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UNIVERZITETNI ŠTUDIJSKI PROGRAM

PRVE STOPNJE
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Fakulteta za računalnǐstvo in informatiko izdaja naslednjo nalogo:

Detekcija uhljev s konvolucijskimi nevronskimi mrežami
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detekcije uhljev na slikah. S pomočjo konvolucijskih nevronskih mrež rešite
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Abstract

Title: Ear detection with convolutional neural networks

Object detection is still considered a difficult task in the field of computer

vision. Specifically, earlobe detection has become a popular application as

the interest in human identification using earlobe biometry has increased.

So far earlobe detection problem has been solved using a combination of

skin detection, edge detection, segmentation by fusion of histogram-based k-

means, and template matching algorithms. In this work we present a method

of earlobe detection without template matching by using a convolutional

neural network, performing image segmentation. With this method, which

is invariant to angle at which the photo was taken, earlobe shape, skin color,

illumination, occlusions, and earlobe accessories, we were able to accurately

detect the area of the image, where an earlobe is present. Moreover, detection

time was significantly improved when compared to other methods for solving

the same task. We expect our method to be used in Annotated Web Ears

Toolbox.

Keywords: computer vision, segmentation, convolutional neural networks,

earlobe detection.





Povzetek

Naslov: Detekcija uhljev s konvolucijskimi nevronskimi mrežami

Zaznavanje objektov na slikah je še zmeraj zahteven problem na področju

računalnǐskega vida. Zaznavanje uhljev je v zadnjih letih postala popularna

aplikacija zaznavanja objektov, z vedno večjim zanimanjem za identifikacijo

ljudi glede na biometrijo uhlja. Kolikor vemo, se je problem zaznavanja uhljev

do zdaj reševal s kombinacijami zaznavanja kože, zaznavanja robov, his-

togramov in algoritmi ujemanja predloge. V tem delu predstavimo metodo za

detekcijo uhljev brez ujemanja predloge, z uporabo konvolucijske nevronske

mreže, ki opravlja segmentacijo. S to metodo, ki je invariantna na kot, pod

katerim je slika zajeta, obliko uhlja, barvo kože, osvetljitev, delno prekrivanje

in dodatke na uhljih, smo uspeli natančno zaznati območje slike, kjer se uhelj

nahaja. Nadalje, čas, potreben za zaznavo, se je zelo izbolǰsal v primerjavi

z ostalimi metodami za reševanje enakega problema. Predvidevamo, da bo

naša metoda uporabljena v orodju Annotated Web Ears Toolbox.

Ključne besede: računalnǐski vid, segmentacija, konvolucijske nevronske

mreže, detekcija uhljev.





Razširjeni povzetek

Zaznavanje objektov na slikah je za ljudi preprosta naloga, ki jo opravl-

jamo praktično podzavestno. Za računalnike pa ista naloga predstavlja velik

problem, saj se ti ne morejo zavedati vsebine slik v svojih pomnilnikih. Pri

zaznavanju objektov gre za proces zaznave pojavitve primerkov določenega

razreda iz resničnega sveta v digitalnih slikah. Znane aplikacije zaznave

objektov vključujejo zaznavo človeških obrazov, pešcev, vozil in promet-

nih znakov. Objekte pa lahko zaznavamo tudi v videih, kar nam omogoča

izdelavo avtonomnih vozil ter varnostni nadzor v realnem času. Na po-

dročju računalnǐskega vida je zaznavanje objektov trenutno zanimiv problem,

katerega se s pomočjo različnih metod tudi uspešno rešuje. Med največkrat

uporabljene metode spadajo ekstrakcija značilk, klasifikacija z deskriptorjem

značilk in metoda iskanja ujemanja s predlogo.

S povečevanjem zanimanja po identifikaciji ljudi glede na biometrijo ušeša,

se je pojavila tudi aplikacija zaznavanja objektov na zaznavanje človeških

uhljev. Uhlji se lahko pojavijo v različnih oblikah, različnih barvah kože, na

njih so lahko dodatki (npr. uhani, slušalke, slušni aparat), njihovo vidnost

lahko ovirajo ostali objekti (npr. lasje, pokrivala). Prav tako so lahko slike

zajete pod različnimi pogoji, kot je kot, pod katerim je uhelj fotografiran in

osvetljenost zajete slike. Vse naštete lastnosti otežujejo detekcijo uhlja na

slikah.

Rešitve v večini za detekcijo uhlja uporabljajo stopnje ujemanja iskanega

uhlja z ročno ustvarjeno predlogo. Ta se trudi zajeti čimveč različnih ob-

lik uhljev s kreiranjem idealiziranega oziroma povprečnega uhlja. Nadalje,



razvita je bila metoda, kjer v obzir vzamejo tudi dejstvo, da so uhlji različnih

velikosti. Tako so uvedli predlogo, katere velikost se spreminja glede na ve-

likost zaznane glave. Ker obe metodi delujeta na principu detekcije robov,

lahko pride do težav, kadar uhelj delno prekrivajo ovire, s tem do ujemanja

s predlogo ne pride. Razvita je bila tudi metoda, ki obide možnost delnega

prekrivanja na način, da pri zaznavi ne ǐsče celotnega uhlje, ampak samo

najbolj notranji del. Celoten uhelj nato, glede na znano pozicijo notranjega

dela, zazna na podlagi bioloških karakteristik človeških uljev (npr. razmerje

med vǐsino in širino). Z navedenimi metodami pa še zmeraj ne rešimo prob-

lema s fotografijami uhljev, ki so bile zajete z različnih kotov, saj se v takih

primerih predloga ne more uspešno prilagajati. Zato predlagamo metodo za

segmentacijo uhljev na osnovi konvolucijske nevronske mreže.

Konvolucijske nevronske mreže predstavljajo različičo umetnih nevron-

skih mrež, katerih aplikacije zajemajo tudi razpoznavanje signalov, slik ter

obdelavo naravnega jezika. Mreže so sestavljene iz več plasti, ene vhodne,

ene ali več skritih in ene izhodne plasti. Na vhodni plasti podamo vhodne po-

datke, sliko, ki jo s pomočjo različnih vrst skritih plasti obdelamo. Na vsaki

izmed skritih plasti se izračunajo določene značilke. Na zadnji plasti iz pri-

dobljenih značilk razberemo podatke o sliki, običajno verjetnosti, da se objekt

določenega razreda na sliki pojavi. V naši rešitvi je bila uporabljena knjižnica

Caffe, odprtokodno ogrodje za globoko učenje. Osnova naše arhitekture je

arhitektura SegNet, ki v osnovi izvaja segmentacijo slik mestnih ulic in zaz-

nane objekte razvršča v 12 razredov. Osnovna arhitektura je bila prilagojena

tako, da zaznava dva razreda: uhlje in ozadje – vse ostalo, kar ni uhelj. Vsako

nevronsko mrežo pa je pred uporabo za reševanje naloge potrebno tudi naučiti

na učni množici.

Uporabljene učne množice so bile zgrajene s slikami iz baze Annotated

Web Ears (AWE), pol-avtomatsko pridobljene množice 1.000 anotiranih uh-

ljev, ki pripadajo 100 različnim subjektom. Namesto obrezanih in anoti-

ranih slik uhljev, smo morali uporabiti originalne, neobrezane slike in jih

ponovno anotirati za potrebo naloge – segmentacijo. Anotacija uhljev je bila



opravljena na dva načina. Pri prvem načinu smo uhlje anotirali avtomatsko.

Izračunana je bila korelacija med neobrezano in pripadajočo obrezano sliko

uhlja. Pozicija uhlja je bila najdena tam, kjer je bila izračunana najvǐsja

vrednost korelacije. Na najdeni poziciji je bil narisan pravokotnik dimen-

zij obrezane slike uhlja. To je predstavljalo zelo grobo označene slike in

zaradi potrebe po bolj natančno označenih slikah (predvsem pri testiranju

natančnosti segmentacije), so bile slike tudi ročno označene na osnovi po-

sameznih slikovnih elementov. Zaradi majhnega števila učnih primerov je

bila učna množica tudi obogatena. Izvedene so bile tri vrste obogatitev:

horizontalni zasuk, naključno obrezovanje in kombinacija obojega.

Učenje mreže smo izvajali na grafični procesni enoti, saj je njena zmoglji-

vost pri učenju mrež veliko vǐsja od zmogljivosti centralne procesne enote,

zaradi zmožnosti paralelnega računanja. Pred začetkom učenja smo celotno

učno množico skopirali v grafični pomnilnik in s tem zmanǰsali čas, potreben

za dostop do podatkov. Za 10.000 iteracij učenja mreže smo potrebovali 64

minut. V tem času sta vrednosti natančnosti in izgube konvergirali k željenim

vrednostim. Vrednost natančnosti, katera predstavlja odstotek pravilne klasi-

fikacije posameznih slikovnih elementov v pripadajoče razrede, je konvergi-

rala proti 100 in vrednost izgube, katera pove, kako nepravilni so v danem

trenutku parametri nevronske mreže (na primer uteži), je konvergirala proti

0.

Predlagana metoda je zmožna zaznavanje uhljev v povprečju opravljati

z 98,69% natančnostjo, kar pomeni, da na podani sliki pravilno klasificira

98,69% slikovnih elementov. Za segmentacijo ene slike metoda v povprečju

potrebuje 87,5ms kar pomeni, da lahko detekcijo opravljamo v realnem času

pri frekvenci 11 sličic na sekundo. V primerjavi s sorodnimi deli, naša metoda

detekcijo opravlja z do 7% vǐsjo natančnostjo v do 28 krat kraǰsem času.

S prilagajanjem strukture mreže, glede na nalogo, katero opravlja in večjo

množico učnih primerov, bi bilo mogoče delovanje mreže dodatno izbolǰsati.





Chapter 1

Introduction

Object detection is a task easily performed by humans. But the same task

represents a much bigger problem to the computers. This holds true because

of the fact that computers are not aware of the content of images they store in

their memory. That is why object detection is at the moment still considered

an interesting topic in the field of computer vision. Only recently has there

been a breakthrough in tackling the mentioned problem. With the increased

computing power and help of Convolutional Neural Networks (CNN) [16]

more or less the same methods can be used to detect any kind of object

as long as one is able to provide sufficient amount of images to train the

network.

With the increase of interest in biometry of ears and human recognition

by their earlobe, we decided to find a way to detect earlobes using CNNs.

We wanted to provide a system, which is able to quickly and accurately

locate an earlobe in an image regardless of its color, position, and shape.

The method we decided to use was pixel-wise image segmentation using two

classes: earlobe and everything else (background).

1



2 CHAPTER 1. INTRODUCTION

1.1 Motivation

This thesis, which belongs in the field of computer vision or more specifically

object detection, is a part of a broader project by Žiga Emeršič, Vitomir

Štruc and Peter Peer [6]. The project addressees the identification of people

by the biometry of their earlobe. In this thesis the detection of ears in images

will be covered. This will help building a database of earlobes as well as

detecting ears in an image in the process of human identification. Moreover

a database of 1,000 annotated images will be built for the purpose of solving

earlobe segmentation problems. The problem of earlobe detection will be

solved using Convolutional Neural Networks (CNN) since it has (as far as

we know) not yet been solved using this method. Annotation of earlobes for

the database will be done manually. Binary masks will be created, where the

marked areas will present an earlobe and the rest background. The images

will be properly divided in the train and the test set and the created database

will be used for training of the CNN as well as testing to obtain information

about the accuracy of detection.

1.2 Object Detection

Object detection is a process of detecting instances of a certain class from the

real world in digital images [2]. The task belongs to the field computer vision

and image processing. Well known applications of object detection include

face detection, pedestrian detection, vehicle detection and detection of road

signs. Videos can also be processed for object detection, thus, allowing the

technology to help create driverless cars by detecting objects on the road [1].

Another application alongside autonomous driving is real-time surveillance.

Algorithms for object detection typically use feature extraction, classifica-

tion with histograms of oriented gradients, template matching or learning

algorithms [24], [26], [27]. The later is found in the rising method of object

detection with the use of Convolutional Neural Networks.
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1.3 Structure of the Thesis

First, we list and briefly describe the works that have already been done

in the field of earlobe detection and mention the most common problems

they face. Next, some theoretical background is presented about artificial

neural networks and convolutional neural networks in particular. Also, the

architecture of our model is described and its building blocks, layers, are

further explained. Afterwards, different kinds of datasets, which were used

to train the network, are explained, as well as the procedures of how they

were obtained. The main points about the process of training the network

are described next. Following, is the presentation of results with discussion

and comparison to similar approaches. We conclude the thesis with identified

problems we faced during our work and propose some improvements, which

could better our results.
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Chapter 2

Related Work

Earlobe detection is a challenging problem as earlobes appear in various

shapes, sizes, and colors. Moreover, the images in which they appear may

be of different illumination and the angles from which the images are taken

may not always be ideal.

The problem of various shapes of an earlobe has been studied in many

researches. The most straightforward approach is creating an idealized tem-

plate [24], which aims to include most of the shapes earlobes appear in. But

as earlobes are also of various sizes, a method with a resizing idealized tem-

plate [26] seem as a more appropriate approach. Unfortunately, both of these

methods rely on edge detection, which can be a problem if occlusions, such

as earrings or hair covering the earlobe, appear in the image.

A method which tries to avoid this problem has been developed in [32].

As opposed to most other methods this one detects the inner part of the

earlobe, which means light occlusions from earrings and hair are not a prob-

lem anymore. By simply finding its center, some biological characteristics

are taken into account to then detect the rest of the earlobe. But even with

the use of this method an earlobe cannot always be detected if the image is

taken from an angle, where the inner part is not visible.

Thus, a method invariant to illumination, pose, shape and occlusion has

been proposed [27], providing satisfactory results. But as this method still

5



6 CHAPTER 2. RELATED WORK

uses a template for evaluating whether or not an earlobe is present within a

region of interest, we believe the accuracy of detection could be improved.

We suggest a method that is based on convolutional neural networks.

With this method we are able to make a pixel-wise classification (segmenta-

tion) whether or not a part of the image belongs to an earlobe.



Chapter 3

Method

In this section we describe the suggested method based on convolutional

neural networks. First, we describe what the used technologies are and how

they work. Next, the architecture and the building blocks of the used model

are further described. Also, we present the training datasets and how they

were created. Finally we describe the process of training and briefly define

some basic terms related to it.

3.1 Artificial Neural Networks

The first computational model for neural networks has been developed in

1943 by Warren McCulloch and Walter Pitts [18]. Their model was based on

mathematics and algorithms called threshold logic. It served as the basis for

neural networks method to split into two distinct approaches. One mimicking

the biological processes in the brain and the other to develop an application

of neural networks in the field of artificial intelligence.

Artificial neural networks (ANN) are a machine learning method inspired

by a biological neural network. The methods try to mimic animals’ central

nervous system, especially the brain. Similarly to a biological brain, neural

networks are used to solve problems that depend on a large number of in-

puts. An artificial neural network consists of a series of parallel nodes called

7



8 CHAPTER 3. METHOD

Figure 3.1: A simplified model of a neuron with x1, x2, and x3 as inputs, w1,

w2, and w3 as their corresponding weights, b presenting the bias, the circle

in the middle presents the neuron itself where the summer and activation

function take place, and y presents the output of the neuron.

neurons, which are mathematical representation of simplified biological neu-

rons. A mathematical model of a neuron (figure 3.1) consists of a number

of weighted inputs, a weighted bias, a summer, an activation function, and

an output [21]. The values of all inputs and the bias are weighted, summed,

and if the sum is greater than a set threshold the activation function sends

a signal from the output onto the input(s) of the next neuron.

Neurons are grouped into layers that are interconnected. A neural net-

work consists of an input layer, which sends the input data to the next layer,

hidden layer(s), which can be used for any kind of processing of the input

data, and output layer, which outputs the result of the given task. A specific

structure of layers is normally called a model. An example model of an arti-

ficial neural network is shown in figure 3.2. Neural networks are, like other

machine learning methods, used to solve a variety of tasks, tasks otherwise

hard to solve using rule-based programming.

To be able to solve given tasks, neural networks first need to be trained.

To train a network you need a training dataset to learn from. The training

dataset consists of raw data along with correct classifications, annotations,
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Figure 3.2: Example of a neural network with an input layer, one hidden

layer and an output layer.

also called ground truths. These present the correct outputs of the network

should the corresponding data be sent through the network for testing. A loss

function is also present during training and tells how well or bad a model

is able to predict the output after each iteration of learning. The goal of

training a network is to find weights between neurons that minimize the loss

function.

Complex neural networks consist of many layers that are connected with

synapses (figure 3.3). Each synapse in an artificial neural network stores

an adaptive weight. The adaptive weights represent the strengths between

biological neurons and are constantly changing during training to produce

the best results.

The described method can be compared to human vision. First, light

waves hit the photoreceptors, which is an equivalent to data entering the

input layer. Next the signal is processed through a series of biological systems

and finally sent to the back of the brain, more specifically the V1 cortex [11].

V1 is the first stage of processing the visual information and still contains the

information of the whole map of the visual field, resembling a hidden layer of
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Figure 3.3: A more complex neural network with an input layer, three hidden

layers, and an output layer. The image also shows how the outputs of one

hidden layer are inputs of another.

an artificial neural network. The output of V1 is sent to subsequent cortical

visual areas, where objects in the visual field are given meaning. Comparable

to the output layer of the ANN.

However, the modern software implementations of ANNs are largely aban-

doning the approach inspired by a biological brain. Instead they use a more

practical approach that is based on statistics and signal processing [5].

The most common method for training ANNs is gradient descend with

backpropagation. At every step of training, gradient of the loss function,

according to all weights in the network, is calculated. In order to minimize

the loss function an optimization method uses the calculated gradient to

update the weights in the network accordingly. Since optimization requires

differentiation, the activation functions in neurons need to be differentiable.

In order to calculate the loss function, the desired output for every input

needs to be known during training. The predicted output is compared to the

desired output and the weights are then changed in the way that minimizes

the difference between the two [4]. By doing this, the accuracy of predicted

outputs rises.
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3.2 Convolutional Neural Networks

Convolutional neural networks, which are inspired by the animal visual cor-

tex, are feed-forward neural networks, meaning the connections between all

neurons are organized in such way that no cycle appears in the network.

Similarly to ordinary neural networks, convolutional neural networks have

an input, which is transformed through a series of hidden layers and at the

end produces an output. They have a wide application range, such as image

recognition or natural language processing [31].

When used for image recognition, convolutional neural networks consist

of multiple layers of neuron clusters, which act as receptive fields. These

clusters process the input image part by part and output a stack of features

detected in the mentioned parts. The process is repeated at every such cluster

and is used to tolerate translation, meaning the position of an object in an

image is of no importance in order to still get recognized [12]. Local or global

pooling layers are used to combine the outputs of neuron clusters.

The advantage of a convolutional neural network is the use of shared

weights in convolutional layers. The same filter is used for each pixel within

the same layer, which reduces memory needs and increases performance [15].

Another advantage is lack of dependence on prior knowledge of the studied

object in the images and requirement for very little pre-processing. The

network itself is responsible for learning filters in contrast to other algorithms

that require human effort and knowledge to hand-engineer the filters.

Regular neural networks receive a single vector input, which is trans-

formed through a series of hidden layers, where each neuron is fully con-

nected. That is why regular neural networks do not scale well if working

with images. CIFAR-10 [13] is a dataset of very small images. It consists of

60,000 colour images of size 32×32 pixels. In case a regular neural network

would want to be trained and tested on the CIFAR-10 dataset, 32×32×3

(width, height, number of color channels, respectively), 3,072 weights per

neuron would be needed, which is still manageable. But should the size of

images increase, as in our case to 480×360, the number of weights per neuron
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Figure 3.4: An example of convolution of an input with a 3×3 kernel.

reaches 518,400. As we would also want to use more than a single neuron,

this would lead to a very high amount of weights needed and result in great

memory requirement and decrease in performance.

The convolutional neural networks assume that the input is always an

image and because of this fact the architecture can be adjusted. In con-

trast to regular neural networks, neurons of convolutional neural networks

are arranged in three dimensions, width, height, and depth. In case of using

CIFAR-10 dataset, the input layer of the network would be of a dimension

32×32×3. Moreover, the neurons are not fully connected. Instead, they are

only connected to a small part of neurons from previous layer. For example,

with a convolution filter (kernel) of the size 3×3, the size of the result of con-

volution is 2 units smaller in height and 2 units smaller in width, compared to

the size of the image before convolution, as shown in figure 3.4. Moreover, as

convolution is an operation demanding a lot of computation, max pooling is

typically used after convolution to reduce the size of data even further as well

as reduce the amount of computation needed for any following convolutions,

as shown in figure 3.5.
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Figure 3.5: An example of size reduction of a single depth slice by choosing

the maximum values in 2×2 sized windows.

The last layer of a convolutional neural network is an output layer in

shape of a vector. The dimensions of the vector are 1×1×n, where n equals

the total number of classes present in a dataset. Classes from class scores

vector, which are above a set threshold, are returned as results. In case of

image segmentation the output layer is of the size w×h×n, where w and h

are the width and height of the input image, respectively and n is the total

number of classes present in a dataset. The end result corresponds to the

class with maximum probability at each pixel [1]. An example convolutional

neural network is shown in figure 3.6.

3.3 Network Architecture

In our work, the network was built using an opensource library, Caffe [10],

a deep learning framework developed at the University of Berkley. The ben-

efits of using Caffe are its simplicity and speed. The modularity of the

library makes adding newly developed functions and types of layers easy.

Caffe supports using GPUs to perform computation and allows the usage of

CUDA, Nvidia’s parallel programming and computing platform, to reduce

times needed to train networks.

SegNet [1] is a deep convolutional encoder-decoder architecture for robust

semantic pixel-wise labeling. It consists of a sequence of nonlinear process-
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Figure 3.6: A typical architecture of a convolutional neural network, here for

image classification.

ing layers (encoders) and a corresponding set of decoders with a pixel-wise

classifier. A single encoder consists of one or more convolutional layers, a

batch normalization layer and a rectified linear units layer, followed by non-

overlapping maxpooling and sub-sampling. A key feature of SegNet is the

use of maxpooling in its decoders, which upsamples the low resolution fea-

ture maps. With this feature high frequency details in segmented images

are retained and the total number of parameters in decoders is reduced. The

architecture can be trained by using stochastic gradient descend. The goal of

a stochastic gradient descend is to find a minimum or maximum by iteration.

In our case we are using it to find the minimum of the loss function.

To be able to solve our task, a modification had to be done to SegNet’s

last convolutional layer and the softmax loss layer. Number of outputs of

the convolutional layer was changed to 2 (earlobe and background) and new

class weights were calculated and applied to softmax loss layer to ensure a

stable network training. A graphical representation of the architecture is

shown in figure 3.7 and a tabular representation with layer numbers, types

and numbers of outputs is shown in table 3.1.
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Layer Number Type of Layer Number of Outputs

- data/input 480×360×3

1 convolutional 64

2 convolutional 64

- max pooling

3 convolutional 128

4 convolutional 128

- max pooling

5 convolutional 256

6 convolutional 256

7 convolutional 256

- max pooling

8 convolutional 512

9 convolutional 512

10 convolutional 512

- max pooling

11 convolutional 512

12 convolutional 512

13 convolutional 512

- max pooling

- upsample

14 convolutional 512

15 convolutional 512

16 convolutional 512

- upsample

17 convolutional 512

18 convolutional 512

19 convolutional 256

- upsample

20 convolutional 256
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21 convolutional 256

22 convolutional 128

- upsample

23 convolutional 128

24 convolutional 64

- upsample

25 convolutional 64

26 convolutional 2

- softmax loss (used for training)

Table 3.1: Tabular representation of the layers used in our architecture. A

convolutional layer is always followed by a BN and a ReLU layer.

3.4 Types of Layers Used in Our Model

In the next sections, layers as building blocks of the used architecture are

further described.

3.4.1 Data Layer

Data enters a network through data layers, which are placed at the begin-

ning of a network. The data we feed our networks can enter from various

sources. It can come from efficient databases such as levelDB, which is a fast

key-value storage library written at Google or LMDB (Lightning Memory-

mapped Database), a fast, memory-efficient database developed by Symas.

Data can also come directly from memory or even from a disk when efficiency

is not critical [16]. This way data can be stored either in HDF5, a file format

for storing and managing data or in a common image format.

In our case, we are working with a small number of images, so efficiency

is not critical. Thus, images in Portable Network Graphics (png) format are
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Figure 3.7: A graphical representation of the used architecture. The purple

layer represents the input, data layer, each blue layer represents the sequence

of a convolutional, a BN and a ReLU layer, green layers represent pooling

layers, red layers represent upsample layers, and the yellow layer represents

the output, softmax loss layer.

used.

Caffe also supports data augmentation in data layers [10], so image pre-

processing like mean subtraction, scaling, random cropping and mirroring

can be done automatically. But since our data has been augmented manually

beforehand, additional augmentation has not been used. Another function

from the data layer is shuffling. Data shuffling prevents the network from

learning rules too specific to a series of similar images, which in a dataset

tend to be placed one after another. In our case, we used data shuffling.

3.4.2 Convolutional Layer

The parameters of convolutional layers consist of a set of learnable filters

[10]. Each filter is spatially small, but with horizontal and vertical shifting,

it filters the whole input. Typical filter on the first convolutional layer of

a network is for example a filter of the size 3×3×3 pixels (width, height,

number of color channels, respectively). During the passing of the input to

output, convolution is performed by all the filters of a convolutional layer.

Convolution is a computation of dot products between the entries of the
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filter and parts of the input volume of the size of the filter [3]. Dot product

is computed at every position of the input volume to create a 2D activation

map, a map of responses of the filter that we used at every position of the

input. With iterations the network will help learn a filter to activate when

they detect some type of visual feature. On the first convolutional layers of

a network such features could be edges and convolutional layers on higher

levels of the network could detect patterns. The entire set of filters produces

corresponding activation maps. These maps are stacked on one another,

similarly to color channels in images, to produce the output volumes.

3.4.3 Batch Normalisation Layer

A Batch Normalization (BN) layer allows the network to be trained at a

higher learning rate, meaning the neural network may learn more quickly.

With the use of BN layer the same accuracy can be achieved with 14 times

fewer training steps [8]. When data flows through the network, weights and

parameters adjust accordingly. But sometimes input data gets too big or

too small and the weights and parameters may change drastically – problem

referred to as internal covariate shift. Normalization, normalizing the data

dimensions so that they are of approximately the same scale, is normally

done as a part of pre-processing. Instead of one-time normalization at the

beginning, the process is repeated at every BN layer.

3.4.4 Rectified Linear Units (ReLU) Layer

The Rectified Linear Units (ReLU) layer performs a threshold operation in

the network, where the values less than zero are set to zero. Given an input

value x, ReLU computes the output y according to the equation 3.1.

y =

x, if x > 0

0, x ≤ 0
(3.1)

ReLU layers support in-place computation in order to preserve memory [10].
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This means that the input and the output of a ReLU layer are the same layer.

The values of the input layer are overridden by the values of the output of a

ReLU layer.

3.4.5 Pooling Layer

Pooling layers are used to perform non-linear down-sampling – a decrease

in dimensions of the data flowing through the network and so lowering the

computational demands [7]. The input image is partitioned into a set of

non-overlapping rectangles. Only the maximum value from each rectangle is

preserved. By eliminating non-maximum values, much less computation is

needed on the next layers of the network. The most commonly used filter size

in a pooling layer is 2×2. This can be interpreted as dividing the input data

into partitions of 2×2. Within each of the partitions only one among four

values, the maximum, is preserved. These local maximum values are then

tiled back together according to their position. With a single max-pooling

layer the size of data at the output is only a quarter of that at the input,

thus saving the network a lot of computation on the following layers.

3.4.6 Upsample Layer

Upsampling layer is, similarly as convolutional layer, a learnable layer [17]. It

upsamples the feature maps from its input in a learnable way. The main idea

is to use upsample layers to produce a feature map the size of the original

image (as is on the data layer). A single upsample layer thus transforms

a low resolution input into a higher resolution output. An upsample layer

takes the learned filter from their pair convolutional layer and pastes the filter

weighted by a scalar, the value from the input feature map, onto the output

and repeats the process for all the values of the input feature map. Since

some regions on the output overlap during the process, values at overlapping

regions are simply added up.
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3.4.7 Softmax Loss Layer

A softmax loss layer is implemented as the final layer of a convolutional neural

network and is used for classification. This layer computes the multinomial

logistic loss of the softmax of its input. Thus, it is conceptually identical to a

softmax layer followed by a multinomial logistic loss layer [10]. Much like the

binary logistic regression classifier, the softmax classifier is its generalization

to multiple classes. Softmax function outputs a vector of real values between

0 and 1 that sums up to 1, representing the probabilities of all available

classes being present in the feature map on its input [19]. The predicted

probability distribution is then used as an input to the multinomial logistic

loss function, which performs the one-of-many classification task and finally

predicts the single class present in the input feature map.

3.5 Training Datasets

All the datasets were created with the help of Annotated Web Ears (AWE)

dataset [6]. AWE is a dataset containing a total of 1,000 annotated images

from 100 distinct subject, 10 images per subject. All images in AWE dataset

were gathered from the web using a semi-automatic procedure and were

labeled according to yaw, roll and pitch angles, ear occlusion, presence of

accessories, ethnicity, gender and identity. The original, uncropped versions

of these images, which are not part of the AWE dataset, were used and new

annotations had to be created for the purpose of segmentation.

First, the original images and the cropped images from AWE dataset were

gathered. Using an automatic procedure, the original images were annotated

in a pixel-wise manner of where the ear is present and where it is not. The

procedure used for this annotation was correlation between the original image

and the cropped image. Where the correlation value was the highest, a

rectangle of the size of the cropped image was drawn. Two examples of such

annotation are shown in figure 3.8.

The first dataset on which the network was trained and tested consists
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Figure 3.8: Two examples and their corresponding ground truths obtained

by using the automatic annotation using correlation. (In the images given

here, faces were pixelated in order to guarantee anonymity.)

of a total of 582 images, 360 of which were used for training and 222 for

testing. The reason for choosing these numbers is because they are the same

as explained in SegNet usage procedure.

Next, a more detailed annotation has been done on the same number of

images. While the images stayed the same, the earlobes in each picture were

annotated manually. A precisely annotated dataset was needed to see how

accurate the segmentation actually is as opposed to how many pixels inside a

square are classified as an earlobe. With a total of 586 images, 367 of which

were used for training and 219 for testing, the second dataset was created.

Two examples of such annotation are shown in figure 3.9. The distribution

of images in train and test sets is the same as in the first dataset.

Because neural networks produce better results with increasing time and

number of images used for training [28], we decided to create a larger dataset.

With a larger dataset we are able to prevent overfitting – creating a rule based

classifier on a small amount of examples that is not necessarily true. Thus,
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Figure 3.9: Two examples and their corresponding ground truths obtained

by manual annotation. (In the images given here, faces were pixelated in

order to guarantee anonymity.)

all images from the AWE dataset have been annotated manually. The third

dataset consists of a total of 992 images, 744 (75% of the total number) of

which were used for training and 248 (25% of the total number) for testing.

A few images in all datasets were causing unknown errors during training.

and were, therefore, removed. Upon further analysis it was found that the

annotations of the images causing errors got corrupted during resizing and

could not be used for training.

To investigate the statement that increasing the training dataset pro-

duces better results even further, all of the above mentioned datasets were

augmented. Data augmentation was done in three ways, horizontal flipping,

random crops, and a combination of the two. Columns of pixels were flipped

during horizontal flipping in such way that the first and the last column were

swapped, the second and the penultimate were swapped, etc. For random

crops, a pixel within the 20% of the height from the top and 20% of the width

from the left was chosen at random. From the chosen pixel a rectangle was
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drawn, the height of which was calculated by the equation 3.2:

height = total image height− y value of the chosen pixel−

−random from 20% of total image height
(3.2)

and width by the equation 3.3:

width = total image width− x value of the chosen pixel−

−random from 20% of total image width .
(3.3)

The image was cropped according to the selected rectangle. For the third aug-

mentation the image was first horizontally flipped and then cropped. Identi-

cal augmentations have been done to pairs of images and their corresponding

annotations. With described augmentations applied to the three datasets,

three new datasets were obtained with the numbers of images in the datasets

quadrupled. The information about all datasets can be found in table 3.2.

3.6 Training

All of the neural networks have to be trained in order for them to perform

their tasks. Our networks were trained on a GPU, since the performance

using a GPU is much higher. We present the training process of the best

performing network of our work.

Before the training, all images used in the network were resized to the

resolution 480×360. This had to be done to reduce the needed graphical

memory, since all images were first copied there to increase performance. A

total of 2,128,896,016 bytes of graphical memory was needed for training on

the images of dataset number 5. Another thing that had to be adjusted before

the training was class weights on the softmax layer. These were calculated

by the equation 3.4:

ac =
median frequency

frequency(c)
, (3.4)

where frequency(c) is the number of pixels of class c divided by the total

number of pixels in images where c is present and median frequency is the
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# Label
Number of

train images

Number of

test images

Total

number

of images

1
Automatically annotated,

small
360 222 582

2 Manually annotated, small 367 219 586

3 Manually annotated, full 744 248 992

4
Automatically annotated,

small, with augmentations
1,440 222 1,662

5
Manually annotated, small,

with augmentations
1,468 219 1,687

6
Manually annotated, full,

with augmentations
2,988 248 3,236

Table 3.2: Tabular representation of used datasets, described by their con-

secutive number, applied label, number of images used for training, number

of images used for testing and the total number of images.
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median of these frequencies [1]. In our case, where only two classes are used,

the median frequency is calculated as average of the two frequencies.

Learning rate was set to 0.0001 during training. Learning rate is a pa-

rameter that controls how much the network’s weights will update in one

training iteration. With a high learning rate, the loss function and accuracy

change a lot during each iteration [29]. This can lead to instability and cause

the loss function to diverge from its target value.

The momentum parameter, which helps prevent the training from con-

verging to a local minimum, was set to 0.9. A momentum too high can cause

radical avoiding of the local minima to destabilize the training process and a

momentum too low can not reliably avoid them [9]. A well chosen momentum

value can help the system converge faster.

The weight decay was set to 0.005. It is common to use weight decay

while training, where every weight is multiplied by the weight decay value

after each weight update, to prevent the weights from growing too large and,

thus, causing instability [20]. Because of multiplication at every step, weight

decay is exponential.

The training of the network took 64 minutes to complete 10,000 iteration

and reach stable loss and accuracy values. Figure 3.10 shows the loss and

accuracy values, which were collected in steps of 20 iterations throughout the

course of the training process. We can see the loss converge towards 0 and

accuracy towards 100%, which is the goal of the training.

The same architecture was used for training on all 6 datasets, only the

class weights on the softmax loss layer had to be recalculated for each dataset.
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Figure 3.10: Graphical representation of loss (red) and accuracy (blue) con-

verging to their expected values during training. Values were obtained in

steps of 20 learning iterations.
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Results and Discussion

The accuracy was measured by comparing the manually annotated images

and the outputs of the network during testing. The pixels that are correctly

classified as part of an earlobe are called true positives and the pixels that

are correctly classified as everything but part of an earlobe are called true

negatives. The equation used for calculating the accuracy of an image was

(true positives + true negatives)/total number of pixels. Results can be seen

in table 4.1 and figures 4.1, 4.2.

Among the 6 datasets on which we trained the network, the one that

produced the best results was the dataset number 5 – the small, precisely

annotated set with data augmentations consisting of 1,468 training images.

With the network trained on the mentioned dataset we were able to achieve

the average accuracy of 98.69% when testing on the corresponding test set,

consisting of 219 images. With standard deviation of 0.80, we were also able

to achieve the most reliable mean accuracy among all datasets.

Similarly, when the network was was trained on the dataset number 2

– the small, precisely annotated dataset consisting of 367 training images,

we were able to achieve the average accuracy of 98.67% when testing on

the corresponding test set, which was the same as for the training dataset

number 5. The standard deviation of accuracies obtained with this dataset is

2.06, meaning the variation of accuracies is higher than in the aforementioned

27
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#
Number of

train images

Number of

test images

Average

accuracy (%)

Standard

deviation

1 360 222 98.60 1.47

2 367 219 98.67 2.06

3 744 248 98.29 0.99

4 1,440 222 97.71 2.09

5 1,468 219 98.69 0.80

6 2,988 248 97.49 1.76

Table 4.1: Table comparing the results between the six used datasets. From

left to right the columns represent the enumeration of the training dataset,

the number of images in the training dataset, the number of images in the test

dataset, the average accuracy of segmentation prediction, and the standard

deviation. Accuracies for all test images in each dataset were calculated,

summed, and divided by the number of test images to obtain the average

accuracies.

dataset, making the average accuracy value less reliable.

In contrast, when the network was trained on the dataset number 6 –

the whole, precisely annotated set with data augmentation, the average ac-

curacy was the lowest among all datasets used, 97.49%, when tested on its

corresponding test set, consisting of 248 images. The standard deviation is

0.99, indicating the second most reliable average value.

The majority class accuracy of our data is 97.30%. This means that if

all pixels were classified as everything but part of an earlobe, the average

segmentation would be 97.30% accurate.

The hardware used during training and testing was a desktop PC with

Intel(R) Core(TM) i7-6700K CPU with 32GB system memory and Nvidia

GeForce GTX 980 Ti with 6GB of video memory running Ubuntu 14.04 LTS.

In total six networks were trained and tested. The training of each network

(10,000 iterations) lasted 64 minutes. The average test, segmentation pre-

diction, was complete in 87.5 milliseconds.
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Figure 4.1: Comparison between some ground truths, the predictions, and

the differences between the two. Images in the left column represent ground

truths, where white pixels represent the position of an earlobe, the ones in

the middle are segmentation predictions, where white pixels represent the

predicted position of an earlobe, and the ones in the right column show the

difference between ground truth and the outcome of segmentation, where

white pixels represent both false positives and false negatives.
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Figure 4.2: Four sample images of the final earlobe segmentation results are

shown. The images in the left column are original test images, the images in

the middle represent segmentation predictions, and in the right column there

are superimposed images composed of the original test image and the seg-

mentation prediction. An example of a segmentation prediction with some

false positives can be seen in the last row, meaning some pixels were incor-

rectly classified as earlobes. False positives are in our case better than false

negatives, as broader areas in images can still be further processed in order to

accurately localize earlobes. (In the images given here, faces were pixelated

in order to guarantee anonymity.)
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Reference Dataset
Number of
test images Accuracy* (%) Time (s)

Automated Ear

Localization [27]
UND-E 464 94.54

not

mentioned

Robust

Localization of

Ears [24]

UND-J2 1776 99
not

mentioned

HEARD [32] UND-E 200 98 2.48

Ear Localization

from Side Face

Images [26]

IT Kanpur

ear

database

150 95.2
not

mentioned

This thesis AWE 219 98.69 0.087

Table 4.2: Table showing the results of our work and similar approaches.

* Not all accuracies were calculated using the same equation — refer to

explanations in section 4.1. The equations that calculate the percentage of

correctly detected areas provide more detailed representations of accuracy

than equations stating the rate of detection above a set threshold. The

equation used in our work, where pixel-wise accuracy is calculated, provides

the most detailed representation of accuracy.

4.1 Comparison to Similar Approaches

Six datasets mentioned above, were used to train our network. Among these,

the dataset number 5 produced the best results, which will be used for com-

parison to results obtained by similar approaches. A comparison of figures

is shown in table 4.2.

4.1.1 An Automated Ear Localization Technique Ba-

sed on Modified Hausdorff Distance

The authors of the paper [27] present a new scheme for automatic ear lo-

calization. They are working with datasets of human profile images and
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use template matching with modified Hausdorff distance. The benefit of the

mentioned technique is that it does not depend on pixel intensity and that

their template represents various ear shapes. Thus, this approach is invariant

to illumination, pose, shape and occlusion in pictures taken from the side.

The technique comprises of two parts, skin segmentation and edge detection.

With the first part, they limit the detection of ears only to parts of the image

containing skin. And as ear is a part of skin, non-skin regions can be skipped.

The ear is then localized by computing the similarities of remaining relevant

parts of the image and the ear template using modified Hausdorff distance.

The detected ear is verified using normalized cross correlation technique. The

accuracy of this technique was tested on two datasets, CVL face database

[23] and UND-E database [22], on which accuracies of 91% and 94.54% were

obtained respectively. Accuracy was calculated by the equation 4.1.

accuracy =
number of true ear detection

number of test sample
× 100 (4.1)

The CVL and Collection E datasets contain mainly images of face profiles,

which were taken under supervised conditions, and with the purpose of cre-

ating a dataset. Moreover they are not as racially diverse as only Caucasians

are found in the CVL dataset, and skin segmentation is know to be problem-

atic with darker skins. Considering these factors, the mentioned datasets are

less complex than the one we used in our work. No detection time is given

by the authors.

4.1.2 Robust Localization of Ears by Feature Level Fu-

sion and Context Information

The ear detection algorithm, proposed in the paper [24] uses texture and

depth images for localizing ears in both images of profiles of faces and im-

ages taken with a different camera angle. Details on the ear surface and

of edge images are used for determining the ear outline in an image. The

proposed algorithm utilized the fact that the surface of the outer ear has
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a delicate structure with high local curvature. The algorithm consists of

four steps: pre-processing, fusion of edges and shapes, computation of scores

for ear candidates, and returning the ear region. In the pre-processing part

edges and shapes are extracted from texture and depth image. With the

use of depth images, mentioned parts are combined into full candidates for

earlobe outlines. Next, a score is computed for every earlobe candidate by

comparing it to an idealized ear outline. Lastly, the ear location is returned

by the enclosing rectangle of the best ear candidate. The detection rate of

this algorithm was found to be 99%. A detection was considered successful

when the overlap O between the ground truth pixels G and the pixels in

the detected region R is at least 50%. The overlap O was calculated by the

equation 4.2.

O =
2 |G

⋂
R|

|G|+ |R|
(4.2)

The databases used in the work are UND-J2 [25] and UND-NDOff-2007 [30].

UND-J2 consist only of profile views, while UND-NDOff-2007 serves as a

more realistic dataset and consist of images taken at angles up to 90 de-

grees off profile view. Even though the images are taken at various angles,

they were still taken in supervised conditions with the purpose of creating a

dataset as opposed to the complex dataset of images ”in the wild” we use in

our work. No detection time is given by the authors.

4.1.3 HEARD: An Automatic Human EAR Detection

Technique

The method for ear detection HEARD [32] is based on three main features

of a human ear: ear’s height to width ratio, ear’s area to perimeter ratio,

and the fact that the ear’s outline is the most rounded outline on the side

of a human’s face. The first stage of the proposed technique is image pre-

processing, where the RGB values are converted to grayscale. Next, skin

detection is applied, which marks the pixels of an image as either part of
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skin or not. Thus, the output of this stage is an image of facial pixels only.

In the next stage, edges above a certain length are detected and marked.

To avoid occlusion caused by hair and earrings this ear localization method

detects the inner part of the ear instead of the outer. When the inner part is

localized the algorithm estimates the size and position of the ear according

to the first feature about the human ear mentioned earlier. This method was

able to detect 98% of ears in test photos. No information is given by the

authors on how the accuracy was calculated. The method was tested on 200

samples chosen at random from the UND-E database [22], which consists of

subject with various skin and hair color, with mild ear occlusions and taken

on different backgrounds. Still, all the images were taken approximately 1.5

meters from the subjects and all images are of subjects’ left face profiles,

making it a less complex database as used in our work. The detection time

for a single image is 2.48 seconds.

4.1.4 Ear Localization from Side Face Images using

Distance Transform and Template Matching

Distance transform and template based technique is proposed in a paper [26]

for automatic ear localization from side face images. First, skin segmentation

is performed to eliminate parts of the image, which do not belong to a face.

Skin regions are processed in separate stages. In the first stage an edge map

is created, with edges that are not of a minimal required length and curvature

removed. From this clean edge map a distance transform is obtained, which

is used for the localization process. The ear template used in the localization

process is resized according to the height and width of the face obtained from

skin segmentation. Correlation between the resized template and distance

transform is then calculated at every pixel. Locations, where the correlation

value is above a certain threshold are considered probable locations of the

ear. To validate, whether or not the location is actually that of an ear, the

Euclidean distance between two sets of Zernike moments is calculated, first

set belonging to the template and the second one to the detected ear. If the
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shortest calculated distance is below a precalculated threshold, detection of

the ear is accepted. The accuracy of the described technique was found to

be 95.2%. Accuracy was calculated by the equation 4.3.

accuracy =
number of successful localizations

total sample size
× 100 (4.3)

For testing, IIT Kanpur ear database [26] was used. The database consists

of side face images of 150 subjects, one image per subject, taken from the

distance between 0.5 and 1 meter with light occlusions, making it a less

complex database as used in our work. No detection time is given by the

authors.
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Chapter 5

Conclusions

Ear detection is a difficult problem that, in order to achieve good results

on images taken under any condition, cannot be solved by template match-

ing [14]. Various angles from which the photo was taken, earlobe shape,

skin color, illumination, occlusions, and wearing accessories might present a

problem for such a technique when detecting ears in photos taken “in the

wild”.

With a diverse enough dataset we can overcome these problems by using

convolutional neural networks to solve the task. In our work, even with the

use of a small number of training images, this proved to be true as our method

performed better than other methods for detecting ears known so far. Not

only were we able to achieve a better accuracy, but also the time needed for

detection was greatly reduced, even allowing real-time ear detection.

Still, there is room for improvements. Segmentation could have been

better if the network structure was modified according to the task. Moreover,

a much higher number of training images would be needed. The results might

also improve with the use of cross-validation. Most of all, when annotating

images, a clear rule would have to be made on which occurrences of ears

should be detected and which should not, according to the angle and focus

(blurrines).

Our results contradict the fact that accuracy should increase with a
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greater amount of training images. We suspect this occurred because in

the first-third of AWE dataset, the images mostly contain a single occur-

rence of an earlobe as opposed to the other two-thirds where more images

contain multiple occurrences of earlobes, which lead to ambiguity. This con-

sidered, the small, manually annotated dataset, with augmentations, pro-

duced the highest average accuracy and the same set without augmentations

produced second highest average accuracy, which complies with the fact ac-

curacy should increase with a greater amount of training images. Moreover,

the standard deviation of the augmented dataset was reduced.

In the end, an algorithm to crop the detected ears according to segmen-

tation would have to be written, for our method to work as a fully functional

module of AWE Toolbox. The method provides high accuracy and above all

greatly reduces the detection times compared to all other methods mentioned

in previous chapters.
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