
69

Ingeniería y Competitividad, Volumen 16, No. 1, p. 69 - 81 (2014)

INGENIERÍA ELÉCTRICA Y ELECTRÓNICA

Arquitectura hardware para la implementación de la
transformada discreta Wavelet 2D

ELECTRICAL AND ELECTRONIC ENGINEERING

Hardware Architecture for the Implementation of the
Discrete Wavelet Transform in two Dimensions

Norma X. Ríos-Cotazo*, Álvaro Bernal-Noreña**§

*Facultad de Ingeniería, Institución Universitaria Antonio José Camacho, Cali, Colombia
**Grupo GADyM, Escuela de Ingeniería Eléctrica y Electrónica,

Universidad del Valle, Cali, Colombia
ximena.rios.cot@gmail.com, § alvaro.bernal@correounivalle.edu.co

(Recibido: 7 de mayo de 2012- Aceptado: 7 de marzo de 2013)

Resumen
El artículo presenta una arquitectura hardware que desarrolla la transformada Wavelet en dos dimensiones sobre una
FPGA, en el diseño se buscó un balance entre número de celdas lógicas requeridas y la velocidad de procesamiento.
El artículo inicia con una revisión de trabajos previos, después se presentan los fundamentos teóricos de la
transformación, posteriormente se presenta la arquitectura propuesta seguida por un análisis comparativo. El sistema
se implementó en la FPGA Ciclone II EP2C35F672C6 de Altera utilizando un diseño soportado en el sistema Nios
II.

Palabras clave: arquitectura de hardware, FPGA, procesador Nios, transformadora discreta Wavelet.

Abstract
This paper presents a hardware architecture developed by the two-dimensional wavelet transform on an FPGA,
in the design it was searched a balance between the number of required logic cells and the processing speed. The
design is based on a methodology to reuse the input data with a parallel-pipelined structure and a calculation of the
coefficients is performed using a method of odd and even numbers, which is achieved by calculating a cycle ratio
after 2 cycles latency, to store the data processing result of the SDRAM memory is used IS42S16400, the control
unit uses a design architecture supported by Nios II processor. The system was implemented in the FPGA Altera
Cyclone II EP2C35F672C6 using a design that combines descriptions in VHDL, schematics and control connection
via a general purpose processor.

Keywords: Hardware Architectures, FPGA, Nios Processor, Wavelet transform.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital de la Universidad del Valle

https://core.ac.uk/display/77931752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

70

Ingeniería y Competitividad, Volumen 16, No. 1, p. 69 - 81 (2014)

1. Introduction

The Signals representation using decomposing
techniques is an old practice. Approximately two
hundred years ago Joseph Fourier proposed the
representation of functions by superposition of sinus
and cosines, the idea has evolved over time and
the most recent research leads us to another type
of transformations, between them the Wavelets.
The Wavelets are families of functions used for the
analysis of other functions, as they allow to represent
a signal as a decomposition of simple signals, now
discrete versions of the wavelet transform in two
dimensions (2D -DWT) are being used in major
applications of digital image processing such as
compression systems, noise removal, radar systems,
ECG systems, among others. Currently, smaller
and faster systems are required. For this reason,
a hardware architecture of high performance and
low cost for calculating of 2D -DWT is necessary.

2. Two dimensions discrete wavelet
transform (2D-DWT)

The Wavelet analysis is based on a dilation
and translation of a scaling function as also a
wavelet function associated in order to obtain

the representation of a signal at different
resolutions, one of the great advances related to
the processing of digital signals using Wavelet
analysis was its implementation using filters,
which were formed using the coefficients of
the scaling and wavelet functions , as proposed
by Grgic & Grgic (2001), the low-pass filter
(h) is associated with the scaling function and
the signal obtained at the output is a smoothed
low-resolution version of the original signal,
the high pass filter (g) is associated with the
Wavelet function and its output signal obtained
contains the details of the signal.

Regarding images processing, we focused
in two-dimension, by extending the one
dimensional transform to two-dimensional
functions. In Figure 1, the development of the
Wavelet transform shows an image using one-
dimensional filters, first the wavelet transform
is applied over each one of the rows related to
the image, which generates two intermediate
images representing the approximation FL
and the detail FH over x axis, then the wavelet
transform is executed over each column of
the intermediate images. In consequence a
smoothed version of the image or average

Figure 1. Block diagram of the filter bank used to calculate the 2D-DWT

71

Ingeniería y Competitividad, Volumen 16, No. 1, p. 69 - 81 (2014)

FLL and three subimages with the details FLH,
FHL and FHH are obtained. FLH emphasizes
the horizontal characteristic, FHL the vertical
and FHH the diagonals, as reported by Hilton
et al (1994). The transformation may be
defined according to the expressions proposed
Vishwanath (1994):

(,) () () (,)F x y h k h k f x k y k2 2LL
kk

1 2
2

1 2
1

= - -//
 (1)

(,) () () (,)F x y h k g k f x k y k2 2LH
kk

1 2
2

1 2
1

= - -//
 (2)

(,) () () (,)F x y g k h k f x k y k2 2HL
kk

1 2
2

1 2
1

= - -//
 (3)

(,) () () (,)F x y g k g k f x k y k2 2HH
kk

1 2
2

1 2
1

= - -//
 (4)

Where (x, y) represents the coordinates of the
images, h and g are the high pass and low pass
filters respectively, f is the input image and k
represents the size of the filters.. The process can
be iterated to higher levels, assuming the average
image FLL as input for the next level. Figure 2
shows the transforming for two levels.

The architecture presented in this article is adapted
to a compression system, however can be used

Figure 2. Block diagram of the filter bank used to calculate two levels of the 2D-DWT

in any application requiring sub-band frequency
analysis , according to Ríos (2011), the biorthogonal
bases like Bior5.3 and Bior9.3 have coefficients
which can be converted to integers using a simple
normalization, therefore is not required in the
implementation to use modules of floating point
arithmetic, in this same work, some results showing
that it is possible to use 16-bit integer coefficients
of accuracy without significantly affecting the
reconstruction quality of image, for that reason
the proposed architecture was implemented using
integer arithmetic. For that reason the proposed
architecture was implemented using arithmetic
of integer number. For applications requiring
representation in floating point, it is possible
maintain the overall structure of the architecture,
but it will be necessary to modify the calculation
blocks for working floating point arithmetic.

2.1 2D-DWT architectures hardware - state of
the art

Chen et al, propose a parallel processing
architecture that calculates the 2D -DWT using
an adaptation of Recursive Pyramid Algorithm
(RPA) Vishwanath (1994). The general idea of
the RPA consists in rethinking the order in which
the transform coefficients are calculated. So, we
are looking for start the calculation of the next

72

Ingeniería y Competitividad, Volumen 16, No. 1, p. 69 - 81 (2014)

level without completing the calculation of the
coefficients of the previous level, Chen presents an
adaptation to transformations in two dimensions and
instead to organize the transformation making the
calculus pixel-to-pixel, a planning of rows is done.
Therefore the coefficients of an entire row must be
calculated in parallel, the effort required to keep
track of the last coefficients calculated increases
the complexity of the controller becoming its main
disadvantage. Vishwanath et al (1994) present
two architectures, the first one consists essentially
of a one-dimension module for conversion that
is used repeatedly to calculate the 2D -DWT, the
advantage of the architecture is its simplicity, but
it requires too many memory cells which makes it
inconvenient for implementation on a chip, another
drawback is the latency required to generate the first
output data; the proposed second architecture by
Vishwanath et al (1995), consists of a systolic filter
that handles the filtering in the horizontal direction,
a parallel filter to handle the vertical direction
and a storage unit. Two rows are processed in the
systolic filter in the order of RPA schema while a
parallel filter calculates 4 rows which constitutes
four outputs of the first level being one of them
carried to the systolic filter for further processing,
this approach allow improve the performance with
respect to the first architecture but the area required
for its implementation increases. Colom et al
(2001) present an architecture that works with non
- separable 2D filters based on a parallel structure
called even-odd, the architecture is recurrent.

There is a filter unit which is used for calculating
the first level and presents processing continuous,
another filter unit is responsible for the calculation
of the other levels and begins when the first unit
has generated the first four rows and its calculus
continue each time that the first generates two new
lines; the intermediate time periods are utilized for
implementing the recurrence. Two storage units
which act as a link between levels are used, the
architecture uses distributed control units in order to
provide scalability, there is a control inside of the filter
unit and a control for synchronizing the operation
between two consecutive levels; by increasing the
number of levels the number of control units must be

replicated. Sheu et al (2000), propose an architecture
which involves two horizontal filters modules for
calculating the coefficients along rows and two
vertical modules for calculating along the columns,
each module consists of a high band pass filter and
a low band pass filter. A horizontal filter processes
the lines and stores the result in the first storage
unit, then the result is processed by the vertical
filter, the output of the bottom filter is loaded into
the horizontal filter and the process is iterated. The
filter modules are based on a methodology of reuse
of input data with a parallel - pipelined structure.
Chakrabarti et al (1999), show two architectures,
the first involves two memory units and four parallel
filters units composed of a high pass filter and a low
pass filter, the first two filters calculate along rows,
its output is stored in the first memory unit where
data are read by columns for the following two
filters and the coefficients are calculated along the
columns, similarly the outputs of these filters are
stored in the second memory unit by columns and
read in rows by the second filter, in the work two
scheduling algorithms of the data stream that can
be used on this architecture are presented, due to
the filter units are recursively used to calculate two
sub images, a delay of N cycles is generated which
may be unacceptable for some applications. The
proposed second architecture by Andra et al (2002
), is a modified version of the above which seeks
to reduce the delay generated by the recursion, this
proposal increases two units of filters to produce at
the same time the output of all sub images of the
same level achieving reduce the size of the storage
units and delay.

This article presents an alternative architecture with
a simple routing and a control unit of moderate
complexity which decreases the time required to
compute the discrete wavelet transform in two
dimensions.

2.2 2D- DWT approach architecture

Figure 3 shows the block diagram of the proposed
architecture for executing the 2D - DWT in
hardware, the architecture consists of three storage
units (UM1, UM2, UM3), a control unit and three

73

Ingeniería y Competitividad, Volumen 16, No. 1, p. 69 - 81 (2014)

parallel filters units (UF1, UF2 , UF3) composed
of a high-pass filter and a low pass filter.

The control unit is responsible for scheduling
the data flow as follows: the UF1 processes the
input image along the rows and generates the
intermediate images FH and FL, these sub images
are stored in UM1 and UM2 for be carried out
to UF2 and UF3 where images are processed by
columns, in UF2 the coefficients of the FHL,
FHH sub images are generated while in UF3 both
FLL and FLH are provided. The output of the
low component of UF3 is stored in UM3 to be
loaded later in UF1 where the process is iterated
to calculate the next level.

The design was implemented on the development
board DE2 (2010), this card is composed by an
FPGA Cyclone II EP2C35F672C6 (2010) and
several storage units (SDRAM, SRAM and
FLASH). It is possible to create on the FPGA an
instance of the Nios II module for applications that
require a processor, the card also involves standard
interfaces such as RS- 232 and PS/2, standard
connectors for microphone, input and output audio
(24 bits), video input (TV Decoder), VGA (10-
bits DAC), offers USB 2.0 connectivity , Ethernet

Figure 3. Parallel Architecture by level

10/100 , an infrared port (IrDA), connectivity to
other cards required by the user by means of two
expansion modules. For the mentioned reason
the card was considered an ideal platform for
prototyping regarding multimedia and networks
applications. In this work the picture was taken
from a file stored in the SDRAM. Figure 4, shows
the block diagram of the system implemented on
the DE2.

2.3 Unit memory

As mentioned in the previous section, the memory
units store the data obtained from the processing,
the UM1 and UM2 units store the results of the
transformation along the rows (FL, FH). NxN/2
memory cells are required for storing the result of
processing an image of size NxN. The UM3 unit
stores the low frequency component results of
the transformation by columns; for that N/2xN/2
cells are required. Therefore the requirements of
capacity of memory of the proposed architecture
are determined by:

T N N N N N N N2 2 2 2 4
5

MEM
2$ $ $= + + =

(5)

74

Ingeniería y Competitividad, Volumen 16, No. 1, p. 69 - 81 (2014)

The Cyclone II EP2C35F672C6 FPGA has an
internal memory structure organized in 3 columns
containing a total of 105 blocks that provide a
storage capacity of 483840 bits and a maximum
operating speed of 250MHz, in consequence it will
be able to process images with N lower than 220
pixels, although it is possible to expand the internal
storage using blocks of logical arrangements
to store data, it is not recommended since only
increase 2047 bytes using all the resources of the
FPGA. To process larger images, storage capacity
of the system was increased by using one of the
DE2´s block memory. The SDRAM IS42S16400
which stores data of 8 Mbytes was used; respect
to interface connection, Altera has developed a
tool called SoPC builder (System expanded on a
Programmable Chip) (2010), which allows reuse
IP blocks and uses the AVALON interconnect bus
which requires less logic elements in the connection
and improves performance in the transmission rate.

2.4 Filters unit

The filter unit is based on a reuse methodology of
input data mixed with a parallel-pipelined structure

similar to that proposed by Sheu et al (2000), but
the calculation of the coefficients is performed using
the methodology even-odd reported by Colom et al
(2001). This strategy allows the calculation of one
coefficient by cycle after 2 cycles of latency, the
overall scheme of the filter unit is shown in Figure 5.
Each unit has two filters, and each filter is composed
of: a shift register that stores the filter coefficients and
is configured so that each cycle makes two shifts; three
units of Multiplier-Adder-Accumulator (MSA1,
MSA2, MSA3) composed of two multipliers (one for
pair data and another for the odd data); an adder and
an accumulator register; a multiplexer that selects
which of the data is ready to be sent to the next stage.

To illustrate the operation of this unit, we must
consider two filters h (Low-pass) and g (High-pass)
with six coefficients defined as:

[]654321 ,,,,, hhhhhhh =

(6)

[]654321 ,,,,, ggggggg = (7)

Let f be a signal with N data, whose discrete
values are defined so:

Figure 4. Block Diagram of the Implemented System in Card Development DE2

75

Ingeniería y Competitividad, Volumen 16, No. 1, p. 69 - 81 (2014)

[]Nffffff ,...,,, 4321=
(8)

By transforming the signal f using the filters g and
h, two signals are obtained, one of approximation
(A) and another with the details (D), whose
coefficients can be expressed as follows:

=

2
4321 ,...,,, NAAAAAA

 (9)

=

2
4321 ,...,,, NDDDDDD

 (10)

Considering that the one-dimensional transformation
is defined by the following equations:

∑ -=
k

kxfkhxA]2[][][
 (11)

∑ -=
k

kxfkgxD]2[][][

(12)

We can use Eq. (11) to express each coefficient
as follows:

 A1= f1.h1+f2.h2+f3.h3+f4.h4+f5.h5+f6.h6 (13)

 A2= f3.h1+f4.h2+f5.h3+f6.h4+f7.h5+f8.h6 (14)

 A3= f5.h1+f6.h2+f7.h3+f8.h4+f9.h5+f10.h6 (15)

 A4= f7.h1+f8.h2+f9.h3+f10.h4+f11.h5+f12.h6 (16)

To reach the limits of the signal where:

211
2

.. hfhfA NNN += -

(17)

Reuse methodology consists in organizing the
flow of the input data so that it can be calculated
in parallel several output data, this process is
illustrated in Figure 6.

In each cycle the register of coefficients shifts two
spaces. So in the first cycle, to MSA1 arrives the
coefficients h1, h2; to MSA2 arrives h3, h4 and to
MSA3 arrives h5, h6. In the second cycle to MSA1
arrives the coefficients h3, h4; to MSA2 arrives the
coefficients h5, h6 and to MSA3 arrives and h1, h2.
In the third cycle, to MSA1 arrives the coefficients
h5, h6; to MSA2 arrives h1, h2 and to MSA3 arrives
h3, h4. The process repeats until the end of the
transformation. In the first cycle enters f1, f2, with
these data the MSA1 begins the calculation of A1
accumulating f1.h1 + f2.h2. In second cycle enters

Figure 5. Unit Filters

76

Ingeniería y Competitividad, Volumen 16, No. 1, p. 69 - 81 (2014)

f3, f4, so the MSA1 accumulates f3.h3 + f4.h4 while
in parallel the MSA2 uses the same input data to
calculate A2 accumulating f3.h1 + f4.h2. In the third
cycle enters f5, f6, the MSA1 unit calculates f5.h5 +
f6.h6 thereby completing the calculation of A1. In
parallel, MSA2 calculates f5.h3 + f6.h4 and MSA3
begins the calculation of A3 accumulating f5.h1 +
f6.h2.

Henceforth, one output data will be provided in
each cycle while the multiplexer turns on in order
to lead this result to the output. In the fourth cycle
enters f7,f8, the MSA1 begins the calculation of
A4 accumulating f7.h1+f8.h2, the MSA2 calculates
f7.h5+f8.h6 completing thus the calculation of A2, the
MSA3 accumulates f7.h3+f8.h4. In the fifth cycle
enters f9,f10, the MSA1 accumulates f9.h3+f10.h4, the
MSA2 begins the calculation of A5 and the MSA3
completes the calculation of A3 accumulating
f9.h5+f10.h6; hereinafter the process is iterated until
the end of the input signal.

Following the methodology described in the
previous paragraph, the components of high
pass of the output signal must be calculated in a
parallel architecture, the only difference lies in
the stored data in the shift register which must
correspond to the coefficients of the high pass
filter. Note that each input data is used in the
partial calculation of several output coefficients.

When processing the pairs in parallel with the odd
two output data (one high pass and one low-pass)

are available at each clock cycle after the third cycle.
Thus a one-dimensional signal transforms of size N
is performed in N/2 + 2 clock cycles, by expanding
the processing for two-dimensional signal of size N
x N requires (N/2 + 2)N cycles to process all rows
and (N/2 + 2)N/2 cycles to process all columns,
thus the total of required cycles for the proposed
architecture for computing the coefficients of the
first level of transformation is determined by:

NN
NN

N
N

TCICLOS 3
4
3

2
2

2
2

2
2 +=

 ++

 +=

(18)

The planning algorithm of the flow inside the
filter unit can be expressed as follows Rios &
Bernal (2011)

X=1

FOR i=1 To N TO INCREASE +2

 211 hfhfA iiX ++=

 211 gfgfD iiX ++=

 IF (x >1) THEN

 41311 gfgfDD iiXX +-- ++=
 END IF
 IF (x >2) THEN

61522 hfhfAA iiXX +-- ++=

 61522 gfgfDD iiXX +-- ++=

 END IF

Figure 6. Data flow per cycle

77

Ingeniería y Competitividad, Volumen 16, No. 1, p. 69 - 81 (2014)

 X=X+1
END TO

41311 hfhfAA iiXX +-- ++=

The filter unit was modeled using VHDL and Altera
megafunciones, structural design has 5 modules:
Registry coefficients, multiplier, adder, accumulator
register and multiplexer. For the implementation
of the multipliers of lpm_mul Altera megafunción
allowing embedded multipliers used by optimizing
the use of the FPGA, for the megafunción Altera
Multiplexer lpm_mux to synthesize as described
in VHDL design 17 required logical elements are
used further, the adder module was implemented
with the megafunción parallel_add as described
in VHDL design required a longer stabilization
0.577ns, the remaining elements and the connecting
lines were modeled in VHDL.

This unit was synthesized in a Cyclone II FPGA
of Altera EP2C35F672C6 using the Quartus II
version 6.0 design web edition, Table I shows the
resources used in the implementation of the filter
unit.

Table 1. Resources used in the filter unit

Type Resources Used
Logic elements 292 / 33216 (<1%)

Records 219
Memory Bits 0 / 483840 (0%)

Embedded Multipliers 24 / 70 (34%)
PLL 0 / 4 (0%)

Table I notes that in the implementation of the filter
unit 34% of embedded multipliers, 1% of the logic
elements and 0 % of bits of memory are used, this
is evidence that space is available within FPGA
to increase the degree of parallelism in the design

and simultaneously use multiple filter units , which
would provide the coefficients for higher levels in
less time occupying all the available multiplier,
in applications where FPGA is used only for
implementation phase of this transformation is a
viable option, but in applications where you need
to implement additional functions on the FPGA
using the recursive filter units for the calculation of
the following levels of transformation is necessary.

Figure 7 shows part of the results of the simulation
of the filter unit, in the first clock cycle of the
charging records the values of coefficients of
the filters is performed using the charge control
signal (Load) records storage and cleaning using
the signal (Clear) in the second cycle partial
operations is cleaned, from the third cycle output
two coefficients are obtained in each cycle for
which multiplexers are switched through its
signal selection (Sel), three cycles are necessary
to generate signals cleaning climbing to clear
accumulators records, pairs data are represented
by the signal called FPAR and odd by Fimpar, the
coefficients of high frequency transformation signal
output a and D low frequency, for the validation
of the data obtained the system model in Matlab
and the results were compared, the data obtained
from the processing and processed in Matlab of the
simulation in Quartus totally agree (Error 0 %),
which is consistent with expectations since at this
stage the data have not yet been quantified.

2.5 Control unit

For the architecture control-unit, a design which is
supported in the NIOS II [13] system is used. Nios
II is defined in a hardware description language
which can be implemented in Altera FPGAs using
Quartus II synthesis tool in conjunction with

Figure 7. Simulation Unit Filters

78

Ingeniería y Competitividad, Volumen 16, No. 1, p. 69 - 81 (2014)

the processor SoPC Builder, there are three
versions of the processor: the economic Nios/e,
the standard Nios/s and rapid Nios/f. The
economic version has a smaller core this version
does not handle cache memory or specialized
hardware to develop arithmetic operations; for
the control architecture, the economic version
was chosen because the operations required
to control the architecture does not include
complex operations.

Control instructions are developed in C + + using
the integrated development environment NIOS II
IDE that enables compile, debug and download
fonts in C / C + + on the developed system . To
store the program to be executed must allocate
a memory space, the DE2 board has a chip that
stores 512Kbytes SRAM and is included in the
system as program memory (see Figure 4); as
well as the SDRAM, the SRAM is connected to
the AVALON bus, using the SoPC Builder. The
flow chart of the main program is shown in Figure

Figure 8. Flowchart Program Control Unit

79

Ingeniería y Competitividad, Volumen 16, No. 1, p. 69 - 81 (2014)

8 and the flowchart of the function for calculating
the transform of a dimension is shown in Figure 9.

Calculation blocks access memory-units through
the processor, it generates the instructions to
connect to an interface block which permits
access of the SDRAM through a bus Avalon, the
processor or control unit plans all data flow through
the architecture generating the necessary signals
for operation (load signals to the records, select

signals for the multiplexers, read and write signals
on the SDRAM, etc.)

3. Results and discussion

In architectures implemented on FPGAs, it
should be taken into account that they contain
a limited number of logic cells. Therefore, it is
necessary that the design is oriented towards
the optimization of this resource. Whereas

Figure 9. Flowchart of the function used to calculate the
transform in one dimension

80

Ingeniería y Competitividad, Volumen 16, No. 1, p. 69 - 81 (2014)

a large number of logic cells is required for
implementing storage elements, it is convenient
to use a lower requirement architectures memory.
Similarly routing complexity also leads to a high
consumption of logic cells because more elements
are required to interconnect the system being
desirable a less complex routing network; another
major factor is the time required for the calculation
of the transformation, it should be minimized to
process large amounts of images at satisfactory
rates, and likewise it is desirable to reduce the
complexity of the control system so that the
architecture is easily scalable and programmable.
Achieving these objectives is particularly difficult
in an FPGA as area and speed are inversely
proportional and satisfying a requirement means
significantly affecting the other, for example,
the speed can be increased with a high degree
of parallelism which implies an increase in the
required area. Table II relates these features to the
surveyed and proposed architectures from Table
II can be observed that the proposed architecture
in this paper presents a decrease in computation
time compared to the surveyed architectures, in
the most notable case is improved approximately
3N2 cycles and the least significant event is
approximately 0.25N2 cycles, the improvement

Architecture Storage Requirement Time
Calculation

routing Control

Architecture Proposed in
This Work

5/4 N2 3/4 + N2 + 3N simple moderate

Architecture Parallel
Processing Rows Chen et al.

(K+1)NJ N2 + N complex complex

Architecture Direct
Approach Vishwanath et al.

N2 4N2 simple simple

Architecture Systolic-
Parallel Vishwanath et al.

2NK N2 + N complex complex

Architecture Recurring for
Three Levels Colom et al.

6N N2 + N moderate moderate

Architecture Recurring for
Three Levels Sheu et al.

N/2 + N/4 N2 + N moderate moderate

Architecture 1 Parallel
Chakrabarti et al.

≈N(3/2 - 21-J) + KN(2 - 21-J) ≈N2 moderate moderate

Architecture 2 Parallel
Chakrabarti et al.

≈KN(1-2-J) + N(1-21-J) ≈N2 moderate moderate

Table 2. Performance and Comparison of Architecture

does not complicate implementation since a
simple routing is maintained and control unit with
moderate complexity is preserved . If in fact in our
proposal required more store cells, this mishap
can be overcome by using an external memory for
data storage.

4. Conclusion

The hardware architecture presented to develop
the discrete wavelet transform in two dimensions
provides an efficient performance and speed
of calculation area, the architecture uses 3/4N2
+2 N cycles for transforming an image of size
NxN achieving improvement over architectures
developed on previous works, also it maintains
control and a routing of moderate complexity. This
architecture is adapted to an image processing
system, however it can be used in any application
of signal requiring subband frequency analysis.

5. References

Altera Corporation (2010). Cyclone II Device
Handbook. http://www.altera.com/literature/lit-
cyc2.jsp Webdocs

81

Ingeniería y Competitividad, Volumen 16, No. 1, p. 69 - 81 (2014)

Altera Corporation. (2011). Nios II Processor
Reference Handbook. http://www.altera.com/
literature/lit-nio2.jsp#related_documentation

Altera Corporation. (2010). User Guide SoPC
Builder. http://www.altera.com/literature/lit-nio2.
jsp#related_documentation

Andra, K., Chakrabarti, C., & Acharya, T. (2002)
A VLSI architecture for lifting-based forward and
inverse wavelet transform. IEEE Transactions on
Signal Processing 50 (4), 966-977

Colom, R. J., Gadea, R., Sebastiá, A., Martinez,
M., Ballester, F., & Herrero, V. (2001).
Implementación de la Transformada Wavelet
Discreta 2D con filtros no separables. In I
Conference on Reconfigurable Computing and
Applications, Alicante, Spain.

Colom, R. J., Gadea, R., Sebastiá, A., Martinez,
M., Herrero, V., & Arnau, V. (2001). Transformada
Discreta Wavelet 2-D para Procesamiento de Vídeo
en Tiempo Real. In XII Parallelism Workshop,
Valencia, Spain.

Chakrabarti, C., & Mumford, C. (1999). Efficient
Realizations of Encoders and Decoder Based
on the 2-D Discrete Wavelet Transform. IEEE
Transactions on Very Large Scale Integration
(VLSI) Systems 7(3), 289-298.

Chen, C., Yang, Z., Wang, T., & Chen, L. (2000).
A programmable VLSI architecture for 2-D
discrete wavelet transform. In IEEE International
Symposium ON Circuits and Systems, pp. 619-
622

DE2 User Manual, Altera Corporation. (2010).
ftp://ftp.altera.com/up/pub/

Grgic, S., & Grgic, M. (2001). Performance
Analysis of Image Compression Using Wavelets.
IEEE Transactions on Industrial Electronics 48
(3), 682-695.

Hilton, M.L., Jawerth, B.D., & Sengupta. A.
(1994). Compressing still and moving images
with wavelets. Multimedia Systems 2(3), 218–227

Ríos, X. (2011). Diseño e Implementación de
un Sistema de Compresión de Imágenes Usando
Dispositivos Reprogramables. Master Thesis,
Faculty of Engineering, Universidad del Valle,
Cali, Colombia.

Ríos, X., & Bernal, A. (2011). Implementación de
un Sistema de Compresión en el Dominio Wavelet
sobre una FPGA Usando el Procesador Nios II.
In II International Congress on Instrumentation
Control and Telecommunications, Tunja,
Colombia.

Sheu, M., Shieh, M., & Liu, S. (1998). A VLSI
Architecture Design With Lower Hardware Cost
and Less Memory for separable 2-D Discrete
Wavelet Transform. In Proceedings of the IEEE
International Symposium on Circuits and Systems
(ISCAS) 5, p. 457-460.

Vishwanath, M. (1994). The Recursive Pyramid
Algorithm for the discrete wavelet transform.
IEEE Transactions on Signal Processing 42(3),
673-676.

Vishwanath, M., Owens, R. M., & Irwin, M. J.
(1995). VLSI architectures for the discrete wavelet
transform. IEEE Transactions on Circuits and
Systems – II 42(3), 305-316

