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Povzetek

Naslov: Napovedovanje koncentracij onesnaževalcev zraka in prepoznavanje

izvornih regij

Onesnaževalci zraka lahko predstavljajo velik problem za zdravje ljudi.

Onesnaževalci se lahko prenašajo z gibanjem zračnih mas iz izvorne v druge

regije. Zanima nas, ali lahko s pomočjo gibanja zračnih mas napovemo,

kakšna bo koncentracija onesnaženosti za nek dan in ali lahko ugotovimo, od

kod prihaja onesnaženost. Obstaja že veliko literature na to temo, razvitih pa

je bilo tudi nekaj metod za reševanje tega problema. Mi smo želeli uporabiti

strojno učenje, da bi naredili nove, bolǰse metode. Naredili smo dve novi

metodi. Prva temelji na principu 2D mreže, druga pa neposredno uporabi kar

koordinate o trajektorijah gibanja zračnih mas. Ti dve metodi smo primerjali

z obstoječima metodama CF in RCF. Končni rezultati so pokazali, da so

nekatere naše metode vsaj dvakrat bolǰse pri napovedovanju onesnaženosti.

Vseeno končni rezultati niso tako dobri, kot smo pričakovali. Na vizualizacije,

od kod prihaja onesnaženost, se ne moramo preveč zanesti, saj nam je uspelo

vizualizirati samo metodo 2D mreže, ki pa ne daje bolǰsih rezultatov od

obstoječih. Kombinirali smo tudi rezultate večih postaj v upanju, da bi to

izbolǰsalo vizualizacijo, ampak tudi ta pristop ni dal bolǰsih rezultatov.

Ključne besede: strojno učenje, vir onesnaženosti, CF, RCF, napove-

dovanje onesnaženosti, naključni gozdovi, blasso, bayesovska regresija.





Abstract

Title: Forecasting air pollutant concentrations and identifying source regions

Air pollutants are hazardous to human health. Pollutants can be trans-

ported by air masses from one region to another. We were interested if we

could use air mass movement to predict daily pollution concentrations and

to visualize where this pollution came from. This area is rich in related work

and there already exist methods that solve this problem. Our goal was to use

machine learning to create new and better performing methods. We created

two new methods. The first is based on a 2D grid, while the second is based

on raw coordinate data. We compared these two methods with existing CF

and RCF methods. Results show that some of our methods perform more

than twice as good as existing methods. However, the results are still below

our initial expectations. We cannot rely on source attribution visualization,

because we were able to get it working only with the 2D grid method, which

is not much better than existing CF and RCF methods. We also tried comb-

ing results of multiple stations in hopes that we could make better source

attribution visualization, but this also performed worse than expected.

Keywords: machine learning, pollution source, CF, RCF, source attri-

bution, pollutant forecasting, pollutant prediction, random forest, blasso,

bayesian regression.
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Razširjen povzetek v

slovenskem jeziku

Onesnaženost zraka z majhnimi delci ali strupenimi plini povzroča razne

bolezni, kot so omotica, znižana odpornost na okužbe, bolezni dihal in srčno-

žilne bolezni. Zaradi tega se je veliko strokovnjakov posvetilo raziskovanju

onesnaženosti zraka. Viri, ki prispevajo k onesnaženosti neke regije, so lahko

lokalni ali pa zelo oddaljeni, saj se onesnaženost lahko prenaša preko gibanja

zračnih mas. V tem delu se posvečamo odkrivanju izvornih regij onesnaženost

in napovedovanju koncentracije onesnaževalcev v zraku. Natančneje, delo

se osredotoča na napovedovanje onesnaževalcev, za katere imamo na voljo

pogoste meritve (dnevne) in gibanja zračnih mas v obliki 2-dimenzionalnih ali

3-dimenzionalnih trajektorij, ki potekajo od receptorja. Obstaja veliko sorod-

nih del na to temo (glejte Fleming et al. [6]). Skoraj vsa sorodna dela spadajo

v eno od dveh skupin. V prvi skupini so dela, kjer položijo 2-dimenzionalno

mrežo celic čez določeno ozemlje. Onesnaženost v zraku se potem pripǐse

celicam, skozi katere so potovale trajektorije (onesnaženost ali enakomerno

razporedimo po celicah ali glede na čas, ki ga trajektorije preživi v celici).

Najbolj pogosti metodi sta PSCF (Potential Source Contribution Function)

iz Ashbaugh et al. [2] in CF (Concentration Field) metoda iz Seibert et al.

[29]. Glavni problem teh dveh metod je napačno prikazovanje onesnaženosti,

saj se onesnaženost doda vsem celicam, skozi katere potuje trajektorija, in

ne samo dejanskimi izvornim regijam. Ta problem delno reši metoda RCF

(Redistributed Concentration Field) iz Stohl [34]. Druga skupina metod
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uporablja algoritem gručenja, kjer trajektorije najprej uvrstimo v gruče glede

na njihovo pot. Te gruče se potem uporabijo kot atributi za modele oz. bolj

pogosto le primerjamo koncentracije onesnaženosti med gručami. Ta pristop

lahko grobo oceni izvor onesnaženosti, ne moremo pa določiti natančnih regij,

zato teh metod nismo vključili v delo. Bolj natančen opis sorodnih del je v

poglavju 1.1.

Naš problem si lahko interpretiramo kot problem napovedovanja - želimo

napovedati koncentracijo onesnaženosti v zraku s pomočjo trajektorij zračnih

mas. Dosedanje metode se zelo preproste in smo mnenja, da lahko z meto-

dami strojnega učenja in statistike z minimalnim trudom naredimo bolǰse

(ne-linearne) napovedne modele (glejte poglavje 2). Naredili smo tudi pre-

prosto metodo, ki uporabi podatke večih postaj hkrati. Kompleksnost takih

modelov je problematična, saj večino modelov strojnega učenja ni enostavno

interpretirati, kar pomeni, da je določanje izvornih regij lahko oteženo ali

celo nemogoče. To rešimo z metodo, predlagano v [36, 37]. Ta metoda model

obravnava kot črno škatlo, kar pomeni, da lahko uporabimo katerikoli model

strojnega učenja za učenje in razlago izvornih regij. Ključno vprašanje za te

nove metode strojnega učenja je, kako naj transformiramo vhodne podatke,

da bodo v obliki, iz katere se lahko model nauči največ. Kot smo opisali v

poglavju 2, smo uporabili dva različna pristopa: prvi pristop uporablja mrežo

celic, drugi pa kar neposredne uporabi koordinate trajektorij. V poglavju 3

opǐsemo empirično evaluacijo naših novih in obstoječih modelov na približno

15 letih podatkov (se razlikuje od postaje do postaje) iz realnega sveta za

več različnih vrst onesnaževalcev (PM10, SO2, NO2, O3, PM2.5), ki jih meri

več postaj po Evropi. Kljub veliki količini sorodnih del obstaja zelo malo sis-

tematičnih kvantitativnih primerjav. Scheifinger and Kaiser [27] je primerjal

PSCF, CF, and RCF v idealiziranih pogojih (virtualne trajektorije in viri

onesnaženosti), in v pogojih podobnem realnem svetu (primerjal je z inven-

tarjem emisij onesnaževanja). Ugotovil je, da metode delujejo dobro v ide-

aliziranih pogojih (predvsem RCF), ampak pod realnimi pogoji pa delujejo

slabo. Brereton et al. [3] so ugotovili enako. Kong et al. [15] in Ying-
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Kuang Hsua [39] so z uporabo inventarja emisij onesnaževanja in z vizualno

inšpekcijo ugotovili, da RCF deluje bolǰse kot PSCF, saj nima repa.

Rezultati empirične evaluacije, predstavljeni v poglavju 4, so nas

razočarali, saj smo pričakovali, da bodo naši novi modeli delovali veliko bolje.

V poglavju 5 smo povzeli naše rezultate in napisali potencialne izbolǰsave za

prihodnje raziskave. Naredili smo 3 različne teste. Prvi test predpostavi,

da vsa onesnaženost prihaja iz ene točke. Ta test vse metode opravijo do-

bro. Drugi test uporabi 4 točke kot vire onesnaženosti. Naše metode se

tukaj izkažejo za bolǰse. Tretji test uporabi bolj realen vir onesnaženost,

saj uporabimo bolj razmazano regijo kot vir onesnaženosti. Tukaj metode

ne delujejo preveč dobro, kar predstavlja velik problem, saj je ravno ta test

najbolj kritičen. Uporaba podatkov z več postaj hkrati prav tako ne izbolǰsa

natančnosti vizualizacije izvornih regij.

Uporabili smo podatke iz petih postaj (Iskrba, Zingst, Illmitz, Svratouch

in Westerland). Pri treh postajah (Illmitz, Westerland in Zingst) napove-

dujemo onesnaženost dvakrat bolje kot pri ostalih dveh postajah, česar nam

ni uspelo pojasniti. Želeli smo tudi ugotoviti, kateri onesnaževalec lahko na-

jbolje napovemo. Vemo, da se delci (PM10, PM2.5) veliko lažje raznašajo po

zraku z gibanjem zračnih mas, kot pa plini (SO2, NO2, O3). To so potrdili

tudi naši rezultati v tabeli 4.1. Rangirali smo tudi vse metode in modele po

uspešnosti napovedovanje, kar lahko vidite v tabeli 4.7. Nekateri naši mod-

eli so bili dvakrat bolǰsi od obstoječih, a ravno našega najbolǰse delujočega

modela nam ni uspelo vizualizirati. Vizualizacijo izvornih regij na resničnih

podatkih lahko vidite na slikah 6.11 in 4.4. Rezultate uporabe podatkov z

več postaj si lahko ogledate na slikah 6.9 in 6.10. Dobljeni rezultati se uje-

majo z znanimi podatki: vemo, da na O3 zračne mase skoraj ne vplivajo, saj

tudi vsi modeli ta onesnaževalec napovedujejo veliko slabše od ostalih. Delce

PM10 in PM2.5 pa se napoveduje veliko bolǰse, kar se tudi ujema s sorod-

nimi deli. Model RF (random forest) je vedno dal bolǰse rezultate kot model

blasso (Bayesovska različica L1 regresije). Obe naši novi metodi sta bolǰsi od

obstoječih, XYZ še posebno, a te metode nam ni uspelo vizualizirati. Zelo



CONTENTS

problematična je slaba napovedna moč CF in RCF metode, saj ju uporablja

ogromno obstoječih del, kar vzbudi dvom v njihove zaključke.

Potrebno je omeniti, da so trajektorije lahko zelo nenatančne v neka-

terih pomembnih regijah, a žal ne moremo vedeti, v katerih. Uporabljene

trajektorije niso bile izračunane na meteorološkem polju najvǐsji ločljivosti.

Mogoče bi bili rezultati bolǰsi, če bi uporabili bolj natančne trajektorije in

hkrati uporabili polje celic, ki prekriva manǰse območje, saj onesnaževalci

bližje merilni postaji bolj vplivajo na dnevno onesnaženost, kot bolj oddal-

jeni onesnaževalci. Prav tako se verjetnost napake v trajektoriji povečuje z

njeno oddaljenostjo od merilne postaje.

Na sliki 4.4 vidimo nekaj, kar bi lahko bilo zelo pomembno: naša metoda

mreže celic z RF in blasso modelom prikaže povsem drugačno vizulizacijo kot

metodi CF in RCF. Naša metoda označi vire onesnaženosti bližje postaji,

medtem ko CF in RCF trdita, da so viri bolj oddaljeni. To lahko pomeni,

da naša metoda zazna lokalne regije blizu postaje, ki so bolj pomembne pri

prenosu onesnaževalcev (npr. zaradi vpliva reliefa, gozdov...), medtem ko

pa CF in RCF zaznata bolj grobe regije, od kjer se onesnaženost dejan-

sko prinese. To bi pojasnilo, zakaj naše metode dajejo bolǰso napoved za

dnevno koncentracijo onesnaženosti, saj bolj upoštevajo celice blizu postaje,

od koder je večja verjetnost, da onesnaževalci dejansko pridejo. Rezultati

postaje Iskrba se skladajo s sorodnimi deli, saj vemo, da v Slovenijo največ

onesnaženosti pride iz severo-vzhoda in juga.

Ker vse metode dajejo relativno slabe rezultate, je nemogoče reči, ali slike

prikazuje dejansko pomembne regije ali pa gre za dejanski šum. Metoda

uporabe podatkov več postaj ne izbolǰsa rezultatov. Če bi naše metode

(vključno z CF in RCF) uporabili meteorologi, bi priporočali, naj uporabijo

kombinacijo CF, RCF in metode mreže celic z RF modelom in naj rezul-

tate CF in RCF uporabijo za analizo grobih, oddaljenih virov onesnaženosti,

medtem ko bi metoda mreže celic z RF modelom bila uporabna za analizo

regij v bližini postaje. Predvidevamo, da so za slabo napovedno moč lahko

krivi naslednji razlogi:
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• Nenatančne trajektorije.

• Sezonske spremembe gibanja zračnih mas, kar pomeni drugačno pot

trajektorij skozi leta.

• Spremembe v naravi in okolici (gradnja tovarn, urbanizacija, spre-

memba gozdne površine...).

• Onesnaževalci se manj prenašajo preko zračnih mas, kot smo mislili.

Če je to res, potem so vsi modeli dokaj neuporabni.

• Ne upoštevamo disperzije in turbulenc v zraku, kar lahko povzroči zelo

drugačno gibanje delcev. To predvidevata Scheifinger in Kaiser [27].

Za prihodnje raziskave priporočamo uporabo bolj natančnih trajektorij in

hkrati uporabo mreže celic, ki pokriva manǰse, bolj lokalno območje. Učenje

na podatkih iz več let je lahko problematično zaradi sezonskih vplivov, zato

bi modeli morali to upoštevati. Prav tako bi modeli morali upoštevati dis-

perzijo in/ali turbulentno gibanje delcev v zraku. Vizualizacija metode,

ki koordinate uporablja neposredno, bi lahko bolj natančno odkrila izvore

onesnaženosti, saj napoveduje vsaj dvakrat bolje kot obstoječe metode. Bolj

kompleksen model, ki uporablja podatke z več postaj hkrati, je tudi pomem-

bno izhodǐsče za prihodnje delo.

Nekateri rezultati tega dela so bili objavljeni v [25].
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Chapter 1

Introduction

Air pollution in the form of fine particles or noxious gasses has been linked

with a wide range adverse health effects, such as fatigue, reduced resistance to

infection, respiratory diseases, and cardiovascular diseases. As a result, a lot

of expert and research effort is being dedicated to the study and the manage-

ment of air pollution. Sources that contribute to air pollution concentration

levels at a particular location (receptor) can be local or potentially very dis-

tant, due to the process long-range transport of atmospheric pollutants in

an air mass. In this thesis we focus on the problem of identifying poten-

tial source regions from concentration measurements and air mass transport

information. In particular, we focus on the most common variant of this

problem, where source regions are to be identified given periodic (typically

daily or hourly) concentration measurements over a longer period of time and

corresponding air mass transport information in the form of 2-dimensional

or 3-dimensional back-trajectories from the receptor location. Related work

on this problem is very rich with applications (see Fleming et al. [6] for a

review). In terms of methodology, almost all related work belongs to one of

two general groups of methods. The first group are methods based on a grid

tessellation of the area of interest. Concentration levels or high-concentration

episodes are then attributed to (typically equally or according to residence

time) all grid cells passed by the corresponding trajectory. The most common

1



2 CHAPTER 1. INTRODUCTION

variants are the PSCF (Potential Source Contribution Function) method of

Ashbaugh et al. [2] and the CF (Concentration Field) method of Seibert

et al. [29]. The main issue with these methods is that a grid cell may be

(falsely) identified as a potential source only because it is often passed by

trajectories that also pass through actually polluted regions (that is, a trail-

ing effect). This was partially addressed by the reweighting approach RCF

(Redistributed Concentration Field) by Stohl [34]. The second group are

clustering-based approaches, where first a clustering algorithm is used on the

trajectories to divide them into distinct clusters (according to their paths)

and then the cluster membership is used as a discrete variable for predicting

concentration levels or, more typically, compare clusters on concentration

levels. These approaches are suitable for identifying general polluted air-

mass pathways, but not for identifying specific locations of potential sources

and will therefore not be considered in the comparison. We provide a more

detailed description of the key related work in Chapter 1.1.

The problem of interest is in essence a prediction problem - we wish to

predict concentration levels from back-trajectory data. Given the relative

simplicity of the methods used in related-work, we hypothesized that we

could potentially achieve substantially better results with minimal effort by

drawing on the vast machine-learning and statistical prediction toolbox and

using more complex (non-linear) prediction models (see Chapter 2 for de-

tails). However, although this might lead to more accurate predictions (and

in turn a more accurate model for potential source regions), the resulting

models are typically complex, which makes them difficult to interpret or to

extract a meaningful identification of potential source regions. We deal with

this by using a black-box approach to computing input variable contribu-

tions for a prediction model proposed in [36, 37]. The key issue with such an

approach is how to transform the raw back-trajectory path data into a form

that is suitable for learning/fitting models. As described in Chapter 2, we

use two different approaches: grid-based tessellation and raw trajectory path

coordinates. In Chapter 3 we describe our empirical evaluation of the pre-
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dictive quality of classic and proposed approaches on approximately 15 years

(varies from station to station) of real-world data for multiple particulate

matter concentrations (PM10, SO2, NO2, O3, PM2.5) as measured at multi-

ple monitoring stations across Europe. Despite the widespread application

of source attribution methods, there have been few systematic quantitative

comparisons. Scheifinger and Kaiser [27] compared the PSCF, CF, and RCF

in an idealized setting (virtual source volumes and real trajectories), and a

real-world setting (comparison to pollution emission inventory) and found

that the methods (RCF in particular) work well in an idealized setting, but

not in a real-world setting. Brereton and Johnson [3] also used simulations

and also found that RCF was the best at identifying source regions. Kong

et al. [15] using emission inventory data and Ying-Kuang Hsua [39] using

visual inspection of results also found that RCF is slightly better and does

not feature the trailing effect common in PSCF.

The results of the empirical comparison, which are presented separately

in Chapter 4 are disappointing, as we assumed that our new models would

work much better. In Chapter 5 we summarize our findings and contributions

and provide some directions for future work.

1.1 Related work

While this topic is very rich in related work many of them describe the

same approach by using a different name, thus making it a confusing area to

research. In this following Subsections we will present the most important

related work and methods.

1.1.1 Overview

Scheifinger and Kaiser in [27] compare different methods in a controlled vir-

tual environment: PSCF (Potential Source Contribution Function, cannot

be used for prediction thus making it useless for our case), CF, RCF. They

call these methods trajectory statistical methods (TSM). They argue that we
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don’t know well enough how good/bad these methods perform in complex sit-

uations. They use virtual sources to test for specific cases alongside with real

data. PSCF and CF underestimate high emission areas and overestimate low

emissions areas. RCF is much better compared to these two. They conclude

that in idealized cases all methods perform reasonably and are usable. Ex-

plained spatial variance is used to measure performance. The performance on

idealized data is 60-80%, while on real data it’s only 15% for the total area or

20-30% for at a spatial coverage of about 60-70%. Here PSCF is better than

the other two methods. By using a more complex formula, they compute the

difference between the real data and predicted data. This shows where there

are potential over- or underestimations of sources. Turbulent dispersion and

removal processes are neglected by TSMs. These two are the most likely

sources of the decreased performance in real data compared to simulated.

They introduce a decay function which simulated turbulence and dispersion

and apply it to virtual data. This produces similar results to real data so

they conclude that turbulence and dispersion are indeed factors, but further

studies would have to be done to show how this affects TSMs. In [7] they

compare 3 different methods: statistical metrics/comparison, concentration

field and cluster analysis. Hsu et al. [39] discover that a combination of mul-

tiple approaches give better results. In [15] they use a two-stage cluster and

compare it to self-organizing maps(SOM). Then they use PSCF and RCF.

SOM with Mahalanobis metric proved to be better for clustering. Combined

PSCF and RCF gave better results. To combine them they used the average

of normalized values of PSCF and RCF. Kaiser et al. [12] explain that CF

and RCF depends on concentration, therefore seasonal variation may cause

problems, They don’t do any real comparison. In [1] we can see an overview

of statistical and back-trajectory dispersion methods. In [3] we find a very

good overview of PSCF, CF, QTBA (quantative transport bias analysis),

RCF and also compares them. Using RCF alongside CF seemed best. RCF,

CF and PSCF work well in areas with large trajectory coverage. QTBA did

not perform well. RCF was best, but gave false source regions. RCF was
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improved when combined with CF.

1.1.2 Other related work

Kaiser et al. in [12] state that CF and RCF depend on concentration, there-

fore seasonal variation may cause problems. They don’t do any real compar-

ison. An overview of statistical and back-trajectory dispersion methods is in

[1]. A very good overview of PSCF, CF, QTBA, RCF and their comparison is

in [3]. Using RCF alongside CF seemed best. RCF, CF and PSCF work well

in areas with large trajectory coverage. QTBA did not perform well. RCF

was best, but gave false source regions. RCF was improved when combined

with CF. A virtual simulation is performed in [5]. They recommend us-

ing data from multple stations. A review of source appointment research for

particulate matter (PM10 and PM2.5) is in [38]. They also state that the com-

bination of back-trajectory and and source apportionment analysis has much

potential. These papers use clustering and then a statistical analysis, but

these methods are not suitable for detecting source regions: [13, 15, 18, 19].

3D clusters are used (minimum convex hull of clustered back-trajectories) to

separate low and high air mass flows in [19] uses. A review of related work

can also be found in [6]. A better method for computation of backwards

trajectories is presented in [35]. The backwards trajectory is not a single line

but turns into a filamentary structure because of turbulence and convection.

The Lagrangian particle dispersion model is used with cluster analysis of

particle positions to derive better ”trajectories” and trajectory ensembles.

This reduces error by filamentation and backwards growth. In [17] they add

an exponential term to the residence time analysis for the probability that

the pollutant won’t be carried all the way from the source to the receptor.

Another paper that uses PSCF and CF is [8], where they confirmed increased

pollution from heavily polluted areas to the measuring station. Pinxteren et

al. [22] use chemical source apportionment, not spatial. They concluded

that PSCF cannot distinguish large source from moderate ones because of

the criterion at which we specify if a trajectory is polluted or not, see [15].
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CF and RCF was developed to fix this. The method proposed in [2] is ar-

guably the most commonly used source attribution method. The method is

based on a cell-based tessellation of the area of interest. Raised concentration

levels are attributed to participating cells, according to trajectory residence

time, typically estimated as the number of backward trajectory vertices that

fall within the cell. Many subsequent papers use this method, sometimes

with modifications: [4] and [40] use a simple weighting, where cells with a

smaller number of trajectories are weighted less, to ensure statistical stabil-

ity. Salvador et al. [26] apply a binomial statistical test to each cell. In

[28] they decompose RT into two fields: transport directional frequency and

the inverse transport speed. The spatial patter in default RT method and

transport direction frequency are very similar: from this they conclude that

RT works predominantly based on the frequency at which the trajectories

traverse the given area before they reach the receptor.A summary of [29] is

in [34]. The problem with [29] technique is that it assumes equal distribution

of the pollution along the trajectory. In reality, pollution sources are con-

centrated on a small area along the trajectory. The method by [34] (RCF)

fixes this problem. An improved method presented by [29] is in [34], where

it is called RCF. In [24] we see a variant of the concentration field method:

they add a weight factor that represents the trajectory inaccuracy. This inac-

curacy factor was obtained from other literature that computed trajectories

and their inaccuracies. See [6] for identification of regions which are more

or less likely to be traversed during high or low concentrations during the

day. This work also contains a combination of trajectory studies with source

apportionment models and clustering. Hsu et al. [39] use PSCF, CF and

residence time weighted concentration. A modified version of these methods

is also discussed. These methods are combined to give better predictions.

PSCF and CF appear to be able to distinguish between moderate and large

sources. RCF resolved high potential source area. RCF combined with JP-

PSCF (joint probability PSCF) removed the tailing effect that happens with

pure PSCF. Flexpart is a model used to compute particle dispersion based on
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physical methods. By running it backwards we can trace particles from recep-

tor to source regions. See [32] for description of FLEXPART. See [31] for an

example of this. Residence time is used. They say that FLEXPART model

makes trajectories obsolete. Compared to the trajectory model, FLEXPART

model takes in account the growth of the retroplume (the potential source

field computed by backward simulation). The inversion algorithm adjusts

the emissions used in the model to better match the observed and simulated

concentrations (see [33], they use inversion method based on [30]). In [16] we

see a proposal of using multiple receptors simultaneously to better identify

sources. Artificial data were generated. They compared single and multi

receptor models and showed that multi receptor model is better. They use

condition probability (CP) which works better for direction rather than ac-

tual location prediction. QTBA is introduced in [14]. Multiple probability

functions are multiplied and integrated over to produce a probability (den-

sity) field. None of the probability functions are well defined and are purely

approximations of real world processes (dispersion, reaction, deposition, ...),

therefore it is a hybrid approach as it uses back-trajectories alongside models

of chemical processes. In [41] QTBA is compared with RCF. They develop

Simple QTBA (SQTBA) which just ignores the effects of chemical reactions

and depositions in the probability function. The results show that SQTBA

and RCF clearly identify large and clearly defined sources. The tailing results

of SQTBA (the proposed how to reduce it) can identify false source areas.

SQTBA gives reliable results at lower spatial resolution. RCF gives better

spatial resolution and can detect small hot spots but it misses a lot of source

areas. RCF is sensitive to the influence of by many factors (deposition, re-

actions, variation in emission rate). RCF must be used with caution when

there is high variation in emission rate. QTBA is also used in [9], where they

use it to identify pollution cased by coal usage. In [10] they combine QTBA

with PMF (positive matrix factorization, used to identify source-receptor

relationship based on chemical composition), see [9]. In [11] we see that

using box tessellation introduces sampling distortions. We can use proba-
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bility density function centered around each data point to estimate spatial

statistics. They show some existing methods to compute kernel estimation

on a sphere and it then proposes a new, faster method. The final results of

this method compared to tessellated box methods should not differ greatly.

The main difference between [20] and most other papers is that they don’t

use a grid cell but density functions (kernels), it is based on [11]. The goal

of this thesis is the ”origin averaging technique”: to estimate relationship

between origin of trajectories and the concentration measured. In [27] they

compare trajectory statistical methods (TSM): PSCF, CF and RCF. The

results say that the transport processes is very simplified by the trajectory

model and this causes inaccuracies. They say that TSM methods should not

be trusted in general. They conclude that high emission area are underesti-

mated, low emission areas are overestimated. The real world data simulation

(cloudy/noisy sources) performed a lot worse than the point-source ideal-

ized version. Adding an exponential term made test data on idealised point

sources gives results similar to real world data simulation. From this we can

conclude that dispersion and deposition are indeed the source of the error

between the idealised point data and real world cloudy/noisy data.

1.2 A detailed look at CF and RCF

The data in our problem setting are composed out of two parts. The first

part is a sequence of pollution concentration measurements cd > 0, d = 1..nd

for each day d for a particular pollutant at a particular monitoring station.

The second part are trajectories of air mass movement to the station’s

location for the period during which the concentrations were measured. Each

air mass trajectory is a path consisting of sequential vertices, where each

vertex can be seen as a 3D coordinate (latitude, longitude, altitude), although

only latitude and longitude coordinates are used in the methods described in

this thesis (altitude is ignored). All trajectories in a day correspond to one

daily pollution measurement.
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Note that all trajectories for day d are assigned the same pollution value,

that is if day d pollution measurement is cd, we set the pollution cl = cd to

each trajectory in the trajectory set l which belongs to day d.

Concentration field (CF) and redistributed concentration field (RCF) are

based on a grid tessellation of the area of interest. Concentration levels are

then attributed to grid cells passed by the corresponding trajectory. The

most common is the CF method. The main issue with CF is that a grid

cell may be misidentified as a potential source because it is often passed

by trajectories that also pass through actually polluted regions. This was

addressed by the re-weighting approach RCF.

Note that CF is also known as concentration weighted trajectory (CWT).

RCF is also known as residence time weighted concentration field (RTWC).

The transformation applied to trajectories before the application of CF or

RCF methods is grid-based. The geographical area of interest is tessellated

with a rectangular grid and each trajectory l is transformed into a matrix of

residence times tlij ≥ 0, one for each cell ij. Residence time tells us how much

time a trajectory spent in that cell. Because each trajectory is described with

a set of vertices, we estimate residence times in individual cells by assuming

a straight path with constant speed between adjacent (in time) vertices. We

compute this by stepping along subdivided trajectory segments.

1.2.1 Concentration Field

The CF method starts with a grid-based transformation of trajectories. The

intensity βij of the pollution sources in grid cell ij is then calculated as

βij =

∑n
l=1 tlijcl∑n
l=1 tlij

, (1.1)

where cl is the pollutant concentration associated with the l−th trajectory

and tlij is the l−th trajectory’s residence time in cell ij.

The CF method is used exclusively for visualization of cell intensities and

visual inspection of potential sources of pollution. However, it is in essence
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a model that connects trajectories and concentrations and could be used to

infer the latter from the former. In the following, we extend the approach to

predicting concentrations.

In order to derive a prediction for a (possibly new) trajectory from a grid

of cells and calculated intensities βij obtained with the CF method, we must

first observe that the expected intensity in Eq. (1.1) is assumed to depend on

the concentrations associated with and residence times of trajectories passing

through cell ij but not on the area or shape of the cell.

We can generalize Eq. (1.1) to a set of m distinct cells G =

{ij1, ij2, ..., ijm}, leading to

βG =

∑n
l=1 tGlcl∑n
l=1 tGl

, (1.2)

where tGl =
∑

ij in G tlij. Eq. (1.2) can be further transformed

βG =

∑
ij∈G

∑n
l=1 tlijcl∑

ij∈G
∑n

l=1 tijl
=

∑
ij∈G tijβij∑
ij∈G tij

,

where tij =
∑n

l=1 tlij is the total residence time of all trajectories in cell ij.

Therefore, under the assumptions of the CF method, the natural prediction

of pollution concentration for a trajectory is the weighted (according to res-

idence times of the trajectory) average of the intensities of the set of cells

that the trajectory passes through.

1.2.2 Redistributed Concentration Field

The redistributed CF method is composed of two parts. First, the initial

concentration field β
(0)
ij is computed as in Eq. (1.1). And second, the con-

centrations are iteratively redistributed along trajectories until a stopping

criterion is met.

To facilitate the redistribution, each trajectory l is segmented into nl

segments. In this thesis, we based the segmentation on the cells the trajec-

tory passes through. Let Blk represent the concentration field value of the
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k−th cell trajectory l passes through (that is, Blk corresponds to some cell’s

concentration field value βij).

The concentration associated with the l-th trajectory is then partitioned,

with each segment lk getting a share proportional to it’s concentration field

value

clk = cl
Blk∑nl

k=1 Blk

.

To complete the iteration, the new concentration field is computed

β
(t+1)
ij =

1∑n
l=1

∑nl

k=1 tlkij

n∑
l=1

nl∑
k=1

ckltlkij,

where tlkij is the residence time of trajectory l’s k−th segment in cell ij,

which is in our case equivalent to tlij if trajectory l resides in cell ij and

0 otherwise. The process is repeated for several iterations. The standard

stopping criterion is based on the maximum change, relative to the maximum

initial cell value
max |β(t+1)

ij −β
(t)
ij |

maxβ
(0)
ij

< τ , for some pre-specified threshold τ > 0.

Similar to related work, we set τ = 0.01.



12 CHAPTER 1. INTRODUCTION



Chapter 2

A machine learning-based

approach

Our hypothesis was that we could use machine learning to improve on existing

methods for pollution prediction and source attribution. In this Chapter we

present our methods.

2.1 Grid and XYZ data transformation

CF and RCF both work on trajectory data transformed into a grid. If we

assume one data sample is one day we end up with one n × n grid and one

pollution value for that day, a total of n× n+1 values. This transformation

discards some data which may be useful (distance and time of the trajectory

from station, individual trajectories). To solve that we simply used the most

raw trajectory data: a sequential list of trajectory vertices, where each vertex

contains the longitude, latitude and height of that point in 3D space. We

call this the XYZ transformation. In this case one data sample contains k

trajectories and each trajectory has 57 vertices, which gives us a total of

k × 57× 3 + 1 values for one data sample.

13
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2.2 Machine learning models

We included random forest (RF) and bayesian lasso regression (blasso). The

RF model could be very good as it can learn to subdivide space based on pol-

luted regions and is robust to overfitting. The blasso model is L1-regularized

linear regression (also known as the Bayesian lasso), which penalises regres-

sion coefficients the larger their absolute value is. It is also very robust to

overfitting. The regularization parameter is treated as a hyper-parameter,

so there is no need for tuning [21]. We also tried linear regression but it

overfit the data, so the results were not included. We did not use mod-

els such as neural networks and support vector machines because they are

prone to overfitting and require fine tuning of parameters, which would be

very computationally intensive in our case. The RF model uses Breiman’s

random forests algorithm [9] as implemented in randomForest from the ran-

domForests package

2.3 Model explanation

We needed a way to explain why the machine learning models predict as they

do. For grid based transformation this would be easily done for regression

models just by reading the coefficients, but this would not work for random

forest or XYZ transformation.

To solve that we used a black box explanation method presented in [36,

37]. For both grid and XYZ transformation we end up with two n× n grids:

mean and variance. The mean grid tells us how much pollution a certain cell

is emitting or absorbing while the variance grid tells us how much the cell

values changes from day to day.

2.3.1 Grid transformation explanation

We pick a random day, which means that we have n × n attributes. We

then pick one cell for which we want to compute importance and modify
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this grid by setting the selected cell’s value to 0. We then compare the

difference between the results of prediction using the non-modified grid and

the modified grid. As this is a sampling method, we must repeat the process

above many times for each cell to get reliable results (each sample represents

one day of data). Note that when using the blasso model we can also use

the regression coefficients directly, as coefficients map one-to-one with grid

cells. We present both methods in this work, where we label the direction

coefficient method as ”blasso direct” and the model explanation method as

”blasso explanation”.

2.3.2 XYZ transformation explanation

For this method we first create an artificial grid. We then sample random

trajectories and override some trajectory vertices’ longitude and latitude co-

ordinates. We can override a single vertex or many. We then compare the

difference of the prediction using the modified trajectories and non-modified

trajectories and this serves as importance. As this is a sampling method we

must repeat the process above many times for each cell to get reliable results

(each sample represents one day of data).

2.3.3 Multi-station model

Our goal was to further improve prediction results by using the information

from multiple stations at the same time. It turned out this was more complex

as we thought initially and the full solution would require additional research

that is out of the scope of this thesis. We implemented a simplified multi-

station model, which averages grids of multiple stations from the single-

station explanation method. We rank the cell pollution values from most

to least polluted for every individual station and then compute the average

rank across all stations. We can use less ranks than there are cells because

the non-extreme rank values will move around from cell to cell a lot due to

noisy results.
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2.4 Visualization

2.4.1 Standard approach and scale problem

We use the mean grid from the black box model for visualization. A problem

we face is that of great cell value disparity as this causes the color scale of

the visualization to stretch, which ruins the visualization. Using a log scale

was not enough. We partially solved this by removing the most extreme cell

values progressively by using certain thresholds. For example, removing the

cells whose values belong in the top and bottom 5%. This gives us multiple

images of the same mean grid with increasing number of removed cells. The

cells we remove can be either marked with a special symbol to show that

they were removed or their color can be clamped to its extreme range color

(for example fully white or black). See Figure 2.1 b) and c).

2.4.2 Ranking

An alternative approach to removing the extreme-valued cells is to rank the

grid cells based on their pollution level. So, for example, if we have 100 cells

we get 100 ranks. This is still problematic due to noise as the non-extreme

ranks would move a lot from cell to cell. We can improve this method by

reducing the number of ranks relative to the number of cells, so if we have

100 cells we use just 10 ranks. This makes the visualization more robust.

The downside of this ranked approach is that we lose any kind of physical

units. See Figure 2.1 d) and e).

2.5 Visualizing various methods

CF and RCF are easily visualized since we can just use their corresponding

matrix, where each value in the matrix represents the pollution value for the

cell to which it belongs. The grid and XYZ methods are visualized by using

the algorithm presented in Section 2.3 and then visualizing the mean grid
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computed by that method.

(a) Ground truth

●

Illmitz

(b) Default log-log

●

Illmitz

(c) Threshold of 10%

●

Illmitz

(d) 5 ranks

●

Illmitz

(e) 10 ranks

Figure 2.1: Examples of different visualization methods results on artificial

data using our grid method with random forest model on Illmitz trajectories.

Darker cells represent more polluted regions.
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Chapter 3

Empirical evaluation

This Chapter is divided into 5 parts. First we describe the data, then the

evaluation and performance procedure. We then explain our evaluation pro-

cedure and performance evaluation. This is followed by a brief overview

of the implementation. We conclude this chapter by specifying the model

parameters used.

3.1 Data

We compiled a data set of pollutant measurements and trajectories for 5 sta-

tions: Illmitz, Svratouch, Zingst, Iskrba and Westerland. We have between

10 and 15 years of trajectory and pollutant data, this varies from station

to station and also between pollutant types. For pollutants, we have 5 dif-

ferent types of measurements: PM10, PM2.5, SO2, NO2 and O3,measured

in µg/m3, but note that not all stations have all of these. Pollutant mea-

surements were taken every 8 hours, starting at 8:00 CET. Pollutant data

were obtained from the European Monitoring and Evaluation Programme

(EMEP) for monitoring trans-boundary air pollution.

The log function was applied to pollution values because they are non-

negative and tend to have a long-tailed distribution. This transforms them

to a normal-like distribution as some models are known to perform better

19
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with normally distributed data. Also, MSE would be misleading with a

highly skewed distribution. To prevent negative pollution values we added

a bias of 1 to all pollution values: log(p + 1). Using this bias does not

change relative results between various methods and models, neither does

it affect source attribution visualization tests. The RCF methods does not

work with negative pollution values (never reaches threshold in certain cases)

and negative values do not make sense in this context anyway.

Backward air trajectories were computed by the Norwegian Institute for

Air Research (NILU) using the FLEXTRA model. These are 3-D, 7-days

backward trajectories with 3-h intervals, computed four times a day ending

at 00:00, 06:00, 12:00, and 18:00 UTC. The meteorological data originates

from the European Centre for Medium Range Weather Forcasts (ECMWF).

Their spatial resolution of is T106 (1.125 x 1.125 degrees), which is relatively

high, but not the highest resolution - in several studies, that focus on a single

station, higher resolution is used. We include in our analysis only the lowest

trajectories that arrive to stations at a few meters above ground, because at

this arrival height are expected to have the largest influence. Trajectories

also change from year to year. You can see an example of trajectories in

Figure 3.1.

3.2 Evaluation procedure

The simplest possible model is one which always naively predicts the mean

pollution. This approach does not require trajectories (and therefore any

transformation) and is used as a baseline for determining the usefulness of a

method.

To validate our daily prediction results we use cross-validation (CV).

Folds contain either daily or yearly groupings. We choose 5-fold daily CV,

where fold indices for each day is the repeating sequence 1 to 5 for all days

sorted by their date: 1, 2, 3, 4, 5, 1, 2, 3, ... The reason for this is long compu-

tation time. We used a per-year CV method for a subset of the data. This



3.2. EVALUATION PROCEDURE 21

(a) Iskrba (b) Zingst

(c) Illmitz (d) Illmitz trajectories for year 2000

(blue) and 2012 (red).

Figure 3.1: Trajectories visualizations (every 6-th trajectory for clarity).

gave us 15 folds, one fold for each year. The final results were better for

that subset, but the relative performance of the R2 metric between meth-

ods remained the same. For source attribution visualization, we trained the

models on all available data.
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3.3 Performance evaluation

We used the mean squared error and the coefficient of determination (or R2)

metrics:

R2 = 1− MSEmodel

MSEbaseline

, (3.1)

R2 of 1 means the model is perfect, 0 means it performs equal to baseline

and negative values mean it performs worse than baseline.

3.4 Implementation overview

To download trajectories we created a Python script which crawls and down-

loads all trajectory files to disk. A script in the R programming language

than further pre-processes trajectory data. The main part of the project is

implemented in R. We use the ’caret’ package and an optimized version of

carets’ blasso implementation, based on collaboration with Erik Štrumbelj’s

ongoing research project. We can describe our project as being made out of 4

parts: 1) data preprocessor, which merges pollution and trajectory data and

cleans it, 2) the main data learn/predict part, 3) result processor for cross

validation results and 4) visualization generator.

3.5 Model parameters

We use 500 trees for random forest. We tried increasing it to 1000 but it

increases the computation time too much so we used 500. The caret package

’mtry’ parameter for random forest was 200. We also tried different grid

sizes: 10 × 10, 20 × 20 and 30 × 30. For reasons discussed in Chapter 4 we

present results for 10× 10 grid.



Chapter 4

Results

In this chapter we present the results. For each approach we made several

test cases to see how prediction works on artificial data. We then show the

actual results on real data.

The XYZ method gave the best results in terms of prediction performance

but it did not give sensible results when visualized therefore we did not

include it in visualizations except to show how it looks. See Figure 6.6 for

results. Usually it displays a vertical or horizontal line.

4.1 Testing the model explanation methods

with artificial data

We needed to test all model explanation methods to see how well they per-

form on simple and more complex test cases. By creating artificial pollution

sources, we could then judge how well these methods work since we know

what the results would need to look like. These tests then serve as a bench-

mark for how much we can believe the visualized pollution regions of all

methods when using real data.

We have 3 tests cases. The first is a simple single-point pollution emitter

test (see Figure 4.1 a)). We pick a single point on the map with a longitude

and latitude radius of 1. All trajectories that pass through this area are

23
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given a certain amount of pollution based on how long they stay in this area.

This is the simplest test. For the second test (see Figure 6.1 a)) we also use

single-point pollution emitter as for test 1, but we create 4 of these points

instead of one. For the third test case we create a more realistic cloudy and

noisy pollution source region and see how well the models can predict it (see

Figure 6.2 a)).

Here we present test results using the Iskrba station trajectories. We

evaluated the results of test method visualization merely by visual inspection.

4.1.1 Single-point pollution emitter test

All models perform well on this most simple test. We can see the trailing

effect of the CF method in Figure 4.1 b). We can see that RCF fixes the

trailing effect in 4.1 c). Both CF and RCF have some noise in other cells while

our new methods, grid-blasso and grid-RF don’t. Our model explanation

method does, however, incorrectly show that the cell with the Iskrba station

is very unpolluted.

4.1.2 4-point pollution emitter test

The 4-point test in Figure 6.1 shows that our methods can potentially identify

multiple point source regions very accurately as there is no noise in the

visualization. CF and RCF on the other hand identify blurry regions around

the points. We can see that RCF is able to identify regions more sharply

than CF. The south-west point is less pronounced in some cases because

very few trajectories pass over it. Yet again our model explanation method

incorrectly identifies the Iskrba cell as very unpolluted.

4.1.3 Single-station cloudy pollution emitter dataset

test

We used a less localized, cloudy shape for this test. Real pollution data is

most likely not localized to such extremes as in the single-point and 4-point
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(a) Ground truth

●

Iskrba

(b) CF

●

Iskrba

(c) RCF

●

Iskrba

(d) Grid Blasso Direct

●

Iskrba

(e) Grid Blasso Explanation

●

Iskrba

(f) Grid RF

Figure 4.1: Single point test on Iskrba trajectories with log-log scale of phys-

ical units.

test, so because of that we consider this test as the most important one. In

Figure 6.2 we already come across the problem with visualization scale as it

ruins the visualization due to our methods assigning a very large pollution

value to the cell in which the Iskrba station resides. We also present this test

using a 10-rank visualization in Figure 6.3. We can see that even though CF

is very blurry, the underlying shape can be seen. RCF produces a noisier

image. Both grid-blasso explanation and grid-RF overestimate pollution in

the Iskrba station region. Both grid-blasso visualizations produce a very

noisy result. The grid-blasso explanation method overestimated pollution

in the Iskrba station region and underestimated it in the actual north-east

region, where the most polluted area is. From this we can see that grid-
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blasso direct may be a better choice between the two. This test may be

problematic due to the fact that not many Iskrba station trajectories pass

the most polluted area. This can be seen in Figure 3.1 a).

Because of that we made a second cloudy test for the Illmitz station which

you can see in Figures 6.4 and 6.5. The results are again not the best, but

the general shape is more or less captured by all methods, definitely better

than the Iskrba cloud test. The grid-blasso direct method of visualization

seems to be better again than the explanation version.

4.1.4 Multi-station cloudy pollution emitter dataset

test

We used the second cloudy shape to test the multi-station method. For

this we computed the test using the cloudy shape test trajectories for every

individual station and used that data with our multi-station method. From

Figures 6.7 and 6.8 we can see that grid-blasso methods work best, but still

a lot worse than we expected.

4.2 Pollution prediction results for single-

station methods

In this Section we present daily prediction result scores computed on real data

and we rank various results. We used data from 5 stations. Prediction results

vary between stations. It seems as if there are 2 groups of stations based

on prediction performance result: Illimtz, Westerland and Zingst stations

explain almost twice the amount of data than Iskrba and Svratouch. See

Figure 4.2 for Iskrba station results and Figure 4.3 for Zingst station results.

Iskrba belongs to the worst performing group, while Zingst belongs to the

better performing group. Plots for R2 also show the standard error as the

green interval on the top of each bar.
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Figure 4.2: Iskrba station R2 5-fold cross validation results. Note that xyz-

blasso results for NO2 and O3 are negative and thus not shown.

4.2.1 Ranking by pollutants

We wanted to know which pollutants could be best predicted by our models.

By ranking pollutants by their mean prediction results we can see which of
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Figure 4.3: Zingst station R2 5-fold cross validation results. Note that we

are missing Zingst PM2.5 data.

them are transported around the world by air mass movements and which

are more independent of it. We first computed the mean R2 metric across all

methods and model types and stations for each pollutant. These results are

presented in Table 4.1 It is known that particles are more easily transported

more through air than gasses, which may also explains why PM10 and PM2.5

have better results. In Tables 4.2, 4.3, 4.4, 4.5, 4.6 we show mean and

median pollutant concentration for each station. O3 also stands out as it has

the highest concentration of all pollutants, but has the poorest prediction

results.
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Table 4.1: Mean and median R2 ranking of pollutants across all methods and

stations.

Pollutant Type Mean Median

PM10 Particle 0.26 0.26

PM2.5 Particle 0.24 0.23

SO2 Gas 0.20 0.19

NO2 Gas 0.14 0.11

O3 Gas 0.12 0.16

Table 4.2: Mean and median PM10 pollutant concentration and R2 values.

Station Mean Conc. Median Conc. Mean R2 Median R2

Illmitz 3.05 3.05 0.32 0.32

Westerland 2.90 2.89 0.33 0.30

Svratouch 2.80 2.83 0.19 0.19

Zingst 2.72 2.67 0.30 0.28

Iskrba 2.67 2.69 0.17 0.17

Table 4.3: Mean and median PM2.5 pollutant concentration and R2 values.

Station Mean Conc. Median Conc. Mean R2 Median R2

Illmitz 2.78 2.74 0.30 0.29

Westerland NA NA NA NA

Svratouch NA NA NA NA

Zingst NA NA NA NA

Iskrba 2.42 2.43 0.19 0.17
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Table 4.4: Mean and median NO2 pollutant concentration and R2 values.

Station Mean Conc. Median Conc. Mean R2 Median R2

Illmitz 1.23 1.17 0.13 0.11

Westerland 1.07 1.00 0.32 0.32

Svratouch 1.14 1.06 0.04 0.05

Zingst 1.07 1.01 0.18 0.15

Iskrba 0.42 0.36 0.03 0.04

Table 4.5: Mean and median SO2 pollutant concentration and R2 values.

Station Mean Conc. Median Conc. Mean R2 Median R2

Illmitz 0.74 0.61 0.25 0.25

Westerland 0.45 0.35 0.17 0.17

Svratouch 0.99 0.83 0.17 0.16

Zingst 0.53 0.41 0.27 0.26

Iskrba 0.41 0.25 0.12 0.09

Table 4.6: Mean and median O3 pollutant concentration and R2 values.

Station Mean Conc. Median Conc. Mean R2 Median R2

Illmitz 4.03 4.16 0.11 0.11

Westerland 4.13 4.27 0.20 0.18

Svratouch 4.15 4.19 0.10 0.08

Zingst 4.00 4.11 0.19 0.18

Iskrba 3.95 4.02 0.01 0.12
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Table 4.7: Mean and median R2 ranking of methods across all pollutants and

stations.

Model Mean Median

CF 0.12 0.12

RCF 0.17 0.17

Grid Blasso 0.15 0.13

Grid RF 0.23 0.22

XYZ Blasso 0.14 0.17

XYZ RF 0.31 0.29

4.2.2 Ranking by methods and models

Here we present the mean R2 performance of all methods and models. See

Table 4.7. We can see that CF performed worst. RCF performed equally

well as both grid and XYZ blasso methods. Random forest models performed

best, especially the XYZ method which performed almost twice as good as

all other methods.

We tried increasing the grid size to see if it can any significant effect. The

20×20 and 40×40 grids did not prove to be any better than the 10×10 grid.

There was a very slight increase in performance using a 20 × 20 grid, it fell

well into the standard error range. The 40 × 40 actually showed decreased

performance, most likely due to overfitting.

4.2.3 Ranking by station performance

Here we present the mean R2 performance and pollution concentration for all

stations, see Tables 4.2, 4.3, 4.4, 4.5, 4.6. We see that Iskrba and Svratouch

almost always perform much worse than other stations. Iskrba is a backgound

station, therefore the pollution at it is less concentrated, which can attribute

to more noisy and uncertain results. We can also see that Iskrba indeed has

the lowest pollution concentration across all pollutants. We would also expect
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Svratouch to have very low concentrations as it gives very bad prediction

results, but that is not true. Westerland NO2 prediction result stands out,

as it is much better than others.

4.3 Pollution source attribution results for

single-station methods

In this Section we present the visualizations of pollution sources as computed

by our new and existing models. Note that we were not able to make XYZ

method visualization to work. This is a shame because it gives much better

prediction performance than other methods. In Section 4.1 we can see that

our models are not much better than existing methods in the more com-

plicated cloudy source test. See Figures 6.11 and 4.4 for PM10 results, as

this pollutant gives best prediction results. It is worth mentioning that the

random forest grid method changes quite a bit in some regions.

4.4 Pollution source attribution results for

multi-station methods

In this Section we present source attribution results for the multistation

model presented in Section 2.3.3. The multistation model does not sup-

port prediction of pollution because of the way data from multiple station

is merged together so we do now have any way of validating its results, for

that reason we cannot say how accurate these final results are. See Figures

6.9 and 6.10 for results. We can again that CF and RCF show the most

pollution in the south-east grid region. Grid-blasso direct is very noisy so we

cannot read any patterns from it. Grid-blass explanation and Grid-RF on

the other hand show the same pattern of highest pollution in the middle-top

to central region.



4.5. ADDITIONAL RESULTS 33

●

Zingst
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(b) RCF
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(c) Grid Blasso Direct
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●
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Figure 4.4: Zingst PM10 source attribution using existing and our new models

on real data. Using 10-rank visualization.

4.5 Additional results

See Figures 6.12, 6.13, 6.14, 6.15, 6.16, 6.17, 6.18 and 6.19 for additional

visualizations.
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Chapter 5

Discussion and conclusion

The final results of this work were disappointing as we expected our meth-

ods to work a lot better. Our methods work very well on the 4-point and

single-point tests, however, their performance on the cloud pollution test is

questionable. Blasso model is very noisy on these test images which is cause

for concern. RF is much less noisy. Increasing the grid size did not notably

affect results.

All methods show different source regions for certain pollutant types,

see Chapter 6, Figures 6.17 and 6.18 for an example which shows that SO2

comes from the south-eastern region of the grid, while NO2 comes from the

south-western region.

Multi-station tests in Section 4.1.4 shows that grid-blasso methods work

best, but no method really achieves results that could be said to be better

than single station source attribution.

These results presented in Table 4.1 match known data: O3 is not affected

by air masses very much, so it is logical that its prediction results are the

worst, even though it is the most highly concentrated pollutant. PM10 and

PM2.5 on the other hand are transported by air masses, so our results match

domain knowledge. We also noticed that pollutant’s R2 prediction results

do not increase with that pollutant’s concentration levels, which means that

some other factors play an important role in prediction performance.

35
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Using the RF model always gives better results than using blasso. Our

RF grid and XYZ methods were both better than existing methods, XYZ was

almost twice as good as CF and RCF. Unfortunately, we could not properly

visualize it. The fact that CF and RCF perform so poorly is alarming, since

they are the most commonly used methods in related work. This means that

many conclusions in related work which use CF and RCF are questionable.

Overall station prediction results can be placed in two classes, as some

stations give twice as good prediction results as others. We cannot make any

solid conclusions as to why that is. The only potential reason we can point

out is trajectory data, as the physical model used to compute them may give

very wrong results in certain unknown, but important regions. Note that

our trajectory data was not computed on a high resolution meteorological

field. Perhaps results would be better if we were to use trajectories from a

higher resolution meteorological field, while using a grid that covers a smaller

area, since pollution near the station has a greater effect on daily pollution

concentration. Also note that the longer the trajectory is, the larger the

probability of it being wrong, as it computed using a physical model. So

the further away we go from the station, the larger the probability that we

attributed pollution to the wrong source region.

The single station methods in Section 4.3 do show something potentially

interesting: in Figure 4.4 our new methods show a very different pollution

region that CF and RCF. Our methods show the pollution sources to be

near the Zingst station, while CF and RCF show pollution source to be at the

south-east of the grid. This may be a very important observation from which

we could conclude that CF and RCF are better at showing approximations

of actual sources of pollution, while our methods could be better at telling

us how more localized air mass movement or terrain profile or other natural

or artificial formations near the station affect pollution levels in the air. This

may explain why our grid and XYZ methods predict daily pollution better

than CF and RCF: pollution far away from the station does not affect the

pollution concentration for the current day, while pollution closer to the
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station has a much greater effect. Grid-blasso direct and and grid-blasso

explanation do not change and both are very noisy compared to grid-RF.

Our results for the Iskrba station match known results: that most pollu-

tion comes to Slovenia from the north-east and south regions, we know this

from [23].

Because all methods give quite bad results, we cannot conclude if the

noise in our methods is really noise or potential regions where the majority

of pollution comes from.

If we would have to choose which visualizations to use we would go with

CF, RCF and grid-RF. CF and RCF combined could be used to determine

far away source regions, grid-RF would be used to determine important local

regions. Grid-blasso gives to noisy results to be considered useful.

We cannot make any solid conclusions about the multi-station model in

Section 4.4. At most we can say that it works as good as single-station

methods.

We were not able to discern the main reason for this poor performance.

Reasons could be any of the following:

• Inaccurate trajectory data. Our trajectories were not made on high

resolutions fields.

• Extreme seasonal variation due to changing of air mass movements

between years, see Figure 3.1 d).

• Changing of the environment (construction of factories, urbanization,

deforestation,...).

• Pollutants are more independent of air mass movement than we thought

(eg. pollutants mix between air mass currents and stay in the atmo-

sphere longer). This would invalidate all models as they assume pollu-

tants are carried only by air mass currents.

• We do not take in account dispersion and turbulence, though they may

be the reason for poor performance, as stated by Scheifinger and Kaiser
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[27].

Some of the results of this thesis have been published in [25].

5.1 Future work

Using very accurate trajectory data may be crucial in getting better results.

Using trajectories from a higher resolution meteorological field combined with

a cell grid covering a smaller area may thus give better results. Our models

also learn on data from multiple years, which may be problematic due to sea-

sonal variation of the weather, so models that could take that into account

may be required. Models that could take in account dispersion and/or tur-

bulent movement of particles could also be tested. Visualization of the XYZ

method may shed some new light on pollution sources since it performed

twice as good as other methods. A more complex multi-station model could

be more resilient to the inherent trajectory inaccuracies.
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[25] Ropret, M., Gašparac, G., Štrumbelj, E.: Pollution source attribution

using air mass back-trajectories : a machine learning approach. In:

Zajc, T. (ed.) Zbornik petindvajsete mednarodne Elektrotehnǐske in
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Chapter 6

Appendix

(a) Ground truth

●

Iskrba

(b) CF

●

Iskrba

(c) RCF

●

Iskrba

(d) Grid Blasso Direct

●

Iskrba

(e) Grid Blasso Explanation

●

Iskrba

(f) Grid RF

Figure 6.1: The 4 point test on Iskrba trajectories with log-log scale of phys-

ical units.
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(a) Ground truth

●

Iskrba

(b) CF

●

Iskrba

(c) RCF

●

Iskrba

(d) Grid Blasso Direct

●

Iskrba

(e) Grid Blasso Explanation

●

Iskrba

(f) Grid RF

Figure 6.2: Complex cloudy shape test on Iskrba trajectories with log-log

scale of physical units.
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(a) Ground truth

●

Iskrba

(b) CF

●

Iskrba

(c) RCF

●

Iskrba

(d) Grid Blasso Direct

●

Iskrba

(e) Grid Blasso Explanation

●

Iskrba

(f) Grid RF

Figure 6.3: Complex cloudy shape test on Iskrba trajectories using 10-class

rank visualization.
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(a) Ground truth

●

Illmitz

(b) CF

●

Illmitz

(c) RCF

●

Illmitz

(d) Grid Blasso Direct
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●
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(f) Grid RF

Figure 6.4: The second complex cloudy shape test on Illmitz trajectories

using log-log scale of physical units and clamping the highest and lowest 10-th

percentile values to their extremes, see Section 2.4 for percentile explanation.
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(d) Grid Blasso Direct
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Figure 6.5: The second complex cloudy shape test on Illmitz trajectories

using 10-class rank visualization.
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●

Westerland

(a) XYZ problem

Figure 6.6: Westerland XYZ method. This is how XYZ visualizations typi-

cally look like: a horizontal or vertical line shows up.
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(a) Ground truth (b) CF (c) RCF

(d) Grid blasso direct (e) Grid blasso explanation (f) Grid RF

Figure 6.7: Multistation test using log-log scale and clamping the 10-th per-

centile of the most extreme values.
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(a) Ground truth (b) CF (c) RCF

(d) Grid blasso direct (e) Grid blasso explanation (f) Grid RF

Figure 6.8: Multistation test using 10-rank visualization.
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(a) CF (b) RCF

(c) Grid Blasso Direct (d) Grid Blasso Explanation (e) Grid RF

Figure 6.9: Multistation results using log-log scale and clamping the 10-th

percentile of the most extreme values.
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(a) CF (b) RCF

(c) Grid Blasso Direct (d) Grid Blasso Explanation (e) Grid RF

Figure 6.10: Multistation results using 10-rank visualization.



55

●

Iskrba

(a) CF
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(c) Grid Blasso Direct

●
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(d) Grid Blasso Explanation

●
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(e) Grid RF

Figure 6.11: Iskrba PM10 source attribution using existing and our new mod-

els on real data. Using 10-rank visualization.
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●

Illmitz

(a) CF

●

Illmitz

(b) Grid RF

Figure 6.12: Illmitz 10-rank single-station PM2.5 visualization.
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(a) CF

●

Illmitz

(b) Grid RF

Figure 6.13: Illmitz 10-rank single-station SO2 visualization.



57

●

Illmitz

(a) CF

●

Illmitz

(b) Grid RF

Figure 6.14: Illmitz 10-rank single-station NO2 visualization.
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●

Illmitz

(b) Grid RF

Figure 6.15: Illmitz 10-rank single-station O3 visualization.
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●

Westerland

(a) CF

●

Westerland

(b) Grid RF

Figure 6.16: Westerland 10-rank single-station PM10 visualization.
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(a) CF

●

Westerland

(b) Grid RF

Figure 6.17: Westerland 10-rank single-station SO2 visualization.
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Westerland

(a) CF

●

Westerland

(b) Grid RF

Figure 6.18: Westerland 10-rank single-station NO2 visualization.
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Westerland

(a) CF

●

Westerland

(b) Grid RF

Figure 6.19: Westerland 10-rank single-station O3 visualization.
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