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Abstract: Remote sensing algorithms that use red and NIR bands for the 
estimation of chlorophyll-a concentration [Chl] can be more effective in 
inland and coastal waters than algorithms that use blue and green bands. We 
tested such two-band and three-band red-NIR algorithms using 
comprehensive synthetic data sets of reflectance spectra and inherent 
optical properties related to various water parameters and a very consistent 
in situ data set from several lakes in Nebraska, USA. The two-band 
algorithms tested with MERIS bands were Rrs(708)/Rrs(665) and 
Rrs(753)/Rrs(665). The three-band algorithm with MERIS bands was in the 
form R3 = [Rrs

−1(665) − Rrs
−1(708)] × Rrs(753). It is shown that the 

relationships of both Rrs(708)/Rrs(665) and R3 with [Chl] do not depend 
much on the absorption by CDOM and non-algal particles, or the 
backscattering properties of water constituents, and can be defined in terms 
of water absorption coefficients at the respective bands as well as the 
phytoplankton specific absorption coefficient at 665 nm. The relationship of 
the latter with [Chl] was established for [Chl] > 1 mg/m3 and then further 
used to develop algorithms which showed a very good match with field data 
and should not require regional tuning. 
©2010 Optical Society of America 
OCIS codes: (010.4450) Ocean optics; (280.0280) Remote sensing. 
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1. Introduction 

Recent advances in the development of atmospheric correction models [1–5] have made the 
retrieval of reflectance of coastal and inland waters from electromagnetic signals from the top 
of the atmosphere more accurate and have inspired further development of retrieval 
algorithms for turbid productive waters and their analysis [6]. This includes algorithms that 
employ wavebands in the red and near infrared (NIR) range (650-800 nm), which are less 
sensitive than traditional blue-green (440-550 nm) ratio algorithms to the absorption by 
colored dissolved organic matter (CDOM) and scattering by mineral particles: both CDOM 
absorption and particulate scattering decrease rapidly with the wavelength and are small in 
the red-NIR part of the spectrum. Simple red-NIR band ratio algorithms have been known for 
a long time [7–9] and successfully used for the estimation of chlorophyll-a concentration 
[Chl] from reflectance spectra in coastal and inland waters [10] for [Chl] above 3-5 mg/m3 
when the reflectance peak around 700 nm [9] becomes quite pronounced. Generally this peak 
includes two components: i) an elastic component which corresponds to the local minimum of 
absorption coefficient due to the confluence of the phytoplankton and water absorption 
spectra, and ii) chlorophyll fluorescence with a maximum near 685 nm [9,11,12]. For [Chl] < 
3-5 mg/m3, the elastic component of the peak is small and the magnitude of the peak above 
the baseline is mostly related to the chlorophyll fluorescence signal. For [Chl] > 3-5 mg/m3, 
both components contribute to the signal, with the peak of the elastic component and the 
resulting combined reflectance moving towards longer wavelengths and the minimum in 
reflectance, which is due to the phytoplankton absorption peak around 675 nm, becoming 
more pronounced, as [Chl] increases. 

Many algorithms have been developed which employ two or more bands in the red-NIR 
spectral range or use a combination of these bands with bands in the blue-green part of the 
spectrum (see the comprehensive review in [13] and other references [14–16]). Some of the 
algorithms included correction for the backscattering at different bands [17] and the band 
tuning procedures [18]. In most cases, the algorithms had spectral bands where the 
contribution of chlorophyll fluorescence cannot be considered negligible. Such algorithms 
required additional tuning and often did not produce acceptable accuracies in retrieving [Chl], 
especially for [Chl] values below 10 mg/m3. Moreover, the bands in some of the algorithms 
are not available on the current ocean color satellites, which limits the applicability of those 
algorithms. Gower [19] introduced the Maximum Chlorophyll Index (MCI), which was 
successfully used for the detection of algal blooms. This index uses bands at 681, 709 and 753 
nm, so it is very sensitive to the chlorophyll fluorescence and is used only for qualitative 
detection of algal blooms. 

The advanced version of red-NIR algorithm [10] includes three bands instead of two [14], 
which enables better separation of the absorption by [Chl] from absorption and scattering by 
other constituents in water in the red and NIR parts of the spectrum. Both two- and three-band 
algorithms have been tested in multiple water environments [10,20,21]. But the sources of the 
uncertainties were difficult to trace because multiple parameters involved (absorption and 
backscattering coefficients of water components) were not directly measured in the 
experiments. Optimization of the band positions was done using the synthetic data sets 
simulated with a semi-analytical model [22]. However, the sensitivity of the retrievals to 
CDOM absorption, concentration of minerals, and shape of phytoplankton absorption 
spectrum were not considered. 

In this work we tested two- and three-band algorithms with bands that matched the 
spectral channels of MERIS (Medium Resolution Imaging Spectrometer) centered at 665, 708 
and 753 nm. Comprehensive synthetic data sets of reflectance spectra and inherent optical 
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properties (IOP) for a wide range of water constituents were used together with field data. 
Specifically, we analyzed relationships between [Chl] and Rrs(708)/Rrs(665), 
Rrs(753)/Rrs(665), and [Rrs(665)−1 – Rrs(708)−1]*Rrs(753), where Rrs(λ) is the remote sensing 
reflectance at the wavelengths λ = 665, 708, and 753 nm. The main goal of the work was to 
analyze the contributions of different components to the estimated [Chl] values and arrive at 
more robust algorithms which would not require significant regional tuning. 

In Section 2, which follows, we describe our methods, which are based on our synthetic 
and field (in situ) data sets; in Sections 3-6 we report results, specifically, in Section 3 we 
make a preliminary analysis of the sensitivity of the algorithms to water quality parameters; in 
Section 4 we analyze the contributions of main components to the relationships between the 
algorithms and [Chl]; in Section 5 we establish the relationship between the phytoplankton 
specific absorption coefficient in the red-NIR part of the spectrum and [Chl]; in Section 6 we 
arrive at more accurate algorithms that relate [Chl] and reflectances; and in Section 7 we 
analyze the performance of blue-green ratio algorithms on the same data sets and compare 
them with the performance of the red-NIR algorithms. 

2. Description of the data sets 

About two thousand reflectance spectra were simulated using Hydrolight [23], with and 
without taking into account the chlorophyll fluorescence, with 1 nm resolution for a wide 
range of conditions typical for inland and coastal waters: [Chl] = 1-100 mg/m3, CDOM 
(yellow substance) absorption coefficient at 400 nm, ay(400) = 0-5 m−1, different shapes of 
phytoplankton specific absorption coefficient spectra, and concentrations of non-algal 
particles, CNAP = 0-10 mg/l. All the details and assumptions used for the simulation of water 
optical properties are given in Gilerson et al. [24]. They were based on the findings of many 
authors for IOP characteristics, with similar assumptions to those used in the development of 
the data sets of the IOCCG working group [25], and included variations of absorption and 
backscattering spectra in a very wide range [24]. Thus, for example, the power coefficient in 
the CDOM absorption model, (400)*exp[ ( 400)]y y ya a S λ= − − , was in the range yS  = 0.1-

0.2 nm−1 and the specific scattering of non-algal particles, *
NAPb , was in the range 

20.5-1.0 /m g . Solar input was simulated with a cloud-free sky. 
To be able to analyze the impact of the phytoplankton specific absorption coefficient, *

pha , 
on the performance of the algorithms, as a first step, two data sets were simulated with the 
shapes of the specific absorption coefficient spectra taken, according to Eq. (2) from Ciotti et 
al. [26], as a sum of the specific absorptions coefficients of microplankton and picoplankton, 
as shown in Fig. 1. The weighting factor Sf ranged from 0.1 to 0.3. CNAP ranged from 0 to 1 
mg/l in one data set and from 1 to 10 mg/l in the other data set. It should be noted that based 
on the dependence of *

pha  (440) on [Chl], as shown in [27], the range 0-0.3 for Sf is typical 

for [Chl] > 1mg/m3. But we found that the model [26] usually underestimates *
pha values in 

the red and NIR parts of the spectrum [see Fig. 8(b) below]. For the purpose of evaluating the 
red–NIR models, we also used the spectral shapes from the model [26] in the 650-800 nm 
part of the spectrum with * (675)pha  = 0.0142, 0.0156, and 0.02 m2/(mg Chl a) which are also 

shown in Fig. 1. For the spectral shapes with * (675)pha  = 0.0142 and  
0.02 m2(mg Chl a)−1 an additional set of IOP spectra and the associated reflectances was 
generated with CNAP = 0-10 mg/l, 1 < [Chl] < 40 mg/m3 (1 < [Chl] < 20 mg/m3 for * (675)pha  
= 0.02 m2/(mg Chl a) and CDOM absorption at 400 nm, ay(400) = 0-3 m−1. This range of 
[Chl], 1 < [Chl] < 40 mg/m3, is more typical for coastal and inland waters (rather than higher 
[Chl] values). Thus, a very accurate evaluation of the algorithms is required for this [Chl] 
range. In all simulations the phytoplankton absorption was considered proportional to [Chl] 
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Fig. 1. Phytoplankton specific absorption spectra used in the simulations. 

Fluorescence quantum yield (together with the chlorophyll reabsorption coefficient) in the 
original simulations for Sf = 0.1-0.3 was, η = 0.5%. The fluorescence contribution was 
calculated as the difference between the total and elastic reflectances and was assumed to 
change proportionally with η, which enabled the assessment of the impact of the fluorescence 
component. All reflectances were simulated for the sun zenith angle θi = 30° and for nadir 
viewing. 

Field data set consisted of data collected by the CALMIT group at 85 stations in Fremont 
State Lakes, Nebraska, USA, during the summer of 2008, with [Chl] = 2-100 mg/m3, ay(400) 
= 0.9-3 m−1, and CNAP = 0-3 mg/l [28]. A standard set of water quality parameters was 
measured: turbidity, [Chl], total, inorganic, and organic suspended solids. Hyperspectral 
reflectance measurements were taken from a boat using two intercalibrated Ocean Optics 
USB2000 spectrometers. More details on the instrumentation and methodology are provided 
in Gitelson et al [28]. 

3. Preliminary analysis of the main factors impacting red – NIR algorithms 

3.1 Comparison of the synthetic and field data 

Moses et al. [29] calibrated and validated red-NIR models using MERIS satellite reflectances 
and [Chl] measured in the field. As a result of the calibration, the following linear 
relationships between [Chl] and the models were obtained. 

The two-band MERIS algorithm: 

 [Chl]  61.324* (708) / (665) 37.94rs rsR R= −   (3) 

The three-band MERIS algorithm: 

 1 1[Chl] 232.329[ ( (665) (708) ) * (753)] 23.174rs rs rsR R R− −= − +   (4) 

These relationships are compared in Fig. 2 with the relationships obtained between the 
models and [Chl] simulated from the synthetic data set for * (675)pha  = 0.0156 m2/(mg Chl a). 
As can be seen, for both two-band and three-band models, the relationships obtained from the 
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synthetic data set are closely related to those obtained from the field data set (RMSE = 4.05 
mg/m3 and 5.58 mg/m3, respectively). Although further detailed analysis is required, 
especially for low [Chl] values, the close similarity of these relationships prompted the study 
of the sensitivity of the algorithms to variable water parameters. 

 
 

Fig. 2. Comparison of estimates of chlorophyll-a concentrations calculated using Eq. (3) (a) 
and Eq. (4) (b) and by synthetic reflectance spectra with * (675)pha  = 0.0156 m2/(mg Chl a) 
(blue dots): a) two-band algorithm, b) three-band algorithm. 

For all simulations from the synthetic data, remote sensing reflectances, Rrs, at the band 
centers were used instead of integrating the water leaving radiance over the entire bandwidth 
and normalizing it by the irradiance over the same spectral range. This was done because the 
latter approach did not produce a noticeable change in the performance of the algorithms. 

3.2 Sensitivity of the two-band model to water parameters 

The two-band model, Rrs(708)/Rrs(665), was further analyzed using synthetic data sets. The 
impact of *

pha  on the relationship between the model values and [Chl] is shown in Fig. 3. In 

Fig. 3, * (675)pha  is in the range 0.01-0.156 m2/(mg Chl a); CDOM absorption is in the range, 
0 < ay(400) < 5m−1; CNAP is in the range, 0 < CNAP < 1mg/l. It can be seen that the relationship 
between [Chl] and Rrs(708)/Rrs(665) is sensitive to *

pha  values. However, not all this 
variability can be seen for the realistic concentrations of water constituents: it is well known 
that due to the packaging effect [27] the values of *

pha  in all parts of the spectrum as well as 

the variability of *
pha decreases with increasing [Chl]. So the actual sensitivity of the model to 

*
pha  should be assessed by taking into account the relationship between [Chl] and *

pha . 
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Fig. 3. Chlorophyll-a concentration vs. two-band red-NIR model calculated using synthetic 
data, the impact of the shape of the phytoplankton specific absorption coefficient. 

 
 

Fig. 4. Chlorophyll-a concentration vs. two-band red-NIR ratio with variations in (a) CDOM 
absorption, 0<ay(400)<5m−1, (b) CNAP concentration, 0<CNAP<10 mg/l, and (c) fluorescence 
quantum yield, η = 0.25, 0.5 and 1.0. 

Sensitivity of the Rrs(708)/Rrs (665) model to changes in CDOM absorption is presented in 
Fig. 4(a), which shows minimal impact for a very broad range of CDOM absorption 
coefficient values, 0 < ay(400) < 5m−1. The impact of CNAP variability is shown in Fig. 4(b): 
for a very wide variation in CNAP values, 0 < CNAP < 10 mg/l, standard deviation was 4.58 
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mg/m3, thereby showing that variations in CNAP do not dramatically affect the accuracy of 
[Chl] estimation. Results of simulations for three values of fluorescence quantum yield, η = 
0.25, 0.5, and 1.0, showed that small differences can be observed only for [Chl] > 60 mg/m3 
[Fig. 4(c)]. The impacts of *

pha , ay(400), CNAP, and η were found to be similar for the three-
band model and are not shown here. 

Thus, the variability of *
pha  and the relationship between [Chl] and *

pha  are the major 
factors that affect the performance of the Rrs(708)/Rrs(665) model. These factors should be 
assessed properly in order to make simulations that are relevant to realistic water conditions. 

4. Basic relationships for red – NIR models and contributions from its main components 

For inland and coastal waters the remote sensing reflectance can be estimated as [30] 

 rs
( )

R ( ) 0.53
( ) ( )

b

b

bf
Q a b

λ
λ

λ λ
=

+
  (5) 

where ( )bb λ  is the backscattering coefficient, ( )a λ  is the total absorption coefficient, f  is a 
factor that depends mostly on the angle of the incident light, and Q  is the bidirectional 
reflectance distribution function (BRDF) coefficient. Generally, both f and Q  are also 
functions of the wavelength, but as a first order approximation, we ignore this dependence for 
the relatively narrow red – NIR spectral range of interest. 

We also assume that the total absorption coefficient ( )a λ  is the sum of absorption 
coefficients by four components: phytoplankton, CDOM, non-algal particles, and water 

 ( ) ( ) ( ) ( ) ( )ph y NAP wa a a a aλ λ λ λ λ= + + +   (6) 

Absorption by non-algal particles, ( )NAPa λ , has a spectral shape similar to that of the 
absorption by CDOM, and for the range of parameters considered, its magnitude was on 
average two times smaller than the CDOM absorption. To simplify the equations, ( )NAPa λ  is 
neglected henceforth in this model but this simplification will not in any way affect the 
analysis and the final results since ( )NAPa λ was included in the bio-optical model for the 
calculation of the IOPs and the reflectances simulated using Hydrolight. 

Thus, the ratio of the reflectances, which for two-band model we denote as R2, at two 
wavelengths 1λ  and 2λ can be written as 

 rs 1 rs 2 b 1 b 2 2 2 2 b 2

1 1 1 b 1

R2  R ( ) / R ( ) [b ( ) / b ( )]*[ ( ) ( ) ( ) b ( )] /

[ ( ) ( ) ( ) b ( )]
ph y w

ph y w

a a a
a a a

λ λ λ λ λ λ λ λ

λ λ λ λ

= = + + +

+ + +
 (7) 

where, for our study, 1λ  = 708 or 753 nm and 2λ  = 665nm. 
Assuming b 1 b 2[b ( ) / b ( )] 1λ λ ≈  (quite an accurate assumption for Rrs(708)/Rrs(665) but 

less accurate for Rrs(753/Rrs(665)), we can find: 

 1 1 1 b 1 2 2 2 b 2[ ( ) ( ) ( ) b ( )]* 2 [ ( ) ( ) ( ) b ( )]ph y w ph y wa a a R a a aλ λ λ λ λ λ λ λ+ + + = + + +   (8) 

Taking into account (1) we arrive at a relationship similar to that in [17] 

 
1 2 1 2 b 1 b 2

* *
2 1

[Chl] {[ ( ) 2 ( )] [ ( ) 2 ( )] [b ( ) 2 b ( )]} /

[ ( ) ( ) 2]
y y w w

ph ph

a R a a R a R

a a R

λ λ λ λ λ λ

λ λ

= − + − + −

−
  (9) 
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Absorption coefficients of water at the wavelengths of interest are, aw(665) ≈0.42, aw(708) 
≈0.79, and aw(753) ≈2.5 ([31] with interpolation). The range of R2 (see for example Fig. 2(a) 
for Rrs(708)/Rrs(665) values) is R2 = 0.6-2.2. The differences between CDOM absorptions 
(i.e., 1 2[ ( ) 2 ( )]y ya R aλ λ− ), and backscatterings (i.e., b 1 b 2[b ( ) 2 b ( )]Rλ λ− ), with R2 as a 
multiplier for the respective values at 1λ , are in the same form as the difference between 
water absorptions 1 2[ ( ) 2 ( )]w wa R aλ λ− , with high values of aw( 1λ ) and a significant 
difference between aw(λ1) and aw( 2λ ). So, for [Chl] > 5 mg/m3, the contribution of CDOM 
absorption and backscattering terms are significantly smaller than the contribution from water 
absorption. At [Chl] < 5mg/m3, when R2 < 0.6 and the water term becomes smaller, the 
variation in CDOM absorption and backscattering will create additional noise/uncertainties in 
the estimation of [Chl] values. The contributions of these components to the relationship 
[Chl] vs. Rrs(708)/Rrs(665) is shown in Fig. 5. Simulations were done for the data set with 
ay(400) = 0-3 m−1 and CNAP = 0-10 mg/l. In Fig. 5(a), a*ph(675) = 0.0142 m2/(mg Chl a) and 
[Chl] = 1-40 mg/m3, and in Fig. 5(b), a*ph(675) = 0.02 m2/(mg Chl a) and [Chl] = 1-20 
mg/m3. It can be seen that the relationship is governed by the water absorption component 
with a small contribution from CDOM absorption and backscattering. 

 
 

Fig. 5. Contributions of the main components of Eq. (9) to the relationship [Chl] vs. 
Rrs(708)/Rrs(665): The ranges of concentrations considered were, [Chl] = 1-40 mg/m3, ay = 0-
3m−1, CNAP = 0-10 mg/l, for (a) a*ph(675) = 0.0142 m2/(mg Chl a) and (b) a*ph(675) = 0.02 
m2/(mg Chl a). “chl” is the [Chl] from the synthetic data set, “chl calc” is the [Chl] calculated 
using the Eq. (9), “acdom” is *

1 2 2[ ( ) 2 ( )] / ( )y y pha R a aλ λ λ− , the CDOM absorption term from 

Eq. (9), “awater” = *
1 2 2[ ( ) 2 ( )] / ( )w w pha R a aλ λ λ− , the water absorption term from Eq. (9), 

and “b/scatter” is *
b 1 b 2 2[b ( ) 2 b ( )] / ( )phR aλ λ λ− , the backscattering term from Eq. (9). 

There is no significant difference in the relationship between the cases of a*ph(675) = 
0.0142 m2/(mg Chl a) [Fig. 5(a)] and a*ph(675) = 0.02 m2/(mg Chl a) [Fig. 5(b)]. *

1( )pha λ  is 

very small, about 1% of *
2( )pha λ , and it changes the slope of the relationship only slightly. 

There is also no significant scattering of points due to CNAP variations. 
For the [Chl] vs. Rrs(753)/Rrs(665) relationship, the effect of different terms in Eq. (9), 

shown in Fig. 6, is completely different from those for the relationship [Chl] vs. 
Rrs(708)/Rrs(665) shown in Fig. 5. The assumption [bb( 1λ )/bb( 2λ )] ≈1 is not very accurate for 
the Rrs(753)/Rrs(665) case. Thus, the water absorption term and “chl calc” [Eq. (9)] do not 
match the respective values simulated by Hydrolight. The contributions of CDOM absorption 
and backscattering terms from Eq. (9) are also significantly higher than those for the 
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Rrs(708)/Rrs(665) model (Fig. 5), which makes the Rrs(753)/Rrs(665) model unreliable for 
estimating low to moderate [Chl]. 

 
 

Fig. 6. Contributions of the main components of Eq. (9) to the relationship [Chl] vs. 
Rrs(753)/Rrs(665): a) a*ph(675) = 0.0142 m2/(mg Chl a), b) a*ph(675) = 0.02 m2/(mg Chl a). 
Notation and the ranges of values for [Chl], ay, and CNAP are the same as for Fig. 5. 

Basic relationships for the three-band model, similar to the ones for the two-band model, 
can be written as follows: let us denote three-band model as 

 1 1
1 2 3R3 [ ( ) ( ) ]* ( )Rrs Rrs Rrsλ λ λ− −= −   (10) 

where 1λ  = 665nm, 2λ  = 708nm and 3λ  = 753nm. 
Then using Eqs. (5) and (6) we have 

 1 1 1 b 1 b 1 2 2 2 b 2

b 2 b 3 3 3 3 b 3

R3 {[ ( ) ( ) ( ) b ( )] / b ( ) [ ( ) ( ) ( ) b ( )] /

b ( )}*{b ( ) / [ ( ) ( ) ( ) b ( )]}
ph y w ph y w

ph y w

a a a a a a
a a a

λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ

= + + + − + + +

+ + +
 (11) 

Assuming b 1 b 2 b 3b ( ) b ( ) b ( )λ λ λ≈ ≈  and the dominance of w 3a ( )λ over other terms at 3λ  

 
3 1 2 2 1

* *
b 2 b 1 1 2

[Chl] {[ ( ) 3 ( ) ( )] [ ( ) ( )]

[b ( ) b ( )]} / [ ( ) ( )]
w w w y y

ph ph

a R a a a a

a a

λ λ λ λ λ

λ λ λ λ

= − + + − +

− −
  (12) 

Despite the assumption about bb( λ ), the term b 2 b 1[b ( ) b ( )]λ λ−  in (12) is left as non-zero in 
order to estimate possible errors. The contributions of all components to the relationship 
between [Chl] and R3 is shown in Fig. 7. [Chl] vs. R3 relationship is mostly defined by the 
water absorption term, with minimal effect of other components, which, as expected, is even 
smaller than that for the Rrs(708)/Rrs(665) model because CDOM absorption term and 
backscattering term do not have R3 as a multiplier in the equation. The slope of the 
relationship is determined by the a*ph(665) value in the denominator of Eq. (12). 
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Fig. 7. Contributions of main components of Eq. (12) to the [Chl] vs R3 relationship: a) 
a*ph(675) = 0.0142 m2/(mg Chl a), b) a*ph(675) = 0.0142 m2/(mg Chl a). “chl” is the [Chl] from 
the data set, “chl calc” is the [Chl] from the Eq. (12), “acdom” is 

*
2 1 2[ ( ) ( )] / ( )y y pha a aλ λ λ− , the CDOM absorption term from (12), “awater” is 

*
3 1 2 2[ ( ) 3 ( ) ( )] / ( )w w w pha R a a aλ λ λ λ− + , the water absorption term from (12) and 

“b/scatter” is *
b 2 b 1 2[b ( ) b ( )] / ( )phaλ λ λ− , the backscattering term from (12). The ranges 

of values for [Chl], ay, and CNAP are the same as for Fig. 5. 

5. Relationship between [Chl] and phytoplankton specific absorption coefficient 

The results derived from the simulated reflectance spectra show that the performance of the 
red - NIR models is strongly affected by the magnitude and spectral shape of the 
phytoplankton specific absorption coefficient. As it was already mentioned, *

pha  decreases 
with increasing [Chl], especially for [Chl] > 3-5 mg/m3, due to the packaging effect [27]. This 
decrease was observed for the mean value as well as the variability of *

pha  [27], but the exact 
range of this decrease was not well studied, especially for [Chl] > 10 mg/m3. 

 
 

Fig. 8. Phytoplankton specific absorption coefficient at (a) 440 nm and (b) 675 nm plotted 
against [Chl] for the field data collected from inland and coastal waters. 

Figure 8 shows the range of values for the peaks of *
pha  at 440 and 675 nm in the data sets 

from several field campaigns [21,28,32] (the data from the Nebraska campaign in 2009 are 
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unpublished as yet). [Chl] values were obtained using standard measurement techniques 
[21,28]. Phytoplankton absorption values for Nebraska lakes were obtained using standard 
filter absorption measurements [28]. For the Chesapeake Bay and the Long Island Sound 
phytoplankton absorption spectra were retrieved from the total absorption spectra measured 
by an ac-s instrument (WET Labs) [32]. The variability of both * (440)pha and * (675)pha , as 
shown in Fig. 8, is higher than those in [27]. Moreover, the mean values do not decrease with 
[Chl] as rapidly as reported in [27]. 

The power fit for * (675)pha vs. [Chl] for all points of Fig. 8(b) is shown in Fig. 9(a) (red 
solid line). The power equation is: 

 * 0.2(675) 0.03 [ ]pha Chl −=   (13) 

 
Fig. 9. a) power fit for all points of Fig. 8(b) for a*ph(675) vs. [Chl]; R2 = 0.2265; the brown 
and pink lines represent bounds for the 95% confidence interval. b) power fit for a*ph(675) vs. 
a*ph(665); R2 = 0.965. Inset: a*ph spectra with higher a*ph(675) values – specific absorption 
coefficient spectra of: Cryptophyta “H” (1), Diatoms (2) and Green algae (3) from Gege et al. 
[33]. 

The brown and pink lines in Fig. 9(a) represent the bounds for the 95% confidence 
interval. Taking into account the known decrease of variability in * (675)pha as [Chl] increases, 

we also added other bounds (green lines) with a wider range of * (675)pha values at low [Chl] 
(close to 1 mg/m3) and a narrower range for higher [Chl]. These bounds were, for [Chl] = 1 
mg/m3, a*ph (max) (675) = 0.0439 m2/(mg Chl a) and a*ph (min) (675) = 0.016 m2/(mg Chl a) 
respectively. * (665)pha is always smaller than * (675)pha and it does not change proportionally 

with * (675)pha . The relationship between * (665)pha and * (675)pha  is shown in Fig. 9(b) and is 
approximated as 

 * * 0.8373(665) 0.412 (675)]ph pha a=   (14) 

and together with (13) 

 * 0.1675(665) 0.022 [ ]pha Chl −=   (15) 

The points in Fig. 9(b) are taken from the specific absorption coefficient spectra in Fig. 1 as 
well as from the spectra with higher a*ph values: these are spectra of Cryptophyta “H” (1), 
Diatoms (2) and Green algae (3) from Gege et al. [33], and are shown in the inset of Fig. 9(b). 
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Analysis of * (675)pha as a function of [Chl] shows that * (675)pha values in the inland and 
coastal waters studied are in the range of 0.02 – 0.03 m2/(mg Chl) for [Chl] ≈1mg/m3 and 
gradually decreases to 0.01 – 0.015 m2/(mg Chl) for [Chl] > 10-20 mg/m3. Spectra in Fig. 1 
give lower values of * (675)pha especially for [Chl] < 10-20 mg/m3, which makes simulations 
less accurate. Additional measurements for various water conditions are necessary for the 
clarification of this issue. 

6. Advanced versions of two- and three-band models and their comparison with the field 
data 

Based on the conclusion in Section 4, water absorption terms are dominant in the equations 
for the two-band model, Rrs(708)/Rrs(665) [Eq. (9)] and the three-band model, [Rrs(665)−1 – 
Rrs(708)−1]*Rrs(753) [Eq. (12)]. So Eq. (9) can be simplified as 

 *
1 2[Chl] [ ( ) 2 ( )] / (665)w w pha R a aλ λ= −   (16) 

Then substituting * (665)pha from Eq. (15) after simple modifications, we arrive at 

 1/
1 2[Chl] {[ ( ) 2 ( )] / 0.022} p

w wa R aλ λ= −   (17.1) 

 1.124[Chl] [35.75* 2 19.30 ]R= −   (17.2) 

Similarly, for the three-band model, Eq. (12) can be simplified as, 

 *
3 1 2[Chl] [ ( ) 3 ( ) ( )] / (665)w w w pha R a a aλ λ λ= − +   (18) 

and after including * (665)pha from Eq. (15), 

 (1/ )
3 1 2[Chl] {[ ( ) 3 ( ) ( )] / 0.022} p

w w wa R a aλ λ λ= − +   (19.1) 

 1.124[Chl] [113.36* 3 16.45 ]R= +   (19.2) 

For both Eqs. (17.1) and (19.1), p = 0.8325. In order to better fit the field data, p was adjusted 
slightly from 0.8325 to 0.89. Comparison of relationships Eqs. (17.1) and (19.1) with the 
Nebraska field data for all three models is shown in Fig. 10. Respective values in the power 
coefficient for the upper and lower bounds corresponding to the bounds in Fig. 9(a) were also 
increased accordingly by δ = [0.89 – 0.8325] = 0.0575. 

Taking aw(665) = 0.4245 m−1, aw(708) = 0.7864 m−1, and aw(753) = 2.494 m−1 ([31] with 
interpolation), Eqs. (17.1) and (19.1) with p = 0.89 can be rewritten as Eqs. (17.2) and (19.2), 
where R2 = Rrs(708)/Rrs(665) and R3 = (1/Rrs(665) – 1/Rrs(708))*Rrs(753). 

Very close relationships between the field data [28] and both the two-band model, 
Rrs(708)/Rrs(665), and the three-band model, [Rrs(665)−1 – Rrs(708)−1]*Rrs(753) are observed 
in Fig. 10. Once again, the two-band model, Rrs(753)/Rrs(665), proved to be inaccurate for 
low to moderate [Chl]. MERIS-derived relationships for the Rrs(708)/Rrs(665) model, and the 
three-band model [Eqs. (3) and (4) respectively] from Moses et al. [29] [cyan lines in  
Fig. 10(a) and Fig. 10(c)] match very well with the linear parts of the analytically derived 
algorithms, Eqs. (17.2) and (19.2) [red lines in Fig. 10(a) and 10(c)]. Equations (17.2) and 
(19.2) match well with the field data even in the non-linear part of the curve for [Chl] < 
10mg/m3. Correlations between measured [Chl] from the Nebraska field data set and [Chl] 
from the analytically derived algorithms for the models Rrs(708)/Rrs(665) [Eq. (17.2) and 
[Rrs(665)−1 – Rrs(708)−1]* Rrs(753) (Eq. (19.2)] are shown in Fig. 11. In both cases, the 
determination coefficient is above 0.95. 
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Fig. 10. Comparison of analytical relationships Eqs. (17.1) and (19.1) with the field data 
(Nebraska 2008 [28]) and empirical algorithms from MERIS –field data [29]: a) R2: 
Rrs(708)/Rrs(665), b) R2: Rrs(753)/Rrs(665), c) R3 = [Rrs(665)−1 – Rrs(708)−1]*Rrs(753). Red 
lines correspond to the Eq. (17.1) and (17.2) for Rrs(708)/Rrs(665) algorithm [Fig. 10(a)], the  
Eq. (17.1) for Rrs(753)/Rrs(665) algorithm [Fig. 10(b)] and to the Eqs. (19.1) and (19.2) for 
[Rrs(665)−1 –Rrs(708)−1] *Rrs(753) algorithm [Fig. 10(c)]. Lower and upper a*ph bounds 
correspond to the bounds in Fig. 9(a), MERIS – field algorithm – cyan lines [Eq. (3)] for 
Rrs(708)/Rrs(665) algorithm [Fig. 10(a)] and Eq. (4) for 3 bands algorithm [Fig. 10(c)]. 

It should be also noted that * (675)pha decreases rapidly with [Chl] below 5-10 mg/m3  
[Fig. 9(a)], but in this [Chl] range its impact on the algorithms is minimal (see Fig. 3). For 
higher [Chl] values, the * (675)pha change is much smaller as is its impact on the algorithms. 
For the whole [Chl] range the impact is also mitigated by the fact that the algorithms use 

* (665)pha  which, according to Eq. (14), has much weaker dependence on [Chl] than 
* (675)pha . As a result, a very broad range of * (675)pha in Fig. 9(a) (upper bound was 

approximated as 0.0439[Chl]-0.25 and lower bound as 0.016[Chl]-0.1) corresponds to a 
relatively small range of [Chl] variations between lower and upper boundaries [Fig. 10(a) and 
10(c)], which makes both two- and three-bands algorithms less sensitive to changes in the 
phytoplankton specific absorption. 
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Fig. 11. Correlations between [Chl] measured in the Nebraska and [Chl] from the analytically-
derived [Chl] from (a) Eq. (17.2): Rrs(708)/Rrs(665), and (b) Eq. (19.2): [Rrs(665)−1 – 
Rrs(708)−1]*Rrs(753). 

Additional studies in various water conditions and water environments are necessary for 
the estimation of the actual sensitivity of the models to a*ph. In such investigations special 
attention should be given to the accuracy of [Chl] and a*ph measurements. 

7. Comparison of the performance of the blue-green MODIS OC3M and red/NIR 
algorithms 

We also analyzed the performance of the blue-green MODIS OC3M algorithm [34] using the 
same data sets to compare it with the red–NIR algorithms. Higher variability of 

* (440)pha observed in the field [Fig. 8(a)] corresponds to a broad range of *
pha with Sf in the 

range 0-0.6. Preliminary estimations showed that Sf in the range 0-0.2 can be used for the 
assessment of OC3M for the whole range of [Chl] = 1-100 mg/m3. Higher Sf values are valid 
for [Chl] < 10-20 mg/m3 and these results are not presented below. 
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Fig. 12. Performance of OC3M algorithm on synthetic and field data. On the x-axis is the blue-
green ratio, which is the primary element of the OC3M algorithm. The red curve represents the 
[Chl] values estimated by the OC3M algorithm. 

In Fig. 12 we show the relationship between [Chl] and the maximum of two ratios, Rbg = 
Max[Rrs(443)/Rrs(555), Rrs(489)/Rrs(555)], which is the primary element of the OC3M 
algorithm. The solid red line shows [Chl] values estimated from the Rbg ratios based on the 
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OC3M algorithm. The field data and synthetic data are both distributed approximately the 
same way along the OC3M line but the spread is quite high for both data sets. 

 
 

Fig. 13. Plots of OC3M-derived [Chl] versus (a) [Chl] from the Nebraska field data set and (b) 
synthetically derived [Chl]. Concentrations of non-algal particles, CNAP, ranged from 0 to 10 
mg/l, CDOM absorption was in the range of 0<ay(400)<3 m−1

. 

Correlation between the field measured [Chl] and the blue-green algorithm [Chl]  
[Fig. 13(a)] and the correlation between the synthetic [Chl] and the blue-green algorithm 
[Chl] [Fig. 13(b)] are significantly lower (R2 is below 0.4) than those for the red – NIR 
algorithms. Thus, for estimating [Chl] > 3-5g/m3, the red-NIR algorithms are significantly 
more accurate than the blue-green algorithm. 

8. Conclusions 

Several synthetic data sets of reflectances and inherent optical properties simulated with 
Hydrolight for inland and coastal waters and a very consistent field data set with [Chl] = 2 
−100 mg/m3 were utilized to evaluate (a) the performance of red-NIR algorithms for the 
remote estimation of chlorophyll-a concentration and (b) the sensitivity of these algorithms to 
the main water parameters that characterize the optical properties of water, namely, 
absorption and backscattering coefficients. Two-band algorithms under study were 
Rrs(708)/Rrs(665) and Rrs(753)/Rrs(665). The three-band algorithm was [1/Rrs(665) – 
1/Rrs(708)]*Rrs(753). All algorithms use wavebands that match the MERIS spectral channels. 
The main results and conclusions are the following. 

1. The red-NIR algorithms are affected by possible variations in phytoplankton specific 
absorption coefficient in the red – NIR part of the spectrum. The realistic ranges of a*ph(675) 
and a*ph(665) and their dependence on [Chl] for various water environments were determined 
based on the experimental data taken in coastal and inland waters and absorption spectra 
analysis. It is shown that both mean values and variability of values do decrease with increase 
in [Chl] but more gradually than presented in [27]. It is also shown that the red-NIR 
algorithms are not very sensitive to the phytoplankton specific absorption coefficient because 
the most rapid change in a*ph(665) in response to a change in [Chl] occurs at [Chl] < 5-10 
mg/m3, where its impact on the algorithms is minimal. 

2. The contributions of CDOM and water absorption and particulate backscattering in the 
basic relationships for the red – NIR algorithms were evaluated using synthetic data sets. The 
Rrs(708)/Rrs(665) model and the three-band model are not very sensitive to CDOM absorption 
and backscattering by non-algal particles and the model equations are mostly controlled by 
terms that contain water absorption coefficients as well as by phytoplankton specific 
absorption coefficients. It was also shown that chlorophyll fluorescence does not noticeably 
affect the performance of these models. On the contrary, the Rrs(753)/Rrs(665) model 
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appeared to be very sensitive to the main water optical properties and cannot be used for 
estimating low to moderate [Chl]. 

3. Established aph*(665) vs. [Chl] relationship and the simplified basic equations were 
used for the analytical development of advanced versions of Rrs(708)/Rrs(665) and [1/Rrs(665) 
– 1/Rrs(708)]*Rrs(753) algorithms, whose [Chl] estimations matched very well with the field 
data even for [Chl] < 10mg/m3. The analytically derived algorithms also matched well with 
red-NIR algorithms that were previously calibrated using MERIS data [29]. This suggests that 
these algorithms, which are based on the known values of the water absorption coefficient at 
the appropriate bands and generalized aph*(665) vs. [Chl] relationship, do not require regional 
tuning. 

4. It is shown that the performance of the blue-green ratio based algorithm is poor in 
turbid productive inland and coastal waters and that the red-NIR algorithms are much 
preferred for these waters. 

Future work will include validation of the developed algorithms for water bodies from 
various regions, with an emphasis on the study of the variation of the aph*(665) vs. [Chl] 
relationship. 
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