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Resumen
El artículo presenta una arquitectura hardware que desarrolla la transformada Wavelet en dos dimensiones sobre una 
FPGA, en el diseño se buscó un balance entre número de celdas lógicas requeridas y la velocidad de procesamiento. 
El artículo inicia con una revisión de trabajos previos, después se presentan los fundamentos teóricos de la 
transformación, posteriormente se presenta la arquitectura propuesta seguida por un análisis comparativo. El sistema 
se implementó en la FPGA Ciclone II EP2C35F672C6 de Altera utilizando un diseño soportado en el sistema Nios 
II. 

Palabras clave: arquitectura de hardware, FPGA, procesador Nios, transformadora discreta Wavelet.

Abstract
This paper presents a hardware architecture developed by the two-dimensional wavelet transform on an FPGA, 
in the design it was searched a balance between the number of required logic cells and the processing speed. The 
design is based on a methodology to reuse the input data with a parallel-pipelined structure and a calculation of the 
coefficients is performed using a method of odd and even numbers, which is achieved by calculating a cycle ratio 
after 2 cycles latency, to store the data processing result of the SDRAM memory is used IS42S16400, the control 
unit uses a design architecture supported by Nios II processor. The system was implemented in the FPGA Altera 
Cyclone II EP2C35F672C6 using a design that combines descriptions in VHDL, schematics and control connection 
via a general purpose processor.
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1. Introduction

The Signals representation using decomposing 
techniques is an old practice. Approximately two 
hundred years ago Joseph Fourier proposed the 
representation of functions by superposition of sinus 
and cosines, the idea has evolved over time and 
the most recent research leads us to another type 
of transformations, between them the Wavelets. 
The Wavelets are families of functions used for the 
analysis of other functions, as they allow to represent 
a signal as a decomposition of simple signals, now 
discrete versions of the wavelet transform in two 
dimensions ( 2D -DWT ) are being used in major 
applications of digital image processing such as 
compression systems, noise removal, radar systems, 
ECG systems, among others. Currently, smaller 
and faster systems are required. For this reason, 
a hardware architecture of high performance and  
low cost for calculating of 2D -DWT is necessary.
 
2. Two dimensions discrete wavelet 
transform (2D-DWT)

The Wavelet analysis is based on a dilation 
and translation of a scaling function as also a 
wavelet function associated in order to obtain 

the representation of a signal at different 
resolutions, one of the great advances related to 
the processing of digital signals using Wavelet 
analysis was its implementation using filters, 
which were formed using the coefficients of 
the scaling and wavelet functions , as proposed 
by Grgic & Grgic (2001), the low-pass filter 
(h) is associated with the scaling function and 
the signal obtained at the output is a smoothed 
low-resolution version of the original signal, 
the high pass filter (g) is associated with the 
Wavelet function and its output signal obtained 
contains the details of the signal. 

Regarding images processing, we focused 
in two-dimension, by extending the one 
dimensional transform to two-dimensional 
functions. In Figure 1, the development of the 
Wavelet transform shows an image using one-
dimensional filters, first the wavelet transform 
is applied over each one of the rows related to 
the image, which generates two intermediate 
images representing the approximation FL 
and the detail FH over x axis, then the wavelet 
transform is executed over each column of 
the intermediate images. In consequence a 
smoothed version of the image or average 

Figure 1. Block diagram of the filter bank used to calculate the 2D-DWT
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FLL and three subimages with the details FLH, 
FHL and FHH are obtained. FLH emphasizes 
the horizontal characteristic, FHL the vertical 
and FHH the diagonals, as reported by Hilton 
et al (1994). The transformation may be 
defined according to the expressions proposed 
Vishwanath (1994):
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Where (x, y) represents the coordinates of the 
images, h and g are the high pass and low pass 
filters respectively, f is the input image and k 
represents the size of the filters.. The process can 
be iterated to higher levels, assuming the average 
image FLL as input for the next level. Figure 2 
shows the transforming for two levels.

The architecture presented in this article is adapted 
to a compression system, however can be used 

Figure 2. Block diagram of the filter bank used to calculate two levels of the 2D-DWT

in any application requiring sub-band frequency 
analysis , according to Ríos ( 2011), the biorthogonal 
bases like Bior5.3 and Bior9.3 have coefficients 
which can be converted to integers using a simple 
normalization, therefore is not required in the 
implementation  to use modules of floating point 
arithmetic, in this same work, some results showing 
that it is possible to use 16-bit integer coefficients 
of accuracy without significantly affecting the 
reconstruction quality of image, for that reason 
the proposed architecture was implemented using 
integer arithmetic. For that reason the proposed 
architecture was implemented using arithmetic 
of integer number. For applications requiring 
representation in floating point, it is possible 
maintain the overall structure of the architecture, 
but it will be necessary to modify the calculation 
blocks for working floating point arithmetic.

2.1 2D-DWT architectures hardware - state of 
the art

Chen et al, propose a parallel processing 
architecture that calculates the 2D -DWT using 
an adaptation of Recursive Pyramid Algorithm 
(RPA) Vishwanath (1994). The general idea of 
the RPA consists in rethinking the order in which 
the transform coefficients are calculated. So, we 
are looking for start the calculation of the next 
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level without completing the calculation of the 
coefficients of the previous level, Chen presents an 
adaptation to transformations in two dimensions and 
instead to organize the transformation making the 
calculus pixel-to-pixel, a planning of rows is done. 
Therefore the coefficients of an entire row must be 
calculated in parallel, the effort required to keep 
track of the last coefficients calculated increases 
the complexity of the controller becoming its main 
disadvantage. Vishwanath et al (1994) present 
two architectures, the first one consists essentially 
of a one-dimension module for conversion that 
is used repeatedly to calculate the 2D -DWT, the 
advantage of the architecture is its simplicity, but 
it requires too many memory cells which makes it 
inconvenient for implementation on a chip, another 
drawback is the latency required to generate the first 
output data; the proposed second architecture by 
Vishwanath et al (1995), consists of a systolic filter 
that handles the filtering in the horizontal direction, 
a parallel filter to handle the vertical direction 
and a storage unit. Two rows are processed in the 
systolic filter in the order of RPA schema while a 
parallel filter calculates 4 rows which constitutes 
four outputs of the first level being one of them 
carried to the systolic filter for further processing, 
this approach allow improve the performance with 
respect to the first architecture but the area required 
for its implementation increases. Colom et al 
(2001) present an architecture that works with non 
- separable 2D filters based on a parallel structure 
called even-odd, the architecture is recurrent. 

There is a filter unit which is used for calculating 
the first level and presents processing continuous, 
another filter unit is responsible for the calculation 
of the other levels and begins when the first unit 
has generated the first four rows and its calculus 
continue each time that the first generates two new 
lines; the intermediate time periods are utilized for 
implementing the recurrence. Two storage units 
which act as a link between levels are used, the 
architecture uses distributed control units in order to 
provide scalability, there is a control inside of the filter 
unit and a control for synchronizing the operation 
between two consecutive levels; by increasing the 
number of levels the number of control units must be 

replicated. Sheu et al (2000), propose an architecture 
which involves two horizontal filters modules for 
calculating the coefficients along rows and two 
vertical modules for calculating along the columns, 
each module consists of a high band pass filter and 
a low band pass filter. A horizontal filter processes 
the lines and stores the result in the first storage 
unit, then the result is processed by the vertical 
filter, the output of the bottom filter is loaded into 
the horizontal filter and the process is iterated. The 
filter modules are based on a methodology of reuse 
of input data with a parallel - pipelined structure. 
Chakrabarti et al (1999), show two architectures, 
the first involves two memory units and four parallel 
filters units composed of a high pass filter and a low 
pass filter, the first two filters calculate along rows, 
its output is stored in the first memory unit where 
data are read by columns for the following two 
filters and the coefficients are calculated along the 
columns, similarly the outputs of these filters are 
stored in the second memory unit by columns and 
read in rows by the second filter, in the work two 
scheduling algorithms of the data stream that can 
be used on this architecture are presented, due to 
the filter units are recursively used to calculate two 
sub images, a delay of N cycles is generated which 
may be unacceptable for some applications. The 
proposed second architecture by Andra et al (2002 
), is a modified version of the above which seeks 
to reduce the delay generated by the recursion, this 
proposal increases two units of filters to produce at 
the same time the output of all sub images of the 
same level  achieving reduce the size of the storage 
units and delay.

This article presents an alternative architecture with 
a simple routing and a control unit of moderate 
complexity which decreases the time required to 
compute the discrete wavelet transform in two 
dimensions.

2.2 2D- DWT approach architecture 

Figure 3 shows the block diagram of the proposed 
architecture for  executing  the 2D - DWT in 
hardware, the architecture consists of three storage 
units (UM1, UM2, UM3), a control unit and three 
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parallel filters units (UF1, UF2 , UF3) composed 
of a high-pass filter and a low pass filter.

The control unit is responsible for scheduling 
the data flow as follows: the UF1 processes the 
input image along the rows and generates the 
intermediate images FH and FL, these sub images 
are stored in UM1 and UM2 for be carried out 
to UF2 and UF3 where images are processed by 
columns, in UF2 the coefficients of the FHL, 
FHH sub images are generated while in UF3 both 
FLL and FLH are provided. The output of the 
low component of UF3 is stored in UM3 to be 
loaded later in UF1 where the process is iterated 
to calculate the next level.

The design was implemented on the development 
board DE2 (2010), this card is composed by an 
FPGA Cyclone II EP2C35F672C6 (2010) and 
several storage units (SDRAM, SRAM and 
FLASH). It is possible to create on the FPGA an 
instance of the Nios II module for applications that 
require a processor, the card also involves standard 
interfaces such as RS- 232 and PS/2, standard 
connectors for microphone, input and output audio 
(24 bits), video input (TV Decoder), VGA (10-
bits DAC), offers USB 2.0 connectivity , Ethernet 

Figure 3. Parallel Architecture by level

10/100 , an infrared port ( IrDA), connectivity to 
other cards required by the user by means of two 
expansion modules. For the mentioned reason 
the card was considered an ideal platform for 
prototyping regarding multimedia and networks 
applications. In this work the picture was taken 
from a file stored in the SDRAM. Figure 4, shows 
the block diagram of the system implemented on 
the DE2.

2.3 Unit memory

As mentioned in the previous section, the memory 
units store the data obtained from the processing, 
the UM1 and UM2 units store the results of the 
transformation along the rows (FL, FH). NxN/2 
memory cells are required for storing the result of 
processing an image of size NxN. The UM3 unit 
stores the low frequency component results of 
the transformation by columns; for that N/2xN/2 
cells are required. Therefore the requirements of 
capacity of memory of the proposed architecture 
are determined by:

T N N N N N N N2 2 2 2 4
5

MEM
2$ $ $= + + =

  
(5)
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The Cyclone II EP2C35F672C6 FPGA has an 
internal memory structure organized in 3 columns 
containing a total of 105 blocks that provide a 
storage capacity of 483840 bits and a maximum 
operating speed of 250MHz, in consequence it will 
be able to process images with N lower than 220 
pixels, although it is possible to expand the internal 
storage using blocks of logical arrangements 
to store data, it is not recommended since only 
increase 2047 bytes using all the resources of the 
FPGA. To process larger images, storage capacity 
of the system was increased by using one of the 
DE2´s block memory. The SDRAM IS42S16400 
which stores data of 8 Mbytes was used; respect 
to interface connection, Altera has developed a 
tool called SoPC builder (System expanded on a 
Programmable Chip) (2010 ), which allows reuse 
IP blocks and uses the AVALON interconnect bus 
which requires less logic elements in the connection 
and improves performance in the transmission rate.

2.4 Filters unit 

The filter unit is based on a reuse methodology of 
input data mixed with a parallel-pipelined structure 

similar to that proposed by Sheu et al (2000), but 
the calculation of the coefficients is performed using 
the methodology even-odd reported by Colom et al 
(2001). This strategy allows the calculation of one 
coefficient by cycle after 2 cycles of latency, the 
overall scheme of the filter unit is shown in Figure 5. 
Each unit has two filters, and each filter is composed 
of: a shift register that stores the filter coefficients and 
is configured so that each cycle makes two shifts; three 
units of Multiplier-Adder-Accumulator (MSA1, 
MSA2, MSA3) composed of two multipliers (one for 
pair data and another for the odd data); an adder and  
an accumulator register; a multiplexer that selects 
which of the data is ready to be sent to the next stage.

To illustrate the operation of this unit, we must 
consider two filters h (Low-pass) and g (High-pass) 
with six coefficients defined as:

[ ]654321 ,,,,, hhhhhhh =
            

(6)

[ ]654321 ,,,,, ggggggg =           (7)

Let f be a signal with N data, whose discrete 
values are defined so:

Figure 4. Block Diagram of the Implemented System in Card Development DE2
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[ ]Nffffff ,...,,, 4321=          
(8)

 
By transforming the signal f using the filters g and 
h, two signals are obtained, one of approximation 
(A) and another with the details (D), whose 
coefficients can be expressed as follows:





=

2
4321 ,...,,, NAAAAAA

        (9)





=

2
4321 ,...,,, NDDDDDD

      
 (10)

Considering that the one-dimensional transformation 
is defined by the following equations:

∑ -=
k

kxfkhxA ]2[][][
            (11)

∑ -=
k

kxfkgxD ]2[][][
            

(12)

We can use Eq. (11) to express each coefficient 
as follows:

        A1= f1.h1+f2.h2+f3.h3+f4.h4+f5.h5+f6.h6     (13)

       A2= f3.h1+f4.h2+f5.h3+f6.h4+f7.h5+f8.h6      (14)

       A3= f5.h1+f6.h2+f7.h3+f8.h4+f9.h5+f10.h6       (15)

       A4= f7.h1+f8.h2+f9.h3+f10.h4+f11.h5+f12.h6       (16)

To reach the limits of the signal where:

211
2

.. hfhfA NNN += -

           
(17)

Reuse methodology consists in organizing the 
flow of the input data so that it can be calculated 
in parallel several output data, this process is 
illustrated in Figure 6.

In each cycle the register of coefficients shifts two 
spaces. So in the first cycle, to MSA1 arrives the 
coefficients h1, h2; to MSA2 arrives h3, h4 and to 
MSA3 arrives h5, h6.  In the second cycle to MSA1 
arrives the coefficients h3, h4; to MSA2 arrives the 
coefficients h5, h6 and to MSA3 arrives and h1, h2. 
In the third cycle, to MSA1 arrives the coefficients 
h5, h6; to MSA2 arrives h1, h2 and to MSA3 arrives 
h3, h4. The process repeats until the end of the 
transformation. In the first cycle enters f1, f2, with 
these data the MSA1 begins the calculation of A1 
accumulating f1.h1 + f2.h2. In second cycle enters 

Figure 5. Unit Filters
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f3, f4, so the MSA1 accumulates f3.h3 + f4.h4 while 
in parallel the MSA2 uses the same input data to 
calculate A2 accumulating f3.h1 + f4.h2. In the third 
cycle enters f5, f6, the MSA1 unit calculates f5.h5 + 
f6.h6 thereby completing the calculation of A1. In 
parallel, MSA2 calculates f5.h3 + f6.h4 and MSA3 
begins the calculation of A3 accumulating f5.h1 + 
f6.h2. 

Henceforth, one output data will be provided in 
each cycle while the multiplexer turns on in order 
to lead this result to the output. In the fourth cycle 
enters f7,f8, the MSA1 begins the calculation of 
A4 accumulating f7.h1+f8.h2, the MSA2 calculates 
f7.h5+f8.h6 completing thus the calculation of A2, the 
MSA3 accumulates  f7.h3+f8.h4. In the fifth cycle 
enters f9,f10, the MSA1 accumulates f9.h3+f10.h4, the  
MSA2 begins the calculation of  A5 and the MSA3 
completes the calculation of A3 accumulating 
f9.h5+f10.h6; hereinafter the process is iterated until 
the end of the input signal.

Following the methodology described in the 
previous paragraph, the components of high 
pass of the output signal must be calculated in a 
parallel architecture, the only difference lies in 
the stored data in the shift register which must 
correspond to the coefficients of the high pass 
filter. Note that each input data is used in the 
partial calculation of several output coefficients. 

When processing the pairs in parallel with the odd 
two output data (one high pass and one low-pass) 

are available at each clock cycle after the third cycle. 
Thus a one-dimensional signal transforms of size N 
is performed in N/2 + 2 clock cycles, by expanding 
the processing for two-dimensional signal of size N 
x N requires (N/2 + 2)N cycles to process all rows 
and (N/2 + 2 )N/2 cycles to process all columns, 
thus the total of required cycles for the proposed 
architecture for computing the coefficients of the 
first level of transformation is determined by:

NN
NN

N
N

TCICLOS 3
4
3

2
2

2
2

2
2 +=






 ++






 +=

    
(18)

The planning algorithm of the flow inside the 
filter unit can be expressed as follows Rios & 
Bernal (2011)

X=1

FOR  i=1 To N TO INCREASE +2
  
 211 hfhfA iiX ++=

             211 gfgfD iiX ++=

 IF (x >1) THEN

 41311 gfgfDD iiXX +-- ++=  
 END IF
 IF (x >2) THEN
 

61522 hfhfAA iiXX +-- ++=    

 61522 gfgfDD iiXX +-- ++=   

 END IF

Figure 6. Data flow per cycle
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 X=X+1
END TO

41311 hfhfAA iiXX +-- ++=

The filter unit was modeled using VHDL and Altera 
megafunciones, structural design has 5 modules: 
Registry coefficients, multiplier, adder, accumulator 
register and multiplexer. For the implementation 
of the multipliers of lpm_mul Altera megafunción 
allowing embedded multipliers used by optimizing 
the use of the FPGA, for the megafunción Altera 
Multiplexer lpm_mux to synthesize as described 
in VHDL design 17 required logical elements are 
used further, the adder module was implemented 
with the megafunción parallel_add as described 
in VHDL design required a longer stabilization 
0.577ns, the remaining elements and the connecting 
lines were modeled in VHDL.

This unit was synthesized in a Cyclone II FPGA 
of Altera EP2C35F672C6 using the Quartus II 
version 6.0 design web edition, Table I shows the 
resources used in the implementation of the filter 
unit.

Table 1. Resources used in the filter unit

Type Resources Used
Logic elements 292 / 33216 (<1%)

Records 219
Memory Bits 0 / 483840  (0%)

Embedded Multipliers 24 / 70  (34%)
PLL 0 / 4  (0%)

Table I notes that in the implementation of the filter 
unit 34% of embedded multipliers, 1% of the logic 
elements and 0 % of bits of memory are used, this 
is evidence that space is available within FPGA 
to increase the degree of parallelism in the design 

and simultaneously use multiple filter units , which 
would provide the coefficients for higher levels in 
less time occupying all the available multiplier, 
in applications where FPGA is used only for 
implementation phase of this transformation is a 
viable option, but in applications where you need 
to implement additional functions on the FPGA 
using the recursive filter units for the calculation of 
the following levels of transformation is necessary.

Figure 7 shows part of the results of the simulation 
of the filter unit, in the first clock cycle of the 
charging records the values of coefficients of 
the filters is performed using the charge control 
signal (Load) records storage and cleaning using 
the signal (Clear) in the second cycle partial 
operations is cleaned, from the third cycle output 
two coefficients are obtained in each cycle for 
which multiplexers are switched through its 
signal selection (Sel), three cycles are necessary 
to generate signals cleaning climbing to clear 
accumulators records, pairs data are represented 
by the signal called FPAR and odd by Fimpar, the 
coefficients of high frequency transformation signal 
output a and D low frequency, for the validation 
of the data obtained the system model in Matlab 
and the results were compared, the data obtained 
from the processing and processed in Matlab of the 
simulation in Quartus totally agree (Error 0 % ), 
which is consistent with expectations since at this 
stage the data have not yet been quantified.

2.5 Control unit 

For the architecture control-unit, a design which is 
supported in the NIOS II [13] system is used. Nios 
II is defined in a hardware description language 
which can be implemented in Altera FPGAs using 
Quartus II synthesis tool in conjunction with 

Figure 7. Simulation Unit Filters



78

Ingeniería y Competitividad, Volumen 16, No. 1, p. 69 - 81 (2014)

the processor SoPC Builder, there are three 
versions of the processor: the economic Nios/e, 
the standard Nios/s  and  rapid  Nios/f. The 
economic version has a smaller core this version 
does not handle cache memory or specialized 
hardware to develop arithmetic operations; for 
the control architecture, the economic version 
was chosen because the operations required 
to control the architecture does not include 
complex operations.

Control instructions are developed in C + + using 
the integrated development environment NIOS II 
IDE that enables compile, debug and download 
fonts in C / C + + on the developed system . To 
store the program to be executed must allocate 
a memory space, the DE2 board has a chip that 
stores 512Kbytes SRAM and is included in the 
system as program memory (see Figure 4); as 
well as the SDRAM, the SRAM is connected to 
the AVALON  bus, using the SoPC Builder. The 
flow chart of the main program is shown in Figure 

Figure 8. Flowchart Program Control Unit
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8 and the flowchart of the function for calculating 
the transform of a dimension is shown in Figure 9.

Calculation blocks access memory-units through 
the processor,  it generates the instructions to 
connect to an interface block which permits 
access of the SDRAM through a bus Avalon, the 
processor or control unit plans all data flow through 
the architecture generating the necessary signals 
for operation ( load signals to the records, select 

signals for the multiplexers, read and write signals 
on the SDRAM, etc.)

3. Results and discussion  

In architectures implemented on FPGAs, it 
should be taken into account that they contain 
a limited number of logic cells. Therefore, it is 
necessary that the design is oriented towards 
the optimization of this resource. Whereas 

Figure 9. Flowchart of the function used to calculate the 
transform in one dimension
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a large number of logic cells is required for 
implementing storage elements, it is convenient 
to use a lower requirement architectures memory. 
Similarly routing complexity also leads to a high 
consumption of logic cells because more elements 
are required to interconnect the system being 
desirable a less complex routing network; another 
major factor is the time required for the calculation 
of the transformation, it should be minimized to 
process large amounts of images at satisfactory 
rates, and likewise it is desirable to reduce the 
complexity of the control system so that the 
architecture is easily scalable and programmable. 
Achieving these objectives is particularly difficult 
in an FPGA as area and speed are inversely 
proportional and satisfying a requirement means 
significantly affecting the other, for example, 
the speed can be increased with a high degree 
of parallelism which implies an increase in the 
required area. Table II relates these features to the 
surveyed and proposed architectures from Table 
II can be observed that the proposed architecture 
in this paper presents a decrease in computation 
time compared to the surveyed architectures, in 
the most notable case is improved approximately 
3N2 cycles and the least significant event is 
approximately 0.25N2 cycles, the improvement 

Architecture Storage Requirement Time 
Calculation

routing Control

Architecture Proposed in 
This Work

5/4 N2 3/4 + N2 + 3N simple moderate

Architecture Parallel 
Processing Rows Chen et al.

(K+1)NJ N2 + N complex complex

Architecture Direct 
Approach Vishwanath et al.

N2 4N2 simple simple

Architecture Systolic-
Parallel Vishwanath et al.

2NK N2 + N complex complex

Architecture Recurring for 
Three Levels Colom et al.

6N N2 + N moderate moderate

Architecture Recurring for 
Three Levels Sheu et al.

N/2 + N/4 N2 + N moderate moderate

Architecture 1 Parallel 
Chakrabarti et al.

≈N(3/2 - 21-J) + KN(2 - 21-J) ≈N2 moderate moderate

Architecture 2 Parallel 
Chakrabarti et al.

≈KN(1-2-J) + N(1-21-J) ≈N2 moderate moderate

Table 2. Performance and Comparison of Architecture

does not complicate  implementation since a 
simple routing is maintained and control unit with 
moderate complexity is preserved . If in fact in our 
proposal required more store cells, this mishap 
can be overcome by using an external memory for 
data storage.

4. Conclusion

The hardware architecture presented to develop 
the discrete wavelet transform in two dimensions 
provides an efficient performance and speed 
of calculation area, the architecture uses 3/4N2 
+2 N cycles for transforming an image of size 
NxN achieving improvement over architectures 
developed on previous works, also it maintains 
control and a routing of moderate complexity. This 
architecture is adapted to an image processing 
system, however it can be used in any application 
of signal requiring subband frequency analysis. 
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