded (Continued) . 64

A.16 "Element Attribute not Found" Breakages Encountered for Each Pair of

Versions of Joomla . 65

A.17 "Element Attribute not Found" Breakages Encountered for Each Pair of

Versions of Joomla (Continued) . 66

A.18 "Element Attribute not Found" Breakages Encountered for Each Pair of

Versions of Joomla (Continued) . 67

x

A.19 Breakages Encountered for Each Pair of Versions of MyMovieLibrary-Node

1.1.1 Not Expanded . 68

A.20 "Element Attribute not Found" Breakages Encountered for Each Pair of

Versions of MyMovieLibrary . 69

A.21 Breakages Encountered for Each Pair of Versions of Dolibarr-Node 1.1.1

Not Expanded . 70

A.22 "Element Attribute not Found" Breakages Encountered for Each Pair of

Versions of Dolibarr . 71

A.23 Breakages Encountered for Each Pair of Versions of YourContacts-Node

1.1.1 Not Expanded . 72

A.24 Breakages Encountered for Each Pair of Versions of YourContacts-Node

1.1.1 Not Expanded (Continued) . 73

A.25 Breakages Encountered for Each Pair of Versions of YourContacts-Node

1.1.1 Not Expanded (Continued) . 74

A.26 "Element Attribute not Found" Breakages Encountered for Each Pair of

Versions of YourContacts . 75

A.27 "Element Attribute not Found" Breakages Encountered for Each Pair of

Versions of YourContacts (Continued) 76

A.28 "Element Attribute not Found" Breakages Encountered for Each Pair of

Versions of YourContacts (Continued) 77

1

Chapter 1

Introduction

Web application developers frequently employ record/replay tools to enable the

automated testing of their applications. A record/replay tool for web applications

captures inputs and actions (mouse clicks, keyboard entries, navigation commands,

etc.) that occur as a web application is utilized. During playback, these inputs

and actions are re-delivered to the browser engine. The importance of such tools is

underscored by the number that exist in the research and commercial realms, including

CasperJS [1], CoScripter [2], Dolos [3], Jalangi [4], Mugshot [5], Sahi [6], Selenium [7],

Sikuli [8], TestMaker Object Designer [9], UFT (formerly Quick Test Professional) [10],

WaRR [11], and Watir [12].

An advantage of creating web application tests via record/replay tools involves the

ability to reuse them to regression test the web applications as they evolve. However,

web application tests created by record/replay tools can be quite brittle in the face

of system evolution. Changes as simple as renaming a page element or altering the

choices in a drop-down list can cause such tests to break and require repair.

For this reason, researchers [13,14] have recently begun to create techniques for

automatically repairing the input and action sequences (hereafter referred to simply as

2

“tests”) created for web applications by record/replay tools. Other research [15, 16,17]

has focused on improving the robustness of such tests. The authors of these papers have

acknowledged the brittleness of tests and have singled out specific test constructs that

are particularly problematic. There have been no comprehensive attempts, however, to

characterize—via observations of actual evolving web applications—the causes of test

breakages, 1 much less to measure the frequencies at which those different causes occur.

Understanding these issues is arguably a prerequisite for test repair, as well as for

other important tasks such as creating maintainable tests and designing record/replay

tools.

In this work, we take steps to provide this understanding 2. We began by collecting

300 releases/commits of five open-source web applications and constructed test suites

for the earliest releases/commits of these applications using a record/replay tool. We

then iteratively applied the tests to subsequent releases/commits of each application,

collecting data on the causes of the failures observed. Given test breakages on a given

version V , we then repaired broken tests and augmented the test suite so that repaired

tests and tests of new functionality could be carried forward to the version following

V . This process yielded data on 722 individual test breakages.

Using the data we gathered, we developed a taxonomy of the causes of test

breakages that categorizes all of the breakages observed on the applications we studied.

We then gathered 153 releases/commits of three additional web applications and

applied the foregoing process to them as well; this yielded data on 343 additional test

breakages. We analyzed these in light of our taxonomy and were able to accommodate
1We define a test breakage as the event that occurs when a test that used to work on a web

application ceases to work on a new version of that web application, due to a change in the web
application

2Portions of this work have appeared previously in [18]

3

all of them without further changing the taxonomy; this provides evidence that our

taxonomy may be more generally applicable.

Our taxonomy (which to our knowledge is the first taxonomy of web test breakages)

is useful in several ways. First, it can assist researchers interested in test repair and

help them prioritize their efforts in favor of more common breakage types. Second, it

can help engineers avoid the need for test repairs by alerting them to changes that

may break tests. Third, it can inform the design of automated techniques for detecting

problematic constructs in tests and replacing these with less brittle constructs. Fourth,

it can inform the design of better IDEs for creating web applications, such as IDEs

that help engineers avoid or prevent test breakages, or automatically repair tests as

application modifications are made. Finally, our taxonomy can inform the design of

test record/replay tools themselves.

The remainder of this document is structured as follows. Chapter 2 presents

background information. Chapter 3 describes the processes we used to collect data

and construct the taxonomy. Chapter 4 presents our taxonomy and provides examples

of causes of test breakages corresponding to its categories. Chapter 5 presents data

on the frequency of breakage categories and on the applicability of the taxonomy to

three additional web applications. Chapter 6 discusses ways in which our taxonomy

and associated data can be useful. Chapter 7 describes related work and Chapter 8

concludes.

4

Chapter 2

Background

Record/replay tools allow test engineers to capture sequences of inputs and actions

applied to a web application’s GUI. The recording process creates a test script that

can then be replayed on the application.

2.1 Record/Replay Tools

As an example, see Figure 2.1. The figure depicts the user interface for one form in a

web application used to register a car on a college campus, and includes (from top to

bottom) a text field, a checkbox, a pair of radio buttons, a dropdown list, a submit

button and a link. The code for this web page consists of HTML and Javascript and

is shown in Figure 2.2. Not visible in the GUI but present in the code is a Javascript

alert that causes a popup box to appear if the user attempts to submit an incomplete

form.

To further illustrate the record/replay process, Table 2.1 shows a test created by

Selenium IDE via the application of a sequence of inputs and actions to the registration

web page. Each input or action causes a Selenese command to be inserted into the test

5

Figure 2.1: Student car registration form

script. Each Selenese command is denoted by a tuple: <action, locator, value>.1 The

action component of a Selenese command indicates either an event that is performed

on the user interface (e.g., click, select) during the recording process, or an action

specific to Selenium’s control of the replay process. The locator component specifies

the interface element (input field, dropdown list, etc.) that the user is interacting

with during that step of the recording process. The value component refers to any

input entered by the user within the specified locator, such as a value selected by the

user within a dropdown list or a value typed in a text field.

Table 2.1: A Selenium Test
Action Locator Value
1 open /~mouna/example.html
2 click css=*:checked
3 click document.sForm.elements[2]
4 select document.sForm.cars label=Volvo
5 click css=form#sForm>div>

input[type="submit"]
6 assertAlert Please Fill All Required Fields
7 type id=FullName John Smith
8 click //html/body/form/div/input[5]
9 clickAndWait link=Developed by M.Hammoudi

1Selenium itself uses the terms “command”, “target” and “value”; we choose to use other terminology
for clarity and generality.

6

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <title> Student Information Form</title>
5 <script type="text/javascript">
6 function validateForm() {
7 var FullName = document.forms["sForm"]["FullName"].value;
8 if (FullName == null || FullName == "") {
9 alert ("Please Fill All Required Fields");

10 return false ;
11 } else {
12 document.getElementById("myForm").submit();
13 }
14 }
15 </script>
16 </head>
17 <body>
18 <form id="sForm" name="sForm" action="Form2.html" onsubmit="return␣validateForm()" method="

post">
19 <div class="Info">
20 Full Name
21 <input type="text" name="FullName" id="FullName" class="student">
22

23

24 Housing
25 <input type="checkbox" name="Living" value="Living" checked="checked"> I live on campus
26

27

28 Gender
29 <input type="radio" name="sex" value="male"> Male
30 <input type="radio" name="sex" value="female"> Female
31

32

33 Car Brand
34 <select name="cars">
35 <option value="Mercedes">Select Option</option>
36 <option value="Volvo">Volvo</option>
37 <option value="Saab">Saab</option>
38 <option value="Fiat">Fiat</option>
39 <option value="Audi">Audi</option>
40 </select>
41

42

43 <input type="submit" value="Submit" alt="Submit" onclick="validateForm()">
44 </div>
45 </form>
46 <div>
47 <p> Developed by M.Hammoudi
48 </p>
49 </div>
50 </body>
51 </html>

Figure 2.2: HTML for the student car registration form in Figure 2.1

7

2.2 HTML Elements, Attributes, and Text

HTML pages are composed of HTML elements such as text fields, radio buttons,

checkboxes, dropdown lists, and links. HTML elements can have attributes that are

known as name/value pairs (e.g., “id=FullName”), that provide data on the elements

and allow developers to customize them. Attributes can do many things: among these,

they can provide an identifier or name for an element, or specify visual characteristics

of an element such as its width, height, or color. Attributes can also specify the

“dynamic status” of an object; for instance, whether it should be enabled or disabled,

or whether a checkbox should be checked by default.

We use the term “element text” to refer to the HTML textual content corresponding

to an element that is visible in the UI of a web application. For instance, in Figure 2.1,

an example of element text is the link text visible at the bottom of the page, “Developed

by M.Hammoudi”.

2.3 Locators

Locators are used by JavaScript and other languages, and by record/replay tools, to

identify and manipulate elements. We identify two classes of locators, the second of

which is composed of two sub-classes.

Attribute-based locators make use of element attributes such as element ids and

names to identify elements, or reference element text in order to do so. For instance,

in Table 2.1, Line 7 uses an element id and Line 9 uses element text.

Structure-based locators rely on the structure of a web page to identify elements.

Among these, hierarchy-based locators specify elements in terms of their position in

the DOM tree, using strategies involving xpaths, relative xpaths, or CSS selectors. For

8

Figure 2.3: HTML code for version V (Upper Figure) and HTML code for evolved
version V’ (Lower Figure)

instance, in Table 2.1, Lines 2, 3, 4, 5, and 8 use structure-based locators. Index-based

locators operate in situations where multiple elements in a web page have locators

that are identical under other strategies; the indices differentiate them. For instance,

in Table 2.1, Lines 3 and 8 use index-based locators. As Lines 3 and 8 show, the two

structural locator types can appear together.

Figure 2.3 is an example of a locator breakage. The upper part of figure 2.3

represents the HTML code corresponding to version V of the web application under

test and the lower part of figure 2.3 represents the HTML code corresponding to the

evolved version V’ of the web application. In this case, the ID of the "First Name" web

element is capitalized in version V’. Let us consider a test that contains the following

three-tuple structure in order to input the value "John" within the first name text

field: <type, id="firstname", "John">. This statement would break at the level of its

locator component given that the first name ID attribute value has been capitalized

when moving to version V’. In this case, the proximal cause is that the locator of the

"First Name" text field cannot be found and the distal cause is that the "First Name"

text field ID has been capitalized when moving to version V’ of the web application

under test.

9

Chapter 3

Empirical Process

Our overall strategy for constructing a taxonomy was data-driven and bottom up. We

gathered releases/commits of five web applications, used a record/replay tool to create

tests for these, and applied these tests, recording all breakages. We used these results

to create our taxonomy, and then we repeated the process on three additional web

applications to provide an initial assessment of the taxonomy’s validity and generality.

We now describe the processes we followed to do this.

3.1 Objects of Study

To create and assess our taxonomy we searched for complex modern web applications

being used by numerous people and under active development. Our criteria for selecting

applications required that they: (1) have at least 20 releases/commits, (2) involve

at least 30,000 lines of code, (3) be installable and executable, and (4) have been

downloaded at least 5,000 times.

Table 3.1 provides data on the web applications that we selected, including their

names, the number of releases/commits (hereafter usually referred to as "versions")

10

Table 3.1: Objects of Study
App Name Vs. LOC Downloads Tests
PHPFusion 49 256,899 1,605,195 47
Address Book 79 35,675 126,146 44
PHPAgenda 32 43,831 64,605 42
MyCollaboration 29 116,345 7,638 39
Joomla 111 312,978 >50,000,000 56
MyMovieLibrary 23 31,324 6,201 36
Dolibarr 30 42,010 864,698 38
YourContacts 100 64,765 676,543 57

we used (discussed further below), the number of lines of code (counted using cloc1

and averaged across the versions), the number of downloads listed for them as of the

day we selected them, and the number of tests used for them (also discussed later

in this chapter2). The first five applications listed in Table 3.1 are the ones we used

initially to develop the taxonomy (our training set), while the last three are the ones

we utilized after the initial creation of the taxonomy to validate the applicability of

the taxonomy on a different set of web applications (our test set).

AddressBook is a PHP web application that allows users to manage contacts and

organize them based on their addresses, e-mails, phone numbers and birthdays. The

application also allows users to download/upload Excel spreadsheets that contain the

user’s contacts. AddressBook makes use of various other technologies such as Google

Maps, Gmail, Excel, LDIF and vCards, and uses a MySQL database to store all of

the contacts.

PHPFusion is a web content management system that allows end users to create,

manage and administer a website without requiring knowledge about web programming.

PHPFusion supports news, articles, forums, photo gallery, web links, downloads, polls,
1cloc.sourceforge.net
2For a list of the releases/commits we considered, as well as pointers to the source code repositories

for each object of study, see https://sites.google.com/site/taxonomyobjects.

11

shoutbox, themes and search. PHPFusion is widely used, and is available in more than

35 languages and has 21 support sites.

MyCollaboration is a web application based on JSP and servlets that is used as

a collaboration platform to help users manage customer information and projects. It

offers various features to users including project management, customer management,

document management, sales management, file management, issue tracking, task

management, user management, reporting, online editors and Gantt charts.

PHPAgenda is a PHP web application that allows users to manage calendars,

schedule appointments, holidays, and todo lists, and share content with other users.

It also allows users to regulate access to the web application and limit access to a

specific category of users.

Joomla is an open source content management system that allows end users

with little experience in web programming to publish content. Joomla makes use

of the model-view-controller framework. Joomla offers a variety of functionalities

to the user including the use of multiple languages, easy upgrades, an integrated

help system, media management, banner management, contact management, search

utilities, content management, content organization, tagging, version control, news

management, the setting up of user access rights and cloud storage.

Dolibarr is a PHP web application used by companies for Enterprise Resource

Planning and Customer Relationship management. Dolibarr includes a variety of

features such as sales management, purchase management, event management, contact

management, products and services catalogs, banking management, reporting, surveys,

and project management.

YourContacts is a PHP application used by small and large companies to man-

age their business. Among the features included in YourContacts, we find contact

12

management, product management, invoice management, stock management, and

employee management.

MyMovieLibrary is a Python web application used and keep track of the movies

available in the store. MyMovieLibrary includes various functionalities for the store’s

management such as new movie purchases, new movie arrivals, and accounting.

MyMovieLibrary also includes functionalities for customer management including

new customer account management, customer charge management, customer account

management, and customer gift card management.

MyCollaboration is written in Java, Dolibarr in Python, and the other appli-

cations are written in PHP. All applications use JavaScript, HTML, MySQL, and

CSS.

3.2 Choice of Record/Replay Tool

To conduct our study we needed to choose a representative record/replay tool. As

noted in Chapter I there are many such tools available. Ultimately we chose Selenium

IDE, given its popularity, its open-source nature (which will support future work),

and the features it supports.

Selenium IDE is in fact similar to many other record/replay tools in terms of the

types of information and processes it uses to support replay. Other record/replay

tools such as Watir [12], CasperJS [1], and Sahi [6] have test structures that utilize

<action, locator, value> tuples and utilize similar types of locators. The fact that these

tools use different syntaxes to encode test steps is immaterial where test breakages

are concerned. Differences in the frequencies at which various locator strategies are

employed, however, may indeed cause breakage data to differ. Neverthless, we expect

13

our taxonomy to generalize to other Record/Replay tools in this class, possibly with

different breakage frequencies.

3.3 Selection of Versions/Commits

To choose releases for our objects of study, we relied on both commits and releases of

web applications. The first five web applications listed in Table 3.1 were considered at

the level of releases, whereas the last three web applications (Dolibarr, YourContacts

and MyMovieLibrary) were considered at the level of releases and intermediate commits.

In this latter case, we considered n equally spaced commits between successive pairs

of web application releases. We chose both releases and commits in a way that they

clearly represented checkpoints at which a given application could be deemed ready

for deployment and testing.

We began by considering all versions of each web application, but found that we did

have to exclude some. These included early versions of applications that were unstable

or no longer functioned on current platforms. We also excluded releases/commits that

contained serious faults. The numbers of versions listed in Table 3.1 are the numbers

we ultimately retained.

3.4 Test Creation and Execution Process

In searching for web applications, we discovered that few open-source applications are

provided with capture-replay test suites; in fact, few are provided with any test suites

at all. In the case of the applications we selected, Joomla has a suite of WebDriver

tests, but only for its first version, and Dolibarr has a single WebDriver test. However,

we have no knowledge as to whether the tests were created through a capture-replay

14

approach, so using them was not a viable option. PHPAddressBook has unit tests that

do not test the application’s GUI. The other applications have no test suites. For this

reason, we found it necessary to create new test suites.

To do this, we followed a systematic and iterative procedure for each web application.

First, for each application the author installed its initial version, V0, and familiarized

herself with all of the functionalities provided by the application. Next, she constructed

a test suite for V0. To minimize the subjectivity involved in this task, we adopted

functional adequacy and partition/boundary value coverage criteria. To achieve

functional adequacy, the author created end-to-end use cases for the application, and

continued to do so until all input fields and clickable items in each application had been

exercised at least once. To achieve partition/boundary value coverage, she explicitly

included in these use cases inputs exercising both nominal and exceptional behaviors,

e.g., by choosing inputs, actions and boundary values that exercise non-mainstream

application behavior, and by adding pauses to the input stream at appropriate

moments to reflect user inactivity. Such use-case-based approaches to testing systems

at the interface level are quite common in practice, and also well-suited to the use of

record/replay tools.

Given a test suite T created for a version V (V0 or a subsequent version) of a web

application, the author executed that suite on the next version of the application, V ′,

and noted each instance in which a test broke. She then manually repaired each of the

tests that were repairable – an iterative process because repairing one test breakage

might allow that test to proceed further and break again later. She also added new

tests covering new functionality to the test suite. This resulted in a new test suite T ′

that now functioned on V ′. The numbers of tests listed in Table 3.1 are the numbers

of tests available on the final version of each object of study.

The foregoing process was repeated for each version of the web application until

15

each had been tested and the causes of all test breakages had been noted. (Again, this

was applied in two phases, using the first five applications prior to taxonomy creation

and the last three applications after it.) While following this process to repair and

augment the tests for a given version V , no attempt was made to inspect the next

version V ′ until after the repair and augmentation process was complete, reducing the

threats to validity that might result if tests explicitly “targeted” particular aspects of

subsequent releases.

As one further note, all of the objects of study made use of databases, and in order

to test them these databases needed to be populated with initial data; this was done

by the author initially with the first version, and then, as application modifications

necessitated, new versions of the databases were created appropriate to new application

versions/commits.

3.5 Taxonomization Process

After enumerating all causes of test breakages across the first five versions/commits of

our object web applications, we began the process of creating a taxonomy. To do this

we adopted a systematic process. Essentially, this process involved clustering causes

of test breakages in terms of similarity factors. For each test breakage that had been

encountered, the author studied it to determine its cause and wrote a description of it.

Reviewing these descriptions allowed her to begin to identify candidate equivalence

classes of test breakages, to which she assigned descriptive labels. These equivalence

classes and labels were then reviewed with a colleague and the two reached a consensus

on them. The author then collaborated with a colleague to organize the labels into

hierarchies, again by using clustering based on the similarity of the factors responsible

for the breakages.

16

For example, in version 7.00.06 of PHPFusion, a test uses a locator id “user_name”

to locate an element (a text field to fill in). In the code of version 7.00.07, this id

is changed to “AdminUsername”, rendering the test unable to locate the text field.

The description of this breakage was: The test broke when a locator attempted and

failed to locate an element based on its attribute, “user_name”, because that attribute

had been changed to “AdminUsername”. The label for this was “Locator break due to

failure to locate element attribute”. Later, review of these labels and consideration of

other labels led us to rename this category of event “Element attribute not found”, to

instantiate “Attribute based locators” as a parent category of this type of change, and

to instantiate “Locators” as a parent of this.

Taxonomies such as ours are conceptual maps derived from empirical observations;

as such they typically evolve as additional observations of the world are made. We

expect the same to be true of our taxonomy, and thus, it is not necessarily the case that

any attempt to apply the taxonomy to subsequent applications will allow every type

of test breakage in those applications to be categorized. In such cases the taxonomy

will require adjustments. That said, we believe that a useful taxonomy should handle

the majority of new situations it encounters. This is why we conducted the second

(testing) phase of data collection and taxonomy validation.

3.6 Threats to Validity

External validity threats concern the generalization of our findings. We considered

only eight web applications and our results may not generalize to different ones. The

selection criteria that we adopted, however, did ensure that these applications were

of non-trivial size and had multiple releases, and had experienced many downloads.

17

Moreover, as we shall see, our validation phase provides at least initial evidence that

the taxonomy is more widely applicable.

As a second threat, our results are gathered relative to tests created and executed

using the Selenium IDE record/replay tool. As such, generalization to programmable

(e.g., Selenium WebDriver) and visual (e.g., Sikuli) tools is not supported by our

current results. Still, as noted earlier, many other record/replay tools do operate in

manners similar to Selenium IDE, so we conjecture that the use of such tools might

lead to similar results. Nevertheless, the only way to definitively address this threat is

by further study.

As a third threat, it might also be argued that developers who do create tests will

behave differently when modifying their applications, resulting in different frequencies

of breakages in certain taxonomic categories. This too requires further study, but we

do return to it in Chapter VI when discussing breakage avoidance.

Internal validity threats concern uncontrolled factors that may have affected the

construction of the taxonomy. The author created the tests. To control and reduce

the subjectivity of this process, we defined precise adequacy criteria for test input

creation and a precise procedure for test scenario construction; still, different tests

might have revealed different breakages. The author also classified the test breakages,

participating with a colleague. This task, however, requires reasoning that cannot be

automated, so it is difficult to envision less threat-prone approaches. Moreover, to

reduce the subjectivity involved in the task, she followed a systematic and structured

procedure (write short breakage descriptions; assign labels to the descriptions; organize

labels hierarchically), and interacted with a colleague on the task.

Construct validity threats concern our metrics and measures. We have measured

the numbers of test breakages observed in each taxonomic category, but this may not

18

correlate with other important factors such as the difficulty of repairing or preventing

(automatically or not) particular classes of breakages.

19

Chapter 4

Taxonomy of Causes of Test

Breakages

Before presenting our taxonomy, we comment on two issues: (a) the types of breakage

causes being considered; and, (b) the granularity of breakages. Throughout this

chapter, let V be a version of a web application, let t be a test created and executed

on V , and let V ′ be a new version of V .

4.1 Breakage causes

Our taxonomy focuses on the proximal causes of test breakages; that is, the causes

“most closely related to” each breakage that are found in the test code. Proximal

causes are usually related to distal causes, such as the changes that were made to the

web application code that resulted in the breakage. For example, a web application

developer may modify the code of V by removing a particular element (e.g., a choice

in a dropdown list) from that page. This modification may cause t to break in V ′

when it attempts to access the element. The fact that the locator corresponding to

20

the dropdown list fails to point to any element is the proximal cause of the breakage;

the fact that the developer modified the dropdown list is a distal cause.

As a second example, a developer may add a new page to V as the target of a

submit button, such that t now reaches that page in V ′, and is unable to proceed

further due to the inability to locate some element e in that new page. In this case

the addition of the page is a distal cause, and the proximal cause is the failure of t to

locate e.

Since we are interested in the evolution of test code, proximal causes are more

relevant than distal causes. Thus, our taxonomy classifies the causes of test breakage

that most nearly impact the test code and does not attempt to categorize the types of

changes associated with the evolution of the web application code. That said, when

presenting examples of concrete test breakages corresponding to the categories in our

taxonomy, we often find it convenient to mention distal causes as well.

4.2 Granularity of Breakages

Tests can break multiple times, and we consider separately each distinguishable

element of a test that acts as a proximal cause of a breakage. We have already noted in

Chapter 3 that correcting one breakage and rerunning the test allows other breakages

to appear later, and we count and categorize each such breakage. In addition, single

statements or components of those statements can contain multiple causes of breakages.

For example, suppose that V provides functionality allowing a user to change their

password, via a text box having the id “password” in which the user enters their new

password. Suppose that t contains the statement type id=“password” mypassword,

which locates the “password” text box and types “mypassword” into it. Suppose that

in V ′, the id for the text box is capitalized (“Password”) and additional validation

21

logic is added to the application code to verify whether the password is sufficiently

complex (these modifications are distal causes). There are two separate breakages that

may occur in this case: (1) t will break when it cannot locate the element attribute

id=“password”, and (2) after that problem is corrected, t may break again if the

password it enters is now invalid. Each of these breakages is a unique proximal cause

that must be addressed separately, and we would count and categorize each of these

individually.

A second example is worth considering. Locators are complex, and as noted

in Section 2.3, different locator types can be combined. For example, the locator

//span[@name=“pass-info”]/div/button[0] points to a button in a web page; it

contains an attribute-based locator component (“pass-info”) and makes use of both

hierarchy-based and index-based components. Suppose this locator is present in t, and

suppose that in V ′ three changes (distal causes) are made: (1) “pass-info” is changed

to “passenger-info”, (2) the DOM tree changes such that the “/div” tag is deleted, and

(3) the button is repositioned within the web page such that it is no longer in position

0. In this case, t will break when it tries to use this locator, but the breakage is due

to three unique proximal causes, including the failure to locate an element attribute,

the failure to locate a hierarchy-based locator target, and the failure to locate an

index-based locator target. To correct t, each of these three proximal causes must be

addressed. We thus count and categorize each of these separately.

Thus, to summarize, the data we present in this thesis on test breakages pertain to

proximal causes, and are collected with respect to all individual (“atomic” if you will)

discrete proximal causes, whether these are located in a single Senelese statement or

statement component, or not.

Figure 4.1 presents a graphical view of our taxonomy of causes of test breakages.

Nodes represent classes and subclasses of breakages, and edges represent complete,

22

disjoint specialization relationships (i.e., given a node A that has edges to nodes B

and C, A is a class of breakages that consists of two mutually exclusive subclasses,

B and C). The numbers in non-root nodes uniquely identify each node while also

identifying their chain of ancestors (if any). The numbers on edges are described in

Chapter 5.

At the highest level of our taxonomy we identified five distinct categories of causes

of test breakages, as follows:

1. Causes related to locators used in tests.

2. Causes related to values and actions used in tests.

3. Causes related to page reloading.

4. Causes related to changes in user session times.

5. Causes related to popup boxes.

Each node within our taxonomy is related to one or more components within the

three-tuple structure of a Selenese command <command, target, value> presented in

Section 2.1. The first node of our taxonomy is related to locator breakages. Locators

are specified through the target component of a Selenese command. The second node

of our taxonomy represents value and action breakages, which are also related to the

value and action components of a Selenese command. The third node of our taxonomy

accounts for page reloads. Page reloads are specified through the action component of

a Selenese command (the action ClickAndWait is used in the case of a page reload,

and the action Click is used in cases in which a page is not reloaded). The fourth

node of our taxonomy is specific to user sessions and is related to two components

within a Selenense command: action and value. Finally, the last node of our taxonomy

23

Figure 4.1: Taxonomy

is specific to popup boxes. The occurrence of popup boxes is represented through a

Selenese statement specifying an action and a value. The action component represents

the occurrence of the popup box (the AssertAlert action) and the value component

accounts for the message displayed within the popup box.

We now discuss each of these categories in turn, in each case considering all

subcategories beneath them.

24

4.3 Locators (Category 1)

The test breakage causes in this category are all proximally related to locators. Overall,

this category has two subcategories, corresponding to the two major classes of locators

described in Chapter 2: attribute-based and structure-based.

4.3.1 Attribute-Based Locators (Category 1.1)

As noted in Chapter 2, elements of web pages have attributes and record/replay tests

can make use of these to locate elements. They do this by identifying an element

using its attribute’s name/value pair or by looking for the element text, i.e., the

HTML content that is visible in the user interface. We consider each of these access

approaches separately.

4.3.1.1 Element Attribute not Found (Category 1.1.1)

This breakage is caused when t attempts to locate an element e via an attribute a that

functioned (led to e) in V , but no longer functions in V ′. The "Element Attribute not

Found" subcategory can be divided into multiple subcategories depending on the type

of attribute causing the test to break. We present these next.

Automatically Generated ID not Found (Category 1.1.1.1). This breakage is caused

when t attempts to locate an element e via an automatically generated ID id that

functioned (led to e) in V , but no longer functions in V ′. There are many potential

distal causes of such a breakage. For example, the test presented in Table 2.1 may

break at Line 7 when attempting to locate the “Full Name” text field in the application

if the developer uses a numerical ID for the full name text field and if the ID of the

full name text field is automatically incremented whenever a new submission of the

car registration form presented in Figure 2.2 is made. Another distal cause that would

25

cause a test breakage in Line 7 of the test case involves a scenario in which a random

ID is automatically generated for the full name text field whenever a new submission

of the form is made.

Manual ID not Found (Category 1.1.1.2). This breakage is caused when t attempts

to locate an element e via a manual ID id that functioned (led to e) in V , but no

longer functions in V ′. There are many potential distal causes of such a breakage.

For example, the test presented in Table 2.1 may break at Line 7 when attempting

to locate the “Full Name” text field in the application if Line 21 of the HTML code

shown in Figure 2.2 is altered such that id=“FullName” is now id=“Name”. Another

distal cause that would lead to such a breakage could be related to the deletion of

Line 21 of the HTML code of the web application under test. This would lead to the

deletion of the FullName web element from the DOM tree of the web application

under test, and this would eventually cause the test represented in Table 2.1 to break

at Line 7.

Href Attribute not Found (Category 1.1.1.3). This breakage is caused when t

attempts to locate a link l via an href attribute value that functioned (led to l) in V ,

but no longer functions in V ′. There are many potential distal causes of such a breakage.

For example, the test presented in Table 2.1 may break at Line 9 when attempting to

locate the “Developed by M. Hammoudi” link in the application if Line 47 of the HTML

code shown in Figure 2.2 is altered such that href=“http://cse.unl.edu/ mouna”

is now href=“http://cse.unl.edu/ mounahammoudi”. Another distal cause that

would lead to such a breakage could be related to the deletion of Line 47 of the

HTML code of the web application under test. This would lead to the deletion of

the “Developed by M. Hammoudi” link from the DOM tree of the web application

26

under test, which would eventually cause the test represented in Table 2.1 to break at

Line 9.

Alternative Text Attribute not Found (Category 1.1.1.4). This breakage is caused

by an obsolete alternative text attribute. The alt attribute is used to define an

alternative text string to be displayed in a scenario in which an HTML web element

cannot be shown on the user interface. The "alternative text not found" breakage

would be caused in a situation when t attempts to locate a web element e via an alt

attribute value that functioned (led to e) in V , but no longer functions in V ′. There

are many potential distal causes of such a breakage. For example, the test presented

in Table 2.1 may break at Line 5 when attempting to click on the "Submit" button in

the application if Line 43 of the HTML code shown in Figure 2.2 is altered such that

alt="Submit" is now alt="SubmitButton". Another distal cause that would lead to

such a breakage could be related to the deletion of Line 43 of the HTML code of the

web application under test. This would lead to the deletion of the “Submit” button

from the DOM tree of the web application under test, which would eventually cause

the test represented in Table 2.1 to break at Line 5.

Name Attribute not Found (Category 1.1.1.5). This breakage would arise in a

situation when t attempts to locate a web element e via a name attribute value that

functioned (led to e) in V , but no longer functions in V ′. There are many potential

distal causes of such a breakage. For example, assume that the attribute name="sex"

is used in Line 3 of the test case presented in Table 2.1 and let us suppose that the

name attribute value in Line 29 of the HTML code shown in Figure 2.2 is changed from

name="sex" to name="gender". In this scenario, the test represented in Table 2.1

would break at Line 3 when attempting to click on the "male" radio button. Also,

the deletion of Line 29 of the HTML code represented in Figure 2.2 would cause the

27

test presented in Table 2.1 to break in Line 3, due to the deletion of the “male” radio

button from the DOM tree of the web application under test.

Value Attribute not Found (Category 1.1.1.6). This breakage would arise in a situ-

ation when t attempts to locate a web element e via a value attribute that functioned

(led to e) in V , but no longer functions in V ′. There are many potential distal causes

of such a breakage. For example, assume that the attribute //input[@value=’male’]

is used in Line 3 of the test case presented in Table 2.1 and suppose that the value

attribute value in Line 29 of the HTML code shown in Figure 2.2 is changed from

value="male" to value="female". In this scenario, the test represented in Table 2.1

would break at Line 3 when attempting to click on the "male" radio button. Also,

the deletion of Line 29 of the HTML code represented in Figure 2.2 would cause the

test presented in Table 2.1 to break in Line 3, due to the deletion of the “male” radio

button from the DOM tree of the web application under test.

Class Attribute not Found (Category 1.1.1.7). Class attributes are used to assign a

CSS style to one or more web elements within the user interface of the web application

under test. This breakage would occur in a situation when t attempts to locate a

web element e via a class attribute that functioned (led to e) in V , but no longer

functions in V ′. There are many potential distal causes of such a breakage. For

example, assume that the XPath //div[@class="Info"]/input[1] is used in Line 7

of the test case presented in Table 2.1 and suppose that the class attribute value in

Line 19 of the HTML code shown in Figure 2.2 is changed from class="Info" to

class="PersonalInfo". In this scenario, the test represented in Table 2.1 would

break at Line 7 when attempting to identify the "FullName" text field. Another

28

situation in which the test would break in Line 7 would be caused by the deletion of

the class attribute from Line 19 of the HTML code shown in Figure 2.2.

OnClick Attribute not Found (Category 1.1.1.8). The onClick attribute leads to

the execution of a JavaScript function whenever a button is clicked. The onClick

attribute value specifies the name of the JavaScript function to be executed. This

"OnClick Attribute not Found" would occur in a situation when t attempts to locate a

web element e via its onClick attribute value that functioned (led to e) in V , but no

longer functions in V ′. There are many potential distal causes of such a breakage. For

example, assume that the XPath //input[@onclick="validateForm()"] is used in

Line 8 of the test case presented in Table 2.1 and suppose that the JavaScript function

validateForm() is renamed into validateSubmission() in Line 6 of the HTML code

shown in Figure 2.2. In this scenario, the test represented in Table 2.1 would break

at Line 8 when attempting to identify the submit button due to an obsolete onClick

attribute value. Furthermore, suppose that the web application evolves such that

no JavaScript function needs to be executed anymore after clicking on the submit

button. This would be a scenario where the validateForm() JavaScript function is

deleted from the HTML code shown in Figure 2.2. In this case, the deletion of the

validateForm() JavaScript function would constitute a distal cause of the failure to

locate the submit button based on the value of its OnClick Attribute.

4.3.1.2 Element Text not Found (Category 1.1.2)

This breakage is caused when t attempts to locate an element e via its text, using

a text string that functioned correctly (led to e) in V but no longer functions in V ′.

There are many potential distal causes of such a breakage. For example, the text in

29

the element may have been modified. As a concrete instance, the test presented in

Table 2.1 will break at Line 9 if the link text “Developed by M.Hammoudi” is changed.

4.3.2 Structure-Based Locators (Category 1.2)

As noted in Chapter 2, structure-based locators can be either hierarchy-based (utilizing

the position of elements in the DOM tree), or index-based (utilizing indices), or both,

and we distinguish between these two cases.

4.3.2.1 Hierarchy-Based Locator Target not Found(Category 1.2.1)

This breakage is caused when t attempts to locate an element e via a hierarchy-based

locator l that functioned (led to e) in V , but no longer functions in V ′. Distal causes

of this breakage include the addition, deletion or modification of an ancestor of e in

the DOM tree. For example, suppose that the “div” ancestor of the “Submit” button

in the DOM tree for the application shown in Figure 2.1 is deleted (by deletion of

Lines 19 and 44 in the code). In this case the test presented in Table 2.1 will break at

Lines 0 and (after partial repair) at Line 8.

4.3.2.2 Index-Based Locator Target not Found (Category 1.2.2)

This breakage is caused when t attempts to locate an element e via an index-based

locator l that functioned (led to e) in V , but no longer functions in V ′. Distal causes

of this breakage include the addition or deletion of elements to/from the web page

that satisfy the same locator strategy of an element in V , but cause a change in the

index of the element that t was intended to select. For example, suppose the text field

for "Full Name” is removed from the application shown in Figure 2.1. In this case the

test presented in Table 2.1 will erroneously select the “Female” radio button at Line 2

30

and toggle that instead of the “Male” radio button, which is not the test’s intended

behavior. The test will then break upon reaching the assertAlert at Line 6, because

the event that triggers that alert (absence of input to the “Full Name” text field) no

longer occurs.

4.3.3 Values (Category 2)

All of the causes of breakages in this category are proximally related to values within

tests.

4.3.3.1 Invalid Text Field Input (Category 2.1)

This breakage is caused when values used by t as inputs to V are no longer accepted in

V ′. For instance, if t inputs a password in V , and in V ′, restrictions on passwords are

implemented that weren’t present in V (e.g., required characters) then the password

input by t may now be invalid on V ′, in which case t will break.

4.3.3.2 Missing Value (Category 2.2)

This breakage is caused when values or actions not previously included in t as inputs

to V are required in V ′. For instance, a new text field or checkbox may be added to a

form in V ′, such that the form cannot be submitted unless an input is provided to the

text field or an action is applied to the checkbox. As another example, this breakage

can occur if a field or other page element for which inputs or actions are optional in

V , and omitted from t, becomes required in V ′.

31

4.3.3.3 Value Absent from Dropdown List (Category 2.3)

This breakage is caused when a value that was previously selected by t from a dropdown

list in V is no longer present in V ′. For instance, a test of the web application presented

in Figure 2.1 may select the option "Fiat" from the "Car Brand" dropdown list; if

that option is missing in a succeeding version of that application, the test will break.

4.3.3.4 Unexpected Assertion Value (Category 2.4)

Assertions in record/replay tests can compare expected values to actual values, and

signal cases in which these do not match. If the behavior of t with respect to an

assertion differs when moving from V to V ′, then t will break. This can occur, for

example, if the text of an error message raised by the assertion changes in V ′.

4.3.4 Page Reloading (Category 3)

The breakages within this category are all proximally related to page reloading

activities. Page reloading may be triggered by user actions when, say, the current web

page is updated in response to a user event. For example, in Figure 2.1, if clicking on

the "I live on campus” checkbox causes new fields such as "campus address” to be

needed on the web page, a reload is needed. Like most record/replay tools, Selenese

relies on a command (clickAndWait) to give the reload enough time to complete.

There are two subcategories of these breakages.

4.3.4.1 Page Reload Needed (Category 3.1)

This breakage is caused if t, run on V , does not trigger a page reload, but does trigger

a page reload when run on V ′. In such cases, t may break due to the lack of a delay

sufficient to allow its next action to succeed. Such a case may also arise if an action

32

performed by t in V ′ causes the page to be reloaded in a longer time than was required

in V , e.g., in order to present results of database queries that require longer wait times

in the new version.

4.3.4.2 Page Reload no Longer Needed (Category 3.2)

This breakage is caused if t, run on V , does trigger a page reload, but does not trigger

a page reload when run on V ′. In such cases, t will attempt to wait for a page reload

that will not occur, and will time out with an error message. Such a case could arise,

for example, if Ajax facilities were introduced in V ′ to allow a partial page update in

place of a full reload.

4.3.5 User Session Times (Category 4)

Many web applications utilize “timeouts” on user sessions; for example, a bank

application may automatically log users out who are inactive for a certain amount of

time. The breakages within this category are all proximally related to user session

times. There are many ways in which timeouts may occur; for example, after m

minutes of inactivity, a user may receive a popup message letting them know that they

will be logged out in n minutes. User session limits may be encoded differently in tests

depending on the manifestation of the session timeout. For instance, in the popup

case, the test may contain statements that do the following: (1) wait for m minutes to

simulate user inactivity, (2) issue an “assert Alert” announcing the impending logout.

There are two subcategories of breakages related to user session times, as follows.

33

4.3.5.1 User Session Made Longer (Category 4.1)

This breakage is caused if t, run on V , is meant to test (and wait for) a user session

timeout of s1 seconds, but when run on V ′, it is required instead to test (and wait

for) a user session timeout of s2 seconds, where s2 is sufficiently longer than s1. These

breakages may be manifested in various ways; for instance, an alert JavaScript popup

box containing the message “you will be logged out” may fail to appear in the time

specified by the wait command, and the test will break.

4.3.5.2 User Session Made Shorter (Category 4.2)

This breakage is caused if t, run on V , is meant to test (and waits for) a user session

timeout of s1 seconds, but when run on V ′, it is required instead to test (and wait

for) a user session timeout of s2 seconds, where s2 is shorter than s1. These breakages

may be manifested in various ways; for instance, V ′ might automatically log the user

out prior to the completion of the wait command, disabling any further actions by the

test.

4.3.6 Popup Boxes (Category 5)

Popup boxes are often used in web applications to display error or other forms of

messages. The breakages within this category are all proximally related to popups.

Selenese relies on commands such as assertAlert to check whether popups function

as expected. There are two subcategories of these breakages, as follows.

4.3.6.1 Popup Box Added (Category 5.1)

This breakage is caused if t, run on V , did not expect a particular occurrence of some

popup box B, but when run on V ′ it does encounter B. In this case, the test breaks

34

due to the presence of the unexpected popup box. For example, in V ′, the act of

clicking on a submit button may trigger the appearance of a popup box containing

the text “Thank you for your submission” that was not present in V .

4.3.6.2 Popup Box Deleted (Category 5.2)

This breakage is caused if t, run on V , did expect a particular occurrence of some

popup box B, but when run on V ′, it does not encounter B. In this case, the test

breaks due to the absence of the expected popup box. An example of this is the

inverse of the example described for Category 5.1.

35

Chapter 5

Results

Tables 5.1 and 5.2 list the numbers of different causes of test breakages observed per

web application and overall, for each of the leaf nodes in the taxonomy. We include

data on all eight applications in the tables, with the table headers differentiating

between the web applications utilized in the taxonomy construction phase (training

set), and the applications utilized in the taxonomy validation phase (test set). The

two rightmost columns of the tables list the total numbers and percentages of causes

of test breakages across all applications, per category, across all observed causes of

breakages 1.

We have also annotated the taxonomy graph in Figure 4.1, adding percentages to

the edges. A percentage of k% on edge (N1-N2) indicates that k% of the total number

(1065) of causes of test breakages are associated with that edge. These annotations

show data pertaining to both leaf and non-leaf nodes; for example they show that,

across all causes of test breakages, 73.62% involved locators, 15.21% involved values

and actions, 3.57% involved page reloading, 2.63% involved user sessions, and 4.98%

involved popup boxes. The data on percentages of individual breakage categories show
1Tables 5.1 and 5.2, as noted, present overall results per web application. For results per version,

see Appendix A

36

Table 5.1: Test Breakage Cause Counts per Taxonomy Category and Web Application
(Category 1.1.1 Not Expanded)

Training set Test set
Category PHP Address PHP MyCollabJoomlaMyMovieDolibarr Your Total %

Fusion Book Agenda Library Contacts
1.1.1 Element
attribute not
found

45 63 31 53 138 38 52 54 474 44.51

1.1.2 Element
text not
found

10 7 3 8 15 4 9 7 63 5.92

1.2.1 Hierarchy
-based locator
target not
found

33 16 14 16 11 12 14 15 131 12.30

1.2.2 Index-based
locator target
not found

39 6 12 11 11 13 7 17 116 10.89

2.1 Invalid text
field value input 2 3 1 2 1 2 1 3 15 1.41

2.2 Missing value 4 5 6 3 18 5 4 9 54 5.07
2.3 Value deleted
from drop down
list

6 16 17 9 4 6 8 7 73 6.85

2.4 Unexpected
assertion value 2 1 2 2 3 3 3 4 20 1.88

3.1 Page reload
needed 2 1 1 1 2 2 4 4 17 1.60

3.2 Page reload no
longer needed 2 2 1 1 6 2 2 5 21 1.97

4.1 User session
made longer 3 1 3 1 1 1 3 2 15 1.41

4.2 User session
made shorter 3 1 3 1 1 1 1 2 13 1.22

5.1 Popup box
added 2 2 1 3 13 2 1 5 29 2.72

5.2 Popup box
deleted 2 1 3 6 3 4 1 4 24 2.25

Total 155 125 98 117 227 95 110 138 1065 100.00

that a preponderance of breakages (44.51%) involved element attributes not found,

with the two types of structure-based locators being next (though far less) prevalent

at 12.30% and 10.89%, respectively.

Beyond locator problems, deletion of values from dropdown lists and missing values

were the next most prevalent at 6.85% and 5.07%, respectively.

37

Table 5.2: Test Breakage Cause Counts per "Element Attribute not Found" Category
and Web Application (Category 1.1 Expanded)

Training set Test set
Category PHP Address PHP MyCollabJoomlaMyMovieDolibarr Your Total %

Fusion Book Agenda Library Contacts
1.1.1.1 Automatically
generated ID not found 11 15 10 10 21 5 5 9 56 5.26

1.1.1.2 Manual ID not
found 5 8 5 5 15 6 6 6 57 5.36

1.1.1.3 Href Attribute not
found 5 5 4 7 19 5 6 5 54 5.07

1.1.1.4 Alternative Text
Attribute not found 6 4 3 3 22 4 4 7 60 5.63

1.1.1.5 Name Attribute
not found 4 9 4 5 13 3 7 5 55 5.16

1.1.1.6 Type Attribute
not found 5 6 3 3 8 2 6 5 45 4.22

1.1.1.7 Value Attribute
not found 3 5 2 4 11 2 8 10 52 4.88

1.1.1.8 Class Attribute
not found 2 4 0 7 14 7 6 3 48 4.51

1.1.1.9 OnClick Attribute
not found 4 7 0 9 15 4 4 4 47 4.42

Total 45 63 31 53 138 38 52 54 474 44.51

The data gathered on the applications in our test set largely mirror those gathered

on applications in our training set, and the current taxonomic categories we created

sufficed to categorize breakages in the test set. In particular, there was no single

test breakage in the applications used for validation that could not be assigned to a

category in the taxonomy, and no single category associated with breakages that did

not occur in the additional web applications.

38

Chapter 6

Discussion

Our taxonomy and associated data could be useful in several contexts related to test

breakages.

6.1 Prioritization of Breakages for Test Repair

Our data suggests which categories of test breakages merit the greatest attention.

Locators caused over 73% of the test breakages we observed, and attribute-based

locators caused the majority of these. Clearly, addressing just this class of errors by

finding ways to repair them if they break would have the largest overall impact on the

reusability of tests across releases. The data also suggest where subsequent priorities

should be placed in terms of finding methods for repairing test breakages.

6.2 Prioritization of Inspections

Knowledge about the causes of test breakages could help test developers manually

repair tests in the absence of automated techniques. Given a broken test, they can

39

prioritize the inspection of possible causes based on the relative importance of such

causes in our taxonomy (e.g., by inspecting locators first, values next, etc.).

6.3 Breakage Avoidance

One example of an avoidance-based approach to test breakages involves educating

developers and maintainers of web applications as to the causes and probabilities of

test breakages. Such education could be supported by information present in our

taxonomy and the data that underlie it, which could serve as a source of guidelines

on best practices to follow while changing web application code. For example, we

observed that many of the breakages involving attribute-based locators resulted from

simple name changes, i.e., changing an attribute from name=“submitbutton” to

name=“SubmitButton”. While such name changes may be helpful for code readability,

their cost in terms of impact on tests can be quite high.1

6.4 Breakage Prevention

Knowledge about causes of test breakages could also help web application and test

developers prevent them. For instance, they may introduce the practice of adding

meaningful and stable id’s to the core elements of the web interface, or they may

take advantage of tools like ATA [17] or ROBULA [15] to create robust locators

automatically. Another way to produce change-resilient tests is by adopting design
1In our discussion of threats to validity (Chapter 3.1.6) we noted that developers who use

capture-replay tests may be well aware that they should avoid changing attribute locators since they
are likely to know that this can break tests. We did find, however, that on Joomla, where WebDriver
tests were provided, there was still a large number of test breakages related to changes in attribute
locators, as shown in Table 5.1. Further, in organizations in which testing is performed by persons
other than developers, the incentive to avoid changes may not be strong.

40

patterns such as the Page Object2 pattern. A Page Object acts as a mediator between a

test and the web page whose elements it references. Such a mediator hides the internal,

implementation details of the web page DOM from the test code by exposing only

abstract interaction functions. When a breakage occurs, only the affected Page Object

needs to be fixed; all tests using it will be repaired at the same time. Approaches such

as this, however, are not yet widespread. Our data could help motivate their adoption.

6.5 Bad Smells in Web Tests

Many techniques exist for statically analyzing code to locate “bad smells” [19] – stylistic

problems or malfeasances that developers may wish to guard against. Guided by our

taxonomy, analogous tools could analyze web applications and their tests for potential

problems. For instance, analyses could detect the absence of stable anchors for DOM

elements that are expected to be important during testing (e.g., a div tag, showing

the results produced after a form submission that are potentially useful to create test

assertions). Where test breakages are concerned, however, such analyses might more

appropriately be directed at pairs of versions of web applications, because it is the

changes made to applications that are the distal causes of breakages and need to be

considered. For instance, a DOM element that caused repeated test breakages in the

past might deserve a dedicated localization mechanism (e.g., a unique id or name).

6.6 IDE Enhancements

An “after-the-changes-are-made” approach to analysis may be valuable, but it seems

likely that an analysis approach that operates concurrently with program maintenance
2https://code.google.com/p/selenium/wiki/PageObjects

41

might be even more effective, and such an analysis could also be guided by our

taxonomy. Modern IDEs for code development typically employ such approaches: as

programmers edit, they point out problems or provide useful information based on the

programmers’ actions. Web application development IDEs employ such approaches

also, but to our knowledge, no such IDEs also build in assistance related to testing

efforts. Such IDEs could aid in test breakage avoidance by alerting programmers to

possible effects and letting them choose whether or not to act on them. They could aid

in prevention by prohibiting certain actions or by recommending the creation of stable

anchors for locators whenever they recognize that locators used in tests are likely to

be fragile. They could maintain information on changes made to a web application,

that testers could later use when reviewing tests in preparation for applying them

to a new version (a notion also suggested by Daniel et al. [20]). Such information

could also be utilized by automated test repair techniques themselves. In that context,

instead of postponing test repair efforts until later, such IDEs might even be capable

of programmatically correcting tests in response to particular edits by refactoring test

code related to locators, values, and so forth as the code is edited.

6.7 Root Cause Analysis

A final issue pertains to identifying test breakages and locating (or helping engineers

locate) the proximal causes of those breakages. As we classified the causes of test

breakages based on actual data, it became quite clear that the time at which the

proximal cause of a breakage occurs and the time at which a breakage is detected

can differ widely. Direct breakages manifest themselves precisely when the breakage

cause is encountered, as for example when a popup box is added or deleted (taxonomy

categories 5.1 and 5.2). Propagated breakages do not manifest themselves immediately,

42

but do manifest themselves later on subsequent test actions. For example, a specific

attribute value a may be used in two different elements e1 and e2 of web application

V , and test t may use a as a locator. In a version V ′ of the web application, if the

use of a in e1 has been deleted, t will refer to the use of a in e2 instead. Depending

on the result of this action, t may continue for some time before encountering a

situation in which its next action cannot be completed. Silent breakages never manifest

themselves explicitly. The previous example functions here as well, if t remains able

to continue through until completion. In this case, t can still be utilized as a test, but

from a test design standpoint this is quite problematic because t is not now testing

what it was designed to test. These examples suggest that in addition to preventing,

avoiding, or repairing test breakages, we need better methods for detecting them and

for tracing them back to the problematic test code that serves as their proximal cause.

Methodologies that monitor test execution for problems, perhaps similar to those

created to monitor web macro execution for problems [21] might be effective here.

43

Chapter 7

Related Work

There has been some research on automated techniques for repairing programs (e.g., [22,

23,24,25,26,27,28]). Our work focuses on tests.

There have been numerous papers on test repair. Several papers have addressed

the problem of repairing unit tests such as JUnit tests or tests written in similar

frameworks (e.g., [20,29,30]). Such approaches, however, are not applicable to tests

produced by means of record/replay tools.

Many papers have addressed the problem of repairing GUI tests. GUI tests often

track sequences of user actions applied to an interface, and some of these approaches

may be adaptable to web applications and record/replay tests. Memon and Soffa [31],

and Memon [32] and Datchayani et al. [14] use event flow graphs and transformation

techniques to repair broken GUI tests. Huang et al. [33] use a genetic algorithm to

repair GUI tests. Grechanik et al. [34] present an approach that analyzes an initial

and modified GUI for differences and generates a report for engineers documenting

ways in which associated test scripts may be broken by changes. Daniel et al. [35] use

GUI refactorings to keep track of changes engineers make to a GUI, suggesting that

this information could later be used to repair tests.

44

Zhang et al. [36] address the problem of repairing broken workflows in GUI

applications, where a workflow is a sequence of activities to perform a given task. This

approach, however, does not target tests.

Alshawan and Harman [37] present an approach for repairing user session data

used to regression test web applications. User session data, however, differs from the

data captured by record/replay tools; it records just the requests received by a server

from a web application.

Four recent papers consider problems related to record/replay tests of web appli-

cations. Stocco et al. [38] investigate the automated generation of page objects that

confine causes of test breakages to a single class, a form of breakage prevention. They

develop a technique that ensures the automatic creation of page objects to reduce the

tester’s effort in the context of web test maintenance. More specifically, Stocco et al.

develop a technique that addresses the problem of test code duplication. Thanks to

page objects, whenever changes are made to the web application under test, the tester

needs to repair the breakage only once. Such a repair is automatically propagated to

all tests using the broken element.

Yandrapally et al. [17] address the problem of test script fragility in relation

to locators, proposing approaches for identifying UI elements in more robust ways

using contextual clues, also a form of prevention. They create a new record/replay

approach that identifies a web element based on other elements surrounding it. Hence,

Yandrapally et al.’s technique automates the process of test case creation and prevents

future test breakages by keeping track of contextual clues within the user interface of

the web application under test.

Another approach for producing robust locators has been implemented in the tool

ROBULA [15]. ROBULA is used for preventing test breakages and reducing web test

case aging through the generation of robust XPath locators that are less likely to break

45

whenever the web application evolves. The multi-locator extension of ROBULA [16]

supports automated repair of broken locators.

Choudhary et al. [13] focus, as do we, on test scripts such as those created by

Selenium, and present WATER, a technique based on differential testing that compares

the behavior of a broken test to its behavior on a prior version of the web application.

Based on the differences found, the technique suggests a list of potential test repairs

for each breakage that was encountered. WATER suggests test repairs relative to

obsolete locators, obsolete assertions, newly added form elements and deleted form

elements.

Researchers have presented various fault taxonomies. Bruning et al. [39] present

a fault taxonomy for service-oriented architectures. Hayes [40] provides a fault

taxonomy for NASA software requirements. Mariani [41] presents a taxonomy for

component based software systems. Chan et al. [42] provide a taxonomy for web

service compositions. Hummer et al. [43] present a taxonomy for event-based systems.

None of these taxonomies consider web applications.

A few papers present fault taxonomies for web applications. Ocariza et al. [44, 45]

characterize the classes of error messages output by JavaScript in web applications and

the classes of faults found in JavaScript. Ricca and Tonella [46] present a preliminary

fault taxonomy for web applications, consisting of a single level of general fault

categories. Marchetto et al. [47] present a taxonomy of web application faults. None

of these papers consider test breakages.

Leotta et al. [48] conducted an empirical study in which they measured the

effort associated with the evolution of two equivalent Selenium IDE and Selenium

WebDriver test suites, with the aim of comparing the maintainability of record/replay

vs. programmable test suites. Changes made to the tests were classified as logical or

structural. However, no further refinement of this classification was carried out.

46

To our knowledge, the only paper that provides a more detailed classification of the

ways in which tests of web applications may break is the test repair paper by Choudhary

et al. [13], described earlier. The authors identify three types of changes related to

broken test scripts. (1) Structural changes are changes in the DOM tree and may

cause locator problems that can be characterized as “non-selection” or “mis-selection”

problems. One type of structural change involves additions, deletions or modifications

of form elements and these comprise the “form data problem”. (2) Content changes

involve modifications of the text or HTML contained in a DOM node; these can affect

assertions that check node contents, and lead to “obsolete content” problems. (3) Blind

changes involve changes in server-side code. This classification focuses first on changes

and then on associated problems that may result in test breakages, whereas we focus

on breakages. Further, while based on the authors’ experience, the classification is not

drawn from any formal empirical study of web applications, whereas ours is. Finally,

our taxonomy recognizes several types of breakages not noted by Choudhary et al.,

handling blind changes by focusing on proximal causes, which involve events or actions

occurring on the client side.

47

Chapter 8

Conclusions and Future Work

Following a rigorous process based on empirical observation of hundreds of versions

and/or commits of non-trivial, popular web applications, we have constructed a

taxonomy of the causes of breakages of tests created by record/replay approaches for

web applications, and the frequency at which the identified causes contribute to test

breakages.

As future work, we would like to investigate the uses of our taxonomy for test

breakage prevention via the creation of tests that are less brittle and less likely to

break in the face of web application evolution. Furthermore, we would like to create

novel repair techniques that would facilitate the automatic repair of broken tests. Also,

we would like to create automated techniques for preventing test breakages by warning

developers about the repercussions of changes they make on web applications. We are

also interested in test breakage avoidance, and approaches that stop developers from

making web application changes that would damage tests and cause them to break.

Another area that we are interested in investigating is related to IDE enhancements

for updating tests and automatically reflecting developer changes applied to the web

application. Such IDE enhancements could automatically update tests as the web

48

application evolves. Ultimately, this may help in the creation of novel record/replay

tools that are more robust with respect to test breakages.

As noted earlier, taxonomies do typically evolve as additional observations of the

world are made. While our initial attempts to validate our taxonomy revealed no

shortcomings, it is likely that continued studies will reveal the need for adjustments.

Our taxonomy presents a quantitative and a qualitative assessment of the causes

behind test breakages using Selenium IDE, which is a second generation testing tool.

Second generation tools identify web elements to be selected within the user interface

according to their position within the DOM tree and/or attributes. There are, however,

two other generations of tools that have been used to test web applications. First

generation tools rely on screen coordinates in order to locate and manipulate web

elements within the web application under test, and have largely been deprecated

due to the flakiness of coordinates. Third generation tools, (e.g., Sikuli) test web

applications based on image recognition of web elements within the user interface of

the web application under test. As future work, we plan to investigate test breakage

taxonomies for third generation tools and other second generation tools (e.g., Selenium

WebDriver).

49

Appendix A

Data Per Version:

50

Table A.1: Breakages Encountered for Each Pair of Versions of PHPFusion-Node 1.1.1
Not Expanded

1.1.1 1.1.2 1.1.3 1.1.4 2.1 2.2 2.3 2.4 3.1 3.2 4.1 4.2 5.1 5.2 Total
V1-V2 1 0 3 1 0 0 0 0 0 0 0 1 0 0 6
V2-V3 0 0 2 3 0 0 0 0 0 0 0 0 0 0 5
V3-V4 1 0 0 0 0 1 0 0 0 0 0 0 0 0 2
V4-V5 2 0 0 1 0 0 0 0 0 0 0 1 0 1 5
V5-V6 2 0 0 1 0 0 0 0 0 0 0 0 0 0 3
V6-V7 1 0 0 1 0 0 0 1 0 1 0 0 0 0 4
V7-V8 0 1 0 1 0 0 0 0 0 0 0 0 0 0 2
V8-V9 0 0 0 1 1 1 0 0 0 0 0 0 0 0 3
V9-V10 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
V10-V11 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
V11-V12 2 0 0 0 0 0 1 0 0 0 1 0 0 0 4
V12-V13 0 0 0 1 0 1 0 0 0 0 0 0 0 0 2
V13-V14 2 0 0 2 0 0 0 0 0 0 0 1 0 0 5
V14-V15 1 1 0 1 0 0 0 0 0 0 0 0 0 0 3
V15-V16 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
V16-V17 0 1 1 1 0 0 0 0 0 0 0 0 0 0 3
V17-V18 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
V18-V19 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2
V19-V20 2 0 0 1 0 0 0 0 0 1 0 0 0 0 4
V20-V21 2 0 2 1 0 0 2 0 0 0 0 0 0 0 7
V21-V22 1 1 1 0 0 0 0 0 0 0 0 0 0 0 3
V22-V23 1 0 0 1 0 0 0 0 0 0 0 0 0 1 3
V23-V24 1 0 0 1 0 0 0 0 0 0 0 0 0 0 2
V24-V25 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

51

Table A.2: Breakages Encountered for Each Pair of Versions of PHPFusion-Node 1.1.1
Not Expanded (Continued)

1.1.1 1.1.2 1.1.3 1.1.4 2.1 2.2 2.3 2.4 3.1 3.2 4.1 4.2 5.1 5.2 Total
V25-V26 3 2 0 1 0 0 1 0 0 0 0 0 1 0 8
V26-V27 3 1 0 1 0 0 0 0 0 0 0 0 0 0 5
V27-V28 2 0 1 0 0 0 0 0 0 0 1 0 0 0 4
V28-V29 0 0 1 2 1 0 0 0 0 0 0 0 0 0 4
V29-V30 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
V30-V31 1 0 0 0 0 0 0 0 2 0 0 0 0 0 3
V31-V32 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
V32-V33 1 0 2 1 0 0 0 0 0 0 0 0 0 0 4
V33-V34 0 0 1 0 0 0 1 0 0 0 0 0 0 0 2
V34-V35 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
V35-V36 0 1 1 0 0 0 0 0 0 0 0 0 0 0 2
V36-V37 0 0 1 0 0 0 0 1 0 0 0 0 0 0 2
V37-V38 1 0 1 0 0 0 0 0 0 0 1 0 0 0 3
V38-V39 1 0 2 1 0 0 0 0 0 0 0 0 0 0 4
V39-V40 1 0 1 3 0 0 0 0 0 0 0 0 0 0 5
V40-V41 2 0 1 3 0 0 1 0 0 0 0 0 1 0 8
V41-V42 4 0 1 0 0 1 0 0 0 0 0 0 0 0 6
V42-V43 2 0 1 1 0 0 0 0 0 0 0 0 0 0 4
V43-V44 1 0 1 1 0 0 0 0 0 0 0 0 0 0 3
V44-V45 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
V45-V46 0 1 1 0 0 0 0 0 0 0 0 0 0 0 2
V46-V47 0 1 1 3 0 0 0 0 0 0 0 0 0 0 5
V47-V48 0 0 1 2 0 0 0 0 0 0 0 0 0 0 3
V48-V49 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
Total 45 10 33 39 2 4 6 2 2 2 3 3 2 2 155

52

Table A.3: "Element Attribute not Found" Breakages Encountered for Each Pair of
Versions of PHPFusion

1.1.1.1 1.1.1.2 1.1.1.3 1.1.1.4 1.1.1.5 1.1.1.6 1.1.1.7 1.1.1.8 1.1.1.9 Total
V1-V2 0 0 0 0 1 0 1 1 0 3
V2-V3 0 0 0 0 0 0 0 0 0 0
V3-V4 0 0 0 0 0 2 0 0 0 2
V4-V5 0 0 0 0 0 0 0 0 0 0
V5-V6 0 0 0 0 0 0 0 0 0 0
V6-V7 0 0 0 0 0 0 0 0 0 0
V7-V8 1 0 0 1 0 0 0 0 0 2
V8-V9 0 0 0 0 0 0 0 0 0 0
V9-V10 1 0 0 0 0 0 0 0 0 1
V10-V11 0 0 1 0 0 0 0 0 0 1
V11-V12 0 0 0 0 1 2 1 0 1 5
V12-V13 0 0 0 0 0 0 0 0 0 0
V13-V14 0 0 0 0 0 0 0 0 0 0
V14-V15 0 0 0 0 0 0 0 0 0 0
V15-V16 1 0 0 2 0 0 0 0 0 3
V16-V17 0 0 0 0 0 0 0 0 0 0
V17-V18 0 0 0 0 0 1 0 0 0 1
V18-V19 0 1 0 0 0 0 0 0 0 1
V19-V20 0 0 0 0 0 0 0 0 0 0
V20-V21 0 0 0 0 0 0 1 0 0 1
V21-V22 1 1 0 0 0 0 0 0 0 2
V22-V23 0 0 0 0 0 0 0 0 0 0
V23-V24 0 0 0 0 0 0 0 0 0 0
V24-V25 0 0 0 0 2 0 0 0 0 2

53

Table A.4: "Element Attribute not Found" Breakages Encountered for Each Pair of
Versions of PHPFusion (Continued)

1.1.1.1 1.1.1.2 1.1.1.3 1.1.1.4 1.1.1.5 1.1.1.6 1.1.1.7 1.1.1.8 1.1.1.9 Total
V25-V26 0 0 0 0 0 0 0 0 0 0
V26-V27 0 0 0 0 0 0 0 0 0 0
V27-V28 0 1 0 0 0 0 0 0 0 1
V28-V29 0 0 0 0 0 0 0 0 0 0
V29-V30 0 0 1 0 0 0 0 0 0 1
V30-V31 0 0 0 0 0 0 0 0 0 0
V31-V32 0 0 0 0 0 0 0 0 0 0
V32-V33 0 0 0 0 0 0 0 0 1 1
V33-V34 0 0 0 1 0 0 0 1 0 2
V34-V35 0 1 1 0 0 0 0 0 0 2
V35-V36 0 0 0 0 0 0 0 0 0 0
V36-V37 0 1 2 0 0 0 0 0 0 3
V37-V38 0 0 0 0 0 0 0 0 1 1
V38-V39 0 0 0 1 0 0 0 0 0 1
V39-V40 1 0 0 0 0 0 0 0 0 1
V40-V41 1 0 0 0 0 0 0 0 0 1
V41-V42 0 0 0 0 0 0 0 0 0 0
V42-V43 0 0 0 0 0 0 0 0 0 0
V43-V44 1 0 0 1 0 0 0 0 1 3
V44-V45 0 0 0 0 0 0 0 0 0 0
V45-V46 1 0 0 0 0 0 0 0 0 1
V46-V47 0 0 0 0 0 0 0 0 0 0
V47-V48 2 0 0 0 0 0 0 0 0 2
V48-V49 1 0 0 0 0 0 0 0 0 1
total 11 5 5 6 4 5 3 2 4 45

54

Table A.5: Breakages Encountered for Each Pair of Versions of PHPAddressBook-Node
1.1.1 Not Expanded

1.1.1 1.1.2 1.1.3 1.1.4 2.1 2.2 2.3 2.4 3.1 3.2 4.1 4.2 5.1 5.2 Total
V1-V2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2
V2-V3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
V3-V4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V4-V5 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
V5-V6 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
V6-V7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V7-V8 2 0 0 0 0 0 0 0 0 0 0 1 0 0 3
V8-V9 3 0 0 0 0 1 0 0 0 0 0 0 0 0 4
V9-V10 4 0 0 0 1 0 0 0 0 0 0 0 0 0 5
V10-V11 4 0 0 0 0 0 1 0 0 0 0 0 0 1 6
V11-V12 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2
V12-V13 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
V13-V14 1 0 2 0 0 0 0 0 0 1 0 0 0 0 4
V14-V15 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
V15-V16 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
V16-V17 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
V17-V18 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
V18-V19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V19-V20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V20-V21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V21-V22 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
V22-V23 0 0 0 0 0 1 0 0 0 0 0 0 1 0 2
V23-V24 5 0 0 0 0 0 0 0 0 0 0 0 0 0 5
V24-V25 3 0 0 0 0 0 0 0 0 0 0 0 0 0 3
V25-V26 3 0 0 0 0 0 1 0 0 1 0 0 0 0 5
V26-V27 3 0 0 0 0 0 0 0 0 0 0 0 0 0 3
V27-V28 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2
V28-V29 1 1 0 0 0 0 0 0 0 0 0 0 0 0 2
V29-V30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V30-V31 1 0 0 0 0 1 0 0 0 0 0 0 0 0 2
V31-V32 0 0 1 0 0 0 1 0 0 0 0 0 0 0 2
V32-V33 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2
V33-V34 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2
V34-V35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V35-V36 2 1 1 0 0 0 0 0 0 0 0 0 1 0 5
V36-V37 3 0 0 1 0 0 0 0 0 0 0 0 0 0 4
V37-V38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V38-V39 3 0 1 0 0 0 1 0 0 0 0 0 0 0 5
V39-V40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

55

Table A.6: Breakages Encountered for Each Pair of Versions of PHPAddressBook-Node
1.1.1 Not Expanded (Continued)

1.1.1 1.1.2 1.1.3 1.1.4 2.1 2.2 2.3 2.4 3.1 3.2 4.1 4.2 5.1 5.2 Total
V40-V41 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
V41-V42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V42-V43 0 1 0 0 0 1 1 0 0 0 0 0 0 0 3
V43-V44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V44-V45 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
V45-V46 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
V46-V47 0 1 0 1 0 0 0 0 0 0 0 0 0 0 2
V47-V48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V48-V49 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
V49-V50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V50-V51 0 0 1 0 0 0 1 0 0 0 0 0 0 0 2
V51-V52 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
V52-V53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V53-V54 1 0 0 0 0 0 1 0 0 0 0 0 0 0 2
V54-V55 0 0 1 0 0 0 0 0 1 0 0 0 0 0 2
V55-V56 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
V56-V57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V57-V58 0 0 1 1 0 0 0 0 0 0 0 0 0 0 2
V58-V59 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
V59-V60 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
V60-V61 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V61-V62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V62-V63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V63-V64 2 0 0 1 0 0 1 0 0 0 0 0 0 0 4
V64-V65 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2
V65-V66 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
V66-V67 1 1 0 0 0 0 1 0 0 0 0 0 0 0 3
V67-V68 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
V68-V69 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
V69-V70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V70-V71 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
V71-V72 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
V72-V73 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
V73-V74 1 0 0 0 0 0 1 0 0 0 0 0 0 0 2
V74-V75 1 0 1 0 0 0 0 0 0 0 0 0 0 0 2
V75-V76 1 0 0 0 0 0 1 0 0 0 0 0 0 0 2
V76-V77 2 0 1 0 0 0 0 0 0 0 0 0 0 0 3
V77-V78 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
V78-V79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total 63 7 16 6 3 5 16 1 1 2 1 1 2 1 125

56

Table A.7: "Element Attribute not Found" Breakages Encountered for Each Pair of
Versions of PHPAddressBook

1.1.1.1 1.1.1.2 1.1.1.3 1.1.1.4 1.1.1.5 1.1.1.6 1.1.1.7 1.1.1.8 1.1.1.9 Total
V1-V2 0 0 0 0 0 0 0 0 0 0
V2-V3 0 0 0 0 0 0 0 0 0 0
V3-V4 1 0 0 0 0 0 0 0 0 1
V4-V5 0 1 0 0 0 0 0 0 0 1
V5-V6 0 0 1 0 0 0 0 0 1 2
V6-V7 0 0 0 0 0 0 0 0 0 0
V7-V8 0 0 0 0 0 1 0 0 0 1
V8-V9 0 0 0 0 0 0 0 0 0 0
V9-V10 0 0 0 0 0 0 0 0 2 2
V10-V11 1 0 0 0 0 0 0 0 0 1
V11-V12 0 0 0 0 0 0 0 0 0 0
V12-V13 0 0 0 0 1 0 0 0 0 1
V13-V14 0 0 0 0 0 0 0 0 0 0
V14-V15 1 0 1 0 0 0 0 0 1 3
V15-V16 0 0 0 1 0 1 0 0 0 2
V16-V17 0 0 0 0 0 0 0 0 0 0
V17-V18 1 0 0 0 0 0 0 0 0 1
V18-V19 0 0 0 0 1 0 0 0 0 1
V19-V20 0 0 0 0 0 0 0 0 2 2
V20-V21 1 0 0 0 0 0 0 0 0 1
V21-V22 0 1 0 0 0 1 1 0 0 3
V22-V23 0 0 0 1 0 0 0 0 0 1
V23-V24 0 0 1 0 0 0 0 0 1 2
V24-V25 0 0 0 0 1 0 0 0 0 1
V25-V26 1 0 0 0 0 1 0 0 0 2
V26-V27 0 0 0 0 0 0 0 0 0 0
V27-V28 0 1 0 0 0 0 1 0 0 2
V28-V29 0 0 0 0 0 1 0 0 0 1
V29-V30 0 0 0 0 0 0 0 0 0 0
V30-V31 0 0 1 0 1 0 0 0 0 2
V31-V32 1 0 0 1 0 0 0 0 0 2
V32-V33 0 1 0 0 0 0 0 0 0 1
V33-V34 0 0 0 0 0 0 0 0 0 0
V34-V35 0 0 0 0 0 0 1 0 0 1
V35-V36 0 0 0 0 1 0 0 0 0 1
V36-V37 0 0 0 0 0 0 0 0 0 0
V37-V38 1 0 0 0 0 0 0 0 0 1
V38-V39 0 0 0 0 0 0 0 0 0 0
V39-V40 0 0 0 0 0 0 0 0 0 0

57

Table A.8: "Element Attribute not Found" Breakages Encountered for Each Pair of
Versions of PHPAddressBook (Continued)

1.1.1.1 1.1.1.2 1.1.1.3 1.1.1.4 1.1.1.5 1.1.1.6 1.1.1.7 1.1.1.8 1.1.1.9 Total
V40-V41 0 0 0 0 0 0 1 0 0 1
V41-V42 0 0 0 0 1 0 0 0 0 1
V42-V43 0 0 0 0 0 0 0 0 0 0
V43-V44 0 0 0 0 0 0 0 0 0 0
V44-V45 0 0 0 0 0 0 1 1 0 2
V45-V46 1 0 0 0 0 0 0 0 0 1
V46-V47 0 0 0 0 1 0 0 0 0 1
V47-V48 0 0 0 0 0 0 0 0 0 0
V48-V49 0 0 0 0 0 1 0 0 0 1
V49-V50 0 1 0 1 0 0 0 0 0 2
V50-V51 1 0 0 0 1 0 0 1 0 3
V51-V52 0 0 0 0 0 0 0 0 0 0
V52-V53 0 0 0 0 0 0 0 0 0 0
V53-V54 0 1 0 0 0 0 0 0 0 1
V54-V55 0 0 0 0 0 0 0 0 0 0
V55-V56 1 0 0 0 0 0 0 0 0 1
V56-V57 0 0 0 0 0 0 0 0 0 0
V57-V58 0 0 0 0 0 0 0 0 0 0
V58-V59 0 0 0 0 0 0 0 1 0 1
V59-V60 0 1 0 0 0 0 0 0 0 1
V60-V61 0 0 0 0 0 0 0 0 0 0
V61-V62 1 0 0 0 0 0 0 0 0 1
V62-V63 0 0 0 0 0 0 0 0 0 0
V63-V64 0 0 0 0 1 0 0 0 0 1
V64-V65 0 0 0 0 0 0 0 1 0 1
V65-V66 0 1 0 0 0 0 0 0 0 1
V66-V67 0 0 0 0 0 0 0 0 0 0
V67-V68 0 0 0 0 0 0 0 0 0 0
V68-V69 1 0 1 0 0 0 0 0 0 2
V69-V70 0 0 0 0 0 0 0 0 0 0
V70-V71 0 0 0 0 0 0 0 0 0 0
V71-V72 0 0 0 0 0 0 0 0 0 0
V72-V73 1 0 0 0 0 0 0 0 0 1
V73-V74 0 0 0 0 0 0 0 0 0 0
V74-V75 0 0 0 0 0 0 0 0 0 0
V75-V76 1 0 0 0 0 0 0 0 0 1
V76-V77 0 0 0 0 0 0 0 0 0 0
V77-V78 0 0 0 0 0 0 0 0 0 0
V78-V79 0 0 0 0 0 0 0 0 0 0
Total 15 8 5 4 9 6 5 4 7 63

58

Table A.9: Breakages Encountered for Each Pair of Versions of PHPAgenda-Node
1.1.1 Not Expanded

1.1.1 1.1.2 1.1.3 1.1.4 2.1 2.2 2.3 2.4 3.1 3.2 4.1 4.2 5.1 5.2 Total
V1-V2 1 0 1 0 0 0 1 0 0 0 0 0 0 0 3
V2-V3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
V3-V4 2 0 0 0 1 0 0 0 0 0 0 0 0 0 3
V4-V5 1 0 1 1 0 0 1 0 0 0 0 0 0 0 4
V5-V6 1 1 0 0 0 0 0 0 0 0 0 0 0 0 2
V6-V7 0 0 1 1 0 1 1 0 0 0 0 0 0 0 4
V7-V8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
V8-V9 1 0 0 0 0 0 1 0 1 0 0 0 0 1 4
V9-V10 1 0 0 1 0 0 1 1 0 0 0 0 0 0 4
V10-V11 1 0 0 0 0 1 1 0 0 0 0 0 0 0 3
V11-V12 0 0 1 0 0 0 1 0 0 0 1 1 0 0 4
V12-V13 1 0 0 1 0 0 0 0 0 0 0 0 0 0 2
V13-V14 0 0 1 0 0 0 1 0 0 0 0 0 0 1 3
V14-V15 2 0 0 1 0 0 0 0 0 0 0 0 1 0 4
V15-V16 0 0 1 0 0 0 1 0 0 1 0 0 0 0 3
V16-V17 3 1 1 1 0 0 0 0 0 0 1 0 0 0 7
V17-V18 0 0 0 0 0 1 1 0 0 0 0 0 0 0 2
V18-V19 2 0 1 0 0 1 0 0 0 0 0 1 0 0 5
V19-V20 2 0 1 0 0 0 1 0 0 0 0 0 0 1 5
V20-V21 0 1 0 1 0 0 0 0 0 0 0 0 0 0 2
V21-V22 2 0 0 0 0 0 1 1 0 0 0 0 0 0 4
V22-V23 0 0 1 0 0 0 1 0 0 0 1 0 0 0 3
V23-V24 1 0 1 1 0 0 0 0 0 0 0 0 0 0 3
V24-V25 0 0 0 1 0 1 1 0 0 0 0 1 0 0 4
V25-V26 1 0 1 0 0 0 0 0 0 0 0 0 0 0 2
V26-V27 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
V27-V28 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2
V28-V29 1 0 1 1 0 1 1 0 0 0 0 0 0 0 5
V29-V30 1 0 0 0 0 0 1 0 0 0 0 0 0 0 2
V30-V31 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
V31-V32 3 0 1 0 0 0 1 0 0 0 0 0 0 0 5
Total 31 3 14 12 1 6 17 2 1 1 3 3 1 3 98

59

Table A.10: "Element Attribute not Found" Breakages Encountered for Each Pair of
Versions of PHPAgenda

1.1.1.1 1.1.1.2 1.1.1.3 1.1.1.4 1.1.1.5 1.1.1.6 1.1.1.7 1.1.1.8 1.1.1.9 Total
V1-V2 0 0 0 0 0 0 0 0 0 0
V2-V3 0 0 0 0 0 0 0 0 0 0
V3-V4 0 0 1 0 0 0 0 0 0 1
V4-V5 1 0 0 0 0 0 0 0 0 1
V5-V6 0 0 0 0 0 1 0 0 0 1
V6-V7 0 0 0 1 0 0 0 0 0 1
V7-V8 0 0 1 0 0 0 1 0 0 2
V8-V9 1 0 0 0 0 0 0 0 0 1
V9-V10 0 1 0 0 0 0 0 0 0 1
V10-V11 0 0 0 0 0 1 0 0 0 1
V11-V12 0 0 0 1 1 0 0 0 0 2
V12-V13 1 0 1 0 0 0 0 0 0 2
V13-V14 0 0 0 0 0 0 0 0 0 0
V14-V15 0 1 0 0 1 0 0 0 0 2
V15-V16 0 0 0 0 0 1 1 0 0 2
V16-V17 1 0 0 1 0 0 0 0 0 2
V17-V18 0 0 1 0 1 0 0 0 0 2
V18-V19 0 1 0 0 0 0 0 0 0 1
V19-V20 0 0 0 0 0 0 0 0 0 0
V20-V21 1 0 0 0 0 0 0 0 0 1
V21-V22 0 0 0 0 0 0 0 0 0 0
V22-V23 0 1 0 0 1 0 0 0 0 2
V23-V24 1 0 0 0 0 0 0 0 0 1
V24-V25 0 0 0 0 0 0 0 0 0 0
V25-V26 2 0 0 0 0 0 0 0 0 2
V26-V27 0 1 0 0 0 0 0 0 0 1
V27-V28 0 0 0 0 0 0 0 0 0 0
V28-V29 1 0 0 0 0 0 0 0 0 1
V29-V30 0 0 0 0 0 0 0 0 0 0
V30-V31 1 0 0 0 0 0 0 0 0 1
V31-V32 0 0 0 0 0 0 0 0 0 0
Total 10 5 4 3 4 3 2 0 0 31

60

Table A.11: Breakages Encountered for Each Pair of Versions of MyCollaboration-Node
1.1.1 Not Expanded

1.1.1 1.1.2 1.1.3 1.1.4 2.1 2.2 2.3 2.4 3.1 3.2 4.1 4.2 5.1 5.2 Total
V1-V2 3 1 1 0 0 0 1 0 0 0 0 0 0 1 7
V2-V3 3 0 1 0 0 0 1 0 0 0 0 0 0 0 5
V3-V4 1 0 0 0 0 0 0 1 0 0 0 0 0 0 2
V4-V5 1 0 1 1 1 0 1 0 0 0 0 0 0 0 5
V5-V6 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
V6-V7 2 2 1 1 0 1 1 0 1 0 0 0 1 0 10
V7-V8 2 0 0 1 0 0 0 0 0 0 0 0 0 0 3
V8-V9 3 0 0 0 0 0 0 0 0 0 0 0 0 0 3
V9-V10 1 0 1 1 1 0 1 0 0 1 0 0 0 0 6
V10-V11 3 2 0 0 0 0 0 1 0 0 0 0 0 0 6
V11-V12 1 0 0 1 0 0 1 0 0 0 0 1 0 1 5
V12-V13 3 2 0 1 0 1 0 0 0 0 0 0 1 0 8
V13-V14 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2
V14-V15 1 0 1 0 0 0 1 0 0 0 1 0 0 0 4
V15-V16 3 0 1 0 0 1 1 0 0 0 0 0 0 1 7
V16-V17 2 1 1 1 0 0 0 0 0 0 0 0 0 0 5
V17-V18 3 0 1 0 0 0 0 0 0 0 0 0 1 0 5
V18-V19 3 0 1 1 0 0 0 0 0 0 0 0 0 0 5
V19-V20 2 0 1 0 0 0 1 0 0 0 0 0 0 0 4
V20-V21 0 0 1 0 0 0 0 0 0 0 0 0 0 1 2
V21-V22 3 0 1 0 0 0 0 0 0 0 0 0 0 0 4
V22-V23 1 0 1 1 0 0 0 0 0 0 0 0 0 0 3
V23-V24 2 0 1 1 0 0 0 0 0 0 0 0 0 0 4
V24-V25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V25-V26 3 0 1 1 0 0 0 0 0 0 0 0 0 1 6
V26-V27 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2
V27-V28 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2
V28-V29 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Total 53 8 16 11 2 3 9 2 1 1 1 1 3 6 117

61

Table A.12: "Element Attribute not Found" Breakages Encountered for Each Pair of
Versions of MyCollaboration

1.1.1.1 1.1.1.2 1.1.1.3 1.1.1.4 1.1.1.5 1.1.1.6 1.1.1.7 1.1.1.8 1.1.1.9 Total
V1-V2 0 0 0 0 0 0 0 0 0 0
V2-V3 1 0 0 0 0 0 0 1 0 2
V3-V4 0 0 1 0 0 0 1 0 0 2
V4-V5 1 0 0 0 1 0 0 0 1 3
V5-V6 2 0 0 0 0 0 0 0 1 3
V6-V7 0 0 0 1 0 1 0 0 0 2
V7-V8 3 1 1 0 1 0 1 1 0 8
V8-V9 1 0 0 0 0 0 0 0 0 1
V9-V10 0 0 0 1 0 0 0 0 1 2
V10-V11 0 1 0 0 0 0 1 0 0 2
V11-V12 0 0 1 0 1 0 0 0 1 3
V12-V13 0 0 0 0 0 0 0 1 0 1
V13-V14 0 0 0 1 0 1 0 0 0 2
V14-V15 0 1 0 0 1 0 0 0 1 3
V15-V16 1 0 1 0 0 0 0 1 0 3
V16-V17 0 0 0 0 0 0 0 0 0 0
V17-V18 0 0 0 0 0 0 0 0 1 1
V18-V19 0 1 0 0 1 0 1 0 0 3
V19-V20 0 0 1 0 0 0 0 1 0 2
V20-V21 1 0 1 0 0 0 0 0 0 2
V21-V22 0 1 0 0 0 0 0 0 1 2
V22-V23 0 0 0 0 0 1 0 1 0 2
V23-V24 0 0 1 0 0 0 0 0 1 2
V24-V25 0 0 0 0 0 0 0 1 0 1
V25-V26 0 0 0 0 0 0 0 0 0 0
V26-V27 0 0 0 0 0 0 0 0 1 1
V27-V28 0 0 0 0 0 0 0 0 0 0
V28-V29 0 0 0 0 0 0 0 0 0 0
Total 10 5 7 3 5 3 4 7 9 53

62

Table A.13: Breakages Encountered for Each Pair of Versions of Joomla-Node 1.1.1
Not Expanded

1.1.1 1.1.2 1.1.3 1.1.4 2.1 2.2 2.3 2.4 3.1 3.2 4.1 4.2 5.1 5.2 Total
V1-V2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
V2-V3 0 0 0 1 0 1 0 0 0 1 0 0 0 0 3
V3-V4 1 0 1 0 0 0 0 0 0 0 0 0 1 0 3
V4-V5 0 0 0 0 0 0 1 0 0 0 0 0 0 1 2
V5-V6 0 3 0 1 0 0 0 0 1 0 0 0 0 0 5
V6-V7 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
V7-V8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V8-V9 0 0 1 0 0 0 0 0 0 0 0 1 0 0 2
V9-V10 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
V10-V11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V11-V12 1 0 0 0 0 1 0 0 0 0 0 0 0 0 2
V12-V13 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
V13-V14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V14-V15 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
V15-V16 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
V16-V17 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
V17-V18 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
V18-V19 1 0 0 1 0 0 0 0 0 0 0 0 0 0 2
V19-V20 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
V20-V21 2 0 0 0 0 0 0 0 0 1 0 0 0 0 3
V21-V22 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
V22-V23 3 3 0 0 0 1 0 0 0 0 0 0 0 0 7
V23-V24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V24-V25 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
V25-V26 3 0 0 0 0 0 0 0 0 0 0 0 0 0 3
V26-V27 3 0 0 0 0 0 0 0 0 0 0 0 0 0 3
V27-V28 2 0 0 0 0 1 0 0 0 0 0 0 0 0 3
V28-V29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V29-V30 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
V30-V31 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
V31-V32 3 2 0 0 0 0 0 0 0 0 0 0 1 0 6
V32-V33 2 0 0 1 0 0 0 0 0 0 0 0 0 0 3
V33-V34 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2
V34-V35 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
V35-V36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V36-V37 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
V37-V38 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

63

Table A.14: Breakages Encountered for Each Pair of Versions of Joomla-Node 1.1.1
Not Expanded (Continued)

1.1.1 1.1.2 1.1.3 1.1.4 2.1 2.2 2.3 2.4 3.1 3.2 4.1 4.2 5.1 5.2 Total
V38-V39 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
V39-V40 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
V40-V41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V41-V42 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
V42-V43 3 0 0 0 0 0 0 0 0 0 0 0 0 0 3
V43-V44 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
V44-V45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V45-V46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V46-V47 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
V47-V48 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2
V48-V49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V49-V50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V50-V51 0 1 0 1 0 0 0 0 0 0 0 0 0 0 2
V51-V52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V52-V53 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2
V53-V54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V54-V55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V55-V56 3 0 0 0 0 0 0 0 0 0 0 0 0 0 3
V56-V57 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2
V57-V58 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2
V58-V59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V59-V60 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2
V60-V61 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
V61-V62 1 0 0 1 0 0 0 0 0 0 0 0 0 0 2
V62-V63 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
V63-V64 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2
V64-V65 0 0 1 1 0 0 0 0 0 0 0 0 0 0 2
V65-V66 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
V66-V67 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
V67-V68 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
V68-V69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V69-V70 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
V70-V71 3 0 0 0 0 1 0 0 0 0 0 0 0 0 4
V71-V72 3 0 1 0 0 0 0 0 0 0 0 0 0 0 4
V72-V73 2 0 0 0 0 1 0 0 0 0 0 0 0 0 3
V73-V74 4 0 0 0 0 0 0 0 0 0 0 0 0 0 4

64

Table A.15: Breakages Encountered for Each Pair of Versions of Joomla-Node 1.1.1
Not Expanded (Continued)

1.1.1 1.1.2 1.1.3 1.1.4 2.1 2.2 2.3 2.4 3.1 3.2 4.1 4.2 5.1 5.2 Total
V74-V75 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
V75-V76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V76-V77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V77-V78 4 0 0 0 0 1 0 0 0 0 0 0 0 0 5
V78-V79 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
V70-V80 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
V80-V81 0 1 0 0 0 1 0 0 0 0 0 0 1 0 3
V81-V82 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V82-V83 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
V83-V84 3 0 0 0 0 0 0 0 0 0 0 0 0 0 3
V84-V85 0 0 0 0 0 1 0 0 0 0 0 0 1 0 2
V85-V86 1 0 0 0 0 0 1 0 0 0 0 0 0 0 2
V86-V87 4 0 0 0 0 0 0 0 0 1 0 0 0 0 5
V87-V88 3 1 0 0 0 0 0 0 0 0 0 0 0 0 4
V88-V89 1 0 0 0 0 0 0 0 0 0 0 0 1 0 2
V89-V90 3 0 0 0 0 0 0 0 0 0 0 0 0 1 4
V90-V91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V91-V92 3 0 0 0 0 1 0 0 0 0 0 0 0 0 4
V92-V93 4 1 0 0 0 0 0 0 0 0 0 0 0 0 5
V93-V94 5 0 0 0 0 0 0 0 0 0 0 0 0 0 5
V94-V95 3 0 0 0 0 1 0 1 0 0 0 0 0 0 5
V95-V96 4 0 0 0 0 0 0 0 0 0 0 0 1 0 5
V96-V97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V97-V98 4 0 1 0 0 0 0 0 0 0 0 0 0 0 5
V98-V99 3 0 0 0 0 1 1 0 0 0 0 0 0 0 5
V99-V100 3 0 1 0 0 0 0 0 0 0 0 0 1 0 5
V100-V101 3 0 0 0 0 0 0 0 0 1 0 0 0 0 4
V101-V102 4 0 0 0 0 0 0 0 0 0 0 0 0 0 4
V102-V103 1 1 0 0 0 0 0 0 0 0 0 0 0 1 3
V103-V104 4 0 0 0 0 1 0 0 0 0 0 0 0 0 5
V104-V105 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2
V105-V106 3 0 1 0 0 0 0 0 0 0 0 0 0 0 4
V106-V107 2 0 0 0 0 1 0 0 1 0 0 0 0 0 4
V107-V108 4 0 1 1 0 0 0 0 0 0 0 0 0 0 6
V108-V109 3 0 0 0 0 1 0 0 0 0 0 0 1 0 5
V109-V110 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2
V110-V111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total 138 15 11 11 1 18 4 3 2 6 1 1 13 3 227

65

Table A.16: "Element Attribute not Found" Breakages Encountered for Each Pair of
Versions of Joomla

1.1.1.1 1.1.1.2 1.1.1.3 1.1.1.4 1.1.1.5 1.1.1.6 1.1.1.7 1.1.1.8 1.1.1.9 Total
V1-V2 0 0 0 0 0 0 0 0 1 1
V2-V3 0 0 0 0 0 0 0 0 0 0
V3-V4 1 0 0 1 0 0 0 0 0 2
V4-V5 0 1 0 0 0 0 1 0 1 3
V5-V6 0 0 0 1 0 0 0 1 0 2
V6-V7 0 0 1 0 0 0 0 0 0 1
V7-V8 0 0 0 1 0 1 0 0 0 2
V8-V9 1 0 0 0 2 0 0 0 0 3
V9-V10 0 0 0 1 0 0 0 0 0 1
V10-V11 0 1 0 0 0 0 1 0 0 2
V11-V12 0 0 0 0 0 0 0 0 0 0
V12-V13 1 0 0 0 0 0 0 0 0 1
V13-V14 0 0 1 0 0 0 0 0 1 2
V14-V15 0 0 0 1 0 0 0 0 0 1
V15-V16 0 1 0 1 0 0 0 0 0 2
V16-V17 1 0 0 0 0 1 0 0 0 2
V17-V18 0 0 0 0 0 0 0 0 0 0
V18-V19 0 0 0 0 0 0 0 0 0 0
V19-V20 0 0 0 1 0 0 0 1 0 2
V20-V21 1 0 1 0 0 0 0 0 0 2
V21-V22 0 0 0 0 0 0 0 0 0 0
V22-V23 0 1 0 0 0 1 0 0 0 2
V23-V24 1 0 0 1 2 0 0 0 0 4
V24-V25 0 0 1 0 0 0 0 0 0 1
V25-V26 0 0 0 0 0 0 0 0 0 0
V26-V27 0 0 1 1 0 0 0 0 0 2
V27-V28 1 0 0 0 0 0 0 0 0 1
V28-V29 0 0 0 0 0 0 1 0 0 1
V29-V30 0 1 0 0 0 0 0 0 1 2
V30-V31 0 0 0 1 0 0 0 0 0 1
V31-V32 0 0 0 0 0 0 0 0 0 0
V32-V33 1 0 0 0 0 0 0 0 0 1
V33-V34 0 0 0 0 0 0 0 0 0 0
V34-V35 0 0 0 0 0 0 0 0 1 1
V35-V36 0 0 0 1 0 0 0 0 0 1
V36-V37 0 0 0 0 0 0 0 0 0 0
V37-V38 0 0 0 0 0 0 0 0 0 0

66

Table A.17: "Element Attribute not Found" Breakages Encountered for Each Pair of
Versions of Joomla (Continued)

1.1.1.1 1.1.1.2 1.1.1.3 1.1.1.4 1.1.1.5 1.1.1.6 1.1.1.7 1.1.1.8 1.1.1.9 Total
V38-V39 0 1 0 0 2 0 0 0 0 3
V39-V40 0 0 0 1 0 0 0 0 0 1
V40-V41 0 0 0 0 0 0 1 1 0 2
V41-V42 0 0 1 0 0 0 0 0 0 1
V42-V43 0 0 0 0 0 0 0 0 0 0
V43-V44 0 0 0 0 0 0 0 0 0 0
V44-V45 1 0 0 0 0 0 1 0 1 3
V45-V46 0 0 0 0 0 0 0 0 0 0
V46-V47 0 0 0 0 0 0 0 0 0 0
V47-V48 0 0 0 0 0 0 0 1 0 1
V48-V49 0 0 0 0 0 0 0 0 0 0
V49-V50 0 0 0 0 0 0 0 0 0 0
V50-V51 0 0 1 0 0 0 0 0 0 1
V51-V52 1 0 0 0 0 0 0 0 1 2
V52-V53 0 0 0 0 0 0 0 0 0 0
V53-V54 0 0 0 1 0 0 0 0 0 1
V54-V55 0 0 0 0 0 0 0 0 0 0
V55-V56 0 0 0 1 0 0 0 0 0 1
V56-V57 0 0 0 0 0 0 0 0 0 0
V57-V58 1 0 0 0 0 0 0 0 0 1
V58-V59 0 0 0 1 0 0 0 0 0 1
V59-V60 0 0 0 0 0 0 0 0 0 0
V60-V61 0 0 0 0 0 0 0 0 0 0
V61-V62 0 0 0 0 0 0 0 0 0 0
V62-V63 0 0 0 1 0 0 0 0 0 1
V63-V64 0 0 0 1 0 0 0 0 0 1
V64-V65 0 0 0 0 0 0 1 0 0 1
V65-V66 1 0 0 0 0 0 0 0 0 1
V66-V67 0 0 0 1 0 0 0 1 0 2
V67-V68 0 0 0 0 0 0 0 0 0 0
V68-V69 0 1 1 0 0 0 0 0 0 2
V69-V70 0 0 0 0 0 0 0 0 0 0
V70-V71 0 1 0 1 0 0 0 0 0 2
V71-V72 0 0 0 0 1 0 0 0 0 1
V72-V73 0 0 1 0 0 0 1 1 1 4
V73-V74 0 0 0 0 0 1 0 0 0 1

67

Table A.18: "Element Attribute not Found" Breakages Encountered for Each Pair of
Versions of Joomla (Continued)

1.1.1.1 1.1.1.2 1.1.1.3 1.1.1.4 1.1.1.5 1.1.1.6 1.1.1.7 1.1.1.8 1.1.1.9 Total
V74-V75 1 0 0 0 0 0 0 0 0 1
V75-V76 0 0 0 0 0 0 0 0 0 0
V76-V77 0 0 1 0 0 0 0 0 0 1
V77-V78 1 1 0 0 0 0 0 0 0 2
V78-V79 0 0 0 0 0 0 0 1 0 1
V70-V80 0 0 1 0 0 0 0 0 1 2
V80-V81 0 0 0 0 1 0 0 1 0 2
V81-V82 0 1 0 0 0 0 0 0 0 1
V82-V83 0 0 0 0 0 0 0 0 0 0
V83-V84 0 0 0 0 0 0 0 1 1 2
V84-V85 0 0 0 0 0 0 1 0 0 1
V85-V86 1 1 1 1 0 0 0 0 0 4
V86-V87 0 0 0 0 0 0 0 0 0 0
V87-V88 0 0 0 0 1 0 0 0 0 1
V88-V89 1 0 0 0 0 0 0 1 0 2
V89-V90 0 0 0 0 0 0 1 0 0 1
V90-V91 0 0 0 0 0 1 0 0 0 1
V91-V92 1 0 0 0 0 0 0 0 0 1
V92-V93 0 0 0 0 0 0 0 0 1 1
V93-V94 0 0 1 0 0 0 0 1 0 2
V94-V95 0 0 0 0 0 0 0 0 0 0
V95-V96 0 1 1 1 0 0 0 0 1 4
V96-V97 0 0 0 0 0 0 0 0 0 0
V97-V98 0 0 1 0 0 0 0 0 0 1
V98-V99 0 0 1 0 1 1 0 0 0 3
V99-V100 1 0 0 0 0 0 0 0 0 1
V100-V101 0 0 1 1 0 0 0 0 1 3
V101-V102 0 0 0 0 0 0 1 0 0 1
V102-V103 0 1 1 0 0 0 0 0 0 2
V103-V104 0 0 0 0 0 1 0 1 0 2
V104-V105 1 0 0 0 0 0 0 0 0 1
V105-V106 0 1 0 0 2 0 0 0 0 3
V106-V107 1 0 0 0 0 0 0 0 1 2
V107-V108 0 1 1 0 0 1 0 0 0 3
V108-V109 1 0 0 0 1 0 0 1 0 3
V109-V110 0 0 0 0 0 0 1 0 1 2
V110-V111 0 0 0 0 0 0 0 1 0 1
Total 21 15 19 22 13 8 11 14 15 138

68

Table A.19: Breakages Encountered for Each Pair of Versions of MyMovieLibrary-Node
1.1.1 Not Expanded

1.1.1 1.1.2 1.1.3 1.1.4 2.1 2.2 2.3 2.4 3.1 3.2 4.1 4.2 5.1 5.2 Total
C1-C2 1 0 1 0 0 0 0 0 0 0 0 1 0 0 3
C2-C3 2 0 1 1 0 0 0 0 0 0 0 0 0 1 5
C3-C4 2 2 0 1 0 0 0 0 0 0 0 0 0 0 5
C4-C5 3 0 1 0 1 0 0 0 0 0 0 0 0 0 5
C5-C6 1 0 0 0 0 0 0 0 0 1 0 0 1 0 3
C6-C7 0 0 0 0 0 1 1 1 1 0 0 0 0 0 4
C7-C8 2 0 1 0 0 0 0 0 0 0 0 0 0 0 3
C8-C9 3 0 1 0 0 0 0 0 0 0 1 0 0 1 6
C9-C10 2 2 0 2 0 1 0 0 0 1 0 0 0 0 8
C10-C11 2 0 0 1 1 0 1 0 0 0 0 0 0 0 5
C11-C12 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
C12-C13 0 0 0 2 0 0 1 1 0 0 0 0 0 0 4
C13-C14 2 0 0 0 0 1 0 0 0 0 0 0 1 1 5
C14-C15 3 0 0 0 0 0 0 0 0 0 0 0 0 0 3
C15-C16 1 0 1 2 0 1 1 0 0 0 0 0 0 0 6
C16-C17 4 0 0 0 0 0 0 0 0 0 0 0 0 0 4
C17-C18 2 0 1 0 0 0 0 0 0 0 0 0 0 1 4
C18-C19 2 0 0 0 0 0 1 0 0 0 0 0 0 0 3
C19-C20 2 0 2 3 0 0 0 0 0 0 0 0 0 0 7
C20-C21 1 0 0 0 0 0 1 1 0 0 0 0 0 0 3
C21-C22 1 0 3 1 0 1 0 0 0 0 0 0 0 0 6
C22-C23 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2
Total 38 4 12 13 2 5 6 3 2 2 1 1 2 4 95

69

Table A.20: "Element Attribute not Found" Breakages Encountered for Each Pair of
Versions of MyMovieLibrary

1.1.1.1 1.1.1.2 1.1.1.3 1.1.1.4 1.1.1.5 1.1.1.6 1.1.1.7 1.1.1.8 1.1.1.9 Total
C1-C2 0 0 0 0 0 0 0 0 0 0
C2-C3 0 1 0 0 0 1 0 0 0 2
C3-C4 0 0 0 0 1 0 0 1 0 2
C4-C5 0 0 0 1 0 0 0 0 0 1
C5-C6 0 0 0 0 0 0 0 0 1 1
C6-C7 0 0 0 0 0 0 1 0 0 1
C7-C8 1 1 1 1 0 0 0 1 0 5
C8-C9 0 0 0 0 1 0 0 0 1 2
C9-C10 0 0 0 0 0 0 0 0 0 0
C10-C11 1 0 1 0 0 0 0 1 1 4
C11-C12 0 0 0 1 0 0 1 0 0 2
C12-C13 0 1 0 0 1 0 0 0 0 2
C13-C14 1 0 1 0 0 0 0 0 1 3
C14-C15 0 0 0 0 0 0 0 2 0 2
C15-C16 0 1 1 1 0 0 0 0 0 3
C16-C17 2 0 0 0 0 1 0 0 0 3
C17-C18 0 1 0 0 0 0 0 1 0 2
C18-C19 0 1 1 0 0 0 0 0 0 2
C19-C20 0 0 0 0 0 0 0 1 0 1
C20-C21 0 0 0 0 0 0 0 0 0 0
C21-C22 0 0 0 0 0 0 0 0 0 0
C22-C23 0 0 0 0 0 0 0 0 0 0
Total 5 6 5 4 3 2 2 7 4 38

70

Table A.21: Breakages Encountered for Each Pair of Versions of Dolibarr-Node 1.1.1
Not Expanded

1.1.1 1.1.2 1.1.3 1.1.4 2.1 2.2 2.3 2.4 3.1 3.2 4.1 4.2 5.1 5.2 Total
C1-C2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2
C2-C3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2
C3-C4 2 0 1 1 0 0 0 0 0 0 0 0 0 0 4
C4-C5 2 1 0 0 0 0 1 0 1 0 0 0 0 0 5
C5-C6 3 0 0 1 0 0 0 0 0 0 0 0 0 0 4
C6-C7 3 2 1 0 0 1 0 1 0 0 0 0 0 0 8
C7-C8 1 0 0 0 0 1 0 0 0 0 1 0 0 0 3
C8-C9 2 0 0 1 0 0 1 0 1 0 0 0 1 1 7
C9-C10 3 1 1 0 0 1 0 0 0 0 0 0 0 0 6
C10-C11 3 0 0 0 0 0 0 2 0 0 0 0 0 0 5
C11-C12 1 2 0 0 0 0 0 0 0 1 0 0 0 0 4
C12-C13 1 0 1 0 0 0 0 0 1 0 0 0 0 0 3
C13-C14 1 0 0 1 0 0 1 0 0 0 0 0 0 0 3
C14-C15 3 1 1 0 0 0 0 0 0 0 0 0 0 0 5
C15-C16 1 0 0 0 0 1 0 0 1 0 0 0 0 0 3
C16-C17 1 0 1 0 0 0 0 0 0 1 1 0 0 0 4
C17-C18 2 1 0 0 0 0 1 0 0 0 0 0 0 0 4
C18-C19 2 0 0 1 0 0 0 0 0 0 0 1 0 0 4
C19-C20 1 1 1 0 0 0 0 0 0 0 0 0 0 0 3
C20-C21 2 0 1 0 0 0 1 0 0 0 0 0 0 0 4
C21-C22 2 0 0 1 0 0 0 0 0 0 0 0 0 0 3
C22-C23 1 0 1 0 0 0 1 0 0 0 1 0 0 0 4
C23-C24 2 0 0 0 1 0 1 0 0 0 0 0 0 0 4
C24-C25 2 0 1 1 0 0 1 0 0 0 0 0 0 0 5
C25-C26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C26-C27 1 0 1 0 0 0 0 0 0 0 0 0 0 0 2
C27-C28 2 0 1 0 0 0 0 0 0 0 0 0 0 0 3
C28-C29 2 0 1 0 0 0 0 0 0 0 0 0 0 0 3
C29-C30 2 0 1 0 0 0 0 0 0 0 0 0 0 0 3
Total 52 9 14 7 1 4 8 3 4 2 3 1 1 1 110

71

Table A.22: "Element Attribute not Found" Breakages Encountered for Each Pair of
Versions of Dolibarr

1.1.1.1 1.1.1.2 1.1.1.3 1.1.1.4 1.1.1.5 1.1.1.6 1.1.1.7 1.1.1.8 1.1.1.9 Total
C1-C2 0 0 0 0 0 0 0 0 0 0
C2-C3 0 1 1 1 0 0 0 0 0 3
C3-C4 0 0 0 0 0 1 0 0 0 1
C4-C5 0 0 1 0 1 0 1 1 0 4
C5-C6 0 1 0 0 0 0 0 0 0 1
C6-C7 1 0 0 0 0 0 0 0 0 1
C7-C8 0 1 0 0 0 0 0 1 0 2
C8-C9 1 0 0 0 0 0 0 0 0 1
C9-C10 0 0 1 0 0 1 0 0 1 3
C10-C11 1 0 0 0 0 1 0 0 0 2
C11-C12 0 0 0 0 1 0 1 2 0 4
C12-C13 0 0 0 0 0 1 0 0 0 1
C13-C14 0 0 0 0 0 0 0 0 1 1
C14-C15 0 1 0 0 0 0 1 0 0 2
C15-C16 0 0 0 1 1 0 0 0 1 3
C16-C17 0 0 1 0 0 0 0 0 0 1
C17-C18 1 0 0 0 0 1 0 0 0 2
C18-C19 0 0 0 1 1 0 1 1 0 4
C19-C20 0 1 0 0 1 0 0 0 0 2
C20-C21 0 0 1 0 1 0 1 0 0 3
C21-C22 0 0 0 0 0 0 0 1 1 2
C22-C23 0 0 1 0 0 1 1 0 0 3
C23-C24 0 1 0 0 1 0 0 0 0 2
C24-C25 1 0 0 1 0 0 2 0 0 4
C25-C26 0 0 0 0 0 0 0 0 0 0
C26-C27 0 0 0 0 0 0 0 0 0 0
C27-C28 0 0 0 0 0 0 0 0 0 0
C28-C29 0 0 0 0 0 0 0 0 0 0
C29-C30 0 0 0 0 0 0 0 0 0 0
Total 5 6 6 4 7 6 8 6 4 52

72

Table A.23: Breakages Encountered for Each Pair of Versions of YourContacts-Node
1.1.1 Not Expanded

1.1.1 1.1.2 1.1.3 1.1.4 2.1 2.2 2.3 2.4 3.1 3.2 4.1 4.2 5.1 5.2 Total
C1-C2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
C2-C3 2 0 1 0 0 0 0 0 0 0 0 0 0 0 3
C3-C4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
C4-C5 0 1 0 0 0 0 0 1 1 0 0 0 1 1 5
C5-C6 1 0 0 0 1 1 0 0 0 0 0 1 0 0 4
C6-C7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C7-C8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C8-C9 3 0 0 0 0 0 0 0 0 0 0 0 0 0 3
C9-C10 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
C10-C11 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
C11-C12 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
C12-C13 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2
C13-C14 1 1 0 0 0 0 0 0 0 0 0 0 0 0 2
C14-C15 0 0 0 0 0 1 0 0 0 0 0 1 0 0 2
C15-C16 0 0 1 1 0 0 0 0 0 0 0 0 0 0 2
C16-C17 1 0 0 0 0 0 1 1 0 0 0 0 0 0 3
C17-C18 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
C18-C19 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
C19-C20 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2
C20-C21 2 0 1 0 0 0 0 0 0 0 0 0 0 0 3
C21-C22 3 0 0 0 0 0 0 0 0 0 0 0 0 0 3
C22-C23 1 1 0 1 0 1 0 0 0 1 0 0 0 0 5
C23-C24 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
C24-C25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C25-C26 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
C26-C27 1 0 0 0 0 0 1 0 0 0 0 0 0 0 2
C27-C28 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
C28-C29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C29-C30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C30-C31 0 0 0 1 0 0 0 1 0 0 0 0 0 0 2
C31-C32 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
C32-C33 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
C33-C34 1 1 0 0 0 0 0 0 0 0 0 0 0 1 3

73

Table A.24: Breakages Encountered for Each Pair of Versions of YourContacts-Node
1.1.1 Not Expanded (Continued)

1.1.1 1.1.2 1.1.3 1.1.4 2.1 2.2 2.3 2.4 3.1 3.2 4.1 4.2 5.1 5.2 Total
C34-C35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C35-C36 1 0 0 0 1 0 1 0 0 0 0 0 0 0 3
C36-C37 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
C37-C38 1 0 0 1 0 0 0 0 0 0 0 0 0 0 2
C38-C39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C39-C40 0 1 1 0 0 1 0 0 0 0 0 0 0 0 3
C40-C41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C41-C42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C42-C43 1 0 0 0 0 0 0 0 1 0 0 0 0 0 2
C43-C44 0 0 1 0 0 0 1 0 0 0 0 0 0 0 2
C44-C45 0 0 0 1 0 0 0 0 0 1 0 0 0 0 2
C45-C46 0 1 0 0 0 1 0 0 0 0 0 0 0 0 2
C46-C47 2 0 0 0 0 0 0 0 0 0 0 0 1 0 3
C47-C48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C48-C49 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
C49-C50 0 0 1 0 0 1 0 0 1 0 0 0 0 0 3
C50-C51 1 0 0 0 0 0 0 0 0 0 0 0 1 0 2
C51-C52 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
C52-C53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C53-C54 1 0 0 0 0 0 1 0 0 0 0 0 0 0 2
C54-C55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C55-C56 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
C56-C57 3 0 0 0 0 0 0 0 0 0 0 0 0 0 3
C57-C58 0 0 1 1 0 0 0 0 0 0 0 0 0 0 2
C58-C59 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
C59-C60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C60-C61 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
C61-C62 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
C62-C63 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
C63-C64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C64-C65 1 0 0 0 0 0 0 0 0 0 1 0 0 0 2
C65-C66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

74

Table A.25: Breakages Encountered for Each Pair of Versions of YourContacts-Node
1.1.1 Not Expanded (Continued)

1.1.1 1.1.2 1.1.3 1.1.4 2.1 2.2 2.3 2.4 3.1 3.2 4.1 4.2 5.1 5.2 Total
C66-C67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C67-C68 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2
C68-C69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C69-C70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C70-C71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C71-C72 1 0 0 0 0 0 0 0 0 1 0 0 0 0 2
C72-C73 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
C73-C74 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
C74-C75 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
C75-C76 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
C76-C77 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
C77-C78 1 0 0 1 0 0 0 0 0 0 0 0 0 0 2
C78-C79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C70-C80 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
C80-C81 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
C81-C82 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C82-C83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C83-C84 0 0 1 1 0 0 0 0 0 0 0 0 0 0 2
C84-C85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C85-C86 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
C86-C87 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2
C87-C88 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
C88-C89 0 0 1 0 0 1 0 0 0 0 0 0 0 0 2
C89-C90 3 0 1 0 0 0 0 0 0 0 0 0 0 0 4
C90-C91 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
C91-C92 1 0 0 1 0 0 0 0 0 0 0 0 0 0 2
C92-C93 1 0 0 0 0 1 0 0 0 0 0 0 0 0 2
C93-C94 1 0 1 0 0 0 0 0 0 0 0 0 0 0 2
C94-C95 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
C95-C96 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
C96-C97 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
C97-C98 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
C98-C99 1 0 1 1 0 0 0 0 0 0 0 0 0 0 3
C99-C100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total 54 7 15 17 3 9 7 4 4 5 2 2 5 4 138

75

Table A.26: "Element Attribute not Found" Breakages Encountered for Each Pair of
Versions of YourContacts

1.1.1.1 1.1.1.2 1.1.1.3 1.1.1.4 1.1.1.5 1.1.1.6 1.1.1.7 1.1.1.8 1.1.1.9 Total
C1-C2 0 0 0 0 0 0 0 0 0 0
C2-C3 0 0 0 0 0 0 0 0 0 0
C3-C4 0 0 0 0 0 0 0 0 0 0
C4-C5 0 0 0 0 0 1 0 0 0 1
C5-C6 0 0 0 1 0 0 1 0 1 3
C6-C7 0 0 0 0 0 0 0 1 0 1
C7-C8 0 0 0 0 1 0 0 0 0 1
C8-C9 0 0 0 0 0 0 0 0 0 0
C9-C10 0 0 0 0 0 0 0 0 0 0
C10-C11 0 0 0 0 0 0 0 0 0 0
C11-C12 0 0 0 0 0 0 0 0 0 0
C12-C13 1 0 0 1 0 0 0 0 0 2
C13-C14 0 1 0 0 0 0 0 0 0 1
C14-C15 0 0 0 0 0 0 0 0 0 0
C15-C16 0 0 0 0 0 0 0 0 0 0
C16-C17 0 0 0 0 0 0 0 0 0 0
C17-C18 0 0 0 0 0 0 0 0 0 0
C18-C19 1 0 0 0 0 0 1 0 0 2
C19-C20 0 0 0 0 0 1 0 0 0 1
C20-C21 0 0 1 1 0 0 0 0 0 2
C21-C22 0 0 0 0 0 0 0 0 0 0
C22-C23 0 0 0 0 0 0 0 0 0 0
C23-C24 0 0 0 0 0 0 0 0 0 0
C24-C25 0 1 0 0 0 0 0 0 0 1
C25-C26 0 0 0 0 0 0 0 0 0 0
C26-C27 0 0 0 0 0 0 0 0 0 0
C27-C28 0 0 0 1 0 0 0 0 0 1
C28-C29 1 0 0 0 0 0 0 0 0 1
C29-C30 0 0 0 0 0 0 0 0 0 0
C30-C31 0 0 0 0 0 0 1 0 1 2
C31-C32 0 0 0 0 0 0 0 0 0 0
C32-C33 0 0 1 0 1 0 0 0 0 2
C33-C34 0 0 0 0 0 0 0 0 0 0
C34-C35 0 0 0 0 0 0 0 0 0 0

76

Table A.27: "Element Attribute not Found" Breakages Encountered for Each Pair of
Versions of YourContacts (Continued)

1.1.1.1 1.1.1.2 1.1.1.3 1.1.1.4 1.1.1.5 1.1.1.6 1.1.1.7 1.1.1.8 1.1.1.9 Total
C35-C36 0 0 0 0 0 0 0 0 0 0
C36-C37 0 1 0 0 0 0 0 0 0 1
C37-C38 0 0 1 0 0 0 0 0 0 1
C38-C39 0 0 0 1 0 0 0 0 0 1
C39-C40 0 0 0 0 0 0 0 0 0 0
C40-C41 0 0 0 0 0 0 0 0 0 0
C41-C42 0 0 0 0 0 0 0 0 0 0
C42-C43 0 0 0 0 0 0 1 0 0 1
C43-C44 0 0 0 0 0 0 0 0 0 0
C44-C45 0 0 0 0 0 0 0 0 0 0
C45-C46 0 0 0 0 0 0 0 0 0 0
C46-C47 0 0 0 0 0 0 0 0 0 0
C47-C48 0 0 0 0 0 0 0 0 0 0
C48-C49 0 0 0 0 0 0 0 0 0 0
C49-C50 0 0 0 0 1 0 0 0 0 1
C50-C51 0 0 0 0 0 0 0 0 0 0
C51-C52 0 0 0 0 0 0 0 0 0 0
C52-C53 0 0 0 0 0 0 0 0 0 0
C53-C54 0 0 0 0 0 0 0 0 0 0
C54-C55 0 0 0 0 0 0 0 0 0 0
C55-C56 0 0 0 0 0 0 0 0 1 1
C56-C57 0 0 0 0 0 0 1 0 0 1
C57-C58 1 0 0 0 0 0 0 0 0 1
C58-C59 0 0 0 0 0 1 0 0 0 1
C59-C60 0 0 0 0 0 0 0 0 0 0
C60-C61 0 0 0 0 0 0 1 0 0 1
C61-C62 0 0 0 0 0 0 0 0 0 0
C62-C63 0 0 0 0 0 0 0 0 0 0
C63-C64 0 0 0 0 1 0 0 1 0 2
C64-C65 0 0 0 0 0 0 0 0 0 0
C65-C66 0 0 0 1 0 0 0 0 0 1
C66-C67 0 0 0 0 0 0 0 0 0 0

77

Table A.28: "Element Attribute not Found" Breakages Encountered for Each Pair of
Versions of YourContacts (Continued)

1.1.1.1 1.1.1.2 1.1.1.3 1.1.1.4 1.1.1.5 1.1.1.6 1.1.1.7 1.1.1.8 1.1.1.9 Total
C67-C68 1 0 1 0 0 0 0 0 0 2
C68-C69 0 0 0 0 0 0 0 0 0 0
C69-C70 0 0 0 0 0 0 0 0 0 0
C70-C71 0 0 0 0 0 0 0 0 0 0
C71-C72 0 0 0 0 0 0 0 0 0 0
C72-C73 0 1 0 0 0 0 0 0 0 1
C73-C74 0 0 0 0 0 0 0 0 0 0
C74-C75 0 0 0 0 0 0 0 0 0 0
C75-C76 0 0 0 0 0 0 0 0 0 0
C76-C77 0 0 0 0 0 0 0 0 0 0
C77-C78 0 0 0 0 0 0 0 0 0 0
C78-C79 0 0 0 0 0 0 1 0 0 1
C70-C80 0 0 0 0 0 0 0 0 0 0
C80-C81 1 0 0 0 0 0 0 0 0 1
C81-C82 0 0 0 0 0 0 0 0 0 0
C82-C83 0 0 0 0 0 0 1 0 0 1
C83-C84 0 0 0 0 0 0 0 0 0 0
C84-C85 0 0 0 0 0 0 0 0 0 0
C85-C86 0 0 0 0 0 1 0 0 0 1
C86-C87 0 1 0 0 0 0 0 1 0 2
C87-C88 0 0 0 0 0 0 0 0 1 1
C88-C89 0 0 0 0 1 0 0 0 0 1
C89-C90 1 0 0 0 0 0 0 0 0 1
C90-C91 0 0 1 0 0 0 0 0 0 1
C91-C92 0 0 0 0 0 0 1 0 0 1
C92-C93 0 0 0 0 0 0 0 0 0 0
C93-C94 1 0 0 0 0 0 0 0 0 1
C94-C95 0 0 0 0 0 0 0 0 0 0
C95-C96 0 0 0 1 0 1 0 0 0 2
C96-C97 1 1 0 0 0 0 1 0 0 3
C97-C98 0 0 0 0 0 0 0 0 0 0
C98-C99 0 0 0 0 0 0 0 0 0 0
C99-C100 0 0 0 0 0 0 0 0 0 0
Total 9 6 5 7 5 5 10 3 4 54

78

Bibliography

[1] “CasperJS,” casperjs.org.

[2] G. Leshed, E. M. Haber, T. Matthews, and T. Lau, “Coscripter: Automating

& sharing how-to knowledge in the enterprise,” in ACM Conference on

Human Factors in Computing Systems, 2008, pp. 1719–1728. [Online]. Available:

http://doi.acm.org/10.1145/1357054.1357323

[3] B. Burg, R. Bailey, A. J. Ko, and M. D. Ernst, “Interactive record/replay

for web application debugging,” in ACM User Interface Software and

Technology Symposium, 2013, pp. 473–484. [Online]. Available: http:

//doi.acm.org/10.1145/2501988.2502050

[4] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs, “Jalangi: A selective record-replay

and dynamic analysis framework for JavaScript,” in International Symposium on

Foundations of Software Engineering, 2013, pp. 488–498.

[5] J. Mickens, J. Elson, and J. Howell, “Mugshot: Deterministic capture

and replay for JavaScript applications,” in USENIX Conference on

Networked Systems Design and Implementation, 2010. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1855711.1855722

[6] “Sahi,” sahipro.com.

http://doi.acm.org/10.1145/1357054.1357323
http://doi.acm.org/10.1145/2501988.2502050
http://doi.acm.org/10.1145/2501988.2502050
http://dl.acm.org/citation.cfm?id=1855711.1855722

79

[7] “The Selenium Project,” http://seleniumhq.org/docs/03_webdriver.html/.

[8] T. Yeh, T.-H. Chang, and R. C. Miller, “Sikuli: Using GUI screenshots

for search and automation,” in ACM User Interface Software and

Technology Symposium, 2009, pp. 183–192. [Online]. Available: http:

//doi.acm.org/10.1145/1622176.1622213

[9] “TestMaker Object Designer,” www.pushtotest.com/designer.

[10] “Unified Functional Testing (UFT),” http://www8.hp.com/us/en/software-

solutions/unified-functional-automated-testing.

[11] S. Andrica and G. Candea, “WaRR: A tool for high-fidelity web application record

and replay,” in DSN, June 2011, pp. 403–410.

[12] “Watir WebDriver,” http://watirwebdriver.com.

[13] S. R. Choudhary, D. Zhao, H. Versee, and A. Orso, “WATER: Web Applica-

tion TEst Repair,” in First International Workshop on End-to-End Test Script

Engineering, 2011, pp. 24–29.

[14] M. Dhatchayani, X. A. R. Arockia, P. Yogesh, and B. Zacharias, “Test case

generation and reusing test cases for GUI designed with HTML,” Journal of

Software, vol. 7, no. 10, pp. 2269–2277, 2012.

[15] M. Leotta, A. Stocco, F. Ricca, and P. Tonella, “Reducing web test cases aging by

means of robust xpath locators,” in IEEE International Symposium on Software

Reliability Engineering Workshops, 2014, pp. 449–454.

[16] ——, “Using multi-locators to increase the robustness of web test cases,” in IEEE

International Conference on Software Testing, Verification and Validation, 2015,

pp. 1–10.

http://doi.acm.org/10.1145/1622176.1622213
http://doi.acm.org/10.1145/1622176.1622213

80

[17] R. Yandrapally, S. Thummalapenta, S. Sinha, and S. Chandra, “Robust test

automation using contextual clues,” in International Symposium on Software

Testing and Analysis, 2014, pp. 304–314.

[18] M. Hammoudi, G. Rothermel, and P. Tonella, “Why do record/replay tests of

web applications break?” in International Conference on Software Testing, 2016

(to appear).

[19] G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, and D. Binkley, “Are test smells

really harmful? An empirical study,” Empirical Software Engineering Journal,

vol. 20, pp. 1052–1094, 2015.

[20] B. Daniel, T. Gvero, and D. Marinov, “On test repair using symbolic execution,”

in International Symposium on Software Testing and Analysis, 2010, pp. 207–218.

[21] A. Koesnandar, S. Elbaum, G. Rothermel, L. Hochstein, K. Thomasset, and

C. Scaffidi, “Using assertions to help end-user programmers create dependable web

macros,” in ACM SIGSOFT Symposium on Foundations of Software Engineering,

2008, pp. 124–134.

[22] S. Chandra, E. Torlak, S. Barman, and R. Bodik, “Angelic debugging,” in

International Conference on Software Engineering, 2011, pp. 121–130.

[23] D. Gopinath, M. Z. Malik, and S. Khurshid, “Specification-based program re-

pair using SAT,” in International Conference on Tools and Algorithms for the

Construction and Analysis of Systems, 2011, pp. 173–188.

[24] S. Mechtaev, J. Yi, and A. Roychoudhury, “DirectFix: Looking for simple program

repairs,” in International Conference on Software Engineering, 2015, pp. 448–458.

81

[25] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Semfix: Program

repair via semantic analysis,” in International Conference on Software Engineering,

2013, pp. 772–781.

[26] Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buckholz, B. Meyer, and A. Zeller,

“Automated fixing of programs with contracts,” in International Symposium on

Software Testing, 2010, pp. 61–72.

[27] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically finding

patches using genetic programming,” in International Conference on Software

Engineering, 2009, pp. 364–374.

[28] W. Weimer, S. Forrest, C. Le Goues, and T. Nguyen, “Automatic program repair

with evolutionary computation,” Communications of the ACM, vol. 53, no. 5, pp.

109–116, 2010.

[29] B. Daniel, V. Jagannath, D. Dig, and D. Marinov, “ReAssert: Suggesting re-

pairs for broken unit tests,” in International Conference on Automated Software

Engineering, 2009, pp. 433–444.

[30] M. Mirzaaghaei, F. Pastore, and M. Pezze, “Supporting test suite evolution

through test case adaptation,” in International Conference on Software Testing,

Verification and Validation, 2012, pp. 231–240.

[31] A. M. Memon and M. L. Soffa, “Regression testing of GUIs,” in International

Symposium on Foundations of Software Engineering, 2003.

[32] A. M. Memon, “Automatically repairing event sequence-based GUI test suites for

regression testing,” ACM Transactions on Software Engineering and Methodology,

vol. 18, no. 2, pp. 4:1–4:36, 2008.

82

[33] S. Huang, M. B. Cohen, and A. M. Memon, “Repairing GUI test suites using a

genetic algorithm,” in International Conference on Software Testing, 2010, pp.

245–254.

[34] M. Grechanik, Q. Xie, and C. Fu, “Maintaining and evolving GUI-directed test

scripts,” in International Conference on Software Engineering, 2009, pp. 408–418.

[35] B. Daniel, Q. Luo, M. Mirzaaghaei, D. Dig, D. Marinov, and M. Pezzè, “Automated

GUI refactoring and test script repair,” in First International Workshop on End-

to-End Test Script Engineering, 2011, pp. 38–41.

[36] S. Zhang, H. Lü, and M. D. Ernst, “Automatically repairing broken workflows for

evolving GUI applications,” in International Symposium on Software Testing and

Analysis, 2013, pp. 45–55.

[37] N. Alshawan and M. Harman, “Automated session data repair for web application

regression testing,” in International Conference on Software Testing, Verification,

and Validation, 2008, pp. 298–307.

[38] A. Stocco, M. Leotta, F. Ricca, and P. Tonella, “Why creating web page objects

manually if it can be done automatically?” in IEEE/ACM International Workshop

on Automation of Software Test, 2015, pp. 70–74.

[39] S. Bruning, S. Weissleder, and M. Malek, “A fault taxonomy for service-oriented

architecture,” in IEEE High Assurance Systems Engineering Symposium, 2007,

pp. 367–368.

[40] J. H. Hayes, “Building a requirement fault taxonomy: Experiences from a NASA

verification and validation research project,” in International Symposium on

Software Reliability Engineering, 2003, pp. 49–60.

83

[41] L. Mariani, “A fault taxonomy for component-based software,” in International

Workshop on Test and Analysis of Component-Based Systems, 2003, pp. 55–65.

[42] K. S. M. Chan, J. Bishop, J. Steyn, L. Baresi, and S. Guinea, “A fault taxonomy

for web service composition,” in Service-Oriented Computing - ICSOC 2007

Workshops, ser. Lecture Notes in Computer Science, E. Di Nitto and M. Ripeanu,

Eds. Springer, 2009, vol. 4907, pp. 363–375.

[43] W. Hummer, C. Inzinger, P. Leitner, B. Satzger, and S. Dustdar, “Deriving a

unified fault taxonomy for event-based systems,” in ACM International Conference

on Distributed Event-Based Systems, Jul. 2012, pp. 167–178.

[44] F. Ocariza, K. Pattabiraman, and B. Zorn, “JavaScript errors in the wild: An

empirical study,” in International Symposium on Software Reliability Engineering,

2011, pp. 100–109.

[45] F. Ocariza, K. Bajaj, K. Pattabiraman, and A. Mesbah, “An empirical study

of client-side JavaScript bugs,” in International Symposium Empirical Software

Engineering and Measurement, 2013, pp. 55–64.

[46] F. Ricca and P. Tonella, “Web testing: A roadmap for empirical research,” in

International Symposium on Web Site Evolution, 2007.

[47] A. Marchetto, F. Ricca, and P. Tonella, “Empirical validation of a web fault

taxonomy and its usage for fault seeding,” in International Workshop on Web

Site Evolution, 2007, pp. 31–38.

[48] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella, “Capture-replay vs. programmable

web testing: An empirical assessment during test case evolution,” in Working

Conference on Reverse Engineering, 2013, pp. 272–281.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	Spring 5-3-2016

	Why Do Record/Replay Tests of Web Applications Break?
	Mouna Hammoudi

	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Record/Replay Tools
	HTML Elements, Attributes, and Text
	Locators

	Empirical Process
	Objects of Study
	Choice of Record/Replay Tool
	Selection of Versions/Commits
	Test Creation and Execution Process
	Taxonomization Process
	Threats to Validity

	Taxonomy of Causes of Test Breakages
	 Breakage causes
	Granularity of Breakages
	Locators (Category 1)
	Attribute-Based Locators (Category 1.1)
	Element Attribute not Found (Category 1.1.1)
	Element Text not Found (Category 1.1.2)

	Structure-Based Locators (Category 1.2)
	Hierarchy-Based Locator Target not Found(Category 1.2.1)
	Index-Based Locator Target not Found (Category 1.2.2)

	Values (Category 2)
	Invalid Text Field Input (Category 2.1)
	Missing Value (Category 2.2)
	Value Absent from Dropdown List (Category 2.3)
	Unexpected Assertion Value (Category 2.4)

	Page Reloading (Category 3)
	Page Reload Needed (Category 3.1)
	Page Reload no Longer Needed (Category 3.2)

	User Session Times (Category 4)
	User Session Made Longer (Category 4.1)
	User Session Made Shorter (Category 4.2)

	Popup Boxes (Category 5)
	Popup Box Added (Category 5.1)
	Popup Box Deleted (Category 5.2)

	Results
	Discussion
	Prioritization of Breakages for Test Repair
	Prioritization of Inspections
	Breakage Avoidance
	Breakage Prevention
	Bad Smells in Web Tests
	IDE Enhancements
	Root Cause Analysis

	Related Work
	Conclusions and Future Work
	Data Per Version:
	Bibliography

