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POLARIS: A 30-meter probabilistic soil series map of the contiguous
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A new completemap of soil series probabilities has beenproduced for the contiguousUnited States at a 30m spa-
tial resolution. This innovative database, named POLARIS, is constructed using available high-resolution
geospatial environmental data and a state-of-the-art machine learning algorithm (DSMART-HPC) to remap the
Soil Survey Geographic (SSURGO) database. This 9 billion grid cell database is possible using available high per-
formance computing resources. POLARIS provides a spatially continuous, internally consistent, quantitative pre-
diction of soil series. It offers potential solutions to the primary weaknesses in SSURGO: 1) unmapped areas are
gap-filled using survey data from the surrounding regions, 2) the artificial discontinuities at political boundaries
are removed, and 3) the use of high resolution environmental covariate data leads to a spatial disaggregation of
the coarse polygons. The geospatial environmental covariates that have the largest role in assembling POLARIS
over the contiguous United States (CONUS) are fine-scale (30 m) elevation data and coarse-scale (~2 km) esti-
mates of the geographic distribution of uranium, thorium, and potassium. A preliminary validation of POLARIS
using the NRCS National Soil Information System (NASIS) database shows variable performance over CONUS.
In general, the best performance is obtained at grid cells where DSMART-HPC is most able to reduce the chance
of misclassification. The important role of environmental covariates in limiting prediction uncertainty suggests
including additional covariates is pivotal to improving POLARIS' accuracy. This database has the potential to im-
prove the modeling of biogeochemical, water, and energy cycles in environmental models; enhance availability
of data for precision agriculture; and assist hydrologic monitoring and forecasting to ensure food and water
security.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Soil has an essential role in the function and structure of terrestrial
ecosystems. It stores and supplies nutrients andwater for plants, animals,
and other living organisms; it provides a medium for plant growth and
anchors human structures; it controls drainage, lateral flow, and storage
ofwater; and it acts as a naturalfiltration system to regulatewater quality
(Grayson et al., 1997; Rodriguez-Iturbe and Porporato, 2004; Brady and
Weil, 2008; Manzoni and Porporato, 2009; Crow et al., 2012; Lichstein
et al., 2014). To informdecisionmakers and stakeholders for construction
projects, highwaybuilding, natural resources planning, and cropmanage-
ment, soil surveyors map the complex spatial patterns in soils (Nauman

and Thompson, 2014). Over the contiguous United States (CONUS),
these surveys are primarily performedby theNatural Resource Conserva-
tion Service National Cooperative Soil Survey (NRCS-NCSS) and
catalogued in the Soil Survey Geographic (SSURGO) database. This con-
ventional soil map is a national vector and tabular database that provides
detailed information on soil taxonomic classes and their related charac-
teristic vertical profiles (Soil Survey Staff, 2014).

SSURGO's primary purpose is local and regional land use planning and
it is an excellent resource for such decisions. However, there are chal-
lenges that limit SSURGO's use for other purposes including: variable
quality and spatial detail between soil surveys, artificial discontinuities
at political boundaries, and incomplete spatial coverage (Zhu et al.,
2001; Gatzke et al., 2011; Thompson et al., 2012; Subburayalu and
Slater, 2013; Du et al., 2014; Nauman and Thompson, 2014). These chal-
lenges must be addressed to fully use SSURGO in contemporary applica-
tions such as climate and hydrologic models that require high quality
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and spatially complete soil information over continental extents (Wood
et al., 2011; Bierkens et al., 2014; Chaney et al., 2014; Hengl et al.,
2014). One promising path forward is through digital soil mapping
(DSM). DSM capitalizes on the relationship between soil spatial patterns
and the physical environment (e.g., lithology, relief, and land cover) to re-
interpret existing legacy soil data (i.e., conventional soil maps) using
existing high-resolution environmental data (McBratney et al., 2003).

DSM provides potential solutions to the existing challenges in
SSURGO. First, DSM can be used to harmonize soil surveys and remove
artificial discontinuities at political boundaries (Dobos et al., 2010; Wei
et al., 2010). These algorithms (e.g., ensemble of decision trees) can be
used to mine conventional soil maps and existing environmental data
to reconstruct the rule sets used by the original surveyors. These recon-
structed rule sets from multiple surveys can then be combined to find
consensus among the surveys and thusminimize surveyor bias. Second,
DSM can be used to gap-fill regions that lack data in existing legacy soil
databases (Frazier et al., 2009;Meirik et al., 2010). The relationships de-
veloped between the legacy soil data and the environmental covariates
where surveys exist are used to provide predictions for the areas that
have not been surveyed. Third, DSM can take advantage of the rich
metadata of conventional soil maps to spatially disaggregate the poly-
gonmap units in legacy soil databases. These algorithms provide higher
resolution soil products that are less prone to misinterpretation and
more suitable for contemporary applications of soil databases such as
environmental models (Bui and Moran, 2001; Hansen et al., 2009;
Yang et al., 2011; Thompson et al., 2012; Nauman and Thompson,
2014; Odgers et al., 2014; Subburayalu et al., 2014).

Although DSM can address the primary weaknesses of the SSURGO
database, until now, computational constraints have limited the appli-
cation of these algorithms to regional studies. This is no longer neces-
sary with available high performance computing (HPC) resources. HPC
is commonly used in numerous fields including computational fluid dy-
namics, astrophysics, and numerical weather forecasting by distributing
computation across many computational cores to minimize computer
wall-clock time (Michalakes and Vachharajani, 2008; Ferziger and
Peric, 2012; Balaji, 2013). The conceptual design behind DSM algo-
rithms makes them amenable to implementation on existing HPC to
take advantage of thousands to tens of thousands of computation
cores (Padarian et al., 2015). HPC makes it possible to run DSM over
continental extents at very high spatial resolutions in a matter of hours.

This study capitalizes on a century of legacy soil data and readily
available high-resolution environmental covariates to illustrate the po-
tential benefits of using petascale HPC in digital soil mapping. The
DSMART-HPC algorithm, an extension of the DSMART algorithm
(Odgers et al., 2014), is applied using a moving window (termed a tar-
get) to spatially disaggregate, harmonize, and gap-fill the SSURGO data-
base over CONUS. At each target in the moving window, DSMART-HPC
uses available environmental covariates, legacy soil data, and a
random forest model to reconstruct – and ultimately improve upon –

the conceptual rule-based schemes that led to the original surveys.
The resulting state-of-the-art product after applying DSMART-HPC
over CONUS is the probabilistic remapping of SSURGO (POLARIS)
dataset. POLARIS covers CONUS at a 30 m spatial resolution (~9 billion
grid cells). At each grid cell, it provides the 50 most probable soil
series (termed components) and their associated uncertainties
(i.e., probabilities of occurrence).

2. Data

2.1. Legacy soil data: SSURGO

The Soil Survey Soil Geographic (SSURGO) database is a compilation
of a century's worth of soil survey in the United States. It covers a large
extent of the contiguous United States (CONUS) (Soil Survey Staff,
2014). SSURGO is a polygon format vector map; each polygon is
assigned a map unit label. A relational database is used to connect

each map unit to information on the observed soil and landscape char-
acteristics of the survey area (e.g., soil texture). Polygons commonly
sharemapunit labels; however, there are never twomapunits per poly-
gon. Each map unit consists of a set of components (generally up to
four) that are commonly shared among map units. These components
can be either soil series with corresponding properties (e.g., vertical
profile of soil pH) or other characteristic landscape features such as
urban areas, water bodies, or rock outcrops. Each map unit summarizes
the spatial properties of its components by providing their percentage
areal coverage of the map unit and characteristic landscape features.

2.2. Soil covariates

The physical processes that drive the development of complex spa-
tial patterns in soils also contribute to appreciable correlations between
soils and environmental covariates. This is the basis of traditional soil-
landscape models and a core element of digital soil mapping (Jenny,
1941; Hudson, 1992). McBratney et al. (2003) generalizes these con-
cepts into the scorpan model where it is assumed that a soil class is a
function (generally non-linear) of seven factors including soil properties
(s), climate (c), organisms (o), relief (r), parentmaterial (p), age (a), and
geographic position (n). This section offers an overview of the chosen
datasets and environmental covariates used inDSMART-HPC; this infor-
mation is further summarized in Table 1.

2.2.1. Relief
The USGS National Elevation Dataset (NED) provides elevation data

over CONUS at a 30 m spatial resolution (Gesch et al., 2009). From this
dataset the following terrain attributes are derived at a 30m spatial res-
olution: accumulation area, local slope gradient, topographic wetness
index, multi-resolution valley bottom flatness index (MRVBF; Gallant
and Dowling, 2003), multi-resolution ridge top flatness index
(MRRTF), total curvature, planiform curvature, profile curvature, slope
aspect, topographic ruggedness index, and topographic position index
(Hengl and Reuter, 2008).

2.2.2. Parent material and age
The U.S. Geological Survey (USGS) gamma aeroradiometric product

is used as a proxy for parent material. This data was collected by mea-
suring the gamma-rays emitted from radioactive isotopes in rocks and
soils by instruments in low-flying aircraft. This information was then
gridded to provide estimates of the mean surface concentration of ura-
nium, thorium, and potassium over CONUS at a 2 km spatial resolution
(Duval et al., 2005). Although the spatial resolution ismuch coarser than

Table 1
Summary of the environmental covariates used in the implementation of DSMART-HPC
over CONUS.

Environmental
covariate

Dataset Variable Spatial
resolution

Relief NED DEM Elevation 30 m
Slope
Accumulation area
Topographic index
MRVBF
MRRTF
Topographic ruggedness index
(TRI)
Topographic position index
(TPI)
Curvature
Planiform curvature
Profile curvature
Aspect

Parent material USGS
aeroradiometric

Uranium 2000 m
Thorium
Potassium

Organisms NLCD Land cover 30 m
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the intended goal (i.e., 30 m), the important relationship between par-
ent material and the gamma aeroradiometric variables (e.g., Odgers
et al., 2014) makes it ill-advised to disregard these data solely due to
spatial discrepancies.

2.2.3. Organisms
The 2006 National Land Cover Database (NLCD) is used to represent

the spatial distribution of organisms (vegetation). The NLCD is a 20-
class land cover classification spanning CONUS at a 30 m spatial resolu-
tion and originates from a decision-tree classification of Landsat data
(Fry et al., 2011). The land cover classes are open water, perennial ice/
snow, developed (open space), developed (low intensity), developed
(medium intensity), developed (high intensity), barren land (rock/
sand/clay), deciduous forest, evergreen needleleaf forest, mixed forest,
dwarf scrub, shrub/scrub, grasslands/herbaceous, sedge/herbaceous, li-
chens, moss, pasture/hay, cultivated crops, woody wetlands, and emer-
gent herbaceous wetlands.

2.2.4. Geographic position and climate
The disaggregation algorithm does not explicitly account for geo-

graphic position and climate as input variables. However, amovingwin-
dow approach ensures the implementation over the continent
implicitly accounts for them. In this study, the impact of sub-window
heterogeneity of these covariates is assumed negligiblewhen compared
to other scorpan covariates.

2.2.5. Soil
This study does not use another soil product as a covariate in the

scorpan model. The legacy soil database (SSURGO) is used as observa-
tions with which to train the DSMART-HPC algorithm.

2.3. NASIS

POLARIS is validated using the NRCS National Soil Information Sys-
tem (NASIS) database. NASIS contains soil observations made over the
years by soil surveyors. Each point in NASIS is assigned a soil series—
multiple points share soil series; this makes it suitable to validate PO-
LARIS. It should be noted that the majority of NASIS observations are
field soil transect observations used for developing SSURGO map unit
concepts. As such, NASIS is not a completely independent validation of
POLARIS. However, since no other comparable spatial database of soil
observations exists for CONUS, NASIS is chosen as the best option for
validation. NASIS sites with latitude and longitude values within
CONUS, including areas not currentlymapped by SSURGO, are used. Val-
idation siteswith component names that are not contained anywhere in
SSURGO are discarded. The curated NASIS database used in this study
consists of 294,746 point observations. Validation is performed by com-
paring eachNASIS’ site component name to the predicted 50most prob-
able components in POLARIS. The best case is when the rank match is
one (highest probability) and the worst case is when the rank match
is 50 (or missing altogether). This leads to 294,746 rank match values
– one per site over CONUS.

3. Methods

3.1. Digital soil mapping: DSMART-HPC

This section provides an overview of the DSMART-HPC algorithm,
which parallelizes the DSMART (Disaggregation and Harmonization of
Soil Map Units Through Resampled Classification Trees) algorithm
(Odgers et al., 2014) to take advantage of HPC resources (Fig. 1). For im-
plementation on available HPC resources, CONUS is divided into 12,474
non-overlapping targets (boxes). The effective size of each target is ap-
proximately 30 kmby30 km.Aminimum60kmbuffer is added on each
side of each target to minimize artificial spatial discontinuities between
the predictions of each target. The DSMART algorithm is applied to each

target and its corresponding buffer independently. The 12,474 domains
are distributed onto 12,474 computation nodes on the Blue Waters su-
percomputer (Bode et al., 2013). The effective time to run the entire al-
gorithm (wall-clock time) for CONUS is approximately the time it takes
to run DSMART on one of the targets.

The DSMART algorithm applied on each domain (target and buffer)
follows the method presented in Odgers et al. (2014). The legacy soil
data (SSURGO) and environmental covariates (Table 1) are randomly
sampled for each domain. The number of sampling points per domain
is set to 50,000. The percentage areal coverage of each map unit in the
domain is used as a weight to assign the number of samples taken
from each map unit. The minimum number of samples required per
map unit is 100. This rarely leads to exceeding the allowed maximum
number of sampling points (50,000). At each sampling point, the corre-
sponding soil covariates and SSURGO component names are retrieved.
Given that there are generally multiple components per map unit,
choosing the component for each point can be uncertain. Following
Odgers et al. (2014), each sampling point is assigned a component
name by weighted random allocation. The weight of each component
is the normalized proportion of occurrence of the component in the
point's corresponding SSURGO map unit.

Having assembled the training dataset (soil covariates and compo-
nent names) a random forest is trained using the scikit-learn package
(Pedregosa et al., 2011). Random forests are an ensemble method in
which a number of decision trees T are built using bootstrap samples
of the original training data (Breiman et al., 1984). Fig. 1 shows a sche-
matic of how to obtain the component predictions at a given site using a
trained random forest. First, for a given grid cell, the environmental co-
variates are assembled into a vector v. At each decision tree t, it is ini-
tially assumed that there is an equal probability of obtaining any
component c used in the training dataset. The vector of covariates v is
used to condition the probabilities until reaching the corresponding
leaf on each decision tree. The final result per decision tree is a vector
of conditional probabilities— one value per component. These probabil-

ities are averaged to obtain the averaged probability per component pT

¼ 1
T ∑

T

t
ptðcjvÞ across all decision trees. The vector of conditional proba-

bilities is used to rank each component to provide the prediction and
their corresponding probabilities (uncertainties).

After running DSMART on a given domain, maps of the 50 most
probable components—these components can differ per grid cell—and
their associated probabilities are created for the corresponding target
area at a 30m spatial resolution. Finally, maps of each target are assem-
bled to create the final data product.

3.2. Feature importance

To compute the importance of each soil covariate, the relative fea-
ture (i.e., soil covariate) importance metric as defined in the scikit-
learn package is used (Pedregosa et al., 2011). This metric is defined
as the normalized average over all decision trees of the sample-
weighted change in Gini impurity at each node that belongs to feature
(i.e., covariate) i. Given a histogram per node, the Gini impurity informs
how often a randomly chosen item (i.e., component) at a node will be
misclassified. It is defined as the sum probability of obtaining each dis-
tinct item in the histogram times the probability of not obtaining the

given item (Gini ¼ 1−∑
n

i
p2i ).

3.3. Prediction uncertainty

DSMART-HPC estimates the probability of obtaining a given compo-
nent at each 30mgrid cell over CONUS. At each grid cell, these probabil-
ities are ranked to provide component predictions. However, if the
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difference in probabilities between the top predictions is small, there is
a considerable chance of misclassification. To assess the prediction un-
certainty at each grid cell, the confusion index (Burrough et al., 1997)
is calculated from the first and second most probable components
(CI=100−(P1−P2)). The CI values range from 0 to 100. The Gini im-
purity—as defined in Section 3.2—is also used to provide a measure of
the chance of misclassification at a given grid cell; it accounts for the
probabilities of the top 50 predictions per grid cell. The Gini impurity
values range from 0 to 1. Higher confusion index and Gini impurity
values indicate a higher chance of misclassification.

4. Results

4.1. Comparison between SSURGO and POLARIS

Visual comparisons between SSURGO and POLARIS are shown over
CONUS in Fig. 2 and over 6 distinct regions of comparable size
(~216 km by ~216 km) in Figs. 3 and 4. These regions are shown as
they are able to illustrate the strengths and weaknesses of DSMART-
HPC in gap-filling, harmonizing, and spatially disaggregating SSURGO.

NorthernMississippi (Fig. 3— Top)— The artificial county boundaries
in SSURGO all but disappear in POLARIS. Over the Grenada and Calhoun
counties (central region), the legacy soil data is replaced by the soil

information in the surrounding counties. The limited number of NASIS
sites in these two counties limits the validation of the harmonization re-
sults. POLARIS' ability to conserve theboundary between theMississippi
river floodplain and the rest of the area is an example where the trained
random forest can reproduce large-scale geological and topographic
features. The confusion index over the entire region indicates that the
best performance is obtained when predicting water bodies and soils
on ridges. There is no apparent spatial organization to the rank match
values except for a tendency for there to be lower rank match values
in areas of low confusion index values.

Northern Nevada (Fig. 3—Middle)— DSMART-HPC aims to spatially
disaggregate SSURGO's coarse polygons in this region by distinguishing
the different components in each map unit. Visual inspection of the
resulting POLARIS map shows an increase in soil spatial heterogeneity
when compared to SSURGO. However, the map of rank match values
suggests that the disaggregated product, in general, does not agree
with the NASIS observations, limiting the value of the spatial disaggre-
gation. There are also entire areas that remain largely untouched after
disaggregation. Further inspection shows that the components for the
areas that remain largely untouched in POLARIS are defined as Water
and Playa in SSURGO. Visual analysis of the NLCD database illustrates
that these areas are clearly defined water bodies and barren land re-
spectively. DSMART-HPC is able to capture this strong relationship

Fig. 1. Schematic of the DSMART-HPC algorithm. CONUS is split into a grid of targets which are distributed among different computational nodes. The DSMART algorithm is run on each
target and a surrounding buffer (target + buffer = domain) to avoid artificial discontinuities. The steps in DSMART are: 1) sample the environmental covariates and the legacy soil data
over the domain; 2) train a random forest; 3) estimate the components and their associated probabilities.
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between NLCD and SSURGO over these areas and thus provide reliable
predictions. This explains the lack of spatial heterogeneity over these
areas in POLARIS.

Northern NewHampshire (Fig. 3— Bottom)— SSURGO does not have
estimates over parts of northern New Hampshire and western Maine.
More specifically, it lacks data over the White Mountains. DSMART-
HPC is able to gap-fill this region using information from adjacent
areas. It fills in the missing regions using component information from
smaller areas towards the north and northeast. Further inspection
shows that the components that fill in most of the missing area are de-
fined as Rock Outcrop and Saddleback. This result is encouraging since
one would expect rock outcrops in the missing region; furthermore,
the Saddleback series is also physically consistent as these soils are

commonly found in mountainous regions in Maine, New Hampshire,
and New York. The validation results over the unmapped areas in
SSURGO are inconclusive since the NASIS observations are clumped to-
gether and do not uniformly sample the unmapped areas. For the entire
region, one potential concern is the loss of certain components in favor
of more predominant ones; DSMART-HPC spatially disaggregates the
most frequent components while disregarding the less frequent ones
altogether.

Western Washington (Fig. 4 — Top) — SSURGO does not have esti-
mates for parts of the Skagit, Snohomish, King, and Pierce counties. To
gap-fill the missing areas, DSMART-HPC appears to use the mountain-
ous region to the east. Over themissing areas, themost common predic-
tion is rock outcrop. These areas are also gap-filled with soils from the

Fig. 2. Comparison of SSURGO's most dominant component (A) to POLARIS' most probable component (B). For visualization over CONUS, the 30 m POLARIS data product is upscaled to a
1 km spatial resolution using nearest neighbor interpolation. Light blue areas indicate regionswhere SSURGO lacks data. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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Nimue and Playco soil series, both characteristic soils of the Cascades.
This result suggests that although the position of the soils might be lo-
cally incorrect, the gap-filling appears to place components in appropri-
ate areas. The loss of spatial complexity in the eastern section after
applying DSMART-HPC is due to the predominant components being
chosen over theminor components. This can be explained by the legacy
soil data sampling scheme of the algorithm (see Section 3.1) and a lack

of appropriate environmental covariates to properly differentiate the lo-
cation of the minor components from the major components.

Central California (Fig. 4 — Middle) — DSMART-HPC uses the soil co-
variates that represent topography to transfer the available legacy soil
surveys to the missing area (parts of Calaveras and Tuolumne counties)
(see Section 4.5). The algorithm's ability to maintain the spatial structure
of the western foothills is encouraging; however, validation results show

Fig. 3. Comparison between the most probable component of SSURGO (left) and POLARIS (middle) over northern Mississippi (top), northern Nevada (middle), and northern New
Hampshire (bottom). Each color represents a different component. The confusion index (right) illustrates prediction uncertainty. Point symbols represent NASIS validation sites. Rank
color indicates the rank at which POLARIS components match the corresponding NASIS site component. A site that does not have a POLARIS match is set to black. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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that the predicted soil series in these gaps tend to not match NASIS. In-
stead of connecting similar soils in the north and south, the observations
illustrate that the components characteristic in the Stanislaus National
Forest extend further west into the foothills. The predicted dominant
components only become a reasonable estimate towards the west.

Northwestern Nebraska and Southwestern South Dakota (Fig. 4— Bot-
tom)— In this region, DSMART-HPC does not addmuch information but
instead mainly reproduces SSURGO. The close agreement between the

two can be attributed to the gamma aeroradiometric variables that ac-
curately depict the Sandhills region in northwestern Nebraska and
southwestern South Dakota. The low confusion index values over the
Sandhills help explain the strong agreement between SSURGO and
POLARIS over this region. This example also shows how deficiencies in
the covariates can lead to unrealistic artifacts in the POLARIS product—
missing data in the gamma aeroradiometric variables cause the rectan-
gular pattern in the northeast quadrant.

Fig. 4. Comparison between the most probable component of SSURGO (left) and POLARIS (middle) over western Washington (top), central California (middle), and northwestern Ne-
braska and southeastern South Dakota (bottom). Each color represents a different component. The confusion index (right) illustrates prediction uncertainty. Point symbols represent
NASIS validation sites. Rank color indicates the rank at which POLARIS components match the corresponding NASIS site component. A site that does not have a POLARIS match is set to
black. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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4.2. Prediction uncertainty

The quality of POLARIS' predictions is quantified via probabilities. For
each target in the moving window, DSMART-HPC initially assumes that
all components are equally probable; the random forest uses the envi-
ronmental covariates to condition these probabilities. The predicted
components in each grid cell are ranked according to these probabilities
(rank one is assigned to the component with the highest probability).
Probability maps for the first- (P1) and second-most probable (P2) com-
ponents per grid cell are shown in Fig. 5. The probabilities are upscaled
by box averaging to a 30 arcsec (~1 km) spatial resolution to allow for
visualization over CONUS. Both the confusion index and the Gini impu-
rity are then calculated to assess prediction uncertainty of the compo-
nents in POLARIS for each grid cell.

Over the majority of CONUS, the probabilities of the rank one (most
probable) component are between 10% and 40%. In regions where the
probabilities do not exceed 20%, the differences between P1 and P2 can
be very small. This leads to high confusion index values and low confi-
dence in the predictions in many regions. The results are similar when
accounting for the top 50 predictions per grid cell using the Gini impu-
rity. Over CONUS, the highest confidence predictions occur over wide
rivers, lakes, deserts, salt pans, and areaswith regionally dominant com-
ponents. Deterministic predictions over ridges are, in general, more re-
liable than those in valleys and riparian zones.

The high confusion index and Gini impurity values suggest that the
chosen environmental covariates are not sufficient to make precise
component predictions—many components share the same environ-
mental covariate values. Another possible explanation for such low
probabilities could be due to the inability of the decision trees in each
local random forest to fully grow due to memory constraints on each
computational node. This will limit the algorithm's ability to condition
the probabilities and should be addressed in future updates of the
POLARIS dataset. Future work should also analyze the taxonomic

distance between themost probable components per grid cell. It is pos-
sible that components have different names but are taxonomically sim-
ilar and occur in similar environmental conditions. This would help
explain the high confusion index and Gini impurity values and provide
guidance towards the need to account for taxonomic similarity in the
predictions.

4.3. Preliminary validation

POLARIS is validated using 294,746 sites from theNRCS National Soil
Information System (NASIS) database (see Section 2.3 for further de-
tails). As shown in Fig. 6, for many of the NASIS sites, a match is not
found until after the tenth highest ranked soil class. Model performance
is highly variable across CONUS with a limited set of spatial clusters in
performance. The best performance appears to be achieved in Nebraska,
Kansas, and northern Ohio, while POLARIS struggles over the Appala-
chians, the Mountain West, and most of the northern Midwest.

Empirical cumulative distribution functions (ecdf) of the rank
matches for all sites in a given region are summarized in Fig. 7. The
lower and upper bounds indicate the change in ecdfs when searching
for the rankmatch over a three by three window surrounding each val-
idation point and indicate the impact of fine-scale spatial noise. For all
sites where SSURGO also has data, approximately 17% of the validation
sites match at rank one, 55% have a match when including the first ten
ranks, and around 68% have a match when including the first 50 ranks.
When including all the POLARIS predictions in the surrounding three by
three window, validation results can vary dramatically suggesting a
high degree of spatial noise in the predictions. A similar comparison
using SSURGO shows that 48% of the validation sites match at rank
one and 61% match when including all components in a map unit. Al-
though SSURGO does generally outperform POLARIS deterministically,
there aremanyNASIS sites at which POLARIS does outperform SSURGO.

Fig. 5. Comparison between the probability for the first (P1) and second (P2) most probable components in POLARIS. The confusion index (bottom left) formalizes this comparison by
assessing how close the probabilities P1 and P2 are at each grid cell. The Gini impurity index (bottom right) uses the probabilities of the 50 component predictions at each grid cell to
provide a measure of the chance of misclassification. Results have been upscaled to 30 arcsec (~1 km) for display purposes.
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The results in Fig. 7 provide insight into POLARIS' strengths and
weaknesses; although it provides less reliable deterministic predictions
(most probable component) than SSURGO, when considering all ranks,
it matches the validation observations more frequently. It is important
to note that having a match for 78% of the NASIS sites at rank 50 does
not mean that the predictions are random. Each local random forest is
built on hundreds to thousands of components; being able to restrict
this uncertainty down to only 50 components shows DSMART-HPC's
ability to constrain the original uniform distribution.

Overall, SSURGO outperforms POLARIS over all regions when the
goal is to obtain the most probable component. However, given the
probable short taxonomic distance between many soil series—different
soil series may occur in similar environmental conditions due to taxo-
nomic similarities—the results are not conclusive. More exhaustive val-
idation approaches should consider the taxonomic distance between
soil series (Minasny and McBratney, 2007).

For the NASIS sites where SSURGO does not have data, approxi-
mately 5% of the validation sites match at rank one, 22% have a match
when including the first ten ranks, and around 40% have a match
when including all components in a map unit. These results are highly

variable per region with the best performance in the Northeast and
the worst performance in the Pacific West. The performance in the
Northeast can be explained by the relatively small areal coverage of
the unsurveyed areas in SSURGO (see Fig. 2). DSMART-HPC gap-fills
these areas with survey data that is close in distance and has a similar
physical environment and thus more likely to be appropriate for the
missing regions. Over the Pacific West, Southwest, and Midwest, the
unsurveyed areas have a larger areal coverage and can have large differ-
ences in their physical environment when compared to their adjacent
surveyed areas. This explains the poor performance when gap-filling
these areas.

4.4. Relationship between the prediction uncertainty and validation results

Visual inspection of Fig. 5 and Fig. 6 show a distinct relationship be-
tween the prediction uncertaintymetrics (confusion index and Gini im-
purity) and the ranks atwhich the POLARIS predictionsmatch theNASIS
in-situ observations. Fig. 8 summarizes this comparison across the 6 re-
gions used in Section 4.3. The Gini impurity values at the co-located grid
cells of the NASIS validation sites are compared to the rank match

Fig. 6. Validation of the POLARIS database using the NASIS point database. The points shown are the ranks at which POLARIS predictions match the corresponding NASIS site component
name. A site that does not have amatch is set to black. The top panel (A) shows comparisons at siteswhere SSURGOhas datawhile the bottompanel (B) shows comparisons at siteswhere
SSURGO does not have data.
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Fig. 7. Summary of the POLARIS validation using the NASIS point database. Rank matches of all validation sites in a given region are used to create an empirical cumulative distribution
function. The results are shown for SSURGO and POLARIS where SSURGO has an estimate, and for POLARIS at sites where SSURGO does not have an estimate. The lower and upper
bounds show the worst and best scenarios when evaluating the 3 × 3 grid cell window surrounding each NASIS site.

Fig. 8. Relationship between the rankmatches of all validation sites in a given region and POLARIS' prediction uncertainty (Gini impurity). The Gini impurity values for all sites that belong
to a given region are binned according to their rankmatch. Boxplots are used to display the distribution of Gini impurity values at each rankmatch. Themean Gini impurity value per rank
match is shown as a red dot. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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values; the Gini impuritymetric is chosen since it provides ameasure of
the likelihood of misclassification when drawing from the 50 predicted
series at each grid cell (see Section 4.2 for more details). Gini impurity
values are binned according to the grid cell's rank match and are
shown via boxplots. The results are conclusive; on average, as the rank
match increases the prediction uncertainty increases. In other words,
the less confidence DSMART-HPC has in a prediction, the more likely
the prediction is erroneous. These results agree with the validations re-
sults in Section 4.3. The regions that have the highest Gini impurity
values, in general, have the worst performance when compared to
NASIS and vice-versa. These results provide strong evidence that if the
probabilities of the predictions can be further constrained DSMART-
HPC will provide more reliable deterministic predictions. This will
most likely be accomplished through the inclusion of additional envi-
ronmental covariates that more fully explain and represent the ob-
served soil spatial patterns.

4.5. Covariate importance

Beyond component predictions, each target's random forest also es-
timates the role of the individual environmental covariates in the
POLARIS prediction. High relative covariate importance values indicate
that a given covariate plays a large role in constraining the initial uni-
form distribution in a random forest. The feature importance values
are spatially interpolated to create spatial maps (Fig. 9) and summa-
rized over CONUS (Fig. 10).

The covariate importance results are conclusive; elevation is the
single most important covariate in POLARIS. It has a prominent
role over theMountainWest, Southwest, and PacificWest and other re-
gions with appreciable topographic relief. Elevation can also play a piv-
otal role even when the topographic relief is not as pronounced
(e.g., Mississippi flood plain). Even though the gamma aeroradiometric
variables (potassium, thorium, and uranium) have a relatively coarse
spatial resolution (~2 km), their ability to represent the parent material

makes them key covariates. The role of the potassium variable is espe-
cially notable over the Sandhills region in Nebraska. This most likely ex-
plains the low uncertainty in the predictions over this region
(see Fig. 4). The MRVBF and MRRTF covariates play important roles in
areas of low topographic relief. Land cover also has a defining role,
although its impact is spatially variable. It has a high impact over

Fig. 9. Relative feature importance of each environmental covariate used in DSMART-HPC.

Fig. 10. Violin plots of the relative importance of each environmental covariate used in
DSMART-HPC. The results summarize the maps in Fig. 9.
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urban areas (e.g., San Francisco Bay Area and Northeast corridor), wet-
lands (e.g., Florida), rivers, lakes (e.g., Minnesota), and salt pans
(e.g., Bonneville Salt Plains). This result suggests that if the miscella-
neous components in SSURGO (e.g., urban areas and water bodies) are
discarded, the relative importance of land coverwill most likely become
negligible over CONUS. Most of the remaining variables play a relatively
minimal role in the overall picture.

5. Discussion

5.1. High performance computing in digital soil mapping

High performance computing is commonly used across multiple sci-
entific fields (e.g., climate modeling). In the earth sciences, HPC is be-
coming essential to harness the data from the increasing number of
satellite remote sensing missions that observe the earth system at
high temporal and spatial resolutions (Plaza and Chang, 2007; Lee
et al., 2011). The goal to produce state-of-the-art continental soil maps
using these data necessitates integrating HPC in DSM—our study over
CONUS demonstrates that this is feasible. The total computation re-
quired for the development of POLARIS was around 450,000 core-
hours with a wall-clock time of 5 h on the Blue Waters supercomputer
(Bode et al., 2013). This is negligible computer time at current HPC facil-
ities that can handle 10 million (~1100 years) core-hour tasks. For ex-
ample, existing HPC computing resources and available environmental
covariates allow for the implementation of DSMART-HPC over
the globe land surface at a 30 m spatial resolution or at a 10 m spatial
resolution over CONUS. The DSM community should embrace these
powerful resources. Such adoption will accelerate the DSM model de-
velopment cycle and help meet the growing data needs of the scientific
community, farmers, land managers, and policy makers for spatially
complete, harmonized soil information.

5.2. Addressing the challenges in SSURGO

POLARIS provides potential solutions to the primary challenges in
SSURGO. First, the artificial discontinuities due to county and state
boundaries all but disappear. DSMART-HPC uses the environmental co-
variates and the legacy soil data to determine themost probable compo-
nents in a given region while disregarding the political boundaries—an
implicit covariate used to assemble the original soil surveys. Second,
DSMART-HPC gap-fills the missing areas with information from adja-
cent areas. Having learned the relationships between the legacy soil
data and the environmental covariates, the algorithm is generally able
to predict physically consistent components in the missing regions.
For example, missing areas in the White Mountains in New Hampshire
are gap-filled with rock outcrops and the Saddleback soil series; both
these components are commonly found in mountainous regions in
Maine, New York, and New Hampshire. Third, DSMART-HPC spatially
disaggregates the polygons by using the environmental data and differ-
ent polygons to distinguish the different components in each map unit.

5.3. Future validation efforts

Although DSMART-HPC addresses the primary challenges in
SSURGO, the preliminary validation results in Section 4.3 suggest that
further work is necessary before POLARIS can be used as a deterministic
soil map. As shown in Section 4.4, to improve model performance,
constraining the probabilities of the predictions should be a priority in
the development of future versions of POLARIS. However, it currently
remains unclear what steps are necessary to accomplish this goal. This
section discusses future validation efforts that will further elucidate
the strengths and weaknesses of POLARIS and thus provide insight
into necessary model improvements.

5.3.1. Comparison to previous DSM studies over CONUS
Over the past 15 years there have been multiple regional studies

over CONUS that have sought to address the challenges in SSURGO
using DSM (Zhu et al., 2001; Wei et al., 2010; Subburayalu and Slater,
2013; Nauman and Thompson, 2014; Nauman et al., 2014;
Subburayalu et al., 2014). Although these studies cover relatively
small spatial extents, they are a valuable resource to evaluate how
POLARIS compares to other digital soil series products derived from
SSURGO. A preliminary comparison suggests that these regional data
products outperform POLARIS. These differences are most likely ex-
plained by the algorithm, the number of soil series predicted, and the
environmental covariates used. Futurework shouldmore formally com-
pare POLARIS with these data products to understand the differences
and assess how DSMART-HPC can be improved and what environmen-
tal covariates should be added to improve future versions of POLARIS.

5.3.2. Taxonomic distance
Another challenge in the prediction of soil series usingDSMART-HPC

and the validation of POLARIS is accounting for taxonomic distance.
Even though there are tens of thousands of distinct soil series within
SSURGO, there is most likely a short taxonomic distance between
many of them. As a result, these soil seriesmay occur in similar environ-
mental conditions, making it a challenge to adequately constrain the
prediction probabilities using DSMART-HPC; this would help explain
the high confusion index and Gini impurity values in POLARIS (see
Section 4.2 for more details). Taxonomic distance is also a challenge
when validating POLARIS since relying on a simple soil series name
match (Section 4.3) will not account for the similarities between the
soil series and thus not be a suitable comparison when the end goal is
to produce soil property maps. Future validation efforts of POLARIS
and future improvements of the DSMART-HPC algorithm should ac-
count for the taxonomic distance between soil series.

5.4. Additional environmental covariates

Since reducing prediction uncertainty has shown to be strongly re-
lated to improving the database's accuracy (see section 4.4), additional
environmental covariates should be used in future versions of POLARIS.
First, given the important role of the gamma aeroradiometric product,
adding other parent material information (e.g., lithology), as an input
environmental covariate, should be a priority. Second, the role of cli-
mate in soil spatial properties is mainly disregarded in this study; this
is not necessary given the large availability of high-resolution meteoro-
logical datasets over CONUS. The next iteration should include climate
datasets such as the National Land Data Assimilation System (NLDAS;
Mitchell et al., 2004) and the Parameter-elevation Relationships on In-
dependent Slopes Model (PRISM; Daly et al., 2008). Third, instead of
only using the classic terrain attributes it would be helpful to use DEM
derived variables that approximate the landform elements observed
by the surveyors. Finally, databases that divide CONUS into areas that
share similar soils, climate, and land use activities (e.g., Major Land Re-
source Areas) could be used as environmental covariates to help define
more concrete boundaries to avoid placing soils in physically unrealistic
regions. This division into natural landscape units could also be used to
replace the square target areas used in DSMART-HPC.

5.5. Improving spatial disaggregation

Another driver of prediction uncertainty is the weighted random al-
location scheme in DSMART-HPC (see section 3.1) used to spatially dis-
aggregate the map units in SSURGO. Moving forward, the wealth of
information in the SSURGO database and original soil survey manu-
scripts represent options to better train the target random forests. Most
components in each map unit have various descriptions of the environ-
mental context in which the surveyor observed the component; includ-
ing slope shape and hillslope position, among others (Thompson et al.,
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2010; Nauman and Thompson, 2014). Assuming that the raster rules can
be developed to relate these descriptors to the available data over
CONUS, this technique could replace the weighted random allocation
scheme to spatially disaggregate the information prior to training the
random forests. It is currently uncertain if this will significantly alter
the predictions, however, it should help constrain the probabilities by re-
ducing the randomness introduced by the current component assign-
ment scheme.

6. Conclusion

This work is a breakthrough in digital soil mapping (DSM); it uses a
state-of-the-art DSM model to reinterpret a complex legacy soil data-
base over CONUS at a 30 m spatial resolution. The results demonstrate
the potential of integrating petascale HPC in DSM. Nonetheless,
POLARIS should not be seen as a replacement to SSURGO; indeed the
current version seldom outperforms SSURGO when validated with the
NASIS dataset. Its primary objective is to provide the scientific commu-
nity with a probabilistic field-scale soil dataset over CONUS that is both
harmonized and spatially complete. POLARIS provides a spatially con-
tinuous, internally consistent, quantitative prediction of soil series.
This database has the potential to improve the modeling of biogeo-
chemical, water, and energy cycles over land in numerical weather fore-
casting and climate models; assist drought and flood monitoring and
forecasting to ensure food and water security; and enhance availability
of data for precision agriculture. It is also meant as an exploratory
dataset that when analyzed will provide insight into environments in
which the drivers of spatial heterogeneity of soils are not well repre-
sented (e.g., riparian zones) and help guide future environmental covar-
iate selection.

Data accessibility

The POLARIS database can be accessed at http://stream.princeton.
edu/POLARIS
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