
Univerza v Ljubljani

Fakulteta za računalnǐstvo in informatiko

Matija Rezar

Sestavljanje genoma iz odčitkov

zaporedja

MAGISTRSKO DELO

ŠTUDIJSKI PROGRAM DRUGE STOPNJE

RAČUNALNIŠTVO IN INFORMATIKA

Mentor: dr. Andrej Brodnik

Ljubljana, 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ePrints.FRI

https://core.ac.uk/display/77923652?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

University of Ljubljana

Faculty of Computer and Information Science

Matija Rezar

Genome assembly from sequence

reads

Master’s Thesis

2nd cycle Masters Study programme

Computer and Information Science

Supervisor: dr. Andrej Brodnik

Ljubljana, 2016

Povzetek

V grobem lahko postopek sestavljanja genoma opǐsemo kot iskanje Eulerjevih

obhodov v de Bruijnovih grafih. V nalogi povzamemo teorijo podatkovnih

struktur za predstavitev (de Bruijnovih) grafov in opǐsemo nekaj implementa-

cij. Nato predstavimo kBWT, novo deterministično podatkovno strukturo za

predstavitev de Bruijnovih grafov, ki uporablja skoraj optimalnih n ·σ+o(n)

bitov pomnilnika, kjer je n število k-merov v grafu in σ velikost abecede. Po-

datke o sosednosti vozlǐsča lahko v njej najdemo v Θ (σ · k) časa. Strukturo
primerjamo z obstoječo podatkovno strukturo ogrodja GATB, ki je osno-

vana na Bloomovih filtrih. Preizkusi kažejo, da je deterministični kBWT

pričakovano počasneǰsi od podatkovne strukture ogrodja GATB. Pokazalo

pa se je, da kBWT bolj učinkovito izrablja predpomnilnik, vendar to ni na-

domestilo porabe procesorskega časa.

Ključne besede: genom, sestavljanje genoma, teorija grafov, de Bruijnov

graf, Eulerjev obhod.

Abstract

Title: Genome assembly from sequence reads

Assembling genomes can be roughly described as finding Eulerian tours in

de Bruijn graphs. We explain the theory behind (de Bruijn) graph data struc-

tures and describe some of the implementations. Then we present kBWT, a

new space-efficient deterministic data structure for storing a de Bruijn graph,

which uses near-optimal n ·σ+o(n) bits of memory, where n is the number of

k-grams in the graph and σ is the size of the alphabet. It can retrieve neigh-

borhood information for a given node in Θ (σ · k) time. We also compare it

to an existing data structure found in the GATB framework, which is based

on Bloom filters and therefore probabilistic. Benchmarks of the determinis-

tic kBWT show it is slower in practice, compared to GATB’s data structure.

Evaluation showed kBWT had better cache efficiency, which did not make

up for the number of processor cycles used for executing the algorithm.

Keywords: genome, genome assembly, graph theory, de Bruijn graph, Eu-

lerian tour.

Copyright. The results of this master’s thesis are the intellectual property of the author

and the Faculty of Computer and Information Science, University of Ljubljana. For the

publication or exploitation of the master’s thesis results, a written consent of the author,

the Faculty of Computer and Information Science, and the supervisor is necessary.

c⃝2016 Matija Rezar

Zahvaljujem se svoji družini, ki me je pri študiju podpirala, svojemu men-

torju, ki sem mu življenje skraǰsal vsaj za kakšno leto, Matevžu ker mi je

pomagal pri bolj nerodnih stavkih tikparskin napakah, in vejicah ter Gašperju

za splošno moralno podporo.

Contents

Povzetek

Abstract

Sestavljanje genoma iz odčitkov zaporedja

1 Introduction 1

1.1 From genome to genome—the theory 2

1.2 From genome to genome—the practice 4

1.3 Our contribution . 4

1.4 Thesis structure . 5

2 De Bruijn graph and Eulerian tour 7

2.1 Definitions . 7

2.2 Regular de Bruijn graph . 9

2.3 De Bruijn graph of a text . 11

2.4 Data structures . 13

2.5 Eulerian tour . 18

3 Genome sequencing and assembly 27

3.1 Sequencing technologies . 28

3.2 Genome data . 30

3.3 Assembly process overview . 33

3.4 Contiging . 35

4 Space-efficient representation of a de Bruijn graph 39

4.1 Burrows-Wheeler transform 39

4.2 k-mer Burrows-Wheeler transform 43

4.3 Implementation . 48

4.4 Benchmarking . 50

4.5 Discussion . 51

5 Conclusions 55

A Example of the PRAM Eulerian tour algorithm 57

Sestavljanje genoma iz odčitkov

zaporedja

Uvod

Genom je zaporedje, ki opisuje razvoj in lastnosti živih bitij. Obstoječe

tehnologije ne omogočajo, da bi genom prebrali od začetka do konca v enem

kosu, zato ga beremo po delih. Slika 1.1 na strani 3 prikazuje postopek

branja in sestavljanja. Dano DNK molekulo (Slika 1.1a) večkrat kopiramo

(Slika 1.1b). Nato kopije razbijemo na kraǰse odseke (Slika 1.1c). Ti odseki

so dovolj kratki, da jih lahko preberemo v t.i. odčitke (Slika 1.1d).

Odčitke sedaj s pomočjo računalnika sestavimo v zaporedje, ki predstavlja

celoten genom. Najprej odčitke presejemo in očistimo: odstranimo nizko-

kvalitetne odčitke, odrežemo nizko-kvalitetne dele odčitkov, itd. Nato med

odčitki poǐsčemo prekrivanja (Slika 1.1e) in jih glede na ujemanje poravnamo.

Za predstavitev prekrivanj se navadno uporabljajo grafi. V preteklosti je bil

to graf prekrivanja [26], danes pa se uporablja de Bruijnov graf. Graf lahko

prebolikujemo na različne načine, ki običajno poskušajo popraviti napake,

ki so se zgodile v postopku branja (za kratek opis postopkov preoblikovanja

glej stran 34). Na koncu vse skupaj združimo v eno predstavitev celotnega

genoma (Slika 1.1f).

De Bruijnov graf je definiran kot usmerjen graf, kjer so vozlǐsča označena

z nizi dolžine k. Povezave potekajo od vozlǐsč s pripono dolžine k − 1, proti

vozlǐsčem z enako predpono dolžine k − 1. Oznake povezav so zadnje črke

ponornih vozlǐsč.

Iz genoma lahko sestavimo delen de Bruijnov graf tako, da najprej v

genomu poǐsčemo vse podnize dolžine k, imenovane tudi k-meri, ki se v njem

pojavljajo. Vrednost k moramo izbrati tako, da se vsak podniz dolžine k+1 v

genomu, ki je navadno veliko dalǰsi kot k, pojavi največ enkrat1. To pomeni,

da vsaka povezava v grafu predstavlja natanko en znak v genomu. Nato iz k-

merov naredimo vozlǐsča in jih povežemo kjer se pripone in predpone ujemajo.

Genom sedaj predstavlja Eulerjev obhod grafa. Če sledimo povezavam v

enakem vrsten redu, kot si njihove oznake sledijo ena drugi v genomu, bomo

obšli vse povezave. Intuicija postopkov za sestavljanje gre v nasprotni smeri.

Iz odčitkov razberemo, kateri k-meri se pojavljajo v genomu, nato iz njih

zgradimo graf in v njem poǐsčemo Eulerjev obhod, torej izvorni genom.

Velikosti genomov so različne. Virusni so sestavljeni iz nekaj tisoč baznih

parov (bp), medtem ko rastlinski dosegajo tudi več kot sto milijard baznih

parov (tudi do 150Gbp). Človeški genom je sestavljen iz 3 do 4 Gbp, med

tem ko se bakterijski gibajo okrog 5Mbp.

Posledično graf genoma, kot je na primer človeški, vsebuje približno 3

milijarde vozlǐsč. Če vsako vozlǐsče predstavimo kot svoj objekt, za to po-

trebujemo 2 · k bitov za predstavitev njegovega k-mera in 8 · 64 bitov za

predstavitev njegovih povezav. Za k = 31 človeški genom tako zaseda

(2 · 31 + 8 · 64) · 3 · 109 bitov ali okrog 72GB. Že to je preveč za glavni

pomnilnik običajnega računalnika, za kvalitetno sestavljanje pa potrebujemo

še dodatne podatke o vozlǐsčih, kot so na primer frekvence k-merov v vho-

dnih podatkih. Očitno je, da za sestavljanje potrebujemo bolj učinkovite

podatkovne strukture.

De Bruijnov graf

De Bruijnov graf je usmerjen graf, kjer so vozlǐsča nizi dolžine k sestavljeni

iz znakov neke abecede. Na primer, za abecedo Σ = (A,C,T,G), velikosti

1Zaradi nadaljnih postopkov želimo imeti graf in ne hipergrafa.

|Σ| = σ = 4, ki se uporablja pri genomih, in k = 2 so vozlǐsča regularnega

de Bruijnovega grafa označena z:

V = {AA,AC,AT,AG,CA,CC,CT,CG,TA,TC,TT,TG,GA,GC,GT,GG} .

Kasneje bomo spoznali še delni de Bruijnov graf. Na Sliki 2.1 na strani 10 je

primer regularnega de Bruijnovega grafa za abecedo Σ = {0, 1} in k = 2.

Kot smo omenili prej, povezave grafa tečejo od vozlǐsč z neko pripono

dolžine k−1 proti vozlǐsčem z enako predpono dolžine k−1. Oznake povezav

so zadnji znaki ciljnih vozlǐsč. Na primer, iz vozlǐsča ACAGT poteka povezava

v vozlǐsče CAGTG in je označena z znakom G. Če poznamo oznako nekega

vozlǐsča in oznako izhodne povezave, lahko vnaprej ugotovimo, kakšna bo

oznaka vozlǐsča, do katerega bomo prǐsli po dani povezavi. Graf je regularen

(vsa vozlǐsča imajo enako vhodno in izhodno stopnjo), saj imajo vsa vozlǐsča

natanko σ vhodnih in izhodnih povezav.

Eulerjev obhod takega grafa nam omogoča, da sestavimo niz iz dane abe-

cede, ki kot podnize vsebuje vse nize dolžine k + 1. Tak niz je dolg σk+1, če

ga obravnavamo kot krožen niz, oziroma k + σk+1, če želimo običajen niz.

Za namene sestavljanja genomov uporabljamo delni de Bruijnov graf.

Kot vozlǐsča uporabimo vse k-terice, ki jih najdemo v vhodnih podatkih.

Povezave ustvarimo na enak način, kot pri regularnem de Bruijnovem grafu.

Na Sliki 2.2 na strani 11 je primer delnega de Bruijnovega grafa za genom

CAGGAGGATTA. Opazimo lahko, da manjka večina od 256-ih vozlǐsč, ki bi

bila prisotna v regularnem de Bruijnovem grafu za k = 4.

Razlog za uporabo de Bruijnovega grafa je naslednji: če bi imeli polni

genom in bi iz njega sestavili de Bruijnov graf, bi nam genom predstavljal

Eulerjev obhod grafa. Če gremo v nasprotno smer, torej sestavimo graf

iz odčitkov genoma in poǐsčemo obhod tega grafa, bi morali dobiti nazaj

genom. V praksi le redko dobimo Eulerjev obhod in iz grafa lahko sestavimo

le dele genoma. Vseeno je bila ta ideja dobra odskočna deska za vse sodobne

sestavljalnike.

Eulerjev obhod

Ideja Eulerjevega obhoda je pomembna za sestavljanje genomov, zato smo

raziskali algoritme za iskanje Eulerjevih obhodov v usmerjenih grafih.

Zaporeden algoritem je znan že zelo dolgo. Deluje tako, da poǐsče osnoven

obhod, nato pa iz preostalih povezav sestavlja obhode in jih priključuje ob-

stoječemu, dokler niso vse povezave porabljene. Ideja vzporednega algoritma

je podobna. Najprej poǐsče povezavno-disjunktne cikle, ki jih nato združi v

en obhod.

Zanimiva težava se pojavi, ko si dva cikla v grafu delita vozlǐsče. Za

namen Eulerjevega obhoda ni pomembno v kakšnem vrstnem redu obǐsčemo

ta dva cikla. Pri genomu pa je pomembno kakšno je zaporedje, saj le eno

zaporedje da pravilno rešitev. To lahko rešimo tako, da pogledamo kam se

v grafu usmerjajo odčitki. Odčitek lahko preslikamo v pot v grafu, glede na

zaporedje k-merov v njem. Če ta pot zavije na neko vejo v grafu, mora tako

pot ubrati tudi Eulerjev obhod, iz katerega nameravamo sestaviti genom.

Ker se pri branju genoma dogajajo napake, se lahko zgodi, da graf ni

Eulerjevski. V tem primeru Eulerjevega obhoda ne moremo najti in moramo

genom izluščiti na drugačen način. Metode za reševanje tega problema na-

vadno uporabljajo idejo algoritmov za iskanje Eulerjevega obhoda in ǐsčejo

dolge poti v grafu.

Obstoječe rešitve

V splošnem se strukture za predstavitev de Bruijnovih grafov delijo v dve

kategoriji: navigacijske podatkovne strukture, ki podpirajo sprehajanje po

vozlǐsčih grafa, in slovarske podatkovne strukture, ki omogočajo poizvedbe

o prisotnosti vozlǐsč v grafu. Mogoče je pokazati, da so slovarske podat-

kovne strukture tudi navigacijske. Definicija de Bruijnovega grafa omogoča

ugibanje sosednjih vozlǐsč, katerih prisotnost lahko preverjamo v slovarski

strukturi.

Najbolj preprost način predstavitve grafa je običajen objekt ali C-jevska

eksplicitna struktura, ki vsebuje niz za opisovanje k-terice ter 8 referenc na

sosednja vozlǐsča. Tak zapis je prostorsko relativno neučinkovit in ni primeren

za večje genome, saj je prostor, ki ga po eni strani zasedejo reference in po

drugi oznaka vozlǐsča, zelo velik.

Večina grafa bo zgrajena iz preprostih zaporedij vozlǐsč brez vejitev, ki

jih lahko stisnemo v eno dolgo vozlǐsče. Tak način zapisa grafa uporablja

sestavljalnik Velvet [38]. Sestavljalnik SOAPdenovo2 [25] gre korak dlje in

namesto enega znaka na povezavo povezavam dodeli dalǰsa zaporedja in s

tem prihrani prostor [37].

Učinkoviteǰsega načina se poslužujeta ogrodje GATB [13] in sestavljal-

nik Minia [10]. Uporabljata Bloomov filter, ki omogoča hitro in učinkovito

preverjanje pripadnosti množici, v kombinaciji z množico lažnih pozitivnih

elementov.

Nekateri drugi načini zapisa grafa so osnovani na transformaciji Burrows-

Wheeler (BWT) in sorodnem kazalu FM, ki besedilo preslika v obliko, ki je

bolj stisljiva, hkrati pa omogoča hitro iskanje po besedilu [16]. Tak način

zapisa uporablja implementacija DBGFM [11]. Podobna je tudi struktura

opisana v [5], ki je osnovana na sorodni transformaciji XBW.

Na področju praktičnih algoritmov za gradnjo sosesk je vredno omeniti

BCALM [11], ki iz odčitkov gradi dalǰse verige, in Omnitigs [36], ki iz grafa

sestavi tako imenovane varne nize. Varni nizi so nizi, ki se glede na graf

zagotovo pojavljajo v vseh rekonstrukcijah genoma. Omnitigs varne nize

ǐsče tako, da sestavlja poti, ki se ne vračajo nazaj na ista vozlǐsča. Tako se

izogne težavam s cikli.

Prostorsko-učinkovita podatkova struktura za

predstavitev de Bruijnovega grafa

V nalogi predstavljamo novo podatkovno strukturo, imenovano kBWT. Po-

datkovna struktura omogoča iskanje po množici k-merov iz besedila v O (k)

času. Pri tem porabi σ · n + o(n) bitov prostora, kjer je σ velikost abecede

in n število k-merov v grafu.

Genom je besedilo z abecedo Σ = {A,C,G,T} velikosti σ = 4. Besedilo je

dolgo nekaj tisoč, do več milijard zankov (odvisno od velikosti genoma).

Pri gradnji strukture najprej k začetku besedila T pripnemo znak $, ter

koncu dodamo k znakov $, da dobimo T ′. Nato naredimo množico vseh

k + 1-teric v T ′.

Elemente množice uredimo v seznam glede na pripono dolžine k, oziroma,

kjer je ta enaka, glede na prvi znak. Nato zaporedja k + 1-teric, ki imajo

enako pripono dolžine k, združimo v eno k + 1-terico. Prvi znak dobljene

k + 1-terice je iz nove abecede in vsebuje podatke o tem, kateri prvi znaki

k + 1-teric so bili prisotni. To lahko predstavimo kot bitni vektor v velikosti

abecede, kjer vsak bit predstavlja en znak. Znak $ se pretvori v vektor ničel,

zaporedje k+1-teric, kjer sta prisotna A in T dobi kot prvi znak sedaj 01012,

itd. Sedaj k + 1-terice predstavljajo vozlǐsča v grafu. Prvi znak predstavlja

vhodne povezave vozlǐsča, zadnjih k znakov predstavlja oznako vozlǐsča.

Zadnja sprememba je, da prve znake zaporedij k+1-teric, ki imajo enakih

srednjih k − 1 znakov, zapǐsemo v prvi člen zaporedja. Ostalim prvi znak

nastavimo na 0000. To storimo, ker so vse k-terice, ki so povezane na eno

od k-teric v zaporedju, povezane tudi na ostale, torej imajo vozlǐsča enake

sosede glede na vhodne povezave.

Prvi znaki naših k + 1-teric sedaj tvorijo preoblikovano besedilo. Po njih

lahko ǐsčemo z Algoritmom 4.2 na strani 46, ki je podoben algoritmu v [16].

Zaključki

Našo podatkovno strukturo smo primerjali s podatkovno strukturo ogrodja

GATB, ki je osnovana na Bloomovih filtrih. Algoritem, ki ga uporablja

kBWT, opravi k obhodov zanke. Ob vsakem obhodu mora opraviti dve

operaciji rank, za kateri je potrebno iz bitnega vektorja rekonstruirati dva

2Celoten vektor skupaj jemljemo kot en znak. Predstavitev v obliki bitov je le za bolǰsi

prikaz.

bloka. Po drugi strani Bloomov filter izračuna d zgoščevalnih funkcij in poǐsče

teh d bitov v svojem bitnem vektorju. Ker je d≪ k in ker so operacije rank

zelo drage, se je pričakovano naša podatkovna struktura odrezala slabše.

Pri preizkušanju s Cachegrind-om se je pokazalo, da naša stuktura pov-

zroči manj zgrešitev v predpomnilniku. To je v skladu s pričakovanji, saj

kBWT iskanje vedno začenja na dveh od petih mogočih točk, medtem ko

Bloomov filter skoraj zagotovo povzroči zgrešitev ob vsakem vpogledu v bit-

ni vektor. Bolǰsa izraba predpomnilnika žal ni nadomestila večje porabe

procesorskega časa, ki ga je potreboval kBWT.

Struktura kBWT porabi tudi več prostora, kot struktura ogrodja GATB.

Slednja bolj učinkovito izloča nepotrebne k-mere, kar je verjeten razlog za

povečano porabo pomnilnika in bi ga tudi veljalo izbolǰsati. Ob gradnji

grafa se želimo znebiti manj pogostih k-merov, saj gre verjetno za napake,

hkrati pa ti k-meri zavzemajo prostor. Pri Bloomovih filtrih je to preprosto,

saj manj pogostih k-merov enostavno ne dodamo v množico. Pri kBWT se

pojavi težava, saj naš algoritem za iskanje zahteva, da so v strukturi prisote

vse pripone vseh k-merov. Navadno za pripone danega k-mera poskrbijo

predpone ostalih k-merov. Najbolj enostavno je, da obdržimo manj pogoste

k-mere za namene iskanja in jih označimo, kar poveča podatkovno strukturo

za 1 bit na k-mer. Na žalost s tem ne prihranimo prostora. Druga možnost je,

da dodamo vse predpone k-mera, ki ga želimo odstraniti, in jih dopolnimo do

dolžine k z znaki $. Tudi tu verjetno ne bi prihranili veliko prostora. Zadnja

možnost je, da preverimo katerim k-merom je potrebno priskrbeti pripone.

To bi bilo računsko zelo zahtevno. Verjetno bi potrebovali nekakšen slovar

k-merov, kar pa je natanko problem, ki ga kBWT poskuša rešiti. V naši

implementaciji smo redke k-mere obdržali. Posebej smo obravnavali le k-

mere na koncu odčitkov, ki so kandidati za k-mere brez prisotnih pripon.

Učinkovita uporaba predpomnilnika običajno močno prispeva k praktični

hitrosti delovanja algoritma, zato je strukture osnovane na BWT vredno raz-

vijati naprej. Učinkoviteǰse strukture omogočajo uporabo bolj kompleksnih

algoritmov, kar lahko pripelje do bolj kvalitetno sestavljenih genomov.

Chapter 1

Introduction

DNA molecules are the blueprints for life on Earth [1]. They are found in

every organism and control its development and functioning from before it is

born, until death. Some parts of DNA encode sequences of amino acids which

are assembled into various proteins, the building blocks of living organisms.

Other parts of the DNA control which proteins get synthesized and when [3].

The DNA strand consists of a sequence of smaller molecules called nu-

cleotides or base pairs (bp). The precise sequence of nucleotides is unique to

each living organism, but many may share large portions of it. Parts that

represent common proteins, for instance, are shared even between different

species. Other sections, e.g., those controlling cell division, may be specific

to a small group, making them more susceptible to changes and consequently

cancer. A portion of a genome that encodes a specific function is called a

gene. The complete genetic information of an individual is that individual’s

genome [1]. Genomes vary in size, from ∼2000 bp virus genomes to more

than 100Gbp (100 billion base pair) plant genomes. Human genomes clock

in at 3Gbp to 4Gbp and bacterial genomes at around 5Mbp [1, 24].

1

2 CHAPTER 1. INTRODUCTION

1.1 From genome to genome—the theory

No currently available technology can read a complete genome from start

to finish. The best machines may manage a small virus, but most can read

around 100 bp at a time. To create a representation of the whole genome,

the genome is read piecemeal and then assembled back together. We start

with a genome in the form of a DNA molecule (Figure 1.1a). The genome is

cloned (Figure 1.1b) tens to hundreds of times, sometimes even more. The

clones are then split at various points into short pieces (Figure 1.1c). The

overlap of those pieces from multiple copies of the genome allows us to later

reassemble the genome, using a computer. The pieces are read, producing

so called reads (Figure 1.1d), which the computer can process. Next, we

algorithmically align those pieces on the parts that overlap (Figure 1.1e).

Finally, we merge the reads into the electronic representation of the genome

(Figure 1.1f). This process can be very demanding due to the large amount

of data involved.

To help with the alignment process, a type of directed graph, called a

de Bruijn graph, is used to map the pieces and their relations to each other.

A de Bruijn graph’s vertices are labeled with fixed-length strings, called k-

mers, that were found in the reads of the genome. The edges connect vertices

where the last k − 1 characters of the source vertex label matches the first

k − 1 characters of the destination vertex label. The edges are labeled using

the last character of the destination vertex label. Consequently, the label of

the destination of an edge can be computed, by appending the edge label to

the label of the source vertex.

If we construct a de Bruijn graph with all 4k possible k-mers1 and find

an Eulerian tour in it, the concatenation of the labels of edges along the

tour produces the shortest string, that contains every possible k+1-mer as a

substring. On the other hand, if we construct a de Bruijn graph from k-mers

found in a single genome, we also automatically get it’s Eulerian tour: it

1We use 4 here as there are four possible nucleotides.

1.1. FROM GENOME TO GENOME—THE THEORY 3

(a) Original DNA strand. (b) DNA is cloned.

(c) Clones are divided into frag-

ments. (d) Fragments are read.

(e) Reads are aligned according

to their overlaps.

(f) Genome is reconstructed from

the alignment.

Figure 1.1: Illustration of the genome assembly process.

4 CHAPTER 1. INTRODUCTION

is the walk we traverse by starting in the first k-mer of the genome, then

following edges as their labels appear in the genome. The idea of a genome

assembly using de Bruijn graphs is thus: if we build a de Bruijn graph from

k-mers found in the reads of a genome, we can reconstruct the genome by

finding the Eulerian tour of the graph.

1.2 From genome to genome—the practice

Although in theory, the genome in the form of a de Bruijn graph can be

reconstructed using an Eulerian tour of the graph, in practice, the data ob-

tained from the sequencer usually contain errors, which deform the graph

in such a way that it does not contain an Eulerian tour anymore. Conse-

quently, various techniques have been developed to remove those errors from

the graph. They generally can not remove all the errors and often remove

non-errors. The most crude methods merely involve removing parts of the

graph, that seldom appear in the input data. More sophisticated algorithms

look for certain subgraphs in the graph and attempt to transform them to

remove the errors.

Another issue of a more technical nature is the sheer amount of data

involved. For instance, a human genome multiplied 30 times consists of

30 · 4 · 109 bases. With 2 bits required to encode a base this means 120 · 109

bits or 15 GB of raw data has to be stored in the main memory of a computer.

To represent that data as a graph, additional memory is required.

1.3 Our contribution

In the thesis we present a new Burrows-Wheeler transform (BWT) based

data structure, which we call kBWT. It is constructed by sorting a set of

all k-mers that appear in the genome and indexing them. Due to the way

they overlap, they behave in much the same way as rotations in BWT, which

allows us to search through them in Θ (k) time.

1.4. THESIS STRUCTURE 5

We considered implementing our data structure into Velvet [38], but even-

tually decided to implement it for GATB [13] instead. GATB is a bioinfor-

matics framework designed to be modular and as such presented a much

simpler interface for implementing de Bruijn graph data structures.

1.4 Thesis structure

First, we describe the theory behind the algorithms and discrete structures

used in genome assembly, specifically: de Bruijn graphs and Eulerian tours

in § 2.
In § 3 we look at how genomes are sequenced and the challenges associated

with genome assembly. We will approach the subject mostly from the point

of view of computer science, but some domain-specific knowledge is required.

We briefly describe what genomes are, some terminology used when working

with them and how data about them is acquired. We then outline the basic

process of genome assembly and show how it combines de Bruijn graphs and

Eulerien tours.

In § 4 we present a new data structure used to represent a de Bruijn

graph, kBWT. We also perform benchmarks and compare it to the original

data structure used in GATB.

Chapter 2

De Bruijn graph and Eulerian

tour

A de Bruijn graph is the primary discrete structure used in contemporary

genome assemblers. In this chapter we will first define some terms, then we

will talk about de Bruijn graphs and describe how they are used in genomics.

Lastly we will examine some examples of different data structures used to

represent it.

2.1 Definitions

Graph We use the term graph to either mean a directed graph or

specifically a de Bruijn graph, unless explicitly stated.

A directed graph G (V,E) consists of a set of vertices (also called

nodes) V and a set of edges E. Each vertex v ∈ V has a label label(v).

Each edge is an ordered pair (u, v), meaning there is a directed connection

going from vertex u to vertex v. Every edge also has a label((u, v)).

We define indegree(v) = |{e ∈ E | e = (u, v)}| to be the number of edges

going into v and outdegree(v) = |{e ∈ E | e = (v, u)}| the number of edges

leaving v.

7

8 CHAPTER 2. DE BRUIJN GRAPH AND EULERIAN TOUR

Alphabet An alphabet is a finite set of characters that form a text.

Further, a text or a string is a finite series of characters from an alphabet.

We use Σ to denote the alphabet and σ = |Σ|. With Σk we denote a set

of all strings of length k from an alphabet Σ, also called k-grams. We use

k-grams to represent k-mers of the genome. A special case is Σ0 = {ϵ}, which
represents an empty string. Finally, Σ∗ =

⋃∞
k=0Σ

k is the set of all texts with

alphabet Σ.

Lower case letters from the beginning of the English alphabet (a, b, c, . . .)

denote characters from an alphabet, while lower case letters from the end of

the alphabet (w, x, y, . . .) denote strings. If we want to concatenate charac-

ters, we write them one after another w = ab. Same goes for concatenat-

ing strings and characters, x = aw or y = wa, and concatenating strings:

z = xy = aababa. Sometimes, to make it clearer, we use · to explicitly de-

note concatenation, e.g., a · b. Operator len(w) is used to describe the length

of a string. Function prefixk(w) represents the first k characters of w and

suffixk(w) the last k characters of w.

In our solution we require the characters of the alphabet to be totally

ordered, which means there exists a relation ≤ such that the following

statements are true:

• a ≤ a : reflexivity; every element is in relation with itself

• (a ≤ b) ∧ (b ≤ a) =⇒ a = b : antisymmetry; an element is in both

relations only with itself

• (a ≤ b) ∧ (b ≤ c) =⇒ a ≤ c : transitivity; if a is smaller than b and b

is smaller than c, then a is smaller than c

• (a ≤ b) ∨ (b ≤ a) : totality; two elements are always ordered in one or

the other way.

The total order of characters can be used to define the ordering between

strings in the following way:

w ≤ x ⇐⇒ (w = ay) ∧ (x = bz) ∧ (a ≤ b ∨ ((a = b) ∧ (y ≤ z)))

2.2. REGULAR DE BRUIJN GRAPH 9

Character Binary code

A 0100 0001

C 0101 0011

T 0100 0100

G 0100 0111

a 0110 0001

c 0110 0011

t 0111 0100

g 0110 0111

Table 2.1: Encoding of A, C, T, and G using ASCII codes.

and

∀w : ϵ ≤ w .

We will use an alphabet Σ = {$, A, C, T,G}, where $ ≤ A ≤ C ≤ T ≤ G.

The character $ is used to denote ends of strings when needed. The reader

might also notice we swapped T and G compared to their usual order. This

is due to their transcoding from the ASCII character set to bring down their

space requirements from 8 to 2 bits. The encoding uses only their second and

third bits (see Table 2.1). We can change the order because, semantically,

characters have no order on their own and we may impose any order on them.

2.2 Regular de Bruijn graph

A de Bruijn graph [8] over alphabet Σ with k ∈ N is defined as G(V,E)

where every k-gram in Σk is represented by a vertex v. This means that

label(v) ∈ Σk and for u, v ∈ V where u ̸= v it holds that label(u) ̸= label(v).

Consequently, |V | = σk.

Edges of G are defined as:

E = {(u, v) ∈ V × V | suffixk-1(u) = prefixk-1(v)} .

10 CHAPTER 2. DE BRUIJN GRAPH AND EULERIAN TOUR

In other words, if the k − 1-suffix of vertex u matches the k − 1-prefix of

vertex v, they are connected. Consequently, for each vertex v, outdegree(v) =

indegree(v) = σ and the number of edges in the whole graph is σk+1. We label

the edges with the last character of the label of their destination vertex, that

is, if label(v) = wa, then label((u, v)) = a. The edges tell us which character

we must append to the source node’s label to get the label of the destination

node. The concatenation of the labels of the first vertex and all the edges of

an Eulerian tour of the graph gives us a string that contains every k+1-gram.

A regular graph is a graph where

∀v ∈ V : indegree(v) = outdegree(u)

and

∀u, v ∈ V : indegree(u) = indegree(v) ∧ outdegree(u) = outdegree(v) .

Every vertex in a de Bruijn graph as defined above has both indegree and

outdegree σ, therefore de Bruijn graphs are regular.

00

0

01

1

10

0 11
1

0

1

0
1

Figure 2.1: Regular de Bruijn graph with alphabet Σ = {0, 1} and k = 2.

Figure 2.1 shows an example of a de Bruijn graph with k = 2 and the

alphabet Σ = {0, 1}. Hence, V = {00, 01, 10, 11}. The nodes are connected

so that if we remove the first character of the node and append the label of

an outgoing edge we get the label of the node the edge is directed to. If we

follow an Eulerian tour of the graph from the node 00, we can assemble a

2.3. DE BRUIJN GRAPH OF A TEXT 11

string $0001011100, which contains every binary string of length k+1 = 3.

Usually, there is more than one tour.

2.3 De Bruijn graph of a text

If we have a text T with alphabet Σ, we can represent it with a de Bruijn

graph. For any k we can construct a set of all k-grams present in T . We then

create a vertex for each k-gram and connect them following the same rule

as in regular de Bruijn graphs. What we get, is a graph that shares many

of the properties of a regular de Bruijn graph, but with some of the vertices

and edges missing. Such a graph is not necessarily regular.

CAGG AGGAA
GGAGG

GGAT

T

GAGG
G

A

GATTT ATTAA

Figure 2.2: De Bruijn graph for a genome sequence CAGGAGGATTA for k = 4.

For the alphabet Σ = {A,C, T,G} Figure 2.2 contains the de Bruijn graph

for text T = CAGGAGGATTA. From T we form all 4-grams

[CAGG,AGGA,GGAG,GAGG,AGGA,GGAT,GATT,ATTA] ,

of which the unique ones are {CAGG,AGGA,GGAG,GAGG,GGAT,GATT,ATTA}.
This set contains all our nodes which is less than 3% of the 44 = 256 possible

nodes of a regular de Bruijn graph with k = 4. Also a number of edges from a

12 CHAPTER 2. DE BRUIJN GRAPH AND EULERIAN TOUR

regular de Bruijn graph are missing. For example, AGGA and GGAT are con-

nected with an edge labeled T because they share GGA, but an edge labeled

C out of GGAT does not exist because there is no node GATC. Using a crude

algorithm, which looks for trails, we can extract pieces CAGGA, GGAGGA and

AGGATTA from this graph. However, this graph has an Eulerian tour, so we

can follow it and reassemble the full “genome” CAGGAGGATTA.

If k is chosen so that k + 1-mers are not unique, we can no longer re-

construct the genome from the graph. Figure 2.3 shows the graph for the

CAG AGGG
GGAA

GAG

G

GAT

T
G

ATT
T

TTAA

Figure 2.3: De Bruijn graph for a genome sequence CAGGAGGATTA for k = 3.

same genome as before, but with k = 3, which is too small, as AGGA is not

unique. The new graph is no longer Eulerian and we can not reconstruct the

genome from it. However, we can still extract some useful sequences from it,

by following walks between branches. We can reconstruct: CAGGA, GGAGG

and GGATTA. All of these appear in to source text.

2.4. DATA STRUCTURES 13

2.4 Data structures

2.4.1 Data structure types

Navigational data structure A navigational data structure is a

structure that allows us to navigate the de Bruijn graph. That is, given a

vertex v, it supports the following operations:

next(v, a): returns vertex u such that label((v, u)) = a; if it does not exist

it returns ⊥;
previous(v, a): returns the vertex u such that label((u, v)) = a; if it does

not exist it returns ⊥;
neighbors(v): returns

S = {u ∈ V | ∃a : next(v, a) = u ∨ previous(v, a) = u} .

To give a few examples from Figure 2.2:

next(AGGA,G) = GGAG

previous(AGGA,A) =⊥

previous(AGGA,C) = CAGG

neighbors(AGGA) = {CAGG,GAGG,GGAG,GGAT}

Membership data structure Membership data structure is in gen-

eral a dictionary [12] that maps the value of a key to either true or false. In

our case we need only a static dictionary that supports only the query oper-

ation member(w) and no update operations insert(w) and delete(w). Conse-

quently, its implementation can be designed with a smaller memory footprint

and lower time complexity (cf. [7, 18]). To wrap up, our data structure needs

to support only a single operation member(w), which returns v, iff there is

vertex v such that label(v) = w and ⊥ otherwise.

Theorem 2.1 A membership data structure is also a navigational data struc-

ture.

14 CHAPTER 2. DE BRUIJN GRAPH AND EULERIAN TOUR

To prove the theorem, we have to show how to implement operations from

the navigational data structure using a membership data structure.

Proof. We use the membership data structure to store labels of vertices

of a graph. We also know that the edges of a de Bruijn graph are labeled

by characters from Σ. Finally, there is a well defined relationship between

labels of u and v, if (u, v) ∈ E. Consequently, next(v, a) can be defined as

next(v, a) = member(suffixk−1(label(v)) · a) ,

and

previous(v, a) = member(a · prefixk−1(label(v))) .

If the query returns a vertex the output is correct; if the query returns ⊥, it
indicates that the string is not in the dictionary and consequently works as

defined.

Because the alphabet is finite, we can construct the neighboring vertices

in Θ (σ) time by trying all σ possible neighbors

neighbors(v) =
⋃
a∈Σ

next(v, a) ∪
⋃
a∈Σ

previous(v, a).

□

In the case of DNA where σ = 4, the neighbors(v) requires eight membership

queries.

Chikhi et al. showed that the lower bound for a navigational data struc-

ture of a genome is roughly 2.25 bit to 3.25 bit per k-mer [11]. This is less

than 1 bit per incoming edge.

2.4.2 Näıve data structure

The most basic data structure is explicit and uses ordinary objects (or C

structures) to represent vertices, as shown in Listing 2.1. It uses ⌈lg σ⌉k bits

to represent the k-mer and 2σ ·64 bits1 for references to the next and previous

vertices. For k = 51 and σ = 4 this gives us 51 · 2+2 · 4 · 64 = 614 bit = 77B

per vertex.

1Assuming a 64-bit processor architecture.

2.4. DATA STRUCTURES 15

Listing 2.1: An example of a node implemented in C.

typedef struct Node {

char kmer[(KMER_SIZE * SIGMA)/BYTE_SIZE + 1];

struct Node* forward[SIGMA];

struct Node* backward[SIGMA];

} Node;

For a human genome this means approximately 77B · 4 · 109 = 308GB. If we

also want to store satellite data, we could easily run out of main memory on

an average computer.

Chain optimization

First, we observe that, since we are using an explicit data structure, the

majority of the space is taken up by the references, and, second, most of the

k-mer information is available in neighboring vertices. Moreover, we can also

assume that a genome will for the most part resemble a single long chain.

Using these assumptions, we can compress the nodes that form a chain into

a single node, with the outgoing connections copied from the last node and

the incoming connections copied from the first node in the chain. The label

of the node now has variable length. This technique uses space much more

efficiently and is used in the Velvet family of assemblers [38].

SOAPdenovo2 [25] takes chain optimization a step further and uses a

data structure described in [37]. The data structure is not a true de Bruijn

graph, since the labels of its edges are not single characters, but chains of

characters. This brings savings in terms of memory.

In the rest of this chapter we will describe implicit data structures, which

use the second observation to avoid the issue of space usage by references.

The navigation through the graph can be used to implicitly store vertex

labels, thus avoiding explicitly storing k-grams.

16 CHAPTER 2. DE BRUIJN GRAPH AND EULERIAN TOUR

2.4.3 Bloom filter

Bloom filter [4] is a data structure that allows us to fuzzily test set mem-

bership. It consists of a bit vector of size m and d different hash functions.

Each element is hashed using the d hash functions and the bits at those d

locations in the vector are set to 1.

When we want to test set membership, we hash the query with the d hash

functions and check the bits at those d addresses. If all of them are set, then

our query may be a member of the set. On the other hand, if a single of the

hashed bits is not set, the query is definitely not in the set. It is possible,

due to a hash collision, that all d bit are set, yet the query still is not in the

set and we get a false positive.

Since we assume that hash functions hash to each location with equal

probability, the probability for a certain bit not to be set when an element

is inserted is (
1− 1

m

)d

,

and after inserting n elements the probability becomes(
1− 1

m

)dn

.

To calculate the probability of a false positive, we need the probability that

any d random bits are set. For one bit the probability is

1−
(
1− 1

m

)dn

,

and for d bits the probability of a false positive becomes(
1−

(
1− 1

m

)dn
)d

.

For a filter with m = 10000, d = 3 and n = 2000 elements, the probability

of a false positive becomes 9.2%.

If we still want an exact membership test we can now use a more expensive

data structures like real hash tables. Bloom filters become very useful when

membership tests are expensive and we expect most of them to fail.

2.4. DATA STRUCTURES 17

The bioinformatics framework GATB [13] uses Bloom filters with a slight

twist based on the earlier work in [10]. First it uses multiple levels of bloom

filters instead of just one (cf. perfect hashing [18]). Then, instead of testing

the elements that pass the filter for membership on the complete set, it builds

a set of false positives, called critical false positives or cFP and tests against

those. So, if the query passes the Bloom filter and is not in cFP, then it is a

member of the set.

2.4.4 BWT-derived data structures

Burrows-Wheeler transform [9, 16] (or BWT for short) is an algorithm

that losslessly transforms a text to improve run-length encoding. A side effect

of the transformation is also the ability to search the text for substrings [16],

which is used in the FM-index [16] data structure. The algorithm used for

the queries is described in a later section (Algorithm 4.1).

The FM-index of a genome is essentially a membership data structure.

Any k-mer can be checked for membership in O (k) time and O (n) space.

Chikhi et al. used this in DBGFM, their de Bruijn graph [11] data structure

implementation.

Bowe et al. presented a data structure based on XBW-transform [17]. It

shares many similarities with BWT, but uses additional data to allow for

fast queries to determine a node’s neighborhood [5].

2.4.5 Distributed data structure

Because genome assembly is very computationally demanding, it is reason-

able to employ clusters of computers, which requires the use of distributed

data structures. ABySS is an assembler that distributes k-mer information

across multiple nodes of a cluster according to their hashes (cf. peer-to-peer

structures like [28]). This means it is possible to deterministically calculate

which node has information about a given k-mer. The data structure stores

neighborhood information in 8 bits by recording which edges exist in both

18 CHAPTER 2. DE BRUIJN GRAPH AND EULERIAN TOUR

directions, making it a membership data structure [35].

2.5 Eulerian tour

As we have mentioned in the Introduction, the genome can be extracted

from the de Bruijn graph using an Eulerian tour. In this section we present

algorithms used for constructing Eulerian tours of graphs. Later we will

use them as intuition behind actual practical algorithms. The presented

algorithms are general and work on all Eulerian graphs, including de Bruijn

graphs.

Before we continue we must define the following terms:

walk in a graph G(V,E) is an alternating sequence of vertices and edges

(v1, e1, v2, e2, v3, . . . , vn−1, en−1, vn) where vi ∈ V, i = 1, 2, . . . , n and

ei = (vi, vi+1) ∈ E, i = 1, 2, . . . , n− 1;

closed walk (v1, e1, v2, . . . , vn, en, v1) is a walk that starts and ends at the

same vertex;

trail is a walk where ei ̸= ej, iff i ̸= j (i.e. each edge is traversed at most

once);

tour is a trail that is also a closed walk;

subgraph is a graph G′(V ′, E ′) inside graph G(V,E) where V ′ ⊆ V and

E ′ ⊆ E ∩ V ′ × V ′;

strongly connected component is a subgraph G′ of G where for every

pair of vertices u, v ∈ V ′ there exists a walk (v, . . . , u).

An Eulerian tour in a directed graph is a walk that goes through every

edge of the graph exactly once and finishes at the same vertex it started

from. Some graphs contain an Eulerian trail, but not a tour. In those cases

we can add a virtual edge to link the last vertex in the trail to the first, thus

2.5. EULERIAN TOUR 19

creating a tour. We will henceforth concentrate on tours. We call a graph

containing an Eulerian tour an Eulerian graph.

The requirements for a graph to contain an Eulerian tour or trail are:

1. graph G(V,E) contains a strongly connected component G′(V ′, E ′) and

for every vertex v either v ∈ V ′ or ¬∃u ∈ V : (u, v) ∈ E ∨ (v, u) ∈ E;

2. ∀v : incoming(v) = outgoing(v) or, if the graph contains only an Eule-

rian trail, there exist nodes u and v, such that

incoming(u)− outgoing(u) = −1

incoming(v)− outgoing(v) = 1.

Vertices u and v are the starting and the finishing vertices of the trail.

In the rest of this chapter we use n = |V | and m = |E|.

2.5.1 Sequential algorithm

Finding Eulerian tours of a graph is fairly simple. The procedure follows

these steps:

1. Test whether the graph is Eulerian.

2. Start from vertex v and follow unvisited edges until we get back to v.

3. If there is a vertex u in the tour with an unvisited edge, start from u

and follow unvisited edges until we get back to u.

4. Join the new trail to the main trail by directing it from u along the

new trail then proceeding along the main trail.

5. If there are still unvisited edges, go to 3.

The first step is simple and takes O (n) time. It consists of verifying that

each vertex has the same number of incoming and outgoing edges.

20 CHAPTER 2. DE BRUIJN GRAPH AND EULERIAN TOUR

In the second step we construct the first basic tour. There is no wrong

direction to go, since the tour starts and ends in v and includes every edge.

It is possible that the walk terminates before visiting all edges, but we will

fix that in the next step.

Third step looks for remaining trails. If we can leave u through one edge,

there must be at least one free edge returning to u which we must still visit,

thus creating a tour.

Lastly we join the newfound tour to the main trail we have constructed

so far. If we have t1 = (v . . . u . . . v) and t2 = (u . . . u) we can merge them

into (v . . . t2 . . . v).

We repeat this until all edges have been added to the tour. Each edge

is visited exactly once giving us the time and space complexity O (m) [23].

Consequently, the complexity of the algorithm is O(m+ n) = O(m).

2.5.2 PRAM algorithm

The PRAM algorithm described by Atallah and Vishkin [2] uses the same

idea as the sequential algorithm. It finds tours in the graph and merges them

together into one tour.

The following is an outline of the algorithm from [2]:

1. Partition the edges of the graph G = (V,E) into pairwise disjoint tours.

2. Construct an auxiliary undirected graph G1 = (V1, E1) with two types

of vertices: “real-vertices” taken from V and “tour vertices” with one

vertex per tour found in step 1. E1 consists of edges going from each

vertex to each tour it belongs to.

3. Find a spanning tree T = (V1, E
′
1) of G1. Replace each edge in T with

two antiparallel edges to form a directed Eulerian graph T ′.

4. Find the Eulerian tour of T ′ and use it to connect the tours found in

step 1 into one Eulerian tour of G.

2.5. EULERIAN TOUR 21

5

1

2

4

3

Figure 2.4: Simple directed graph.

We will use the graph in Figure 2.4 as an example, another example is avail-

able in Appendix A. The first step is achieved by pairing each vertex’s edges

together. Throughout the algorithm we will hold the succession of edges in

an array called succ[m] where m = |E|, so at the end when we extract the

order of edges in the tour, e will be followed by succ[e]. We enumerate all

incoming and outgoing edges of each vertex, so that incoming(v, k) is the

kth incoming and outgoing(v, k) is the kth outgoing edge of v. Now we can

pair them up:

succ[incoming(v, k)] = outoging(v, k).

This pairing operation can be done in O
(

m
p

)
time, where p is the number

of processors. Table 2.2 shows the state of succ after the first step.

Edge succ[e]

(1, 2) (2, 5)

(2, 4) (4, 3)

(2, 5) (5, 1)

(3, 2) (2, 4)

(4, 3) (3, 2)

(5, 1) (1, 2)

Table 2.2: The state of succ[e] after the first assignment.

22 CHAPTER 2. DE BRUIJN GRAPH AND EULERIAN TOUR

Edge D[e] Tour name

(1, 2) (1, 2) A

(2, 4) (2, 3) B

(2, 5) (1, 2) A

(3, 2) (2, 4) B

(4, 3) (2, 4) B

(5, 1) (1, 2) A

Table 2.3: After tours are found and named.

Next we need to identify the tours. We can achieve that by the pointer

jumping technique [22]. We will use D[m] initialized to D[e] = e to store an

edge that is a unique identifier for the tour which edge e belongs to. We also

use a temporary array next[m], which starts as a copy of succ. For each

edge we do:

D[e] = min(D[e],D[next[e]])

next[e] = next[next[e]].

The function min returns the smaller edge according to some ordering. We

repeat this ⌈logm⌉ times. This takes O
(

m
p
logm

)
time overall. Now we have

an array D of representatives for each edge’s tour. For ease of understanding

we named the tours of the example in Table 2.3.

Array D already yields the edges of G1 and the vertices can easily be

computed.

We define certificate[v, w] where v is a “real” vertex and w is a

“tour” vertex in G1. The map certificate contains an edge (i, v) from G

for every v in G that lies on w and certifies that v does indeed belong to tour

w. Assigning certificates takes O(log n) time on n+m processors. Table 2.4

shows the chosen certificates for the example.

Now we compute the spanning tree T of G1, which takes O (log n) time

on n +m processors. G1 and its T for the example are in Figure 2.5. Next

2.5. EULERIAN TOUR 23

Vertex Tour certificate[e]

1 A (5, 1)

2 A (1, 2)

2 B (3, 2)

3 B (4, 3)

4 B (2, 4)

5 A (2, 5)

Table 2.4: Edges that certify that a vertex belongs to a tour.

we produce a directed graph T ′ where we replace each edge in T with two

antiparallel edges. T ′ is Eulerian, since each edge was replaced with an

incoming and an outgoing edge therefore balancing the number of edges for

each node. We show T ′ and G of the example combined in Figure 2.6.

The last part uses T ′ to merge tours from the first step into one tour. First

we must find an Eulerian tour of T ′. “Real” vertices v in T are connected

to “tour” vertices through edges {v, u1} , . . . , {v, ud} where d is the degree

of v. After we introduce directed edges, we can assign successors for “real”

vertices in a circular order with succ[(ui, v)] =
(
v, u(i+1) mod d

)
.

For “tour” edges, we must first use (i, v) = certificate[v, w] to define

(v, j) to be succ[(i, v)]. Edge (v, j) is the edge following the certifying edge

for v in w. For all certifying edges (i, v) we assign successors as follows:

succ[(i, v)] = (w, v)

succ[(v, w)] = (v, j) .

If we look at succ we notice it does not contain a valid walk. However, if

we follow it blindly, we notice that the edges of V spell out an Eulerian tour

of G and the edges of T ′ produce an Eulerian tour of T ′. The new succ for

24 CHAPTER 2. DE BRUIJN GRAPH AND EULERIAN TOUR

2
A

B
5

1

3

4

Figure 2.5: Graph G1 for the example. The spanning tree is obvious.

5

1

A 2

4

B

3

Figure 2.6: T ′ and G on the same graph. The edges of T ′ are dashed.

our example is in Table 2.5. It spells the following sequence:

((1,2), (A, 2), (2, B), (2,4), (B, 4), (4, B), (4,3), (B, 4), (4, B), (4,3), (B, 3),

(3, B), (3,2), (B, 2), (2, A), (2,5), (A, 5), (5, A), (5,1), (A, 1), (1, A), (1,2)).

The edges of G in bold are an Eulerian tour of G.

Now we must clean it up. There are no more than two successive edges of

T ′ in the sequence defined by succ, so we perform the following operation

twice:

if succ[e] ∈ T ′ then

2.5. EULERIAN TOUR 25

Edge succ[e] Edge succ[e]

(1, 2) (A, 2) (A, 1) (1, A)

(2, 4) (B, 4) (A, 2) (2, B)

(2, 5) (A, 5) (A, 5) (5, A)

(3, 2) (B, 2) (B, 2) (2, A)

(4, 3) (B, 3) (B, 3) (3, A)

(5, 1) (A, 1) (B, 4) (4, B)

(1, A) (1, 2)

(2, A) (2, 5)

(2, B) (2, 4)

(3, B) (3, 2)

(4, B) (4, 3)

(5, B) (5, 1)

Table 2.5: The state of succ[e] after computing the succession for T ′.

succ[e]← succ[succ[e]]

end if

Now we can begin at any edge of E and follow succ to produce an Eulerian

tour of G. The final state of succ for our example is in Table 2.6.

Edge succ[e]

(1, 2) (2, 4)

(2, 4) (4, 3)

(2, 5) (5, 1)

(3, 2) (2, 5)

(4, 3) (3, 2)

(5, 1) (1, 2)

Table 2.6: The state of succ[e] after cleanup.

The time complexity of the whole algorithm is O (log n) using n+m proces-

sors and O (n+m) space [2].

Chapter 3

Genome sequencing and

assembly

A DNA molecule is a polymer, a chain of molecules that are similar to each

other called monomers. DNA is composed of four different types of molecules

called nucleotides (nt): adenine, cytosine, guanine and thymine1 [1]. Usu-

ally, when sequences of these molecules are described in text, the first letters

of their names are used (usually capitalized): A, C, G and T.

Every chain of nucleotides comes with its pair and together they form the

well known double helix. The pair is a negative of the chain; each nucleotide

is linked to its opposite: adenine to thymine and cytosine to guanine. Each

strand of the pair is oriented in the opposite direction of the other, thus form-

ing reverse complements of one another [1]. For instance, the sequence

ATGAGCATTCCGTTT has AAACGGAATGCTCAT on the other side. When we

are dealing with nucleotides in pairs, we refer to them as base pairs (bp).

Before sequencing, the genome is broken into manageable pieces. When

each piece of DNA is sequenced, the data produced is called a read. The

read length is limited by both the physical DNA segment length and the

sequencer’s maximum configured reading length (see Figure 1.1).

Most current technologies produce so called short reads, which are

1For the sake of brevity and without loss of generality we will ignore RNA.

27

28 CHAPTER 3. GENOME SEQUENCING AND ASSEMBLY

around 100 bp long. Reads that are several hundreds of base pairs long are

called long reads.

Paired-end reads are a category of reads, which are special in that

they represent both ends of a single segment of DNA, while discarding the

rest of the segment. In a way they are “cheating” the length limitation by

ignoring the middle part.

3.1 Sequencing technologies

3.1.1 Sanger sequencing

Before the advent of Next-generaton sequencing, Sanger sequencing [34]

was the most popular method of sequencing genomes. It was developed in

the 1970’s and remains popular in certain applications until today.

Reads produced by the Sanger method are usually much longer than those

produced by Next-generation methods, though the gap is getting narrower

with newer refinements [31].

3.1.2 Sequencing by hybridization

Sequencing by hybridization is an alternative technique that involves

preparing an array of 4k different sites where DNA can bind to its compli-

mentary sequence. Then, the genetic material is allowed to bind to those

sites. Finally, the array is analyzed, to see which sites were bound and which

remained empty. The different k-mers that are present in the sequence are

thus determined [14].

The process of assembly usually assumes all k-mers are unique. We

can expect a given k-mer to appear every 4k

2
bases, therefore we need a

k large enough to guarantee uniqueness. This is hard to achieve for large

genomes [14], since 4k grows very quickly.

We can reduce the number of required binding sites, if we know which k-

mers to expect [14], so this technology still finds its uses in niche applications.

3.1. SEQUENCING TECHNOLOGIES 29

3.1.3 Next-generation sequencing

The Next-generation sequencing (NGS) is characterized by very short

read lengths, around 100 bp, though newer techniques can go beyond that.

It compensates for it, however, with high throughput. This creates large

amounts of data and requires the use of advanced algorithms to filter and an-

alyze them. The reads produced by this family of technologies are commonly

referred to as short reads. There are many next-generation sequencing

technologies being developed – we will mention only a few.

Illumina (formerly Solexa) sequencing is currently the most common

technology used to produce short reads. The reads it produces are usually

around 100 bp to 150 bp long. It also allows sequencing both ends of a seg-

ment of DNA, thus producing paired-end reads.

454 Life Sciences’ technology uses pyrosequencing [32] and produces com-

paratively long reads, up to 1000 bp long [31].

We will also briefly mention Applied Biosystems’ SOLiD method, which

sequences and encodes two bases at a time. Every base is sequenced twice,

once with each of its neighbors.

In the output it uses four “colors”, shown in Table 3.1, to encode those

transitions in addition to one single base per read, from which the other

bases can be decoded. This improves error detection, since a single base

that differs from the reference sequence induces change in two characters

making the rest of the read continue as expected, whereas an error in a

single character completely changes the meaning of the rest of the read. 2-

base reads therefore work well when used with traditional reads for reference,

but are not very good for assembling new genomes on their own.

30 CHAPTER 3. GENOME SEQUENCING AND ASSEMBLY

A C G T

A 1 2 3 4

C 2 1 4 3

G 3 4 1 2

T 4 3 2 1

Table 3.1: Colors used in 2-base encoding. First base is on the left, second

base is on top.

3.2 Genome data

3.2.1 Properties

We will now look at reads from a data-centric point of view. First, each

dataset can come from a different sequencer and may be processed in different

ways before it makes its way to us. While formats are standardized, some of

the properties of data may vary. If we obtain reads from a third party, like a

project in the NCBI database, we must look at the files we receive carefully,

including reading preparation methods, to interpret them properly.

The reads, while nominally the same length, might actually represent

segments of the DNA strand that are shorter so the additional bases should

be removed. It is possible that the reads still contain so called adapter

sequences, artificially created known sequences, which were attached as part

of the preparation process and are not actually part of the genome. The

range of quality also has to be checked, since different sequencing technologies

encode quality data differently.

We may receive quality information along with read data. This is usually

in the form of a Phred quality score:

Q = −10 log10 P ,

where P is the probability that a certain nucleotide was misread.

Because of all these variable factors, genome analysis is often done using

k-mers. A k-mer is a fixed-length string, which helps normalize the data.

3.2. GENOME DATA 31

The set of unique k-mers from all the reads and the frequencies of those

k-mers’ appearances are commonly used to simplify the analysis.

3.2.2 File formats

We will talk about two most common genome data storage formats. They

are both text-based, which comes in handy when we want to quickly examine

their contents. It also makes them very portable; any computer with a text

editor can be used to read them and simple analyses can be performed using

generic command line programs.

The drawback, however, is their large size, since each nucleotide is en-

coded with 8 bits instead of 2 bits that would be required for four different

characters, therefore they are usually compressed, most often using gzip.

The International Union of Pure and Applied Chemistry, IUPAC, de-

vised a standard notation for displaying DNA in text, shown in Table 3.2.

Along with codes for adenine, cytosine, guanine and thymine it includes codes

for places in the genome sequence where any one of multiple bases may be

present. These (aside from N) are not used in reads, since reads contain data

from one physical DNA strand, but appear in reference sequences, which

have been built as a consensus between multiple genomes.

FASTA is the simplest format for storing genome data. It includes a

single line prefixed by a > character, followed by an optional descriptor. In

the example in Listing 3.1 the descriptor is divided as follows: gi introduces

a sequence identifier (1002793874); gb means that the sample comes from

NCBI’s GenBank database and has the identifier and version in the database

LRSR01000001.1. The line ends with a general sequence description. The

genetic data starts on the second line and continues until the next line pre-

fixed by >. Long sequences are usually formatted into lines of constant width.

In the example lines 2 through 4 are genome data, which has been split into

lines of 70 characters.

32 CHAPTER 3. GENOME SEQUENCING AND ASSEMBLY

Character A C G T

A A

C C

G G

T T

W A T

S C G

M A C

K G T

R A G

Y C T

Character A C G T

B C G T

D A G T

H A C T

V A C G

N or - A C G T

Z

Table 3.2: IUPAC nucleic acid notation. (Uracil omitted, see footnote on

page 27)

Listing 3.1: Example of a FASTA entry.

1 >gi|1002793874|gb|LRSR01000001.1| Hypsibius dujardini strain Sciento

H_dujardini_15454, whole genome shotgun sequence

2 GACAGACAGACAGACAGACAGACAGACATACATGCAGGTAGGCAGACAGGCAGACAGACGGAACGGTATA

3 TAACTAAAGATTAAGAACACACTTACTCGGTTTCAGTCGAACATCTACAGCCACAGAAAATGACTGATCG

4 CTCTGGGATCGACATCGGAACAAGCCCACACTAGCCGCCGAAGCCCTCTCGATTGTGAGCAGACCGCGAC

FASTQ format is used to store quality information along with genetic data.

The format itself is simple: first line starts with @, followed by the sequence

identifier and additional information. The example in Listing 3.2 has an

identifier for the read set in the NCBI database (SRR2052522) and the exact

read 8996868, information about the sequencing equipment (in this case

Illumina-specific HWI-EAS390 0001:4:51:12456:6096) and the length

of the read. The second line contains a genome sequence. The third line

starts with + and optionally repeats the identifier. The last, fourth, line

contains quality data. This repeats as many times as there are reads stored

in the file.

Quality Phred scores for each base pair are encoded as a sequence of

characters from a range in the ASCII code tables. For example, in reads

3.3. ASSEMBLY PROCESS OVERVIEW 33

produced by Sanger sequencers, quality score 0 is represented by a !. The

full range is ! to I for scores 0 to 40. Older Illumina technologies used

@ through h. Newer Illumina machines use ! to J to represent 0 to 41.

We know our example comes from a newer Illumina sequencer, so we can

interpret the fourth line as quality scores: 35, 39, 39, 39, 38, 39, 33, 39, 38,

. . .

Listing 3.2: Example of a FASTQ entry.

1 @SRR2052522.8996868 HWI-EAS390_0001:4:51:12456:6096 length=242

2 GTTTAGCAACATATGCGGCTTGCCCTGAACACCGGGCACCACTGTATTGATGCTCATTTCCCATAG

3 +SRR2052522.8996868 HWI-EAS390_0001:4:51:12456:6096 length=242

4 DHHHGHBHGHDHHHH@HHHHGB<G@;=?=?DG@8DEGGED@28?8CCECCGE3G<8?DB8EBCC<<

3.3 Assembly process overview

In general there are two types of genome assembly: de novo assembly, which

is building a genome from scratch, and mapping or resequencing assem-

bly, which uses a preexisting genome assembly as a guide to assembling the

genome. We will focus on de novo assembly.

The process of de novo genome assembly is outlined as follows:

Sequencing First the genome is sequenced using one of the methods men-

tioned mentioned earlier. This produces the initial dataset usually in the

form of large compressed FASTQ files (Figures 1.1a, 1.1b, 1.1c and 1.1d on

page 3).

Data filtering and cleanup Records in these files can be cleaned up using

simple techniques. These include removing low quality reads, removing low

quality parts of reads, splitting paired-end reads to suite the particular input

requirements of the assembler, etc.

The rest of the process usually takes place inside a single piece of software.

34 CHAPTER 3. GENOME SEQUENCING AND ASSEMBLY

Graph construction A graph is used to represent the relations between

different parts of the sequenced data. In the past the type of graph used

may have been an overlap-consensus graph [26]; modern assemblers use a

de Bruijn graph. This helps with aligning the reads (Figure 1.1e).

Graph transformation Various transformations can be performed on the

graph. These usually perform more sophisticated forms of error correction.

For instance, a bubble, part of the graph where a trail diverges and later

converges again, may indicate a small error, or an SNP (single nucleotide

polymorphism), a single differing base. The divergent trails can be merged

into the one that appears more often in the input data, since the less frequent

one is probably an error. In the case of SNPs, we want to choose one of the

options and possibly analyze the alternative later, by mapping the reads back

to the assembled sequence.

A dead end in the graph, also known as a tip, may indicate an erroneous

read, that completely diverges from the actual genome. The nodes of that

part of the graph can be completely removed.

We can also prune the graph based on how many reads support each

vertex. Vertices whose labels appear in few reads are probably results of

errors.

Contiging A contig is a contiguous area of genome we have managed to

assemble. Contigs are extracted from the transformed graph using various

algorithms, usually by finding long trails in the graph. Ideally, an Eulerian

tour of the graph would be used, to extract the longest tour possible, but the

graphs are rarely Eulerian.

Scaffolding Finally, we would like to know how contigs relate to each other.

We want to know their relative positions and distances between them. At

this point we need long reads and paired end reads. If we manage to anchor

their ends into separate contigs they give us information about the position

and distance between those contigs. The result is our genome (Figure 1.1f).

3.4. CONTIGING 35

3.3.1 Result assessment

Since we are going into the process blindly it is hard to assess the quality of

the result. We can not actually tell if the assembled genome is the same one

we were trying to sequence.

The most common method of assessing quality is N50, the length of the

shortest contig such that the sum of its length and the lengths of longer

contigs reaches 50% of the sum of length of the genome, or, if that is not

available, the sum of the lengths of all contigs [15]. The definition can be

expanded to other percentages such as N90 or N10. These metrics show what

fraction of the assembly consists of few large contiguous areas, as opposed to

many small fragments.

Another metric is E-size [33], which attempts to answer the question:

given a random position in the genome, what is the expected size of the

contigs covering it? It is computed as

E =
∑
C

L2
C

G
,

where LC is the length of contig C, and G is the estimated length of the

genome.

If, on the other hand, we are just testing assemblers on known genomes,

we can use many other metrics described in [15].

3.4 Contiging

Every regular de Bruijn graph is Eulerian, since each node has as many

incoming and outgoing edges as there are characters in the alphabet. If

we follow the Eulerian tour of such a graph, we can compose a string by

concatenating the edge lables. That string is the shortest string that contains

every k+ 1-gram of that alphabet, where k is the size of the nodes in the de

Bruijn graph. Note, there are possibly several such strings.

A de Bruijn graph composed of the k-mers of a given string is also Eule-

rian, as long as k is large enough that each k + 1-gram would appear in the

36 CHAPTER 3. GENOME SEQUENCING AND ASSEMBLY

string only once, since the string already gives us one of the Eulerian tours

of the graph. Due to the properties of the Eulerian tour certain parts of the

string can be reordered and still produce a valid tour [21]. However, one of

the orders is certain to be the input string. This is usually the case when

there are tours inside the Eulerian tour, which can be traversed in any order.

The correct order can be determined by mapping reads to the graph. A read

can be represented by a trail in the graph. If we look at which direction a

read goes at a crossroad in the graph, we can determine the proper order2

of traversal for that part of the graph. Figure 3.1 shows the de Bruijn graph

ACG CGCC

GCC

C

GCG

G

GCTT

CCG

C

G

C

Figure 3.1: De Bruijn graph for a genome sequence ACGCCGCGCT for k = 3.

for a sequence ACGCCGCGCT and k = 3. The Eulerian trail contains two

subtours, which we could traverse in either order and produce both ACGC

CGC GC T and ACGC GC CGC T (spaces have been added to show which

parts of the string can exchange places). However, only one of those is a cor-

rect reassembly of the “genome”. The reads from that genome will probably

contain ACGCC, which hints at the correct direction to go at vertex CGC.

Due to the errors of the procedure and natural properties of genomes, the

graph produced from reads rarely has an Eulerian tour available. The Eule-

rian tour technique also presupposes that every k-mer appears in the genome

2For an Eulerian tour, any order of subtours that share a vertex is admissible. For a

genome on the other hand, only one order is correct.

3.4. CONTIGING 37

exactly once. In practice, some may not appear in the genome at all, but are

present in the graph due to errors, others may appear in the genome multiple

times, which can be both due to repeats in the genome itself or because the

chosen value of k was too small. Contig building algorithms therefore focus

on finding long trails in graphs, that are not necessarily Eulerian.

Before we proceed, we must describe the notion of safe strings. A safe

string is a string that appears in any reconstruction of the genome from a

given graph [36] and is therefore “safe” to return as an output of the contiging

algorithm. As we have seen above, the order of traversal of certain parts of

the graph can change the output even in a perfect graph. While reads can

be used as a guide at those points, they can contain errors and thus do not

guarantee correctness.

The simplest safe strings are simple trails in the graph. Series of vertices

between two branches in the graph form so called unitigs. They are guaran-

teed to appear in any reconstruction, since any algorithm will traverse those

vertices one after another.

Tomescu and Medvedev describe an algorithm that finds safe strings they

call omnitigs [36]. The general idea is to follow trails that have no chance

of turning in on themselves. In terms of an Eulerian tour, this means they

are not involved in a tour, which resolves the aforementioned issue with tour

order.

In contrast with other techniques, BCALM [11] uses minimizers [30] to

produce longest trails of a set of reads. Minimizers are a way of finding a

k-mer that represents a given string, allowing it to be classified with other

strings that belong together. In the case of BCALM, the starts and ends of

reads are taken into consideration. The reads are grouped according to the

lower3 of either the start or the end of the string. The reads in the lowest

group are then joined where beginnings and ends match. The joined strings

now belong to either the same or a different group that is higher in the order

and lowest group is eventually emptied. These joins are repeated on an ever

3According to some total ordering, e.g., lexicographically or by frequency.

38 CHAPTER 3. GENOME SEQUENCING AND ASSEMBLY

higher group until all groups are merged.

BCALM method does not directly use a graph. The algorithm for build-

ing DBGFM [11] uses BCALM as part of its own graph construction. How-

ever, it does perform the task of producing long strings from the genome,

which is the purpose of contiging.

Chapter 4

Space-efficient representation of

a de Bruijn graph

In this chapter we introduce kBWT, a new space-efficient membership data

structure. It is based on BWT, but takes into account the fact that the

queries will never be longer than k and that we do not care about the number

of repetitions of the query, only whether it appears in the input text or not.

4.1 Burrows-Wheeler transform

Burrows-Wheeler transform is performed by taking all cyclic rotations of a

text T and assembling them into a matrix. The rows correspond to rotations

and columns correspond to characters at their respective position in each

rotation. The rows are then lexicographically sorted. The last column now

represents the transformed text L. An example of the transformation is

shown in Figure 4.1.

4.1.1 Backward search

Using Algorithm 4.1 BWT allows for substring search in O (k) time, where

k is the length of the substring. It returns false, if the substring is not

present or the range of positions in the transformed text where the substring

39

40
CHAPTER 4. SPACE-EFFICIENT REPRESENTATION OF A

DE BRUIJN GRAPH

CAGGAGGATTA$

AGGAGGATTA$C

GGAGGATTA$CA

GAGGATTA$CAG

AGGATTA$CAGG

GGATTA$CAGGA

GATTA$CAGGAG

ATTA$CAGGAGG

TTA$CAGGAGGA

TA$CAGGAGGAT

A$CAGGAGGATT

$CAGGAGGATTA

(a) All rotations of a text.

$CAGGAGGATT A

A$CAGGAGGAT T

ATTA$CAGGAG G

AGGATTA$CAG G

AGGAGGATTA$ C

CAGGAGGATTA $

TA$CAGGAGGA T

TTA$CAGGAGG A

GAGGATTA$CA G

GATTA$CAGGA G

GGATTA$CAGG A

GGAGGATTA$C A

(b) Sorted rotations of the

text. The last column repre-

sents the transformed text L

(ATGGC$TAGGAA).

Figure 4.1: Example of BWT of a short text CAGGAGGATTA.

is present. Search starts by looking at the last character of the query and

proceeds from there toward the start of the query, hence the name. Inputs

are: the transformed text L and the query P , which is k characters long.

Algorithm 4.1 also uses C, which is a table of the counts of characters

smaller1 than a certain character. Table C for the example in Figure 4.1 in

Table 4.1 uses # to store the total count of all characters. It is used in the

first line of the algorithm when the query ends with G.

The other function and its associated structure used in the algorithm is

rank(L, c, i). It returns the number of characters c in the transformed text

L up to and including position i. The values for rank for the example are in

Table 4.2. This function can be made to run in O (1) time with o (n) space

of overhead. For details consult [16].

1According to the total order defined on page 8.

4.1. BURROWS-WHEELER TRANSFORM 41

Algorithm 4.1 Algorithms for finding substrings in BWT encoded text.

function backward search(L, P [1, k])

i← k, c← P [k], First ← C[c] + 1, Last ← C[c+ 1]

while First ≤ Last and i ≥ 2 do

c← P [i− 1]

First ← C[c] + rank(L, c,First − 1) + 1

Last ← C[c] + rank(L, c,Last)

i← i− 1

end while

if Last < First then

return false

else

return [First ,Last]

end if

end function

Character Count

$ 0

A 1

C 5

T 6

G 8

12

Table 4.1: Table C for the example in Figure 4.1.

42
CHAPTER 4. SPACE-EFFICIENT REPRESENTATION OF A

DE BRUIJN GRAPH

Index $ A C T G

1 0 1 0 0 0

2 0 1 0 1 0

3 0 1 0 1 1

4 0 1 0 1 2

5 0 1 0 1 2

6 0 1 1 1 2

7 1 1 1 1 2
...

...
...

...
...

...

Table 4.2: Values of rank(L, c, i) for the first few indices.

4.2. K-MER BURROWS-WHEELER TRANSFORM 43

4.2 k-mer Burrows-Wheeler transform

kBWT is a variant of BWT used to query the presence or absence of sub-

strings with length up to k in a text. The data structure is very similar to [5]

with simplifications which reduce the overall size of the data structure.

To construct it, we prepend text T with $ and also append k copies of $

to the end of T . The obtained new text is T ′. Then we construct a set of all

unique k+1-mers in T ′. In practice this can be done using an algorithm like

[29].

We first sort k+1-mers by their k-suffixes and within each k-suffix by their

1-prefixes. This is similar to ordinary BWT, except that the transformed text

will be in the first column instead of the last one without loss of generality.

The k + 1-mers at this point represent edges going into the vertex labeled

with the k-suffix of the k + 1-mer. Sorting can be performed in O (n log n)

time or O (log n) in parallel [27].

Next, we replace every run of consecutive k+1-mers that share a k-suffix,

with a k + 1-mer where the first character of the k + 1-mer is a composite

character representing a set of all first characters of that run (example in

Figure 4.2). For instance 0000 means the only first character was $, 1000

means there was only A or A and $, 1011 represents A, G and T, etc. Note

that each binary string is a single character that is represented here in binary

form for clarity. We will be using a composite character that contains a

character a and the normal character a interchangeably. These k + 1-mers

represent the k-mers of our graph. Each k + 1-mer represents a vertex, with

the first character representing the incoming edges.

We can apply this merging operation because in our algorithm both first

and last always point to the beginning and the end respectively of such a

run of k + 1-mers, so merging them into a single entry does not affect the

execution of the algorithm.

The merging can be executed in parallel by having each processor check,

if its k + 1-mer is the first for that k-mer. If it is not, the processor stops.

If it is, it proceeds along building the composite character. It will move at

44
CHAPTER 4. SPACE-EFFICIENT REPRESENTATION OF A

DE BRUIJN GRAPH

most σ k + 1-mers, so the time complexity is O
(

n+σn
p

)
= O

(
σn
p

)
.

ACGTA

TCGTA

(a) k + 1-mers before the merge

1010CGTA

(b) k + 1-mer after the merge

Figure 4.2: Example of the first merge.

Lastly, we merge the first characters of all runs that share the middle k −
1 characters into the first k + 1-mer of the run and replace all other first

characters with the empty set 0000 (example in Figure 4.3). If there is a k-

mer in the graph connected to one of the k-mers represented by the k+1-mers

in the run, it is also connected to all other k-mers in that run. Therefore, we

must perform this second merging operation. The time complexity of this

merge is the same as the time complexity of the previous merge: O
(

σn
p

)
.

First characters of our k+1-mers, the composite characters we constructed

with the two merging steps, now form our transformed string L, similar to

ordinary BWT.

Definition 4.1 Function RANK(L, c, i) returns the number of characters with

c as part of their set in string L up to and including position i.

Function rank is used in the algorithm to calculate the offset of a k-mer that

is connected to a certain k-mer. It must therefore return the same result for

all of the k+1-mers of a run that shares a the middle k−1 characters, which

is why we performed the second merging step.

Definition 4.2 Array C[σ] contains in each field c the number of charac-

ters represented by the composite characters in L which are lexicographically

smaller than c.

Algorithm 4.2 starts with the last character of the query, then proceeds

backward toward the first character, narrowing down the range in which the

queried k-mer may appear.

4.2. K-MER BURROWS-WHEELER TRANSFORM 45

1010CGTA

0010CGTC

0001CGTT

0001CGTG

(a) k + 1-mers before the merge

1011CGTA

0000CGTC

0000CGTT

0000CGTG

(b) k + 1-mers after the merge

Figure 4.3: Example of the second merge.

Intuitively, Algorithm 4.2 starts in all nodes of the de Bruijn graph that

start with the last character of the query. These k-mers are contiguous in

the sorted list of k-mers, so we can represent them all as a range between two

indices. It then works its way back, in the opposite direction of appropriate

edges, until all the trails meet. The place where they meet corresponds to

our query.

Lemma 4.1 During the execution of Algorithm 4.2 variable First always

points to the first k+1-mer whose k-suffix is prefixed by P [i, k], if such k+1-

mer exists. Otherwise it points to the position where such a prefix would

appear in the sorted order.

We will show that First is an invariant maintained throughout the exe-

cution of the algorithm.

Proof. In the base case (i = k) this is obviously true.

In the general case, before the update First points to the first index,

where the k-suffix is of the form P [i, k]w[1, k− i] for some string w. w is also

the smallest (lexicographically) such string.

We define c = P [i− 1].

Now we are looking for the first index where the k-suffix is of the form

cP [i, k]w[1, k − i − 1]. We know it will be located at or after C[c] + 1. The

offset is equal to the number of k+1-mers with prefix that includes c and k-

suffix lexicographically smaller than P [i, k]w[1, k− i]. The offset is therefore

rank(L, c, F irst− 1).

46
CHAPTER 4. SPACE-EFFICIENT REPRESENTATION OF A

DE BRUIJN GRAPH

Algorithm 4.2 Modified backward search, that only queries for presence or

absence of a k-gram.

function k backward search(L, P [1, k])

i← k, c← P [k], First ← C[c] + 1, Last ← C[c+ 1]

while First ≤ Last and i ≥ 2 do

c← P [i− 1]

First ← C[c] + rank(L, c,First − 1) + 1

Last ← C[c] + rank(L, c,Last)

i← i− 1

end while

if Last < First then

return false

else

return true

end if

end function

We will prove this by contradiction. Let’s assume there is such an index

j that its k + 1-mer is of the form bcP ′[i, k]w′[1, k − i− 1] and such index l,

that j > l, and its k + 1-mer is dcP [i, k]w[1, k − i − 1]. There are also such

indices j′ < l′ with their corresponding k + 1-mers cP ′[i, k]w′[1, k − i] and

cP [i, k]w[1, k − i]. l′ is equal to First before the update.

We want to prove that j′ and l′ do not switch places after the update.

First we look at what happens if P ′ ̸= P .

If P ′ < P , then j > l cannot be true.

If P ′ > P , then j′ < l′ cannot be true.

Now let’s assume P ′ = P .

If w′[1, k − i− 1] > w[1, k − i− 1], then j′ < l′ cannot be true.

If w′[1, k − i − 1] < w[1, k − i − 1], then w′[1, k − i] < w[1, k − i], which

contradicts the definition First.

If P ′ = P and w′[1, k−i−1] = w[1, k−i−1], then w′[1, k−i] < w[1, k−i],
which contradicts the definition of First .

4.2. K-MER BURROWS-WHEELER TRANSFORM 47

Therefore j < l and all k+1-mers prefixed by c with k−1-infixes less than
P [i, k]w[1, k−i−1] appear before cP [i, k]w[1, k−i]. This is also the number of

k+ 1-mers with second character c and suffix less than P [i, k]w[1, k− i− 1].

This “less than” relationship also makes the operation “overshoot” in the

case where the prefix does not appear.

All k + 1-mers which share the middle k − 1 characters share their pre-

decessors, which is why we performed the second merge step when building

L. This removes the excess characters and makes the rank operation report

the correct number of k + 1-mers with appropriate suffixes. □

The proof for Last is similar. The offset is the same as for First with the

addition of all the k+1-mers between First and Last . In the case where the

k-mer is not present Last points to the index before the gap where it would

appear.

Theorem 4.1 Function k backward search(L, P) returns, true if k-mer P

was the suffix of any of the k+1-mers used to construct L and false otherwise.

Proof. First is always updated to point to the first k + 1-mer whose

k-suffix is prefixed by P [i, k], therefore after k steps it points to the first

k + 1-mer suffixed by P . Similar is true for Last . If the k-mer is absent,

First points to the position where the k-gram should appear and Last points

before that position, and the function returns false. □

4.2.1 Auxiliary Data Structures

While all aforementioned operations can be performed by a linear scan over

L, that would be extremely inefficient. We use additional data structures, to

reduce the query times to O(k).

As we have implied before, we use an array C to hold the number of

characters less than any given character. Its size is (σ + 1) · lg n, or in

our case, 5 · lg n. The +1 comes from our need to know the number of all

characters for the first step of the algorithm. We can omit $, since we never

actually query it.

48
CHAPTER 4. SPACE-EFFICIENT REPRESENTATION OF A

DE BRUIJN GRAPH

To allow the rank function to complete in constant time, we use the

data structure presented by Ferragina and Manzini. This adds o (n) space

overhead and can be constructed in parallel using prefix sum algorithms in

O (log n) time [22].

4.2.2 Encoding of the transformed text

We are using approximately 4 bits per k-mer, which is still above the lower

bound, but gets close.

Huffman coding is a method of generating prefix codes for a given al-

phabet, which relies on entropy for compression. As we have mentioned

earlier in § 2.4.2, most k-mers will have a single neighbor on each side.

This means that we should use fewer bits to encode them. Huffman cod-

ing presents a good method of achieving that.

4.2.3 Satellite data

We may want to process additional data associated with k-mers as keys. This

so called satellite data can be k-mer frequency, quality information or which

directions reads take when mapped to the graph. The nodes in our structure

are already sorted into a list and are thus assigned simple unique contiguous

indices. Consequently, any data associated with them can be put in a simple

array.

4.3 Implementation

First we looked into implementation of our data structure as part of Vel-

vet [38], which is known for its large memory requirements. However, due

to a very complicated interface to replace a membership data structure, we

settled instead for GATB, which presents a much simpler interface for mem-

bership data structures.

4.3. IMPLEMENTATION 49

Therefore, we present our implementation of the data structure and com-

pare it to a Bloom filter based data structure in GATB. The whole project

was implemented in C++.

4.3.1 GATB

GATB is a bioinformatics framework [13] that grew out of Minia [10], a

genome assembler. It consists of five main components [19]:

operating system abstraction provides abstraction for memory, thread,

time and filesystem management,

genomic banks read/write support supplies methods for iterating over

FASTA, FASTQ and other types of collections of genomic data,

kmers management implements various k-mer models, including tools for

working with reverse complements,

de Bruijn graph management presents an interface and data structures

for constructing de Bruijn graphs and performing operations on them,

and

collections and design patters, a set of classes frequently used in pro-

gramming, like iterators and vectors, which have been tailored to func-

tion well with the rest of the framework.

GATB’s implementation of the de Bruijn graph uses the membership data

structure method and allows the specific data structure to be replaced, as

long as it supports the contains(kmer) operation.

We implemented a simple version of the data structure in a way that

is compatible with GATB. Due to time limitations it does not completely

integrate into the framework, but enough to compare its performance to

GATB’s existing graph data structure.

50
CHAPTER 4. SPACE-EFFICIENT REPRESENTATION OF A

DE BRUIJN GRAPH

4.3.2 Implementation notes

With memory usage being a major concern, GATB relies heavily on templates

and chooses the smallest data structures that can hold the data. Some code

relies on Boost’s variants to choose between different types, depending on

the size of the data.

We simplified the data structure used for rank queries so that it does not

use a lookup table, which can be very large in practice. It computes the last

part of the lookup with a linear scan over the block, which turns out to be at

least as fast as a lookup [20]. Block size of the rank data structure itself was

fixed to 16 characters, which is enough even for large genomes and exactly

fits into a uint64 t. For simplicity, Huffman coding was not implemented.

4.4 Benchmarking

4.4.1 Methods

We separately measured the times for construction of the data structure and

queries on that data structure. The benchmarking process is illustrated in

Figure 4.4.

Build
structure

Extract
k-mers

Loop
over k-mers

Query
current k-mer EndStart

Query timeBuild time

Figure 4.4: Benchmarking process flowchart.

All queries were k-mers found in the input data. This presents the worst

case both for the original and for our data structure. For the data structure

based on Bloom filters, it means a lot of checks to the false positive set, for

kBWT, querying existing data means the algorithm cannot terminate early

and must perform all k iterations.

4.5. DISCUSSION 51

The input data was a small subset of Potato virus Y NTN NIB V 151

VP1 (SRR1556761). Reads that contained unknown bases were removed and

a small subset (400 000 reads) of the remaining data was used. Size of k-mers

was set to 31. We timed how long does it take to build their respective data

structures and perform queries for both the standard implementation and

our implementation.

The test was performed on a computer with an Intel i7-6700 CPU, 16GB

of RAM and a Western Digital Black 1TB HDD, running Funtoo Linux.

Code was compiled with GCC 4.9.3 using -O3 and -funroll-loops.

Time was measured using C++’s <chrono> library. It was measured

for all the queries in the set of test k-mers together (see Figure 4.4). This

was done because when we tried to measure individual queries separately,

the compiler rearranged the order of calls as part of its optimization, which

made timing inaccurate.

The average times were calculated by fitting a normal probability distri-

bution to the measured times.

4.4.2 Results

Table 4.3 shows times required to build the data structure and then to per-

form the 718 queries (k-mers) determined by GATB’s DSK [29] implemen-

tation to have high frequency. Results were averaged over 30 runs of both

algorithms. Figure 4.5 shows a box plot of those times. During operation

GATB reported memory usage of around 50MiB for GATB’s implementation

and 500MiB for kBWT.

4.5 Discussion

We created a cache-efficient data structure that encodes a de Bruijn graph

in σ · n bits. When working with genomes it uses 4 bit per node, which ap-

proaches the theoretical lower bound. Only o (n) additional data is required

to bring the time complexity of queries from O (k · n) down to O (k).

52
CHAPTER 4. SPACE-EFFICIENT REPRESENTATION OF A

DE BRUIJN GRAPH

Algorithm Part Time ± 2σ [ms]

GATB
build 0.86± 0.014

queries 3.17± 0.52

kBWT
build 29.96± 0.85

queries 30.53± 5.71

Table 4.3: Times required to build a data structure and perform 718 queries.

Testing with Cachegrind revealed that kBWT causes fewer cache misses than

Bloom filters. This can be attributed to the fact that all queries start at two of

five possible points in the transformed text. These points are the boundaries

between blocks with the same first character of the k-mer2. Bloom filters, on

the other hand, are probabilistic and thus are not cache-efficient. However,

having fewer misses did not in any way make up for the number of processor

instructions required by the algorithm.

On other fronts our data structure did not prove to be very effective

in practice with roughly 10 times slower queries and 10 times more memory

usage than the original data structure used in GATB. This led us to recognize

several disadvantages BWT-based structures have, compared to Bloom filter

based ones.

The backward search used by kBWT performs k steps, each of which

involves two rank operations. Each rank operation has to look up data in

two separate arrays and reconstruct a block from a bit field. On the other

hand, the Bloom filter performs d completely independent hashes and checks

the obtained d addresses. Since d≪ k and the rank operation is expensive,

the slow performance was to be expected.

When it comes to memory usage, smaller graphs naturally take up less

space. During the build phase, one of the easiest ways to reduce the number

of k-mers, and thus nodes, is to remove less frequent k-mers, as those are

usually the result of errors in the sequencing process. With Bloom filters this

2In the k + 1-mers we used during construction, this was the second character.

4.5. DISCUSSION 53

Build Queries

0

10

20

30

40

kBWT GATB kBWT GATB
Algorithm

T
im

e[
m

s]

Figure 4.5: Box plot of measured times for two parts of both algorithms.

is simple: we do not insert the k-mers we do not want into the dictionary.

GATB’s implementation of DSK (disk streaming of k-mers) [29] takes care

of removal. For kBWT the process is more complex, as our search algorithm

depends on all suffixes of a k-mer to be present for it to work properly.

The suffixes are normally provided by the prefixes of other k-mers. We can

simply keep the less frequent k-mers and mark them as invalid (adding a 1 bit

overhead), however, this does not yet save space. Another option is to add

all prefixes of the removed k-mer, padded with $. This ensures all proper

suffixes of other k-mers are provided. This is also unlikely to save space.

We could also check which k-mers need replacement suffixes, but that would

complicate the build process. It would probably require a k-mer dictionary

of some sort, which is the exact problem we are trying to solve with kBWT.

54
CHAPTER 4. SPACE-EFFICIENT REPRESENTATION OF A

DE BRUIJN GRAPH

In our implementation we didn’t remove k-mers at all. The only k-mers

that got special treatment were those at the end of reads, which are likely

candidates for k-mers with missing suffixes.

One advantage BWT-derived algorithms have, is that they only define the

maximal query length. The assembly process often benefits from performing

the assembly using many different k′ values, where k′ ≤ k, and combining the

results. With BWT-based structures, assemblies using all k′ values could be

based off of the same data structure. This means the data structure would

only have to be built once and could be reused many times.

Chapter 5

Conclusions

In this thesis we introduced a new space-efficient data structure, kBWT,

which encodes the de Bruijn graph of a genome in near-optimal σ = 4 bits

per k-mer. The size can be further reduced by exploiting the entropy of the

connections present in the graph. With additional o (n) of space it can be

used to find a node’s neighbors in O (k) time. In practice the data structure

did not prove to be as efficient as alternatives, though it used the cache more

efficiently.

Biggest time- and space-wise improvements to the presented solution

could be made in the build phase of kBWT, where the algorithm performs

a lot of string comparisons during sorting. If these operations were im-

plemented more efficiently, the build-time performance would be greatly im-

proved. In our implementations we used some parts of the GATB framework,

but its implementation of k-mers did not support all the required operations.

An efficient implementation of these operations would improve both our al-

gorithm and GATB as a framework in general.

Another improvement would be designing kBWT as a cache-aware data

structure, which means that in the build phase, the algorithm processes data

in chunks that fit into memory and only merges them into a complete data

structure at the very end. Because k-mers can easily be partitioned into

manageable sets based on their prefixes, each of those sets can be sorted

55

56 CHAPTER 5. CONCLUSIONS

individually. The merge operations could also be performed on those sets

separately, since they would never cross set boundaries. This would also

allow the building of the structure to be distributed over multiple computers

or performed on one computer with less memory.

The process of genome assembly in general still has room for improve-

ments in different directions. For example, the improvements in graph trans-

formations include: better k-mer frequency threshold detection, especially in

the area of repeats, more accurate bubble resolution to account for insertions

or deletions, etc. The process of contiging could also be improved by com-

bining multiple techniques like omnitigs [36] and long and paired-end reads

at the same time. It could even use external data, like a set of known genes

when resolving branches in the graph.

On a different note, little has been done in the area of parallel algorithms.

A lot of the algorithms can trivially be made to work in parallel, but the

authors seldom provide an analysis on the PRAMmodel. Such formalizations

would allow the algorithms to easily be used on GPUs [6], vastly increasing

their real-life performance.

Currently, the design of most genome assemblers is monolithic; they im-

plement a single new algorithm or idea. The algorithms are tested in isolation

with, often, whole assemblers built around just one algorithm. Due to the

imprecise nature of genome assembly, hybrid and modular approaches should

be considered. The results from several algorithms can be combined into one

assembly. This step could even employ machine learning techniques to more

intelligently combine the different results.

To allow all these different approaches to graph transformations, contig

assembly, algorithm design and the combinations of all three to be tested, we

need a framework that is both fast and brings as little overhead as possible.

Therefore, a continuation of work on minimizing the memory requirements

is important. Our kBWT is only the tip of the iceberg in the area of BWT-

based data structures. They seem to show promise in terms of cache efficiency

and should be further researched.

Appendix A

Example of the PRAM

Eulerian tour algorithm

We show another example of the parallel Eulerian tour algorithm, this time

with one tour found after the first part of the algorithm, to show how the

certificates affect the table during the execution of the algorithm.

1

2

4 5

3

(a) Simple directed graph.

1

A

2

3

4

5

(b) Graph G1 for the example.

The spanning tree is obvious.

Figure A.1: Example graph and the corresponding G1.

In Table A.1a we can see that the complete tour has already been formed.

However, the algorithm does not yet know this. We perform the rest of the

57

58
APPENDIX A. EXAMPLE OF THE PRAM EULERIAN TOUR

ALGORITHM

Edge succ[e]

(1, 2) (2, 5)

(2, 4) (4, 1)

(2, 5) (5, 3)

(3, 2) (2, 4)

(4, 1) (1, 2)

(5, 3) (3, 2)

(a) The state of succ[e] after the

first assignment.

Edge D[e] Tour name

(1, 2) (1, 2) A

(2, 4) (1, 2) A

(2, 5) (1, 2) A

(3, 2) (1, 2) A

(4, 3) (1, 2) A

(5, 1) (1, 2) A

(b) After tours are found and

named.

Table A.1: Arrays succ and D.

steps as described earlier in § 2.5.2.
Table A.1b shows how the tour is named. Because there is only one tour

it is “named” after the smallest edge. In our case, for clarity, we named it

A.

Vertex Tour certificate[e]

1 A (4, 1)

2 A (1, 2)

3 A (4, 3)

4 A (2, 4)

5 A (2, 5)

Table A.2: Edges that certify that a vertex belongs to a tour.

We can see in Table A.2 that (3, 2) doesn’t certify any of the vertices.

This will affect what succ looks like before the final cleanup.

We can see in Table A.3a that the current sequence is:

((1,2), (A, 2), (2, A), (2,5), (A, 5), (5, A), (5,3), (A, 3), (3, A), (3,2), (2,4),

(A, 4), (4, A), (4,1), (A, 1), (1, A), (1,2)).

59

4

1

A 2

5

3

Figure A.2: T ′ and G on the same graph. The edges of T ′ are dashed.

(3, 2) is followed by a “real” vertex. This is a consequence of the algorithm’s

use of certificates.

Finally, Table A.3b shows a complete tour, which is very similar to the

one in our first example.

60
APPENDIX A. EXAMPLE OF THE PRAM EULERIAN TOUR

ALGORITHM

Edge succ[e]

(1, 2) (A, 2)

(2, 4) (A, 4)

(2, 5) (A, 5)

(3, 2) (2, 4)

(4, 1) (A, 1)

(5, 3) (A, 3)

(1, A) (1, 2)

(2, A) (2, 5)

(3, A) (3, 2)

(4, A) (4, 1)

(5, A) (5, 3)

(A, 1) (1, A)

(A, 2) (2, A)

(A, 5) (5, A)

(A, 3) (3, A)

(A, 4) (4, A)

(a) The state of succ[e] after

computing the succession for T ′.

Edge succ[e]

(1, 2) (2, 5)

(2, 4) (4, 1)

(2, 5) (5, 3)

(3, 2) (2, 4)

(4, 1) (1, 2)

(5, 3) (3, 2)

(b) The state of succ[e] after

cleanup.

Table A.3: Array succ with the Eulerian tour of T ′ and the final succ.

Bibliography

[1] B. Alberts, A. Johnson, J. Lewis, D. Morgan, M. Raff, K. Roberts, and

P. Walter, Molecular Biology of the Cell (6th edition). Garland Science,

2014.

[2] M. Atallah and U. Vishkin, “Finding Euler tours in parallel,” Journal

of Computer and System Sciences, vol. 29, no. 3, pp. 330–337, 1984.

[3] E. Birney, J. A. Stamatoyannopoulos, A. Dutta, R. Guigó, T. R. Gin-

geras, E. H. Margulies, Z. Weng, M. Snyder, E. T. Dermitzakis, R. E.

Thurman et al., “Identification and analysis of functional elements in

1% of the human genome by the ENCODE pilot project,” Nature, vol.

447, no. 7146, pp. 799–816, 2007.

[4] B. H. Bloom, “Space/time trade-offs in hash coding with allowable er-

rors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[5] A. Bowe, T. Onodera, K. Sadakane, and T. Shibuya, “Succinct de Bruijn

graphs,” in International Workshop on Algorithms in Bioinformatics,

2012, pp. 225–235.

[6] A. Brodnik and M. Grgurovič, “Parallelization of ant system fpr GPU

under the PRAM model,” Computing and Informatics, to appear.

[7] A. Brodnik and J. I. Munro, “Membership in constant time and almost-

minimum space,” SIAM Journal on Computing, vol. 28, no. 5, pp. 1627–

1640, 1999.

61

62 BIBLIOGRAPHY

[8] N. G. de Bruijn, “A combinatorial problem,” in Koninklijke Nederlandse

Akademie v. Wetenschappen, 1946.

[9] M. Burrows and D. J. Wheeler, “A block-sorting lossless data compres-

sion algorithm,” Digital Equipment Corporation, Tech. Rep., 1994.

[10] R. Chikhi and G. Rizk, “Space-efficient and exact de Bruijn graph rep-

resentation based on a Bloom filter,” Algorithms for Molecular Biology,

vol. 8, no. 1, p. 1, 2013.

[11] R. Chikhi, A. Limasset, S. Jackman, J. T. Simpson, and P. Medvedev,

“On the representation of de Bruijn graphs,” in International Conference

on Research in Computational Molecular Biology. Springer, 2014, pp.

35–55.

[12] T. H. Cormen, Introduction to algorithms, 3rd ed. MIT press, 2009.

[13] E. Drezen, G. Rizk, R. Chikhi, C. Deltel, C. Lemaitre, P. Peterlongo,

and D. Lavenier, “GATB: Genome assembly & analysis tool box,” Bioin-

formatics, vol. 30, no. 20, pp. 2959–2961, 2014.

[14] R. Drmanac, S. Drmanac, G. Chui, R. Diaz, A. Hou, H. Jin, P. Jin,

S. Kwon, S. Lacy, B. Moeur et al., “Sequencing by hybridization

(SBH): advantages, achievements, and opportunities,” in Chip Tech-

nology. Springer, 2002, pp. 75–101.

[15] D. Earl, K. Bradnam, J. S. John, A. Darling, D. Lin, J. Fass, H. O. K.

Yu, V. Buffalo, D. R. Zerbino, M. Diekhans et al., “Assemblathon 1:

a competitive assessment of de novo short read assembly methods,”

Genome research, vol. 21, no. 12, pp. 2224–2241, 2011.

[16] P. Ferragina and G. Manzini, “Indexing compressed text,” Journal of

the ACM, vol. 52, no. 4, pp. 552–581, 2005.

BIBLIOGRAPHY 63

[17] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan, “Compress-

ing and indexing labeled trees, with applications,” Journal of the ACM,

vol. 57, no. 1, p. 4, 2009.

[18] M. L. Fredman, J. Komlós, and E. Szemerédi, “Storing a sparse table

with O(1) worst case access time,” Journal of the ACM, vol. 31, no. 3,

pp. 538–544, 1984.

[19] “gatb.core-api-1.2.2: Design of the library,” Web site, GATB, 2016, http:

//gatb-core.gforge.inria.fr/doc/api/design page.html#coredesign, ac-

cessed 2016-10-06.

[20] R. González, S. Grabowski, V. Mäkinen, and G. Navarro, “Practi-

cal implementation of rank and select queries,” in In Poster Proceed-

ings Volume of 4th Workshop on Efficient and Experimental Algorithms

(WEA’05) (Greece, 2005, pp. 27–38.

[21] D. Gusfield, Algorithms on strings, trees and sequences: computer sci-

ence and computational biology. Cambridge university press, 1997.

[22] J. JáJá, An introduction to parallel algorithms. Addison-Wesley Read-

ing, 1992, vol. 17.

[23] D. Jungnickel and T. Schade, Graphs, networks and algorithms.

Springer, 2008.

[24] D. Kutnjak, M. Rupar, I. Gutierrez-Aguirre, T. Curk, J. F. Kreuze,

and M. Ravnikar, “Deep sequencing of virus-derived small interfering

RNAs and RNA from viral particles shows highly similar mutational

landscapes of a plant virus population,” Journal of virology, vol. 89,

no. 9, pp. 4760–4769, 2015.

[25] R. Luo, B. Liu, Y. Xie, Z. Li, W. Huang, J. Yuan, G. He, Y. Chen,

Q. Pan, Y. Liu et al., “SOAPdenovo2: an empirically improved memory-

efficient short-read de novo assembler,” GigaScience, vol. 1, no. 1, p. 1,

2012.

http://gatb-core.gforge.inria.fr/doc/api/design_page.html#coredesign
http://gatb-core.gforge.inria.fr/doc/api/design_page.html#coredesign

64 BIBLIOGRAPHY

[26] M. Pop, “Genome assembly reborn: recent computational challenges,”

Briefings in bioinformatics, vol. 10, no. 4, pp. 354–366, 2009.

[27] D. M. W. Powers, “Parallelized QuickSort and RadixSort with optimal

speedup,” in Proceedings of International Conference on Parallel Com-

puting Technologies. Novosibirsk., 1991, pp. 167–176.

[28] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scal-

able content-addressable network,” in Proceedings of the 2001 conference

on Applications, technologies, architectures, and protocols for computer

communications, vol. 31, no. 4, 2001.

[29] G. Rizk, D. Lavenier, and R. Chikhi, “DSK: k-mer counting with very

low memory usage,” Bioinformatics, p. btt020, 2013.

[30] M. Roberts, W. Hayes, B. R. Hunt, S. M. Mount, and J. A. Yorke,

“Reducing storage requirements for biological sequence comparison,”

Bioinformatics, vol. 20, no. 18, pp. 3363–3369, 2004.

[31] “454 life sciences unveils new bench top sequencer, significant improve-

ments to the Genome Sequencer FLX System including 1,000 bp reads

for 2010,” Press release, Roche, November 2009, http://www.roche.

com/media/store/releases/med dia 2009-11-19.htm, accessed 2016-09-

19.

[32] M. Ronaghi, M. Uhlén, and P. Nyren, “A sequencing method based on

real-time pyrophosphate,” Science, vol. 281, no. 5375, p. 363, 1998.

[33] S. L. Salzberg, A. M. Phillippy, A. Zimin, D. Puiu, T. Magoc, S. Koren,

T. J. Treangen, M. C. Schatz, A. L. Delcher, M. Roberts et al., “GAGE:

A critical evaluation of genome assemblies and assembly algorithms,”

Genome research, vol. 22, no. 3, pp. 557–567, 2012.

[34] F. Sanger and A. R. Coulson, “A rapid method for determining se-

quences in DNA by primed synthesis with DNA polymerase,” Journal

of molecular biology, vol. 94, no. 3, pp. 441–448, 1975.

http://www.roche.com/media/store/releases/med_dia_2009-11-19.htm
http://www.roche.com/media/store/releases/med_dia_2009-11-19.htm

BIBLIOGRAPHY 65

[35] J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. Jones, and

I. Birol, “ABySS: a parallel assembler for short read sequence data,”

Genome research, vol. 19, no. 6, pp. 1117–1123, 2009.

[36] A. I. Tomescu and P. Medvedev, “Safe and complete contig assembly

via omnitigs,” arXiv preprint arXiv:1601.02932, 2016.

[37] C. Ye, Z. S. Ma, C. H. Cannon, M. Pop, and W. Y. Douglas, “Exploiting

sparseness in de novo genome assembly,” BMC bioinformatics, vol. 13,

no. 6, p. 1, 2012.

[38] D. R. Zerbino and E. Birney, “Velvet: algorithms for de novo short read

assembly using de Bruijn graphs,” Genome research, vol. 18, no. 5, pp.

821–829, 2008.

Index

454, 29

ABySS, 17

alphabet, 8

base pair, 27

BCALM, 37

Bloom filter, 16

bubble, 34

Burrows-Wheeler transform, 17, 39

contig, 34

DBGFM, 17, 38

de Bruijn graph, 9

directed graph, 7

DNA, 1

edges, 7

Eulerian graph, 19

Eulerian tour, 18

FASTA, 31

FASTQ, 32

FM-index, 17

GATB, 49

gene, 1

genome, 1

graph, 7

Huffman coding, 48

Illumina, 29

IUPAC, 31

k-gram, 8

k-mer, 30

kBWT, 43

long reads, 28

membership data structure, 13

Minia, 49

minimizers, 37

navigational data structure, 13

Next-generation sequencing, 29

node, 7

nucleotide, 27

omnitigs, 37

paired-end reads, 28

Phred quality score, 30

rank, 44, 48

read, 27

regular graph, 10

66

INDEX 67

reverse complement, 27

safe strings, 37

Sanger sequencing, 28

Sequencing by hybridization, 28

short reads, 27, 29

SNP, 34

SOLiD, 29

string, 8

text, 8

tip, 34

totally ordered, 8

unitigs, 37

vertex, 7

	Povzetek
	Abstract
	Sestavljanje genoma iz odčitkov zaporedja
	Introduction
	From genome to genome—the theory
	From genome to genome—the practice
	Our contribution
	Thesis structure

	De Bruijn graph and Eulerian tour
	Definitions
	Regular de Bruijn graph
	De Bruijn graph of a text
	Data structures
	Eulerian tour

	Genome sequencing and assembly
	Sequencing technologies
	Genome data
	Assembly process overview
	Contiging

	Space-efficient representation of a de Bruijn graph
	Burrows-Wheeler transform
	k-mer Burrows-Wheeler transform
	Implementation
	Benchmarking
	Discussion

	Conclusions
	Example of the PRAM Eulerian tour algorithm

