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1. Introduction 

The ability to gather and process information from the environ-
ment, made possible by an animal’s sensory systems, is inte-
gral to the success and survival of all animals. Over evolutionary 
time, selection has presumably favored enhancements of sen-
sory systems that provide the greatest benefits to individuals, 
while also favoring low costs [1]. The often observed match be-
tween the capacities of an animal’s sensory systems and the ani-
mal’s apparent needs is a testament to such selection [2,3]. Thus, 
when we observe extreme sensory structures unique to partic-
ular animals, we often hypothesize an associated extreme sen-
sory-specific function. 

Although the majority of spiders have eight eyes, most are 
considered to have relatively poor eyesight [4]. Two notable ex-
ceptions are the ground-dwelling spider families Salticidae (the 
jumping spiders) and Lycosidae (the wolf spiders). Spiders from 
both families possess enlarged eyes used in foraging and mat-

ing contexts [5–10]. In stark contrast with their ground-dwelling 
relatives, an enhanced visual system is rare in web-building spi-
ders, which tend to rely more on vibrational cues in their web 
for foraging and mating [4,11,12]. Indeed, while enhanced visual 
systems are uncommon across the 114 currently described fami-
lies of spider [13], they are almost unheard of among web-build-
ing spiders. Members of the net-casting spider genus Deinopis 
are a rare, if not unique, exception. 

Net-casting spiders get their name from their unique forag-
ing strategy. Following sunset, individuals construct a non-sticky 
silk frame resembling the letter ‘A’ (figure 1a). They hang upside 
down from this frame, holding a rectangular capture snare made 
of woolly silk (figure 1b) with their front three pairs of legs. From 
this position, foraging spiders lunge towards prey, expanding the 
snare and actively ensnaring prey with surprising accuracy given 
the nocturnal nature of Deinopis [14]. Deinopid spiders can cap-
ture both cursorial (walking) and aerial (flying) prey items using 
this net-casting technique [15].  
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Abstract 
Animals that possess extreme sensory structures are predicted to have a related extreme behavioral function. This study focuses on 
one such extreme sensory structure—the posterior median eyes of the net-casting spider Deinopis spinosa. Although past research 
has implicated the importance of vision in the nocturnal foraging habits of Deinopis, no direct link between vision in the enlarged 
eyes and nocturnal foraging has yet been made. To directly test the hypothesis that the enlarged posterior median eyes facilitate 
visually based nocturnal prey capture, we conducted repeated-measures, visual occlusion trials in both natural and laboratory set-
tings. Our results indicate that D. spinosa relies heavily on visual cues detected by the posterior median eyes to capture cursorial prey 
items. We suggest that the enlarged posterior median eyes benefit D. spinosa not only through increased diet breadth, but also by 
allowing spiders to remain active solely at night, thus evading predation by diurnal animals. 
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Net-casting spiders in the genus Deinopis possess uniquely 
enlarged eyes that appear physiologically well suited for detect-
ing movement in low-light-level conditions [16]. Unlike the en-
larged primary eyes of jumping spiders, it is a pair of second-
ary eyes, the posterior median eyes, of Deinopis spiders that 
are greatly enlarged (figure 1c). These eyes are reported to be 
2000 times more sensitive to light than human eyes [16] and are 
presumed to aid in their unique “net-casting” foraging strategy 
[14,15], but this function has yet to be tested directly. To this end, 
we use repeated-measures, visual occlusion experiments in the 
field and in the laboratory to test the hypothesis that the poste-
rior median eyes of D. spinosa function to increase visually based 
nocturnal foraging efficacy. 

2. Material and methods 
(a) Field experiment 
Field trials were conducted during Spring 2013 at Paynes Prai-
rie State Park located in Micanopy, FL, USA. A total of 29 D. spi-
nosa were used in field trials (eight mature females, eight pen-
ultimate females, eight penultimate males and five juveniles). 
Mature males do not engage in net-casting, and thus were not 
included in this experiment. 

Each field-collected individual was observed during natural 
foraging behavior under two separate conditions: (i) visually oc-
cluded and (ii) sham/non-visually occluded, hereafter referred to 
as “control.” Following Zurek et al. [17], we temporarily occluded 
posterior median eyes by applying opaque dental silicone using 
a wooden toothpick. Foraging behavior was recorded using por-
table infrared cameras. We quantified multiple variables from the 
recorded foraging trials: prey capture success (yes/no within a 
trial), number of prey captures, prey type (cursorial versus aerial) 
and estimated prey size. Generalized linear mixed models were 
used to compare treatment effects on within-individual forag-
ing trial outcomes. Related samples McNemar tests were used 
to compare the effects of treatment on the likelihood to capture 
either cursorial or aerial prey items. A Mann–Whitney U test was 

performed to compare size between cursorial and aerial prey 
items captured. For additional methodological and statistical de-
tails, see the electronic supplementary material. 

(b) Laboratory experiment 
To control for foraging site location and prey abundance, we 
conducted follow-up visual occlusion trials in a laboratory set-
ting. A total of 16 D. spinosa were used in laboratory trials (six 
mature females, three penultimate females, five penultimate 
males and two juveniles). 

Similar to field trials, we recorded two foraging bouts per fo-
cal spider: (i) visually occluded and (ii) control. We adopted iden-
tical manipulation protocols and recording methods from field 
trials. Following manipulation, spiders were placed in cylindrical 
testing arenas, one spider per arena. Crickets, Acheta domesti-
cus, were used as prey with one cricket per trial. Variables quan-
tified from recorded video include: prey capture success (yes/no 
within a trial) and latency to prey capture (in seconds). A gen-
eralized linear mixed model was used to compare within-indi-
vidual capture latencies between treatments. A related samples 
McNemar test was used to compare the effects of treatment on 
the likelihood to capture prey. For additional methodological 
and statistical details, see the electronic supplementary material. 

3. Results 
(a) Field experiment 
Individual D. spinosa were less effective at foraging when their 
enlarged posterior median eyes were occluded. Visually oc-
cluded spiders showed a significantly lower likelihood to catch 
prey (B = 1.92, Z = 2.78, p = 0.005, figure 2a) as well as a lower 
quantity of prey items caught (B = 1.22, Z = 2.406, p = 0.016). 
Regarding prey item type, visually occluded spiders were less 
likely to capture cursorial prey (N = 29, χ2 = 5.143, p = 0.016, fig-
ure 2b), whereas visual occlusion did not affect a spider’s ability 
to capture aerial prey (N = 29, χ2 = 0.444, p = 0.508, figure 2c). 

Cursorial prey were significantly larger than aerial prey (N = 
21, Z = 2.537, p = 0.011; average prey length of cursorial: 6.03 
mm (s.d. = 2.17 mm) versus aerial: 3.27 mm (s.d. = 1.55 mm)). 
Prey capture success and number of prey items were neither af-
fected by treatment order, sex, life stage nor size (see the elec-
tronic supplementary material). 

(b) Laboratory experiment 
Similar to field trials, D. spinosa were less likely to capture prey 
while visually occluded during laboratory trials (N = 16, χ2 = 
7.111, p = 0.004). In all cases of successful foraging by visu-
ally occluded individuals, prey walked into the support threads 
of the web (N = 7). For the spiders that captured prey under 
both visual occlusion and control treatments (N = 7), the time 
to prey capture was greater when visually occluded (B = 2.15, Z 
= 51.70, p , 0.0001; visual occlusion 784 ± 638 s versus control: 
76 ± 60 s) and this latency to prey capture was not affected by 
treatment order, sex, life stage or size (see the electronic sup-
plementary material). 

4. Discussion 
Results from both field and laboratory experiments support our 
hypothesized relationship between an extreme sensory struc-
ture—enlarged posterior median eyes—and an extreme be-
havioral function—visually based nocturnal foraging— in the 
net-casting spider D. spinosa. Our findings corroborate past sug-

Figure 1. (a) Deinopis spider in foraging posture; (b) a capture snare 
made from woolly silk; and (c) frontal view of a Deinopis spider’s en-
larged posterior median eyes. Scale bars, 5 mm.  
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gestions of Deinopis spiders using visual cues in foraging behav-
ior and confirm the expectation that the posterior median eyes 
of D. spinosa are important in visually based nocturnal prey cap-
ture [14,15]. Our results suggest that D. spinosa depend on their 
enlarged eyes for cursorial, but not aerial, prey capture. We pro-
pose that the enlarged posterior median eyes of these spiders 
ultimately provide two related functional benefits: (i) increased 
diet breadth and (ii) the ability to restrict foraging to low-light 
(i.e. nocturnal) conditions. 

Prior research had implicated the importance of visually 
based nocturnal foraging in net-casting spiders, yet without 
confirming a direct link to the unusually large posterior me-
dian eyes [14,15]. Coddington & Sobrevila [15] described two 
stereotyped attacks of D. spinosa, termed “forward strikes” and 
“backward strikes,” and concluded that “forward strikes” are vi-
sually guided, as spiders would net-cast downwards atop dead 
insects presented on a wire. Our field and laboratory trials cor-
roborate these prior observations and highlight a previously un-
documented relationship between prey niche partitioning (cur-
sorial versus aerial) and visual input, namely that vision-based 
foraging may relate predominantly to cursorial prey, captured 
through “forward strikes.” Without the ability to perceive visual 
cues collected by the enlarged eyes, D. spinosa seem unable to 
capture cursorial prey items in their natural habitat while the oc-
clusion of visual perception did not suppress aerial prey capture 
ability. As cursorial prey items were larger and potentially more 
nutritious than aerial prey items, we hypothesize that the pos-
terior median eyes are the result, at least in part, of selection for 
increased diet breadth—the ability to incorporate larger, more 
nutritious cursorial prey. It has been suggested that web-build-
ing spiders depend on rare, large prey items to survive and pro-

duce eggs ([18,19]; but see [20]); thus the unique foraging tactics 
and specialized visual capabilities of Deinopis spiders might in-
crease their ability to capture higher quality prey items typically 
out of reach of the average web-building spider. Indeed, recent 
phylogenetic analyses suggest that this net-casting technique 
arose in parallel with a vastly increased abundance of cursorial 
insect prey during the Cretaceous Terrestrial Revolution [21]. The 
recently hypothesized relationships among spider taxa indicate 
that Deinopid spiders diverged when many orb-web lineages 
abandoned web-building as a foraging tactic [21], suggesting 
that visually guided net-casting might have been one successful, 
though seemingly unorthodox, strategy for taking advantage of 
newly available prey items. 

Deinopis spinosa is a strictly nocturnal species that spends it 
daylight hours mimicking palm fronds [22]. Predation pressure 
has been hypothesized to favor nocturnal activity patterns across 
diverse taxa [23]. Anecdotal daylight observations in the hab-
itat of D. spinosa reveal highly cryptic spiders that remain mo-
tionless in a habitat full of diurnal, visually oriented predators, 
shown previously to eat or parasitize spiders (e.g. song birds 
[24,25], parasitoid wasps [26] and jumping spiders [8]). We hy-
pothesize that diurnal predation risk has played a role in the evo-
lution of the obligate nocturnal lifestyle and associated sensory 
specializations observed in the net-casting spider D. spinosa. In-
terestingly, not all net-casting spiders possess enlarged poste-
rior median eyes [27], providing a natural experiment to assess 
relationships between predation pressure, foraging activity and 
sensory structures. 

In summary, we have shown that a nocturnal predator heav-
ily invested in low-light level vision through extreme sensory 
structures receives significant benefits from these specializations 

Figure 2. (a) Graphical representation of the effect of visual occlusion on overall likelihood to capture prey in the field experiment. Likelihood to cap-
ture prey was significantly lower while spiders were visually occluded. Prey item type is further subdivided by cursorial prey and aerial prey. Visually 
occluded spiders were unable to capture cursorial prey (b), while occlusion had no effect on likelihood to capture aerial prey (c). Asterisks represent 
statistically significant differences.   
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in the form of more and potentially higher quality prey. We hy-
pothesize that selection for both increased diet breadth and de-
creased predation led to this extreme sensory system. Selection 
for an increase in diet breadth is also proposed to have influ-
enced the sensory specializations of the star-nosed mole, a char-
ismatic, and now classic, example of sensory system specializa-
tion [2]. Future comparative studies across genera and species 
of net-casting spider will further elucidate the relative impor-
tance of distinct selective forces on the evolution of this un-
usual sensory system.   
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