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Fakulteta za računalnǐstvo in informatiko

Oleksandr Sivak
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slučajno generiranimi podatki.
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Abstract

The winner of a competition depends on the choice of actual matches played.

We assume that each match is played between two players. Our goal is to

examine which players can be made winners of a competition if we know

any match result in advance. We only consider competitions in which the

winner of a single match progresses to the next round and the loser leaves the

competition. We focus on tennis competitions and use real data downloaded

from atpworldtour.com. The final winner of a competition depends on the

choice of matches in the first round — we call it a bracket. We would like

to determine possible competition winners and for every winner π construct

an appropriate bracket in which π is the winner. Apart from that we also

study how tight are the sufficient conditions for a player to become a winner,

as described in the paper Fixing a Tournament (Williams, AAAI 2010) [17].

For instance, one of our results is that a player whose relative rank is between

1 and 36 can with high probability be made a winner in a competition of 64

players.

Keywords: competition manipulation, fixing a tournament, tennis, fair de-

terministic winner, weak winners, weak players.





Povzetek

Zmagovalec tekmovanja je odvisen od začetnih pozicij igralcev. Omejimo se

na primer, ko se v vsaki igri pomerita dva igralca. Naš cilj je ugotoviti, kateri

igralci so lahko zmagovalci tekmovanja, če vnaprej poznamo vse možne rezul-

tate dvobojev. Omejili se bomo na tekmovanja, kjer zmagovalec dvoboja

napreduje v naslednji krog, poraženec pa je izločen iz tekmovanja. Osre-

dotočili se bomo na tenǐske turnirje na podlagi realnih podatkov s spletne

strani atpworldtour.com. Končni zmagovalec turnirja je odvisen od začetnih

pozicij igralcev v prvem krogu — temu rečemo razpored. Določiti želimo vse

možne zmagovalce tekmovanja in za vsakega zmagovalca π določiti ustrezen

razpored. Poleg tega študiramo tudi, kako dobri so zadostni pogoji, ki jih

opǐse Williams v članku Fixing a Tournament (Williams, AAAI 2010) [17].

Kot primer, eden naših rezultatov pravi, da je lahko igralec, katerega rela-

tivna uvrstitev je med 1. in 36. mestom, z veliko verjetnostjo lahko zmago-

valec tenǐskega tekmovanja s 64 udeleženci.

Ključne besede: manipulacija turnirja, tenis, deterministični zmagovalec,

slabi zmagovalec, slabi igralec.





Razširjeni povzetek

V delu se ukvarjamo s problemom iskanja možnih zmagovalcev v uravno-

teženih tekmovanjih na izpadanje. Tenǐski turnir je tipičen primer takšnega

tekmovanja. Igralci v vsakem krogu odigrajo dvoboj, zmagovalci napredujejo

v naslednji krog, poraženci so izločeni.

Tekmovanje na izpadanje lahko predstavimo z označenim dvojǐskim dreve-

som. Koren drevesa je končni zmagovalec. Listi drevesa so udeleženi tek-

movalci in za vsako notranje vozlǐsče velja, da je zmagalo v dvoboju, ki sta

ga odigrala sinova. Oznaka notranjega vozlǐsča se torej ponovi v natančno

enem sinu.

Zmagovalec turnirja je odvisen od

(i) izidov dvobojev med igralcema in

(ii) razporeda.

Denimo, da za množico igralcev ρ (vedno bomo prevzeli, da je število igralcev

v ρ potenca števila dva) poznamo izide vseh možnih dvobojev. Želeli bi

poiskati vse možne zmagovalce tekmovanja glede na razpored.

Naštejmo nekaj sorodnih rezultatov. Če ne zahtevamo, da je dvojǐsko

drevo polno in uravnoteženo (v praksi to pomeni, da se lahko igralec priključi

tekmovanju tudi v katerem kasneǰsih krogov in v najbolj enostavnem primeru

postane zmagovalec z eno samo zmago v finalu), potem je problem iskanja

vseh možnih zmagovalcev relativno enostaven. Lang, Pini, Rossi, Venable in

Walsh [8] so dokazali, da lahko v množici n igralcev za izbranega igralca π

v času O(n2) odločimo, ali obstaja dvojǐsko drevo (ne nujno uravnoteženo),



pri katerem je π končni zmagovalec — in v primeru pozitivnega odgovora

takšno drevo hkrati tudi zgradimo.

V primeru, ko izidi med pari igralcev niso deterministično določeni, temveč

poznamo zgolj verjetnosti, da eden od igralcev zmaga, je problem drugačne

narave. Problem določanja igralca, ki zmaga z največjo verjetnostjo, se

imenuje problem najverjetneǰsega zmagovalca. Pri izbranem igralcu π in

realnem številu δ je NP-težko odločiti, ali obstaja razpored, pri katerem je z

verjetnostjo vsaj δ igralec π končni zmagovalec turnirja [14].

V primeru polnega in uravnoteženega dvojǐskega drevesa, s katerim lahko

predstavimo tekmovanje, in determinističnih izidov, ko za vsak par igralcev

poznamo izid njunega medsebojnega dvoboja, je računska težavnost iskanja

vseh zmagovalcev odprt problem. Williams je v članku Fixing a tourna-

ment [17] opisala tri zadostne pogoje, pri katerih je igralec tudi zmagovalec

takšnega tekmovanja.

Če je ρ množica igralcev in R množica izidov (matrika, ki za vsak par

igralcev π, π′ določi rezultat njunega dvoboja) potem z out (π) označimo

število igralcev, ki jih π premaga, in z in (π) število igralcev, ki premagajo

igralca π. Williams [17] je pokazala, da če velja za igralca π eden od pogojev

(STR) za vsakega igralca π′, ki premaga π, mora veljati out (π) ≥ out (π′) ali

(KNG) out (π) ≥ |ρ|/2 in za vsakega igralca π′, ki premaga π, obstaja igralec

π′′, ki premaga π′ in izgubi proti π, ali

(SKG) za vsakega igralca π′, ki premaga π, obstaja vsaj log2(|ρ|) igralcev, ki

premagajo π′ in izgubijo proti π,

potem je π možen zmagovalec tekmovanja. V tem delu pokažemo tudi pravil-

nost pogojev (STR), (KNG) in (SKG).

S spletne strani ATP [1] smo naložili dejanske podatke o tenǐskih igralcih

in njihovih medsebojnih dvobojih. Rezultat vsakega para smo ovrednotili

glede na historične podatke njunih dvobojev. Lotili smo se naslednjih vpra-

šanj.



Kako slab igralec na tipičnem tenǐskem tekmovanju je lahko zmagovalec

glede na enega od pogojev (STR), (KNG) in (SKG)? Pri tem kvaliteto igralca

merimo bodisi z uvrstitvijo na ATP lestvici ali pa z relativno uspešnostjo v

družini vseh udeležencev tekmovanja. Pri testiranju smo izločili nekaj naj-

bolǰsih igralcev. Za njih domnevamo, da vedno pripadajo možnim zmago-

valcem. Po 10.000 ponovljenih poskusih lahko trdimo, da manager povpreč-

nega ATP igralca lahko prevzame, da njegov igralec bo zmagal v tekmovanju,

če je razvrščen med 1 in 36 igralci bodisi na ATP ali pa na lestvici z relativno

uspešnostjo v družini vseh udeležencev tekmovanja.

Kako dobri so pogoji (STR), (KNG) in (SKG)? Ali lahko v realnosti

pričakujemo tudi zmagovalca, ki ne ustreza nobenemu od pogojev (STR),

(KNG) in (SKG)? Z relativno enostavno konstrukcijo tekmovanja z 8 igralci

smo uspeli poiskati zmagovalca tekmovanja, ki ne zadošča niti (STR), (KNG)

niti (SKG).

Lahko takšen fenomen pričakujemo tudi v realnosti? Izvedli smo 10.000

testov na slučajno izbranih 64 igralcih izbranih iz večjega nabora 148 igral-

cev. Zdi se, da vsak zmagovalec tenǐskega tekmovanja, če upoštevamo realne

podatke, tudi izpolnjuje enega od pogojev (STR), (KNG) ali (SKG).

Poskus smo nadaljevali s slučajno generiranimi podatki. Pričakovano

smo eksperimentalno potrdili dejstvo, da pri slučajno generiranih podatkih

vsi igralci lahko postanejo zmagovalci tekmovanja. Če z n označimo število

igralcev, potem za slučajno izbranega igralca π pričakujemo približno n/2

igralcev, ki premagajo igralca π. Za vsak par igralcev π, π′ pa pričakujemo

približno n/4 igralcev, ki izgubijo v dvoboju s π in premagajo π′. Skratka,

vsak posamezen igralec π z veliko verjetnostjo zadošča pogoju (SKG) in je

posledično možen zmagovalec tekmovanja.

Za testiranje smo izdelali programsko opremo za naslednje naloge:

• zajem in interpretacija podatkov o igralcih in dvobojih z spletnega

portala atpworldtour.com,

• določanje možnih zmagovalcev glede na pogoje (STR), (KNG) ali (SKG),

pri izbrani množici igralcev in predpisanih izidih,



• v primeru, da igralec π zadošča kateremu od pogojev (STR), (KNG)

ali (SKG), tudi izračun ustreznega razporeda, pri katerem π postane

zmagovalec,

• slučajno generiranje razporedov tekmovalcev in posledično izračun zma-

govalca pri izbranem razporedu,

• posredovanje izmerjenih podatkov na spletno stran za izdelavo dia-

gramov plot.ly.



Introduction

In this world it is natural to compete. We need to define a person who is a

winner in a given branch of sport, science, business... In this work we focus

on tennis.

Given a set of players, how to choose a winner? One of the most popular

formats is a single-elimination competition, also called a knockout compe-

tition. For instance, Wimbledon, Roland Garros use the knockout format,

because it nicely defines a winner. But, the result is not stable in the knock-

out format. The knockout competition proceeds in rounds. In each round

players are paired up to play a game, then the round winners move on to

the next round, whereas the losers leave the competition. The result of a

knockout competition depends on the first round arrangement of all players

in the given set. We call such an arrangement a bracket.

Novak Djokovic is at the time of writing considered one of the best tennis

players in the world. It should not be difficult to pair players in the first

round so that Djokovic emerges as the winner of the competition. What

about the players that lie much lower in the ATP ranking? Can they also be

made winners if we are allowed to rearrange the pairs?

Williams [17] describes several conditions under which a player is a winner

in a knockout competition if the bracket is made in his/her favor. We tested

real data looking at which players can become winners, according to each of

the conditions.

We downloaded the appropriate data from the official ATP (Association

of professional tennis players) web-resource atpworldtour.com, which lists



players and matches played.

A winner in a pair of players of our competition is the one who has more

wins in matches between them. In case of a tie we break ties according to

the sum of prize money earned during their careers.

We used two ranking systems, one is based on ATP, the other on a number

of opponents a player beats — we call it the outdegree system.

Each knockout competition starts with a number of players which is a

power of two. Usually 128 players for largest competitions. We wrote code

to download the appropriate data, and also to parse and analyze it. Later,

a testing environment was established and several probabilistic tests were

executed.

In September 2015 we downloaded data of the first 148 players visible on

the ATP web-resource and scores were defined only between those players.

We tested sets of 64 players, chosen from the set of 148 players excluding the

first top 20 players, in the first round. For such a set of players we determined

which ones can be winners according to one of Williams’ conditions [17].

Also, we made 10.000 permutations of a bracket with 64 players without the

first 20 top players to compute real winners and compare them with winners

according to one of the conditions. Finally we generated 100 random scores

for 128 players to verify that real data is not random.

On average, players with ranks between 1 and 36, both by ATP and

outdegree, can be winners.

Next, the conditions of Williams are good enough in the sense that they

included all the real winners computed among 10.000 brackets.

Finally, in the random world every player satisfies one of the the con-

ditions. Also, almost every player π is a super-king as for every player π′

winning over π there are more than log2(n) players who lose to π and beat

π′.

This work is a practical example for those interested in research on how

to make a player a winner, even if this player is not the strongest one.



Chapter 1

Basics

In this chapter we exhibit several representations of a knockout competition

and develop the necessary notation. We finish the chapter by discussing a

probabilistic approach to define results in matches for each pair of players.

1.1 A very small competition

Generally, a knockout competition includes a collection of players ρ and, in

our work, a collection of match results R — given a pair of players, their

match result is determined. We assume the number of players in ρ to be a

power of 2, and we define R as a mapping from ρ× ρ into {1, 0,X}.
We consider, as an introductory example, a very small knockout competi-

tion with a collection of players ρ0 = {Wawrinka, Nishikori, Murray, Berdych}.
Given that Rρ0 is a mapping from ρ0 × ρ0 into {1, 0,X}, we can represent

Rρ0 in a tabular way as a matrix.

Let us fix an ordering of players in ρ0 as (Wawrinka, Nishikori, Murray,

Berdych). The outcome matrix of Rρ0 , with respect to the chosen ordering,

is a matrix Rρ0 = (ri,j)i,j, with entries in {1, 0,X}, so that ri,j indicates who

among players i and j is a winner in a match. See Figure 1.1.

1



2 CHAPTER 1. BASICS

Wawrinka Nishikori Murray Berdych

Wawrinka X 1 0 1

Nishikori 0 X 0 1

Murray 1 1 X 0

Berdych 0 0 1 X

Table 1.1: Matrix Rρ0 showing results of matches between players from ρ0.

Every diagonal entry ri,i is equal to X and every off diagonal entry ri,j is

either 0 or 1 so that if ri,j = 0 then rj,i = 1. For instance, consider the entry

r1,2 which equals to 1: this indicates a win of Wawrinka over Nishikori. The

entry r2,1 is 0, which indicates that Nishikori loses to Wawrinka .

On the other hand, we can represent Rρ0 also as a tournament — a

complete oriented graph Rρ0 so that there exists an arrow from a player π to

a player π′ if and only if π beats a player π′. See Figure 1.1.

Wawrinka

Nishikori Murray

Berdych

Figure 1.1: Tournament graph Rρ0 showing results of matches between play-

ers from ρ0.

A collection of match results R includes all players taken from ρ. A

number of players in ρ may vary. Which representation of match results

should be used, and when? We would use a graph when we can grasp all
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players in the graph at a glance — the number of players in ρ should be

either from 8, 4, and 2. On the other hand, given a pair of players, in a

matrix R we match a row with a column to find an entry — this way should

be preferred, when the number of players is greater than 8.

Let us apply a collection of players ρ0 and a collection of results Rρ0 to

construct the first instance of a knockout competition.

Figure 1.2: A binary tree T .

The complete binary tree, depicted in Figure 1.2, is a skeleton for our

knockout competition. We intentionally used 4 leaves in the binary tree, as

this is exactly the number of players in ρ0. Let us make a bijective mapping

from ρ0 into leaves of the binary tree so that each leaf is labeled a player,

and denote the mapping by µ0. See Figure 1.3.

M W B N

Figure 1.3: A binary tree including µ0.

In Figure 1.3 and subsequent figures, M, W, B, N stand for Murray,
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Wawrinka, Berdych, Nishikori, for the sake of smaller figures. Pairs of leaves

(M, W) and (B, N) have one and common non-leaf node adjacent to them.

Effectively, each non-leaf node represents a match between its children, and

is labeled a winner with respect to Rρ0 .

Let us assume that there is another mapping made by exchanging posi-

tions of leaves with players Murray and Wawrinka in µ0. But, our competi-

tion matches will be still the same — Murray plays against Wawrinka, and

Nishikori — against Berdych. We state that both mappings are equivalent:

Definition 1.1 A bracket is an equivalence class of bijective mappings from

ρ into leaves of a complete binary tree. Two such mappings are equivalent if

the same matches take place at all rounds of a competition with respect to R.

We denote the bracket by β0 and state:

Definition 1.2 A complete binary tree of a bracket, or a competition tree,

is a labeling of nodes in a complete binary tree expanding a bracket so that

each leaf is labeled with respect to a mapping from the bracket, and each non-

leaf node labeled ω has exactly two children ω and ω′, where ω beats ω′ with

respect to a collection of match results R.

The competition tree of β0 is denoted by Tβ0 , and is depicted in Figure 1.4.

M

M

M W

N

B N

Figure 1.4: Tβ0 with respect to Rρ0 .
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We have chosen a complete binary tree to represent a knockout compe-

tition, because a complete binary tree visually consists of levels going from

the bottom to the top, whereas each level includes a number of nodes of a

power of 2. Also, starting from the second level a number of nodes is halved

with respect to the lower level. Effectively, a complete binary tree follows a

knockout competition — each level, except the top one, represents a round

in a knockout competition.

Definition 1.3 A winner is a root of a competition tree.

Let us observe that the ordering of leaves in Tβ0 , depicted in Figure 1.4,

is in no relation to the ordering used to label rows and columns of Rρ0 .

Nevertheless, the ordering of leaves determines a winner in our competition

if results of distinct matches are defined by Rρ0 . An alternative competition

with a different winner, this time Wawrinka, is shown in Figure 1.5.

W

B

M B

W

N W

Figure 1.5: Tβ1 with respect to Rρ0 .

One of the ways to construct different competitions tree is to perturb

starting positions of players — this is called fixing a tournament [17]. Star-

ting positions of players relate to a bracket, and fixing a tournament is also

called rigging a bracket [11]. We have fixed a tournament Rρ0 so that Murray

is a winner in Tβ0 and Wawrinka in Tβ1 . But, we cannot rig a bracket

for either Nishikori, or Berdych, because each of them beats 1 player in ρ0

which includes 4 players. We have essentially determined all winners in the
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introductory example — this the very gist of our work. But, we are more

interested to rig a bracket for players not at the top, like Berdych or Nishikori.

In practice, a tennis competition includes 128 players. We need another

representation of a knockout competition for the sake of convenience.

r

Figure 1.6: A binomial tree B.

Let us consider a tree B, depicted in Figure 1.6. The tree root, r, has

three children or subtrees, denoted by B1, B2 and B3. Let us also assume

that the indices are chosen in the increasing order according to the number

of vertices in the subtrees. Clearly, these numbers are powers of two, 1 =

20, 2 = 21 and 4 = 22. The union of B1 and r is isomorphic to B2, and the

union of B1, B2 and r is isomorphic to B3. We call the tree B in Figure 1.6

a binomial tree. We can define binomial trees in several different ways.

Definition 1.4 A binomial tree B of order 2n, where n ≥ 0, is a rooted tree

with a root r so that

1. if n = 0, then B is a singleton-root tree having a single vertex, and

2. if n ≥ 1, then r has a child r′, for which the subtree B′ of B rooted at

r′ is a binomial tree of order 2n−1, and also B−B′ is a binomial tree,

rooted at r, of order 2n−1.

Given a binary tree of a bracket Tβ we can construct a binomial tree of a

bracket Bβ by contracting every edge whose endvertices both have the same
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labels, and taking the vertex of maximal degree as a root. For instance, in

Tβ1 , depicted in Figure 1.5, Wawrinka is repeated 3 times and Berdych twice.

Let us contract edges whose endvertices have Wawrinka or Berdych, and take

Wawrinka as a root of Bβ1 . See Figure 1.7.

W

B

M

N

Figure 1.7: Bβ1 with respect to Rρ0 .

Essentially the binomial tree of a bracket, Bβ1 , depicted in Figure 1.7,

and the binary tree of a bracket, Tβ1 , depicted in Figure 1.5, carry the same

information.

Claim 1.1 Every binomial tree of a bracket Bβ uniquely corresponds to a

binary tree of a bracket Tβ.

Vice-versa, the following function binaryFromBinomial takes a binomial

tree of a bracket Bβ and the tree root r as an input, and returns the complete

binary tree of a bracket as the output.

1: function binaryFromBinomial(B0, r)

2: if count(vertices in B0) = 1 then return B0

3: else

4: r′ ← a son of r so that the subtree rooted at r′ is maximal

5: B′ ← the tree rooted at r′

6: lsubtree← binaryFromBinomial(B′, r′)

7: rsubtree← binaryFromBinomial(B −B′, r)
8: return Tβ rooted at r whose subtrees are lsubtree and rsubtree

9: end if
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10: end function

Let us follow the lines of the function binaryFromBinomial, given the

binomial tree of a bracket Bβ1 , depicted in Figure 1.7, and the root Wawrinka

as the input. We jump to the line 4, because Bβ1 includes 4 vertices. The

vertex with Berdych is assigned r′ and at the line 5 the two nodes binomial

tree with Berdych and Murray is assigned B′. But, the function is called

recursively at the line 6, this time with B′ and r′ as the input.

Let us consider the function call, again. We jump to the line 4, because

B0 includes 2 vertices, Berdych and Murray. The only vertex rooted at r,

Murray, is assigned r′, and the singleton-root binomial tree, rooted at r′, is

assigned B′. The next call of binaryFromBinomial at the line 6, with B′ and

r′ as the input, executes the line 2 so that the returned binary tree with only

one node, Murray, is assigned lsubtree. But then, at the line 7, the call of

binaryFromBinomial, this time with the binomial tree rooted at Berdych and

the tree root as the input, executes the line 2 so that the returned binary tree

with only one node, Berdych, is assigned rsubtree. Effectively, the binary

tree of a bracket, rooted at r, Berdych, with children lsubtree and rsubtree

is returned at the line 8.

Let us return to the very first call of binaryFromBinomial, and we have

lsubtree assigned to the binary tree of a bracket with winner Berdych. Ana-

logously, the function call at the line 7, this time with the binomial tree

including Wawrinka and Nishikori, and the tree root, Wawrinka, as the input,

returns the binary tree of a bracket rooted at Wawrinka and is assigned

rsubtree. Finally, at the line 8, we construct the binary tree of a bracket Tβ

rooted at r, Wawrinka, so that the two subtrees, lsubtree and rsubtree, are

children of r.

1.2 Notation

In this section we introduce the necessary notation and definitions. Given a

collection of players ρ, a collection of match results R, and a player π ∈ ρ,
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the set of players who lose to π is denoted by

Nout(π) = {π′ ∈ ρ, rπ,π′ = 1} (1.1)

This is exactly the set of outneighbours of π in a tournament R. The out-

neighbours of Wawrinka, with respect to the tournament Rρ0 , depicted in

Figure 1.1, are Nout(Wawrinka) = {Nishikori, Berdych}. See Figure 1.8.

Wawrinka

Nishikori Berdych

Figure 1.8: Outneighbours of Wawrinka — Nishikori and Berdych.

Further, for a subset of players χ, χ ⊆ ρ, we set

Nout
χ (π) = Nout(π) ∩ χ. (1.2)

Analogously,

N in(π) = {π′, rπ,π′ = 0} (1.3)

is the set of players who beat a player π, and is called the set of inneigh-

bours of π. For instance, with respect to Rρ0 , the inneighbours of Nishikori

are Wawrinka and Murray, N in(Nishikori) = {Wawrinka, Murray} — this is

depicted in Figure 1.9.

Again, for a subset χ ⊆ ρ we set

N in
χ (π) = N in(π) ∩ χ. (1.4)

Let

out (π), (1.5)
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Wawrinka

Nishikori Murray

Figure 1.9: Inneighbours of Nishikori — Wawrinka and Murray.

out χ(π), (1.6)

in (π), (1.7)

in χ(π) (1.8)

denote the cardinalities of Nout(π), Nout
χ (π), N in(π), N in

χ (π), respectively.

We call out (π) and in (π) the outdegree and the indegree of π.

Consider Rρ0 in Figure 1.1, our exemplary collection of match results.

Berdych is the only player who beats Murray. But Nishikori beats Berdych

and loses to Murray. For Murray and for every player π who beats Murray

there is a player π′ so that Murray beats π′ and π′ beats π. This also holds

for Wawrinka, because he has Berdych as an outneighbour to beat Murray.

Definition 1.5 A king is a player π ∈ ρ, so that for every player π′ ∈ N in(π)

we have inNout(π)(π
′) =

∣∣∣N in
Nout(π)(π

′)
∣∣∣ ≥ 1. In other words, for every player

π′ that beats π there is a player π′′ so that π beats π′′ and π′′ beats π′.

Also, notice that Murray and Wawrinka have only one inneighbour in our

competition. Murray is beaten by Berdych and Wawrinka by Murray.

Is there a difference between Murray and Wawrinka? Notice that Murray

has two outneighbours who beat Berdych in our competition, Wawrinka and

Nishikori. This does not hold for Wawrinka. Namely, Berdych is the only

player who beats Murray, a winner over Wawrinka.
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Definition 1.6 A player π is a super-king if for every player π′ ∈ N in(π)

we have inNout(π)(π
′) ≥ log2(|ρ|). Or equivalently, for every player π′ that

beats π there is at least log2(|ρ|) outneighbours of π, and all of them beat π′.

Note that every super-king is also a king. But, a king may not be a

super-king. For instance, in our collection ρ0 Wawrinka is a king, but not a

super-king, with respect to a collection of match results Rρ0 . Murray, on the

other hand, is both a king and a super-king. Kings and super-kings were first

defined in [11].

1.3 Probabilistic approach

Given a collection of players ρ, a collection of match results R, and a player

π ∈ ρ, how difficult is it to fix a tournament R so that π becomes a winner?

We consider R so that, given a match between two players, say π and π′

from ρ, the match result is known. But, a match result may be defined either

deterministically, with π either losing or winning the match, or probabilis-

tically, when the outcome maybe defined by a probability of π winning the

match. A competition may be represented, with respect to R, either by a

general binary tree, when few players from ρ may not play in the first round,

or by a complete binary tree, when every player from ρ is included in the first

round.

Let us consider the deterministic approach for a general binary tree. In

section 1.1 we could not fix a tournament Rρ0 , depicted in Figure 1.1, for

Nishikori or Berdych, because they could win only one round in a two rounds

competition. We can construct an unbalanced complete binary tree of a

bracket β0 so that Berdych is a winner in this tree. This is depicted in

Figure 1.10.

In the first round of our competition Murray plays against Nishikori,

but Wawrinka plays against Murray in the second round so that Murray

proceeds to the final to play against the only inneighbour, with respect to

the tournament Rρ0 , Berdych. There are only two players from ρ0, Murray
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B

M

M

M N

W

B

Figure 1.10: An unbalanced Tβ0 with respect to Rρ0 .

and Nishikori, who play in the first round of our competition. As shown, it is

possible to rig a bracket for Berdych in an unbalanced complete binary tree,

depicted in Figure 1.10. Lang et al. [8] state that it is efficient for a chair to

fix a tournament in general binary trees, which are also called unfair in [8].

Namely, given n players in ρ, Vu et al. [14] showed that the time complexity

to find a bracket, that is not necessarily balanced, for π so that π becomes a

winner is O(n2), see also [8].

Fixing a tournament for the deterministic approach in a balanced complete

binary tree is the study topic of Williams in [17]. She found several sufficient

conditions for a player to be a winner — we discuss them in the next chapter.

It is currently not known how difficult it is to compute all winners for balanced

complete binary trees. But, with the assumption that some players cannot

meet in a match, it was shown in [17] that the problem is NP-hard. Note that

Stanton and Williams [11] refer to the tournament fixing problem only when

match results are either 0 or 1, namely, only for the deterministic approach.

What if a winner of a pair of players was defined probabilistically? Vu

et al. discussed this topic in [14]. Given a real number δ, they showed that it

is NP-hard to fix a tournament in a balanced complete binary tree so that the

probability of π winning a knockout competition is at least δ. Analogously,
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it is hard to determine the maximal probability for π to become a winner.

Further, it still remains an open question whether there exists an efficient

algorithm to find all winners in an unbalanced complete binary tree. Vu et al.

[14] state that a tree structure should be biased towards a target player, an

expected winner. We depicted such tree structure in Figure 1.10 for Berdych

so that he plays one game against a player he can beat, in the final of our

competition.

We have in our work focused solely on deterministic fair winners. We

realize that this deterministic approach might not be the most realistic one.
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Chapter 2

Fair deterministic winners

In this chapter we expose and prove heuristics, which were first proved by

Williams [17], to find as many fair deterministic winners as possible.

2.1 The necessary condition

Assume that we can partition a collection of players ρ into a pair of subsets

ρω and ρλ so that every player from ρω beats all players in ρλ. We also assume

that ρω and ρλ are not empty. Evidently, no player from ρλ can become a

winner with respect to R. Vice versa, if π is a winner in our competition,

then π ∈ ρω. But, we need to knock-out players from ρω \ {π}.
In particular, if ρω is a single-player subset, then its element, player π ∈

ρω, is called the Condorcet winner and he wins in every possible bracket.

We will also implicitly exclude Condorcet winners. We will first consider the

outdegree of π in ρω to find a sufficient condition for π to become a winner.

2.2 The sufficient conditions

Let π ∈ ρ and R be given. We say that π satisfies nodes stronger than the

nodes that beat them, or (STR) condition, if for every player π′ ∈ N in (π)

we have out (π) ≥ out(π′). Next, we say that a player π is a king who beats

15
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half the players, or satisfies (KNG) condition, if out (π) ≥ |ρ|/2 and for every

player π′ ∈ N in (π) there exists a player π′′ ∈ Nout (π) so that π′′ beats π′.

Finally, we say that π is a super-king, or satisfies (SKG) condition, if for

every player π′ ∈ N in (π) there exist at least log2(|ρ|) players from Nout (π)

who beat π′.

Now, Williams [17] has proven that (STR), (KNG) and (SKG) are sufficient

conditions to become a winner.

Theorem 2.1 Let ρ be a collection of players, π ∈ ρ, and R a collection of

results. If π satisfies (STR) or (KNG) or (SKG), then π is a possible winner.

If a player satisfies a sufficient condition (STR) or (KNG) or (SKG), then we

call such a player a W-winner. We will prove Theorem 2.1 in three separate

cases in the next three sections. We will in every case show how to construct

a competition tree with π emerging as the winner.

2.3 Strong players

In order to prove the (STR) case of Theorem 2.1, let us fix a player π, and

assume that he matches condition (STR).

Let us first observe the very small cases. If |ρ| = 1 then π is the only player

in ρ and no matches are needed. If |ρ| = 2 = 21, then the only remaining

player π′ clearly loses in a match with π. Namely, if π′ would have won over

π, then π′ ∈ N in (π), and (STR) implies that 1 = out (π′) ≤ out(π) = 0,

which is clearly a contradiction.

Having treated the small and easy cases, let us turn our attention to

bigger collections of players. We will henceforth assume that |ρ| = 2k ≥ 4, or

equivalently k ≥ 2. We will also assume that π is not the Condorcet winner.

We shall construct a bracket for which π emerges as the winner using

binomial trees. Let A = Nout (π) be the set of players who get beaten by

π, and let B = N in (π) be the set of players which beat π. Now (A,B) is a

partition of ρ \ {π}, where both A and B are nonempty sets of players. The
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set B is nonempty as by assumption π is not the Condorcet winner, and given

an arbitrary π′ ∈ B we have (by (STR)) also |A| = out (π) ≥ out (π′) ≥ 1

implying that also A is nonempty.

(1) Assume that the players from ρ\{π} can be partitioned into binomial

trees of brackets whose roots lie in A. Then π is a winner.

LetB0, . . . , Br are binomial trees of brackets whose respective roots a1, . . . ,

ak all lie in A. Assume that for a pair of different indices i, j binomial trees

Bi and Bj are of the same order 2`. If, say, πi beats πj, then Bi and Bj can

be joined into a single binomial tree of order 2`+1 with root πi. Recall that

the root πi lies in A. By repeated joining of binomial trees of the same order

we can assume that in the (final) sequence of binomial trees B0, . . . , Br no

pair of trees have the same order.

Now, trees B0, . . . , Br form a partition of (all) vertices of ρ\{π}, the total

number of players in their (disjoint) union is equal to 2k − 1, and no two of

them are of the same order. As the only way to rewrite a number 2k − 1 as

a sum of different powers of 2 is

2k − 1 = 20 + 21 + · · ·+ 2k−1

we may without loss of generality (by permuting the indices if necessary)

assume that r = k − 1 and for every i ∈ {0, . . . , k − 1} we have exactly 2i

players in the binomial tree of a bracket Bi. Recall that the root of Bi is

πi ∈ A, and gets beaten by π in a match.

Now let us construct a binomial tree B by making π its root with all

B0, . . . , Bk−1 as its subtrees. As π beats all π0, . . . , πk−1 and the number of

nodes in the tree is |ρ| we have constructed a binomial tree of a bracket with

π as its root. Hence π is a winner and the proof of (1) is complete.

Our next problem is partitioning the players of ρ\{π} into binomial trees

of brackets. Let us first give an intermediate argument.

(2) Given π let A and B be its out- and inneighbours, respectively. If

π satisfies (STR), then for every π′ ∈ B we have out B(π′) < in A(π′). In
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other words, every player π′ ∈ B gets beaten by strictly more players from

A compared to the number of players π′ beats in B.

This can be shown by manipulating the inequalities concerning degrees

of players. Choose an arbitrary player π′ ∈ B. By (STR) we have

out (π′) ≤ out (π) = |A|.

Now π′ on one hand beats π, and on the other π′ may also beat some players

from A or B. Hence

out (π′) = 1 + out A(π′) + out B(π′).

Similarly players from A either beat or get beaten by π′, hence |A| =

in A(π′) + out A(π′). Plugging it together we infer

1 + out A(π′) + out B(π′) = out (π′) ≤ |A| = in A(π′) + out A(π′)

from which it follows

1 + out B(π′) ≤ out A(π′).

This settles (2).

In what follows we shall give a recursive argument, that the vertices of

ρ \ {π} can be partitioned so that for every member of the partition, i.e. a

subset of players, we can construct a binomial tree of a bracket with a player

from A being the root.

Naively one could try a greedy approach. Choose a player π′ ∈ A and

a collection of players S ⊆ B, so that π′ beats every player from S and the

cardinality of S∪{π′} is a power of 2. Clearly π′ is a winner in every bracket

having players S ∪ {π′}. We would proceed by greedily choosing another

player π′′ from A \ {π′} and a collection S ′′ ⊆ B \ S.

This naive approach may run us into problems. What one needs to check

is that π′′ is in similar relation to B \ S that π′ was to B, in order to get the

recursion to end. Formally, the solution lies in the next claim.
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(3) Let A′ ⊆ A and B′ ⊆ B be nonempty sets such that for every player

π′ ∈ B′ we have outB′(π
′) < inA′(π

′). Then we can pick a player π∗ ∈ A′ and

a subset of players S ⊆ Nout
B′ (π∗) so that

(i) |S ∪ {π∗}| is a power of two and

(ii) for all π′′ ∈ B′ \ S we have

outB′\S(π′′) < inA′\{π∗}(π
′′) .

Pick an arbitrary player π∗ of A′ that has an outneighbour in B′. Such a

player exists, as by assumption every player from B′ has a positive indegree.

Let us now choose integers k, r with k maximal possible so that |N | =

2k − 1 + r. We will show that in this case

|N | ≥ 2r.

If |N | < r and k maximal possible, then |N | = 2k − 1 + r < 2r implies that

2k ≤ r. Hence we can rewrite

|N | = 2k − 1 + 2k + r0,

where r0 = r − 2k ≥ 0. This implies

|N | = 2k+1 − 1 + r0

which is a contradiction to the maximality of k. We infer that

|N | ≥ 2r and 0 ≤ r ≤ 2k − 1.

We need at least 2r vertices to get r edges in a matching. Choose an

arbitrary matching M of size r in N , and let R be the r heads of arcs from

M . Finally let S = N \R. Obviously enough π∗ beats every player of S.

We claim that π∗ and S satisfy both (i) and (ii).

|S| = |N | − |R| = (2k − 1 + r)− r and |S ∪ {π∗}| = 2k which settles (i).
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For (ii) let us choose an arbitrary player π′′ ∈ B′ \ S. If π′′ 6∈ N , then its

indegree from A′ does not change when removing π∗. We have

inA′\{π∗}(π
′′) = inA′(π

′′) > outB′(π
′′) ≥ outB′\S(π′′) .

On the other hand if π′′ ∈ N then π′′ ∈ R, as π′′ ∈ B′ \S = B′ \ (N \R).

Now π′′ is a head of an edge in matching M , so its outdegree in B′ \S drops

by at least 1 compared to its outdegree in B′. Hence

outB′\S(π′′) ≤ outB′(π
′′)−1 < inA′(π

′′)−1 = inA′\{π∗}(π
′′)

where the last equality follows at π∗ beats π′′. This proves (3).

Now the reasoning goes as follows. Assume that π satisfies (STR). By (2)

we see that the starting conditions of (3) are satisfied initially with A′ = A

and B′ = B. We shall use (3) inductively to output a sequence of pairs

(π1, S1) . . . (π`, S`)

so that A = {π1, . . . , π`} and B = S1 ∪ . . . ∪ S`. Note that Si may be empty

and also that if B′ is nonempty then also A′ is nonempty in the starting

condition of (3). This sequence is used to produce a collection of binomial

trees rooted at π1, . . . π`, and (1) proves the existence of a binomial tree

containing all vertices of ρ in which π is the winner.

Sections 4 and 5 are conceptually different. We do not construct binomial

trees, but we construct binary trees inductively. First we construct a mat-

ching in the first round and then proceed inductively by preserving a heuristic

property at the next round.

2.4 Kings who beat half the players

In order to prove the (KNG) case of Theorem 2.1, let us fix a player π, and

assume that he matches condition (KNG).

Let us first observe the very small cases. If |ρ| = 1 then π is the only

player in ρ and no matches are needed. If |ρ| = 2 = 21, then the only



2.4. KINGS WHO BEAT HALF THE PLAYERS 21

remaining player π′ clearly loses in a match with π, because according to

(KNG) case we have

|Nout (π)| ≥ |ρ|/2 = 1

and the only possible outneighbour of π is π′, which makes π a winner.

Let us turn our attention to bigger collections of players. We will hence-

forth assume that |ρ| = 2k ≥ 4, or equivalently k ≥ 2. We can also assume

that π is not the Condorcet winner.

We will construct a bracket for which π emerges as the winner of the

binary competition tree. Let A = Nout (π) be the set of players who get

beaten by π, and let B = N in (π) be the set of players which beat π. Now

(A,B) is a partition of ρ \ {π}, where both A and B are nonempty sets of

players. The set B is nonempty as by assumption π is not the Condorcet

winner, and given an arbitrary π′ ∈ B we have (by (KNG)) also π′′ who

beats π′ and loses to π implying that also A is nonempty.

Let us construct a maximal matching MAB from A to B so that the

matching includes at least one pair as A and B are nonempty and π is a

king (by (KNG)). In particular, there is a player πA in Nout (π) who beats all

players in N in (π) so that all players in Nout (π) \ {πA} lose to every player

in N in (π). We can pick π′ in A to play against π in the first round, because

|A| = out (π) ≥ |ρ|/2 and |B| = |ρ| − out (π)− |{π}| < |ρ|/2.

Finally, given that we have remaining vertices, we can construct two perfect

matchings MA′ and MB′ on A′ = A\ (V (MAB)∪{π′}) and B′ = B \V (MAB)

respectively, because the number of remaining vertices in A′ andB′ altogether

is either 0 or 2k, k ≥ 1. But, if |B′| is odd, then the number of players in

A′ is also odd, because |ρ| − (2|MAB|+ |{π, π′}|) is even, and in this case we

match a player from A′ with a player from B′, and then make MA′ and MB′ .

Further assuming that ρ′ is the collection of players who survived to the

second round, we need to prove that π satisfies (KNG) for ρ′. Namely, we

will show that

(i) out (π) ≥ |ρ′|/2 and
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(ii) π is a king in ρ′.

Let us set n = |ρ| and let m denote the number of vertices of B in MAB.

The players who can beat π in ρ′ are sources of edges in MB. If |B| − m

is even there are |B|−m
2

of them. On the other hand, these players are not

only the sources of edges in MB but also the player from B′ matched with a

player from A′ if |B| −m is odd. There are
⌊
|B|−m

2
+ 1
⌋

of such players in

this case. We infer that in both cases there are
⌈
|B|−m

2

⌉
players from B who

survive to the second round. Recall that m ≥ 1. This implies that⌈
|B| −m

2

⌉
≤
⌈
|B| − 1

2

⌉
≤

(n
2
− 1)− 1

2
= n/4− 1 < n/4.

Now let B2 and A2 denote the number of in- and outneighbours of π in ρ′

respectively. We have |B2| < n/4 and consequently |B2| ≤ n/4 − 1 which

implies that

|A2| ≥ n/4.

Recall that n/2 is exactly the number of players in ρ′ and hence

out (π) ≥ |ρ′|/2

which settles (i).

Next if πB2 is a player from B2 who survived the first round, then πB2 ∈
ρ′ ∩ B2. Hence, there exists a player πA2 ∈ A2 who beats πB2 , because π

is a king (by (KNG)). Assuming that πA2 does not survive the first round

and πA2 6∈ ρ′, we have a contradiction with the maximality of MAB, because

MAB ∪ {πA2 , πB2} is a bigger matching. Hence, πA′ survives round one and

this settles (ii).

Now inductively we infer that (i) and (ii) hold for log2(n) + 1 rounds so

that there exists a binary competition tree which includes all vertices from ρ

with π emerging as the winner.

Now let us exhibit an example showing that the bound in (KNG) is tight.

If π is a king and only beats |ρ|/2− 1 players then it may not be possible to

make him a winner.
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Let us partition ρ \ {π} into sets A and B, so that |A| = |ρ|/2 − 1 and

|B| = |ρ|/2. Assume that π beats every player from A, and loses to every

player from B. Next, choose a player π′ ∈ A and assume that π′ beats all

players from B. These results make π a king, as for every player π∗ ∈ B,

who wins over π, we have π′ who loses to π and beats π∗. Yet, π does not

satisfy (KNG) as he only beats |ρ|/2− 1 players.

Let us also assume that every player from B beats every player from

A \ {π′}, and choose the remaining outcomes arbitrarily. We claim that π

cannot be a winner.

Assume to the contrary that π is a winner, and let T be the binary tree

of a bracket with π as the root. Let T ′ be the subtree of T rooted at π′. As

T ′ is a proper subtree of T , it contains strictly less than |ρ|/2 nodes from B.

The remaining players from B, as they beat all players from (A∪{π})\{π′},
can propagate to the top, which contradicts to π being a winner.

In the next section we consider a special case of a king and repeat the

steps to construct a bracket, but without setting an outdegree limitation on

π.

2.5 Super-kings

In order to prove the (SKG) case of Theorem 2.1 we fix a player π from ρ

who satisfies (SKG) and is a super-king.

Let us first consider small and easy cases. If |ρ| = 1 it is obvious that π

is a winner and no matches are needed. On the other hand, if |ρ| = 2 then

also π emerges as a winner. Recall that every super-king is a king. Assuming

that π′ ∈ ρ and π′ beats π, we have π′ ∈ N in (π). But, there should be a

player π′′ who beats π′ and loses to π as π is king. But, ρ includes only 2

players, hence π′ ∈ Nout (π) which makes π a winner in this competition.

Having treated the basic cases we turn out attention to a collection of

players ρ, where |ρ| = 2k ≥ 4, or equivalently k ≥ 2. We can also assume

that π is not the Condorcet winner.
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We will construct the first round of our competition so that π proceeds

to the second round. Also, we will prove that (SKG) condition holds for π

in the second round as well.

Let us partition ρ \ π into two subsets A and B, out- and inneighbours

of π, respectively. Now (A,B) is a partition of ρ \ {π}, where both A and B

are nonempty sets of players: by the assumption that π is not the Condorcet

winner B is nonempty. Hence, also A is nonempty as π is a king and given

an arbitrary π′ ∈ B we have π′′ ∈ A who beats π′.

We fix a player π′ in A to play against π in the first round so that

π survives to the second round. This should not be a problem as every

player πB from B has at least log2(4) = 2 players from A who beat πB

(recall that |ρ| ≥ 4). Next we choose a maximal matching MAB from A

to B, and this matching is nonempty (here we are using the fact that A

and B are nonempty). Further we can find a perfect matching M which

extends {π, π′}∪MAB by matching the remaining players in A and B, because

|ρ| − |{π, π′}| − 2|MAB| is even.

Let ρ′ be the collection of players who survive to round two — these

are exactly the sources of edges in M . Also, let A2 and B2 be out- and

inneighbours of π in ρ′ respectively. Assume that πB ∈ B survived to the

second round and hence πB is also from B \ V (MAB). As MAB is maximal

there is no player in A\(V (MAB)∪{π′}) who beats πB. All players who beat

πB are in V (MAB) ∪ {π′}, so that all of them but π′ survive to the second

round. Hence, πB has at least log2(|ρ|)− 1 players in A2 who beat him. As

|ρ|/2 players from ρ survive to round two and log2(|ρ|)− 1 = log2(|ρ|/2), we

infer that for every player πB2 ∈ B2 there are at least log2(|ρ′|) players from

A2 who beat πB2 . This shows that π satisfies (SKG) in round two as well.

We proceed by induction for n = 2k players in ρ, where k > 2, and hence

for log2(n) rounds so that there exists a binary competition tree where π is

the winner. This finishes (SKG) proof of Theorem 2.1.
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2.6 A winner not satisfying Williams cases

In the previous sections we have proved Theorem 2.1 separately for each of

the cases (STR), (KNG) and (SKG). Given a player π ∈ ρ who satisfies

one or several of the sufficient conditions, there exists a bracket so that

π is the winner of the competition tree. But, what if π does not satisfy

(STR), (KNG) and (SKG). Can π still win a competition? We will present

an example of a binary competition tree where π does not satisfy either of

Williams’ conditions, but π still emerges as the winner of the tree.

Consider a collection of players ρ2 = {0, 1, 2, 3, 4, 5, 6, 7}. The partial

collection of results, matrix Rρ2 , is depicted in Table 2.1.

0 1 2 3 4 5 6 7

0 X 1 1 0 1 0 0 0

1 0 X 0

2 0 X 1 0

3 1 0 X 0

4 0 X 1 1 0

5 1 0 X 0

6 1 0 X 1

7 1 1 1 1 1 1 0 X

Table 2.1: Matrix Rρ2 showing results of matches between players from ρ2.

Let us consider matrix Rρ2 . The outcomes of matches of players 0 and

7 are completely determined. The matrix contains a number of blank spots

where the direction of outcome can be chosen arbitrarily. Player 0 does not

satisfy (STR), because

3 = out (0) < out (7) = 6.

Also, player 0 does not satisfy (KNG), because he/she is not a king who

beats half the players in ρ2, as

3 = out (0) < |ρ2|/2 = 4.
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Finally, for player 7 who beats 0 there are no log2(|ρ2|) = log2(8) = 3 players

who beat 7, and hence player 0 is not a super-king and does not satisfy

(SKG). We infer that player 0 is not a W-winner. But, we can construct a

binary competition tree with player 0 emerging as the winner, see Figure 2.1.

0

0

0

0 1

2

2 3

4

4

4 5

6

6 7

Figure 2.1: A binary competition tree Tβ0 with not a W-winner.

Let us consider Tβ0 . We fix player 1 to play against player 0, and we

knock-out players 3 and 5, the inneighbours of player 0, by players 2 and 4

respectively, in the first round. Note that player 7 loses to player 6 in the

first round. Next, player 0 meets the outneighbour player 2 in the second

round, and also player 4 beats player 6, the inneighbour of player 0. Hence,

player 0 meets player 4 in the final of our competition. This makes player 0

the winner in Tβ0 . Note that we can set the absent results of players 1 . . . 6

arbitrarily so that player 0 still emerges as a winner in bracket β0.

It is not difficult to show that this example is the smallest possible. In

other words, for every collection of players ρ, |ρ| = 4, a winner always satisfies

(STR) or (KNG) or (SKG), see Figure 2.2.

The outdegree of player 0 is not less than the outdegree of player 3,

despite the outcome of a match between players 1 and 3, and hence player

0 satisfies case (STR). Also, player 0 is a king who beats half the players

and consequently satisfies case (KNG). But, if |ρ| > 4 then this may be not
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0

0

0 1

2

2 3

Figure 2.2: Tβ0 with the smallest |ρ| = 4 for a W-winner.

possible for π to satisfy at least one of the conditions, and we have shown

this in Figure 2.1.

In the next chapter we make tests to find possible winners who are not

W-winners in realistic situations and see how good Williams cases (STR),

(KNG) and (SKG) are.
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Chapter 3

Tests

In this chapter we discuss our data and finish by showing results of three

tests that we performed .

3.1 Data

The Association of tennis professionals, or ATP, is an international governing

body gathering players, promoters, managers and competition organizers. It

also publishes regulations and keeps tennis present in the media world [1].

Organizers of ATP competitions have to follow the published calendar

[2] and provide sufficient money prize lots. The biggest competitions include

the four Grand Slams: Australian Open, Rolland Garros, Wimbledon and US

Open. An example of a lower ATP World Tour competition is St. Petersburg

Open.

The best tennis players of the world essentially only take part in ATP

competitions, and ATP also keeps track of the history of their matches and

publishes the ranking of players. Our first collection of data was obtained

from [3] in winter 2014/2015 where the data set contained the match history

of 103 players. Later, in June 2015, the ATP database was updated and over

1000 players were present in the ranking [4]. Our second data set contained

the match history of 128 players. Finally, in September 2015 we acquired

29
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the third data set which contained the match history for 148 players, and we

could provide more realistic tests with brackets of 128 players.

The ATP ranking is dynamic and is updated after every finished com-

petition. The players are ranked according to their success at various lev-

els of competitions in the previous 365 or 366 days. There are significant

differences between the first two data sets. For instance, Rafael Nadal moved

down by 7 positions and became 10th in June 2015. In the same period,

Mikhail Youzhny moved down by 29 positions, from 47th to 76th, yet Mikhail

Kukushkin moved by a single place.

We used a service called ATP.HEAD2HEAD [1], which includes a brief

history of matches between two given players. Let us consider Novak Djokovic

and Marin Cilic history of matches up to September 13 of 2015. It is highly

probable that Djokovic wins over Cilic as Djokovic has won 13 times over Cilic

and has never lost. So in our scores table R we indicate that Djokovic wins

over Cilic. On the other hand, in a match between Djokovic and Federer it is

not evident who is the winner, because Djokovic has won 20 times and lost

21 times to Federer1. But, we still use the history of matches and indicate

in R that Federer is the winner. This might not be the case in real, and

Djokovic may emerge as the winner. But, it may also not be the case that

two players met each other in ATP competitions.

We have a problem in a pair Steve Darcis and Alexander Zverev. They

have so far not played a match in ATP. In this case we have opted to look at

their career prize money — the total amount up to June 2015. We proclaim

Darcis as the winner, because Zverev earned 492,289$, and Darcis 2,087,918$.

We realize that such a variant of constructing R may not be flawless. If two

players are at the start of their careers then the more experienced player

is more likely to win. Recall that ATP pays prize money in a competition

according to the round, and the semi-final player earns more than the quarter-

final player who did not reach the semi-final. Note that it never was a case

that two players earned exactly the same amount of prize money.

1Federer has just lost in US Open and the score is 21 - 21, but not in our data set.
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Let us consider the scores table R we obtained by September 2015. The

history of match results of the first 11 players in our ranking shows that each

two players met in ATP competitions. But, starting from player ranked 12

we have some gaps in our data. There are two players who never met in

ATP competitions. We may say these players under 12 are the top ones who

often survive to later rounds in competitions. This also implies that they

play more matches on average than other players.

As the top players on average play more matches it is not surprising that

the densest part of our match results is the range of players between 1 and 40.

On the other hand, players ranked below 69 rarely met in ATP competitions,

and most of the results are defined according to money prizes. We realize

that there are players who recently started their careers, and players who will

finish their careers soon. In most cases the younger players have accumulated

less money prizes than the older players. But, it is not evident that a younger

player should lose to the older player, as the younger player may be talented

and is potentially physically stronger than the older player.

In the next sections we finally test our data and hope to acquire useful

results.

3.2 How low can W-winner’s rank be?

We would like to find as many W-winners as possible. But, we are more

interested if a weak player can be a W-winner. In other words, how weak a

player π ∈ ρ may be so that there exists a bracket for which π is a W-winner?

We have used the data set three from the beginning of September 2015. In

our test we have removed top twenty players so that there are no Condorcet

winners in ρ. We have created 10.000 random combinations of 64 players

from data set three that included 148 players. Separately, for each of the

cases (STR), (KNG), and (SKG) we have computed W-winners for each

combination of players. For both the ATP ranking and the outdegree ranking

we have done the following. Given a single rank r we have computed how
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many times a player with relative rank r satisfies at least one of (STR),

(KNG), or (SKG) conditions. The histogram with results is depicted in

Figure 3.1 [7].

Figure 3.1: Frequences of W-winners among 10.000 collections of players.

On average, players with local ranks between 1 and 36, according to the

outdegree ranking, can be winners. To give a qualitative indication, there is

an approximately 5% probability that the player whose local rank is 36 is a

W-winner. The probability drops to below 1% at the player whose rank is

38.

Consider the following scenario. We manage a player π whose rank is 100,

and we also have connections with competitions’ organizers so that we can

rig the brackets in π′s favor. Which is the richest possible competition we

should send our player π to in order to make him a winner. We should select
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a competition so that no very strong player appears there and our player π

is slightly below the average rank in the competition.

Figure 3.1 indicates that in the relative ATP ranking all players between

1 and 64 satisfied one of (STR), (KNG) and (SKG) conditions — not in all

cases but with a sufficiently high probability.

Let us try to give an explanation. The ATP ranking only takes the results

of a single previous year into account whereas our scores include all historic

results of a player. For instance, Lleyton Hewitt, currently is ranked number

1012 on the ATP list, was once the world’s top player3. Hence, his historic

results make him a very strong player according to our scores. This implies

that Hewitt is a W-winner whenever there are no currently very strong players

in the competition. His local ATP rank can, of course, be arbitrary if the

remaining players are chosen appropriately. Two further such players are

Mikhail Youzhny and Albert Montanes. These players are the reason for

local drops and rises in the histogram.

3.3 How good is Williams?

In this section we tackle the following question. Given realistic data, can we

find a winner of a competition who is not a W-winner?

In section 2.6 we have constructed a collection of players, results, and a

bracket in which a winner did not satisfy either of (STR), (KNG), or (SKG)

conditions. But, do such winners appear in a practical situation?

For the experiment we have chosen a collection of 64 players: we have

used data set three, from the beginning of September 2015, which contains

148 players in total. In order to exclude Condorcet winners we have decided

to skip the first 20 players in the ATP ranking.

Next, we have made 10.000 permutations of ρ in order to construct binary

competition trees for real winners. We have translated each real winner into

211th of September 2015.
3In years 2001 and 2003.



34 CHAPTER 3. TESTS

ATP and outdegree ranks and computed frequences of wins of the player,

separately, for the ATP and the outdegree ranks. The result is depicted in

Figure 3.2.

Figure 3.2: Real winners of 10.000 permutations of ρ.

In Figure 3.2 we have 33 real winners. Table 3.1 describes frequences of

wins of the last 10 winners according to the outdegree ranking.

Local outdegree rank 23 24 26 27 30 31 32 33 34 36

Wins # 2 24 14 3 4 23 11 1 3 1

Table 3.1: Wins of the last 10 real winners by the outdegree ranking.

We indicate that there is 0.24% probability that a player with a local
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outdegree rank 24 will be a winner in our working collection of players. Also,

the probability drops to 0.01% for the player ranked 36.

For all winners we also checked that they satisfy at least one of (STR),

(KNG), or (SKG) conditions. We can state: with a high probability there

are no winners who are not W-winners in realistic cases.

3.4 The random case

As the last test we focus on random data. For a collection of players ρ we

produce R by flipping a fair coin, uniformly, independently at random. This

states that the probability of ri,j being 1 is 1/2.

We have constructed random scores 100 times, and every time we compute

the W-winners, players who satisfy (STR), (KNG) or (SKG).

Figure 3.3: W-winners for 100 random scores and one ρ.
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Figure 3.3 shows that in the random world every player is a W-winner.

It is not difficult to argue why. We claim that with high probability an

arbitrary player π satisfies (SKG). On average, π wins over approximately

|ρ|/2 players, and also loses too approximately |ρ|/2 players, with fairly small

(of the order O(
√
n)) standard deviation.

Next, given a player π′ we have on average |ρ|/4 players who lose to π

and win over π′. This implies that π is very likely a super-king, because for

large n = |ρ| we have 1
4
· n > log2(n), or in other words, for every player π′

winning over π there are more than log2(n) players who lose to π and beat

π′.

As a conclusion, we can state that ATP rankings definitely are not ran-

dom.
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