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A primary concern for human–wildlife interactions is the potential 
impacts resulting from wildlife (primarily birds) collisions with aircraft. 
The identification of species responsible for collisions with aircraft is 
necessary so that airport management can develop effective strate-
gies to reduce strikes with those species. Of particular importance in 
developing such strategies is the identification of regional, seasonal, and 
temporal patterns in collisions with unidentified bird species that may 
limit the effectiveness of regional habitat management to reduce bird 
strikes. The authors analyzed 105,529 U.S. civil aviation strike records 
from 1990 to 2012 in the FAA’s National Wildlife Strike Database to 
examine patterns of collisions involving unidentified birds. Factors that 
affected identification were airport certification class, FAA region, mass 
of struck species, state species richness (if damage was reported), and 
interactive effects between the last four factors. Identification varied by 
region and declined with increasing species richness; this identification 
was greater for general aviation (GA) airports and the mass of struck 
species, especially when damage was reported. Species identification might 
be improved by increasing reporting efforts relative to species richness, 
especially by GA airport managers and operations staff, who may have a 
higher propensity of reporting bird strikes, and by collecting more field-
based data on avian populations. The results can provide guidance for the 
development of airport management and personnel training.

The ecological implications of climate change, urbanization, and 
other factors influencing bird populations and migration patterns can 
affect species interactions with humans (1–5). One primary concern 
for these interactions is the potential impacts from bird strikes with 
aircraft. Airports and surrounding landscapes are often grasslands 
that are perceived by wildlife as habitat (6, 7). In addition, factors 
influencing damage sustained to aircraft include aircraft speed and 
the mass and number of struck individuals, the latter of which is 
dependent on flocking behaviors of each avian species (8–12). Bird 
abundances and flocking and flight behaviors in airport vicinities 
may be related to seasonal changes in migration patterns, weather, 
food availability, and predation risk (13–17). As a result, development 
of models that incorporate ecological data is important for increasing 
the understanding of spatiotemporal factors that hinder aviation safety.

The richness of avian species demonstrates spatial variation, with 
decreasing richness at greater latitudes (18, 19); this richness may 

also be affected by elevation, climate dynamics, existing habitat and 
geographic features, and potential food resources (2, 14, 20–22). 
Furthermore, site-specific richness of species varies seasonally 
because of (a) the presence of breeding or wintering avian species 
and (b) temporal pulses during spring and autumn migrations. Dis-
tributions of migrating birds may also be influenced by geographic 
features (e.g., mountain ranges or coastlines) that may concentrate 
migrating populations (23), and all of these factors can adversely  
affect aviation safety (24, 25). Many species known to be detri-
mental to aircraft [e.g., Canada geese (Branta canadensis), gulls, etc.]  
are also increasing in numbers and easily adapting to urbanized 
environments where they may be more likely to occur at airports 
(26, 27). By incorporating measurements of the richness of avian 
species into training and reporting procedures, researchers could 
improve identification proficiency by accounting for spatiotemporal 
variation in avian populations and the relative influence on aviation 
strike risk.

The objectives of this study were to (a) examine incidents involv-
ing unknown bird species relative to the total incidents (unidentified 
bird ratio) and (b) model nonidentification of bird strikes to identify 
potential regions and factors adversely influencing species identifi-
cation, including spatial, temporal, and management variables. This 
study examined specific hypotheses that could potentially influence 
nonidentification rates related to species richness, location, airport 
classifications, estimated mass of struck species, and the occurrence 
of damage.

Species richness may negatively influence correct classification of 
struck species if the ease of identification for observers is dependent 
on the number of similar candidate species. Therefore, the authors 
predicted species nonidentification to be greater in FAA regions with 
higher overall species richness and also expected nonidentification to 
increase during peak migration periods in spring and autumn, when 
species richness is greater. Airportcentric management practices 
may also influence identification. Certificated–classified airports 
often have a trained airport biologist, whereas general aviation (GA) 
airports generally do not, and therefore, personnel at GA airports 
may be less likely to identify species because they lack specialized 
training (28). If any of the above factors is important to species 
identification, modifications in training relative to influential factors 
may improve identification, strike reporting, and the effectiveness 
of hazardous species management.

METHODS

Databases

The authors analyzed U.S. civil aviation strike records from 1990 
to 2012 in the FAA’s National Wildlife Strike Database to deter-
mine patterns of collisions involving unidentified birds and factors 
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influencing nonidentification. Since 1990, the FAA has compiled 
voluntary reports of strikes involving civil aircraft and wildlife 
(29); this information determines economic costs of strikes and 
provides important data regarding the wildlife species involved, the 
type of damage, and aircraft and location details. The analyses were 
restricted to civil aviation operations involving avian species 
within the contiguous United States. Each record was classified in 
the database as identified or unidentified, and all bird strikes were 
considered identified if they were at least classified to family level 
(e.g., Anatidae).

Each incident was categorized in the data set by month, airport, 
FAA region, state, Part 139 airport classification type (certificated 
or GA), estimated mass of the struck species, and reported damage, 
if any. The richness of avian species was determined for each state on 
a mean weekly basis by using data collected through citizen science 
and submitted to the eBird website (www.ebird.org) from 1990 to 
2010 (30). eBird is a citizen science website that allows users to 
submit data on numbers of observed avian species. The numbers of 
registered observers and submitted lists vary widely by location, so 
the observations were pooled at the state level for subsequent analyses. 
Observation data queried from eBird presented species observations 
as the proportion of checklists containing that species divided by all 
checklists submitted for a given week (e.g., first week of January) 
for all years combined. For example, Canada geese occurred on 
16% (n = 5,737) of California checklists for the first week of January. 
The authors determined the species richness for each state and month 
by calculating the total species present on more than 1% of reported 
checklists during each weekly interval to exclude single records of 
vagrant species. In addition, weekly species records were pooled to 
estimate the total species observed in a state by month.

Statistical Analyses

The authors modeled the relationships between bird identifications 
(response variable) by using logistic regression within generalized 
linear mixed models in R 3.03 (R Development Core Team, Vienna, 
Austria) with the lme4 package (31) and ranked models by using a 
sequential modeling approach using Akaike’s information criterion 
(AIC) and weights (32). Models with a ΔAIC <4 were considered 
competitive, as this value reduces the potential for errors involv-

ing interpretation of models with ΔAIC <2 (33). Coefficients and 
85% confidence intervals for biologically significant effects were 
also examined. The fixed effects included main effects and additive 
combinations of location characteristics (FAA region, airport type), 
species richness, estimated mass for struck species, and reported 
damage, if any. Then the best model from the previous step was used 
to determine whether interactive effects between species richness 
and region or mass and damage reported improved model fit. State, 
airport, and year were classified as random effects in the model, and 
random effects structure was determined by fitting the full model 
with multiple combinations of the specified random effects. Next 
pseudo-R2 was calculated to examine the proportion of variance 
explained by the best-fit models and to assess model fit (34).

RESULTS

The authors reviewed 105,529 bird strikes associated with 1,363 air-
ports in the database, with 47% of strikes not identified to species or 
group (e.g., family or genus classification). The proportion of identified 
bird strikes, damaging strikes, and mass and species richness var-
ied by FAA region (Table 1). Bird strikes associated with certificated 
airports accounted for 94.7% of the records. Approximately 8.4% of 
strikes reported damage to the aircraft, and the mean mass standard 
deviation (±SD) of struck species involved in damaging incidents 
(1,317.5 ± 1,271.2 g) was 2.3 times as large as when no damage 
was reported (456.5 ± 616.8 g). The number of bird strikes increased 
annually; however, the proportion of reports with unidentified birds 
relative to identified species declined (Figure 1).

The richness of avian species varied by month and location, with 
the highest species richness within the Southern, Northwest, South-
west, and Western Pacific FAA regions (Table 1). In addition, 
two peaks, corresponding to spring and autumn migration periods, 
occurred from March to June and August to November. Identification  
of species in strike incidents was best explained by certification class, 
damage reported, species mass, and an interactive effect between 
FAA region and species richness and an interaction between dam-
age reported and species mass (Table 2); no other models were 
within 531 ΔAIC. Identification was highest in New England; other 
FAA regions were 50% (Northwest) to 79% (Southern) less likely 
to identify strikes by species group (Table 2). Bird strikes declined 

TABLE 1    Summary Statistics for Total Bird Strikes, Percentage of Unidentified Strikes,  
Percentage of Strikes with Damage, Estimated Mass of Struck Species, and Annual Species Richness, 
by FAA Region for Incidents Reported in FAA National Wildlife Strike Database, 1990–2012

Total Bird
Strikes (n)

Unidentified 
Strikes (%)

Damage 
Reported (%)

Species Mass (g) Species Richness

FAA Region Mean SD Mean SD

New England   4,559 31.9 7.8 602.0 885.5 331.6 69.4

Central   5,548 44.1 8.2 441.9 715.0 294.5 47.3

Eastern 20,261 39.7 8.7 597.1 832.4 354.8 80.8

Great Lakes 17,131 41.7 8.1 540.3 795.3 333.0 48.5

Northwest 11,031 42.0 7.9 490.9 699.2 377.1 54.5

Southern 20,499 58.5 8.8 544.0 728.6 355.5 88.8

Southwest 13,670 52.7 6.9 392.9 500.1 516.4 123.2

Western Pacific 12,830 51.0 10.1 571.0 666.8 563.4 84.4

Note: SD = standard deviation.
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with increasing species richness, and strikes at GA airports were 
1.27 times as likely to be identified as those at certificated airports 
(Table 2). Identification was 15% lower when damage was reported, 
but damage had a significant interaction with species mass: larger 
species responsible for damaging strikes were 1.56 times as likely 
to be identified. For R2, fixed effects in the best-fit model accounted 
for 9.4% of total variance, and the full model explained 34.9% of 
variance in the data set.

DISCUSSION OF RESULTS

Recent research has focused on the importance of managing strike risk 
through ecological assessments of hazardous species (6, 9, 35–37). 
The results in the current research provide further support that 

inclusion of basic spatial and temporal ecological data improves 
researchers’ ability to interpret patterns of strike risk and nonidenti-
fication. Species richness significantly influenced strike identification  
efforts, although this effect varied by location and season. The greatest 
frequency of strikes involving unknown species occurred during 
periods of avian migration (especially autumn), when species rich-
ness was the greatest (Table 3) and large populations of new juve-
niles from the recent breeding season attempted their first migration 
(38). Observers who account for the influence of species richness by 
placing more emphasis on identification effort, especially during peak 
migration periods, will not only increase identification rates but also 
provide more data on species posing collision risks to aircraft. Future 
research incorporating migration data within spatial models to identify 
hot spots for risk may also reduce risk to both aircraft and migrating 
birds (39).
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FIGURE 1    Number of bird strikes and number of bird strikes involving unidentified and 
identified species reported in FAA National Wildlife Strike Database for contiguous  
United States, 1990–2012.

TABLE 2    Model Selection Results for Generalized Linear Mixed Models to Analyze Factors Influencing Bird Identification 
for Incidents in FAA National Wildlife Strike Database, 1990–2012

Model Log Likelihood AIC ΔAIC Weight

Certification class + FAA region × species richness + damage × mass −63,189.81 126,425.60 0.00 1.00

Certification class + FAA region + species richness + damage × mass −63,456.78 126,957.60 531.94 0.00

Certification class + FAA region × species richness + damage −63,551.79 127,145.60 719.97 0.00

Certification class + FAA region × species richness −63,595.50 127,231.00 805.39 0.00

Certification class + FAA region + species richness −63,658.86 127,343.70 918.12 0.00

Species richness −63,681.28 127,372.60 946.95 0.00

Damage reported −63,988.39 127,986.80 1,561.16 0.00

Certification class + FAA region −64,004.27 128,032.50 1,606.93 0.00

FAA region −64,016.49 128,055.00 1,629.37 0.00

Certification class −64,029.42 128,068.80 1,643.22 0.00

Null −64,040.70 128,089.40 1,663.78 0.00
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The models in this research considered the influence of species 
richness on proper identification, but other population metrics, such 
as abundance, could be a better predictor of struck-species identifi-
cation. An area could have relatively low species richness but still have 
high populations of a few common species; if these common species 
(e.g., geese) are also hazardous to aircraft, local abundances could 
have a substantial impact on strike risk. Although widely available 
citizen science data on bird populations such as eBird provide infor-
mation on the number of species detected in a given state, the avail-
ability of site-specific data varies. The North American Breeding 
Bird Survey provides annual roadside monitoring data for breed-
ing birds in the United States and Canada; however, survey data are 
restricted to May and June (40). Year-round abundance data for avian 
assemblages do not exist for most locations within the United States. 
Airports could benefit from employees or volunteers conducting 
regular surveys that include point counts or line transects to determine 
species richness and abundance of avian species to supplement the 
existing data set (41–43).

The current results also demonstrated regional variation in iden-
tification, even when species richness and management-specific 
factors such as airport classification are taken into account (Figure 2).  
Although the number of flight operations in a given region can 
affect the number of bird strikes reported, this potentiality does 
not explain the difference in the proportion of strikes identified by 
species group. The three regions with the lowest species richness 

(Central, Great Lakes, and New England) were also most likely to 
identify struck species (Figure 2). The Western Pacific region had 
the greatest mean species richness, but the model predicted species 
identification to be higher there than in other regions located along 
major flyways, especially in locations where convergence of northern-
based migrants and funneling land features may concentrate bird 
populations (Eastern, Southern, and Southwest). Tailoring training to 
emphasize both identification efforts (even at the level of the species 
group) and submission of samples of unidentified remains to the 
Smithsonian Feather Identification Lab (44, 45), especially during 
periods of increased species richness (i.e., migration), will help 
improve the overall data set.

Also important is continuing to obtain baseline data on strike 
frequencies, locations, and the species involved through strike 
reporting to the FAA National Wildlife Strike Database; however, 
many of these data are still sparse partly because of the voluntary 
reporting standards. The number of reported incidents in the data-
base increased annually over the past two decades (29), and high-
profile incidents, such as US Airways Flight 1549 crash landing 
in the Hudson River in 2009 after colliding with a flock of Canada 
geese (46), may have encouraged pilots and airports to report bird 
strikes. However, because reports are voluntary, the accuracy of 
these numbers in reflecting total incidents and the cause of this 
increase—whether from more strikes or simply increased reporting 
effort—are unknown (35).

TABLE 3    Model Coefficients, 95% Confidence Intervals, and Odds Ratios for Parameters  
in Best-Fit Generalized Linear Mixed Models to Analyze Factors Influencing Bird Identification  
for Incidents in FAA National Wildlife Strike Database, 1990–2012

Confidence Intervals

Parametera Estimate SE Lower 95% Upper 95% Odds Ratio

(Intercept) 0.77 0.25 0.29 1.27 —

Central −1.28 0.37 −2.02 −0.58 0.28

Eastern −0.76 0.32 −1.38 −0.14 0.47

Great Lakes −0.79 0.31 −1.40 −0.20 0.46

Northwest −0.69 0.32 −1.33 −0.07 0.50

Southern −1.55 0.31 −2.17 −0.96 0.21

Southwest −1.11 0.34 −1.79 −0.46 0.33

Western Pacific −0.75 0.39 −1.53 −0.01 0.47

Species richness −0.34 0.10 −0.53 −0.15 0.71

Certification classb (general aviation) 0.23 0.07 0.09 0.37 1.27

Damage reportedc −0.16 0.03 −0.22 −0.10 0.85

Mass −0.002 0.01 −0.02 0.02 1.00

Central: species richness −0.14 0.13 −0.40 0.11 0.87

Eastern: species richness −0.55 0.11 −0.76 −0.33 0.58

Great Lakes: species richness −0.27 0.11 −0.49 −0.05 0.77

Northwest: species richness 0.24 0.11 0.02 0.46 1.27

Southern: species richness −0.28 0.11 −0.50 −0.07 0.76

Southwest: species richness −0.15 0.11 −0.38 0.07 0.86

Western Pacific: species richness −0.04 0.12 −0.28 0.19 0.96

Damagec: mass 0.45 0.02 0.41 0.49 1.56

Note: SE = standard error; — = not applicable.
aReference FAA region = New England.
bReference certification class = certificated.
cReference condition = no damage reported.
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The FAA has expanded outreach programs to increase reporting 
efforts through poster distributions at more than 4,000 airports, avia-
tion flight schools, and industry and even developed a strike report 
mobile application for smartphones. Continued development of the 
reporting website and social media could further enhance reporting 
of strike incidents (29).

While mandatory reporting would be the most effective method 
for obtaining information on wildlife strikes, enforcement of this 
requirement at more than 500 FAA and contract tower airports would 
be difficult. Future analyses comparing strike data from the FAA’s 
voluntary data set with those from other countries that require 
mandatory reporting would be beneficial in determining whether 
mandatory reporting improves the quality of the data set (47). 
Regardless of causes for the overall increase in bird strikes, iden-
tification rates have improved substantially, especially since 2006, 
because of the increasing involvement of the Smithsonian Institution 
Feather Identification Lab in using biological samples and DNA 
to classify unknown birds (44, 45). Identification and classification 
of strike remains can also provide insight into ecological factors, 
including avian flight behaviors and predator avoidance tactics, that 
may reduce future aviation risk (48).

One surprising result from the analyses described here was that 
species identification was higher at GA airports than at certifi-
cated airports. Many certificated airports employ a biologist who 
is responsible for on-site wildlife management, and the authors had 
expected bird strike identification there to be greater as a result. 
Possibly, strike reports at certificated airports may be filed by pilots 
or other airport personnel independent of the biologist, and this fac-
tor could contribute to lower identification rates. Submission of all 
strike reports at an airport, with approval from the staff biologist, or 
increased training for all personnel and pilots could improve iden-
tification. At GA airports where such a step may not be feasible, the 

prudent practice may be to continue outreach and training efforts to 
encourage strike reporting (49). Another explanation for the species 
identification difference is that GA operators and airports may be 
vastly underreporting wildlife strikes, which may skew results. 
GA airports account for at least 25% of aircraft operations annually 
but report less than 5% of total strike incidents (50). Efforts by the 
FAA to increase reporting led to an 11% increase in strike reports at 
GA airports between 2011 and 2012 (29); such an increase suggests 
that underreporting may be prevalent.

Improving identification of species in bird strikes also has benefits 
beyond aviation flight risk and airport wildlife management, includ-
ing for aviation engine manufacturers. Turbine engines in modern 
aircraft attempt to strike a balance between designs that are sufficiently 
robust to avoid engine failure when struck by a bird and those that 
minimize weight to reduce aircraft fuel costs (51, p. 1007). Engi-
neers can more effectively design engines both to be cost-effective 
to airlines and to withstand bird strikes when the relative mass of 
hazardous species is known (52).

By identifying factors influencing species nonidentification and by 
determining potential clusters of low identification rates, the authors 
hope that this research helps foster sound management and person-
nel training. Understanding the limitations of the current data set 
and increasing reporting efforts through training, improving report-
ing standards, and collecting more field-based data on avian popula-
tions will help to increase the industry’s knowledge of avian species 
and to reduce the aviation risk for both humans and wildlife.
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