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POVZETEK

Vizualno sledenje je podrogje v okviru ratunalniskega vida, katerega rezultate je mogode
uporabiti na mnogih, tako novih kot tudi ze uveljavljenih, podrogjih, kot so npr. ro-
botika, video-nadzorni sistemi, interakcija med ¢lovekom in ra¢unalnikom, avtonomna
vozila ter analiza $porta. Glavno vpra$anje vizualnega sledenja je razvoj algoritmov (sle-
dilnikov), ki dolotajo stanja enega ali vet objektov v toku slik ob upostevanju tasovne so-
slednosti le-teh. V tej doktorski disertaciji naslavljamo dve raziskovalni temi iz podro&ja
kratkoro¢nega vizualnega sledenja. Prvi sklop predstavljenih raziskav naslavlja konstruk-
cijo vizualnega modela, ki ga sledilnik uporablja za opis izgleda objekta. Vpra$anje mode-
liranja ter osveZevanje vizualnega modela je eno izmed klju¢nih vprasanj vizualnega sle-
denja. V okviru dela najprej predstavimo hierarhi¢ni vizualni model, ki izgled strukturira
v vet plasti. NajniZja plast vsebuje najbolj specifi¢ne informacije o izgledu, vi§je plasti pa
opisujejo izgled v bolj posploseni obliki. Hierarhi¢na urejenost se odraza tudi v posoda-
bljanju vizualnega modela, kjer vi§je plasti vodijo posodabljanje nizjih plasti, le-te pa v
primeru lastne zanesljivosti sluZijo kot vir informacij za osveZevanje vi§jih plasti. Koristi
hierarhi¢nega modela sta predstavljeni z dvema implementacijama, ki sta primarno na-
menjeni sledenju netogih in artikuliranih objektov, kot tiste kategorije objektov, ki pred-
stavlja velik problem za marsikateri vizualni sledilnik. Prvi predlagani model zdruZzuje lo-
kalno in globalno predstavitev izgleda v sklopljenem vizualnem modelu. Spodnja plastje
sestavljena iz ve¢ med seboj povezanih delov, ki so se sposobni prilagajati geometrijskim
spremembam netogih objektov, zgornja plast pa vsebuje ve¢modalno globalno predsta-
vitev izgleda, ki vodi proces posodobitve spodnje plasti. V okviru eksperimentalne ana-
lize smo pokazali, da se tak sklopljeni model izgleda izkaZe v robustnosti, klub dejstvu,
da smo za opis izgleda uporabili sorazmerno preproste opisnike. Analiza razkrije tudi
nekaj pomanjkljivosti modela, ki se kaZejo v znizani natanénosti sledenja. Zato na$ drugi

predstavljeni model razsirja hierarhijo s tretjo plastjo in konceptom sidrnih predlog. Prvi
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dve plasti drugega vizualnega modela sta konceptualno zelo podobni osnovnemu sklo-
pljenemu vizualnemu modelu, tretja plast pa vsebuje spominski sistem stati¢nih predlog,
ki vizualnemu modelu nudijo mo¢no informacijo o poloZaju in velikosti objekta v pri-
meru dobrega ujemanja ene izmed predlog s sliko. Na ta natin tretja plast pripomore
k hitremu okrevanju celotnega vizualnega modela. Predstavljena eksperimentalna ana-
liza koristi tretje plasti potrdj, saj sledilnik s tem modelom izgleda izbolj$a natan¢nost, pa
tudi splosno kvaliteto sledenja.

Drugo vpra$anje, ki ga naslavljamo v tej doktorski disertaciji, je ocenjevanje perfor-
mans kartkoro¢nih sledilnikov. V nasprotju s prevladujo¢imi trendi v zadnjih desetle-
tjih trdimo, da je vizualno sledenje kompleksen proces, katerega lastnosti ni mogote opi-
sati z eno samo mero uspe$nosti, po drugi strani pa tudi ne smemo uporabiti poljubne
mnozice mer, za katere ne poznamo medsebojnih odnosov. V nasi raziskavi smo zato
pregledali in analizirali pogosto uporabljene mere performans in pokazali, da nekatere
izmed njih merijo iste kvalitete ali pa so celo teoretitno ekvivalentne. Na temelju te ana-
lize smo predlagali par dveh $ibko koreliranih mer, ki odrazata natan¢nost in robustnost
sledilnega algoritma, ustrezen prikaz takih rezultatov ter analizo celotne metodologije s
pomogjo predlaganih teoretiénih sledilnikov, ki izraZajo ekstremno obnasanje sledilnih
algoritmov. Vse to smo nadgradili $e z metodologijo rangiranja vetjega $tevila sledilnikov,
ki uposteva morebitno stohasti¢no naravo sledilnikov ter preveri statistiéno znatilnost
razlike med njihovimi rezultati. Celotno metodologijo smo implementirali v odprto-
kodnem programskem orodju, razvili pa smo tudi preprost komunikacijski protokol, ki
omogocta preprosto integracijo obstojetih implementacij sledilnikov v sistem. Z uporabo
razvitega orodja se predlagana metodologija sedaj uporablja tudi v okviru Visual Object

Tracking (VOT) challenge delavnic in tekmovanj.

Kljucne besede: ratunalniski vid, vizualno sledenje, vizualni model, kratkoro¢no slede-
nje, artikulirani objekti, ne-togi objekti, mere performans, ocenjevanje performans, ran-

giranje
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ABSTRACT

Visual tracking is a topic in computer vision with applications in many emerging as well
as established technological areas, such as robotics, video surveillance, human-computer
interaction, autonomous vehicles, and sportanalytics. The main question of visual track-
ing is how to design an algorithm (visual tracker) that determines the state of one or
more objects in a stream of images by accounting for their sequential nature. In this doc-
toral thesis we address two important topics in single-target short-term visual tracking.
The first topic is related to construction of an object appearance model for visual track-
ing. The modeling and updating of the appearance model is crucial for successful track-
ing. We introduce a hierarchical appearance model which structures object appearance
in multiple layers. The bottom layer contains the most specific information and each
higher layer models the appearance information in a more general way. The hierarchical
relations are also reflected in the update process where the higher layers guide the lower
layers in their update while the lower layers provide a source for adaptation to higher
layers if their information is reliable. The benefits of hierarchical appearance models are
demonstrated with two implementations, primarily designed to tackle tracking of non-
rigid and articulated objects that present a challenge for many existing trackers. The first
example of appearance model combines local and global visual information in a coupled-
layer appearance model. The bottom layer contains a part-based appearance description
thatisable to adapt to the geometrical deformations of non-rigid targets and the top layer
is a multi-modal global object appearance model that guides the model during object ap-
pearance changes. The experimental evaluation shows that the proposed coupled-layer
appearance model excels in robustness despite the fact that is uses relatively simple ap-
pearance descriptors. Our evaluation also exposed several weaknesses that were reflected
in a decreased accuracy. Our second presented appearance model extends the hierarchy

by introducing the third layer and a concept of template anchors. The first two layers are

ii
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conceptually similar to the original two-layer appearance model, while the third layer is
a memory system that is composed of static templates that provide a strong spatial cue
when one of the templates is matched to the image reliably, thus assisting in quick re-
covery of the entire appearance model. In the experimental evaluation we show that this
addition indeed improves the accuracy, as well as the overall performance of a tracker.
The second question that we are addressing is the performance evaluation of single-
target short-term visual tracking algorithms. In contrast to the dominant trend in the
past decades, we claim that visual tracking is a complex process and that the performance
of visual trackers cannot be reduced to a single performance measure, nor should it be
described by an arbitrary set of measures where the relationship between measures is not
well understood. In our research we investigate performance measures that are tradition-
ally used in performance evaluation of single-target short-term visual trackers, through
theoretical and empirical analysis, and show that some of them are measuring the same
aspect of tracking performance. Based on our analysis we propose a pair of two weakly
correlated measures to measure the accuracy and robustness of a tracker, propose a visu-
alization of the results as well as the analysis of the entire methodology using the theoret-
ical trackers that exhibit extreme tracking behaviors. This is followed by an extension of
the methodology on ranking of multiple trackers where we also take into account the po-
tentially stochastic nature of visual trackers and test the statistical significance of perfor-
mance differences. To support the proposed evaluation methodology we have developed
an open-source software tool that implements the methodology and a simple commu-
nication protocol that enables a straightforward integration of trackers. The proposed
evaluation methodology and the evaluation system have been adopted by several Visual

Object Tracking (VOT) challenges.

Key words: computer vision, visual tracking, visual model, short-term tracking, articu-

lated object, non-rigid objects, performance measures, performance evaluation, ranking
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The thesis addresses the problem of visual tracking, one of the major research topics in
computer vision. A novel model of appearance that is suited for tracking deformable
objects is described and analyzed. We also propose a new methodology for performance
evaluation of visual tracking algorithms. In Section 1.1 we define our research scope by
describing the general premise of visual tracking and explore the various visual track-
ing scenarios along with their assumptions. After that, the core idea that is analyzed in
this dissertation is summarized. We conclude the chapter by formally listing the research
contributions that are presented in this thesis and providing an outline of the rest of the

thesis.
1.1 Visual tracking

Visual tracking (sometimes also called video tracking) can be generally described as a pro-
cess of determining the state, of a moving object, or multiple objects, in a sequence of im-
ages using the visual appearance information. An algorithm that performs visual track-
ing is called a visual tracker. Many high-tech applications in numerous emerging, as well
as established, technological areas that rely on computer vision require the use of differ-

ent types of visual tracking algorithms. For example:

= In mobile robotics, visual tracking is used by the robot to monitor the changes in

its surroundings [1].

= Visual tracking is used in video surveillance to determine positions of monitored
entities (e.g. people, cars, animals) [2, 3]. This includes applications such as activ-

ity detection [4, 5], pedestrian detection [6], and traffic accident detection [7].

= In human-computer interaction visual tracking is used to track entire body or hands
of a person that is interacting with a computer system. This enables recognition

of gestures in time [8—11] and interactive conferences [12].

= In autonomous vehicles, visual tracking is used to monitor the surroundings of the

vehicle [13], enabling early prediction of events and timely reactions.

= In sport ﬂnﬂlytic_v, visual trackers are used to assist SpOTts scientists to extract statis-

tics from recordings of games or training sessions [14].

= Inmaultimedia systemsvisual trackers are used in automatic video stabilization [15],

modern video compression algorithms [16] and multimedia databases.
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The research in visual tracking therefore deals with design and development of visual
trackers. Visual trackers rely on different types of appearance information, such as color,
edges, local intensity patterns, optical flow, etc. to predict the most likely state of an ob-
ject in a next frame of the image sequence. In cases, where the exact structure properties
of the object are not known in advance, the state of the object is typically defined as its
location or occupied region in the image space. Such tracking is also known as model-free
tracking indicating an absence of a more detailed instance-specific (geometrical) model
of an object. The model in this case, i.e. the external representation of the object, should
not be confused with the trackers internal appearance-based representation that is built
during the tracking. This representation, on the other hand, is referred to as appearance
model (sometimes also visual model), it is an internal representation of how the target
object looks like or how does it differ from the surroundings. Because of the general-
ity of such representations, visual tracking is widely applicable, but the generality also
presents some very difficult problems, many of these still unsolved.

As the appearance of the object can change with time, an appearance model that is
built at one point in time may not be suitable anymore. This leads to reduced track-
ing performance. If an appearance model is corrected with each new processed frame,
the negative effects of an outdated model can be reduced. On the other hand, this leads
to the phenomenon, known as driffing. Drifting occurs when an appearance model is
updated with partially corrupted appearance information. The reason for this can be
an error in state estimation, either because of violation of assumptions made when de-
signing a visual tracker or because of ambiguous appearance information. These errors
tend to propagate and slowly corrupt the appearance representation, leading the visual
tracker to failure. Because the process is gradual, these kind of failures are hard to detect.
This leads to two important questions that have to be answered when designing a robust

appearance model:

1. How to represent the appearance of an object so that the tracker will be able to

separate it from the background?

2. How to update this representation so that it will stay relevant with respect to the

appearance of the object?

Both aforementioned questions are related - the formalization of the object appear-

ance description determines the possible strategies for its updating, at the same time the
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choice of the update mechanism determines the robustness of the description. The ap-
pearance formalization can be restricted by assumptions, like rigidity of the object. These
constraints also simplify the updating strategy and make the tracker computationally
efficient as well as robust if the assumption is not violated'. Rigidity of the target is a
popular assumption in visual tracking research that can be satisfied in many tracking
scenarios. On the other hand, scenarios containing non-rigid objects that geometrically
deform during tracking are also numerous and present an unsolved and challenging re-
search problem.

Because of the large number of highly diverse application scenarios of visual tracking
with their set of constraints, the research approaches in visual tracking became quite di-
verse. Many approaches assume constraints that make them very successful on but also
limited to a specific tracking scenario. Other methods are less constrained and sacrifice
top performance in a niche field for generality and wide applicability. To better motivate
and position our own research work we review the most frequently used aspects of the
visual tracking taxonomy that have been present in the research community for decades.
Single-target vs. multi-target tracking. Even though the single-target visual tracking
(tracking a single object) can be seen as a special case of the multi-target visual tracking
(tracking two or more objects) problem, the research on both topics has gone different
ways. Single-target visual tracking research focuses on the accuracy of the visual tracker,
its robustness and generality. The goal is to demonstrate the trackers performance on a
wide range of challenging scenarios (various types of object, lighting conditions, camera
motion, signal noise, etc.).

Multi-target tracking research tends to be more focused on specific applications. A
common assumption of multi-target tracking systems is that the all targets are of single
class which is known in advance (e.g. people or vehicle tracking for surveillance [17-19],
animal groups tracking [20] or sports tracking [14], etc.). Because of this, multi-target
tracking algorithms rely on appearance models with a lot of prior knowledge about the
appearance of an object. The research is then focused on accurate detection and correct
labelling of individual object’s identities.

Short-term vs. long—term tracking. Having no direct connection to the actual time-span
of the tracking task, the short-term versus long-term visual tracking separation deals with

the re-detection of the target. In short-term tracking scenarios the target never disappears

"Many trackers consider only in-plane rigidity which means that even out-of-plane rotation of a rigid object

violates the rigidity constraint.



Visual tracking

from the image completely, therefore some visual association between the previous im-
age and the following one is possible. In long-term tracking the target can completely
disappear from the image for a long period of time, either because of an occlusion or
because it moves outside of the image frame. Because of this, two important aspects
of long-term visual trackers are detection of disappearance and a capability of fast re-
detection of the object once it appears again in the image [21, 22].

On-line vs. off-line tracking. One of the constraints that influences the design of the vi-
sual tracking algorithms is also the availability of the data. In off-line tracking the entire
sequence of images is available to the algorithm which can then arbitrarily access an im-
age from the sequence [23]. In on-line visual tracking the sequence of images is a possibly
infinite stream of data. The algorithm can only process an image as it becomes available
and is able to retain only a limited number of past images in its memory for further use.
In on-line tracking, a common implementation constraint that also influences the design
of a tracking algorithm is requirement of real-time computational performance as many
tracking scenarios require processing of live-acquisition video streams. Tracking scenar-
ios, where off-line trackers can be applied (and have advantage over on-line trackers) in-
clude processing of finite length videos in multi-media collections or post-processing of
a recorded video.

Single-camera vs. multi-camera tracking. Primarily, visual tracking involves analysis of a
single video sequence, however, in some applications, like video surveillance and motion
capture systems, multiple video sequences are available. The question that the research
in multi-camera tracking algorithm is trying to answer is how to combine these sources
of information to overcome their individual problems. In case, where the views of the
individual video sequences are overlapping, this can be used to infer the position of an
object in space and resolve ambiguities in case of occlusions [24]. Even if the video se-
quences are not overlapping, tracking an object in one sequence may give one enough

information to remain tracking it in another [2s].

Among a vibrant palette of tracking scenarios characterized by the four axes that we
have described in the text above, our research work focuses on single-target short-term
on-line single-camera tracking (since the last two attributes are less common than the
first two we will frequently omit them in the rest of the text). As illustrated in Figure 1.1,
a tracking algorithm of this kind receives an input in a form of a potentially infinite se-

quence of images and an initialization region and is able to provide a region for every




Figure 1.1

The input and output of
a short-term single-target
visual tracking algorithm.
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image in the sequence. Since the sequence only contains short or partial occlusions of
the target, the identity of the target can be unambiguously maintained throughout the

sequence.

Ry visual tracker E:,\> Ry

illl'dp;() sequence ‘

t—1 t t+1

The challenge in designing such algorithm is to maintain a representative appearance
model of the object, without knowing detailed properties of the object in advance even
in case if the object is articulated or non-rigid. Our research work involves design and
evaluation of such appearance models. Firstly, we are developing new algorithms that
are able to robustly predict the position of an object from the initialization region and
withoutany other prior knowledge of the object. Secondly, in the context of this research
we are also working on performance evaluation methodology, that is designed especially
for single-target short-term visual tracking and highlights the performance aspects that

are important in such scenarios.
1.2 Hierarchical models for visual tracking

In this doctoral thesis we present and investigate a new appearance model formaliza-
tion, which we call a hierarchical appearance model. The concept was designed to pro-
vide a theoretical framework needed to address some of the problems with existing work
that we highlight in the review of the related work in Chapter 2, most importantly non-
rigidness of tracked objects with unknown geometrical properties as well as integration
of higher-level appearance cues into the model. The idea of hierarchical appearance
model for visual tracking is inspired by hierarchical models for object categorization,
e.g, [26]. For object categorization the models are constructed so that they can accom-
modate a large degree of spatial variability among objects within the categories as well as

(in some cases) variability between categories. Such models are trained off-line on a large
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The motivation for using a hierarchy in case of visual tracking is to structure the ap-
pearance information of the object spatially as well as temporally. The task of visual
tracking by modeling the appearance of an object without any prior information re-
quires an appearance model that is specific enough to locate the object in the next frame,
yet also flexible so that it can adapt to any appearance changes of the object. Because of
this, the hierarchal structure has to be designed specifically for fast on-line adaptation
and integration of multiple visual modalities that can be used together to track objects
in various scenarios. Conceptually, a hierarchical appearance model, illustrated in Fig-
ure 1.2, is composed of a set of layers, each of them containing a different appearance
representation of the object. The bottom layer contains the most specific information
about the appearance ata given pointin time. The higher layers contain information that
is gradually more general and less time-dependent. The state of the appearance model at

time-step t is specified by a set of layer states

Vt = {‘6%7['?7[’?}7 (I.I)

where the £} denotes the first of the n layers. The function of specificlayers is reflected in
the update of the appearance model. The update process of the lower layer is performed
using the information about the object that is provided by the higher layers, therefore

this operation is also called guiding. The higher layers are updated using the information

Figure 1.2

Tllustration of hierarchical
appearance model.
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from the image and the lower layers, but only when that information is deemed reliable.
When the information is not reliable, the updating does not take place and the higher
layers are protected from appearance drift and can help the local layer recover. Conse-
quently, an important aspect of the hierarchical architecture is also that the lower layers
can perform tracking also without higher layers, however, such appearance model can be
more prone to drift. High layers with their slow update rate therefore provide stability
that guides the lower layers.

The hierarchical appearance model concept provides a flexible theoretical framework
that can be used to better manage organization of appearance information in visual track-
ing. The bottom layer of a hierarchical appearance model is the layer that is closest to the
current appearance of the object and has to constantly adapt to small changes that occur
during a time-step. This can be achieved using visual descriptions with high number of
free parameters, like geometrically constrained constellation of local parts, where each
part has its own simple appearance model. Because of the high number of free parame-
ters that ensure fine-grained flexibility, a constellation of parts is also prone to misrepre-
sent the object on a global level. Therefore the bottom layer has to be guided by higher
layers that provide more constraint information about the object that can be only reli-
ably available sporadically. Guiding can be performed by removing outdated parts and
adding new parts to the constellation to ensure a good coverage of the object.

Another beneficial aspect of hierarchical appearance model concept is its extensibil-
ity. Despite the interest of the research community in general-purpose visual tracking
that can be immediately applied to an arbitrary object, real-world applications are rarely
so vague. In many tracking scenarios the type of the object is known in advance, which
means that some kind of appearance prior can be established. The nature of higher layers
of the proposed appearance information hierarchy offers a good point for integration of
this prior in a form of a pre-trained detector (e.g. person, face, car). If this representa-
tion is rich enough to ensure frequent detections for a specified domain of objects, the
entire appearance model becomes more robust and resilient against drift as the sporadic

detections keep the appearance model “in check”.
1.3 Research contributions

In the proposed doctoral thesis we propose new algorithms and object appearance repre-
sentations, suitable for tracking non-rigid and articulated objects. Additionally we pro-

pose a new methodology for visual tracker evaluation, either for a comparative evalua-
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tion or to gain additional insight into the behavior of a specific tracking algorithm. We

therefore claim a two-fold contribution to the computer vision research field:

1. Novel visual tracking algorithms that integrate local and global appearance infor-
mation. The proposed visual trackers integrate a novel hierarchical appearance
model to track the target through its non-rigid deformations and other appear-
ance changes. We analyze the behavior of the proposed tracker in various track-
ing scenarios as well as compare it to the state-of-the-art. We propose extensions
to the basic appearance model that integrate prior object appearance knowledge
about the object in an intuitive way while still enabling on-line adaptation during

tracking.

2. A new evaluation methodology for visual tracking. We address two problems in
evaluation of visual trackers: (i) we define a representative set of measures that can
be used to capture different aspects of tracking performance by reviewing the mea-
sures that are used in visual tracking and , and (ii) we design a methodology to per-
form a large-scale comparative experiments. Our proposed evaluation methodol-
ogy is also supported by a set of open-source software resources that enable easy

development and integration of new tracking algorithms.
1.4  Thesis overview

The rest of the thesis is organized as follows. In Chapter 2 we review the related work
from on visual trackers and the evaluation methodology. Following the review, we present
our work on performance evaluation for visual tracking in Chapter 3 in order to establish
means of performance evaluation that is used in the subsequent chapters. We review the
core requirements for evaluation methodology and provide an overview of existing per-
formance measures used in evaluation of visual trackers. We point out their advantages
and disadvantages with respect to short-term tracking context. Based on experimental
evaluation we propose a pair of measures that describe tracker performance better than
asingle measure. We propose an intuitive performance visualization and extend the per-
formance evaluation methodology effort to comparison of multiple trackers using rank-
ing considering statistical significance. The titular contribution of this thesis is presented
in two parts, in Chapter 4 and Chapter 5, where we describe two implementations of
the hierarchical appearance model, the Local-Global Tracking (LGT) tracker appearance
model and the Anchor Templates (ANT) tracker, respectively. Both appearance models
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are evaluated in terms of parameter configuration and performance on many testing se-
quences that depict real-world applications of computer vision using the proposed eval-
uation methodology. We conclude the thesis work with a summary and general remarks

in Chapter 6.
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Figure 2.1

Tllustration of global (a)
and local (b) visual tracking
concepts.
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In this chapter we survey the recent research work in the field visual tracking, with the
focus on two main topics. In Section 2.1 we look at on-line single-target visual trackers
from the perspective of the appearance model that they are using to model the appear-
ance of the target object. In Section 2.2 we review the recent efforts on visual tracking

performance evaluation. In Section 2.3 we summarize the problems of existing work.
2.1 Modeling appearance in visual tracking

Appearance models (and therefore the visual trackers that are using these models) can
be categorized based on the visual features that they use to describe the object as well as
how they structure, store and update this appearance information. In a recent survey of
appearance models for object tracking [27] the authors note that the appearance models
can be separated in terms of the level of detail that they are using to model the appearance.
As illustrated in Figure 2.1, one side of the spectrum is represented by global or holistic
appearance models that coarsely model the appearance of the entire object. On the other
side, local or part-based appearance models model the geometrical deformations explic-
itly and offer a detailed snap-shot of the object. Since our work involves fusion of both
extremes we will review the popular approaches from both sides as well as those that try

to combine them.

2.1.1 Global appearance models

Holistic appearance models maintain a global visual representation of the target appear-
ance and have proven to be very successful in many tracking scenarios where the target
does not deform significantly. This makes them a popular research topic that has been
investigated in terms of many visual features and update mechanisms. Holistic appear-
ance models differ in the type of image features that they use, how do they use these

features to find the object and how they update the appearance model with new data.
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Low level image features that are used to describe a target are image intensity [28-
31], color [9, 32, 33], and inter-frame pixel changes (e.g. optical flow [34]). On a higher
level these features can be stored as templates [15] that retain all the geometrical relations
between pixels, or summarized as a probability distributions, e.g. using histograms [9,
32] or mixture-models [35] that discard relations between raw image features. Other
higher-level descriptions include contours [36], texture [37], and gradients [38].

The problem of locating the tracked object is posed as searching the image for the
region with the minimal distance to the appearance model. A popular approach of for-
malizing this problem is through optimization. Gradient methods, such as sequential
kernel-based [9, 32] methods can be used if the distance function can be estimated effi-
ciently and does not contain too many local extrema. In other cases stochastic methods,
such as sequential Monte-Carlo optimization [33, 39] have proven to perform more fa-
vorable. Besides optimization, machine learning formulation has also become popular,
both as a detection [40] and regression [41] problem.

After the target has been localized, the appearance model has to be updated to account
for the appearance changes that may be small between two frames but sum up in the long
run. The simplest way of updating the model is to replace it entirely, however, this makes
the tracker very vulnerable to misaligned localizations. Gradual updating that combines
previous information with the new one depends on the types of appearance model. De-
scriptions like histograms can be updated using autoregressive model. In case of detec-
tion or regression, the machine-learning is adapted to support on-line updates [40-42].
Another form of updating is feature selection that switches between multiple represen-

tations [43] or even switching between different appearance models [44].

The combinations of image features, localization, and updating techniques are nu-
merous. We will therefore highlight several important research directions that have proven

successful in the past decades:

Histogram tracking: Meanshift tracker, proposed by Comaniciu et al. [32] is one of the
best known color-based trackers and uses a spatially weighted color histogram in RGB
color space to determine a likelihood that a region contains an object using Bhattachar-
ryya distance. The authors show that this can be solved efficiently using by looking for
a mode of a distribution in every frame. Zhao et al. [4s] use differential EMD (Earth’s

Mover distance) to match the target color distribution to the distribution of an image re-

3
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Figure 2.2

Tracking with image
subspaces [48]. The
current appearance model
is an image subspace,
represented by the eigen-
vectors visualized in the
bottom-right side of the
figure.
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gion. Kernel tracking has also been used successfully used with gray-scale images where
researchers optimize over sum-of-square-distances distance function for gray-scale his-
tograms [46, 47]. The problem of modeling object with a histogram is a lack of spa-
tial structure which makes the success of tracking dependent on the separability of fore-

ground and background distributions.

Image subspace: As an interesting extension to template description, Ross et al. [48]
proposed using a template subspace estimated during tracking using an on-line variant of
principal component analysis (PCA). As illustrated in Figure 2.2, the subspace captures
some of the deformations that occur during tracking thus allowing the tracker to account
for them while remaining discriminative enough for tracking. The idea of tracking using
image subspaces is to evaluate the re-projection error that occurs when a given region in
the image is described with the subspace and then recovered again to the image form. As
subspace projections tend to get computationally expensive for high-dimensional spaces,
a particle filter approach is used to estimate the likelihood function fast enough for real-
time tracking. As noted by Zhang et al. [49] the template subspace idea can be extended
to random projections to reduce the size of the feature vector thus reducing the size of

the subspace projection problem.

Classifiers: In the past two decades that were marked with stronger presence of ma-
chine learning methods in computer vision, tracking by detection [ 40, 42, 50] became
increasingly popular concept in visual tracking. The core idea of tracking using detec-
tion methods is to use a discriminative classifier that determines if a given region contains
the tracked object or not. This is repeated for a sub-set or all of the regions in the image
and the detections are filtered into final prediction. One of the early successful tracking-

by-detection approaches has been proposed by Grabner et al. [40], where a boosting
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cascade detector is used on a pool of Harr wavelet features [51]. The idea is illustrated in
Figure 2.3. The tracker scans the local neighborhood of a previous position (Figure 2.3,
a) using a sliding window approach (Figure 2.3, b). Based on the responses of the classi-
fier (Figure 2.3, ¢) a new position of the object is determined and the classifier is updated
(Figure 2.3, d) using new positive sample and negative samples from the neighborhood.
This way the classifier is updated on-line to maintain a reliable discrimination between
the foreground and the background.

This approach was later extended to semi-supervised [50] tracking where appearance
information from the initialization stage is retained as a prior that constraints the learn-
ing process. Later the concept was also used by Babenko et al. [42] in multiple instance
learning (MIL) framework where positive and negative samples are grouped into sets in
a way that positive sets contain at least one positive sample and negative sets contain no
positive samples. This way the learning algorithm implicitly selects the positive sample
froma positive set during training.

The problems of tracing by detection approach is mainly grounded in the type of fea-
tures that are used. Harr wavelet features, that are most commonly used because they can
be efficiently computed in real-time, work well on textured areas, which means that the
classifier focuses on textured subregions of the object, ignoring the uniform areas that
could represent the majority of the object. The other problem are geometrical deforma-
tions of the target that can be accounted for only to some degree and are impossible to

predict in the current design of such appearance models.

Soft assignment and regression: Tracking by detection relies on output of a classifier to
locate the target - the position with maximum output score of a classifier is taken as a
new position of the object. This hard assignment does not take into account the extent

by which the training sample overlaps with the target location. Hare et al. [41] extended
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Figure 2.3

An illustration of online-
boosting tracker idea
according to [40].
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Figure 2.4

Tracking with correlation
filters [53]). The idea is to
obtain a filter that produces
a response with a clear peak
for a given template image.
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an on-line structured support vector machine (SSVM) to largely alleviate the assignment
problem. The SSVM method allows training with a continuous class assignment value
and learns a discriminative regression from an image patch into displacement to estimate
the target location. Another approach was proposed by Ellis et. al. [52], where offsets
pathes are used to train a regression classifier that generates an offset of target center for
a given patch in the image.

Recently, Bolme et al. [53] proposed tracking by training a filter whose output is high-
est at target location and diminishes away from the target. This results in a discrimi-
nativelly trained correlation filter for gray-scale images which is conceptually similar to
soft-assignment training by [41]. The idea is illustrated in Figure 2.4. This approach was
extended to multiple channels [38, 54] where the filter was trained on HoG features. Re-

cently, Zhang et al. [s5] adapted the correlation filters to spatio-temporal context learn-
ing.

Multiple visual trackers: One way to address the problems of individual holistic trackers
is to use several different holistic trackers together to complement each other. Stenger
et. al. [44] experimented with various combinations of different trackers, achieving bet-
ter performance by switching between them as they are deemed more or less reliable.
Santner et al. [56] proposed running an on-line discriminative tracker in parallel with
motion prediction from a dense optical flow and NCC detection. Trackers, that do not
address scale change, are connected into a cascade and only the model in the discrimi-
native tracker is updated. Badrinarayanan et al. [57] proposed running in parallel two

particle filters with different appearance models. The two trackers interact by influenc-
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ing re-sampling in each tracker. This approach was generalized by Kwon and Lee [58]
who proposed a unified framework for a Monte-Carlo-based integration of several holis-
tic appearance models in a recursive Bayes filter. Combining multiple visual trackers this
way still means that one using holistic appearance models and is therefore not especially
suited for tracking scenarios where the object is not rectangular and/or it deforms geo-
metrically. Another problem is high computational complexity as multiple appearance

models have to be generally matched at every frame.

Despite apparent success of global appearance models in certain tracking tasks, scenar-
ios with rapid structural appearance changes pose a significant difficulty to these models.
In holistic appearance models the entire appearance model is updated at once which in-
creases the chance that the valid part of the visual information is corrupted by the new
data. This can happen because the tracker fails to optimally predict the new position of
the object, therefore updating the appearance model with the new data, that does not
belong to the object, or because the tracker simply relies on the ambiguous data (e.g. fea-
tures that do not separate object from the neighborhood). Another problem of global
appearance models is the assumption that the object can be described as a rectangular
image patch. While this is a reasonable simplification in many practical cases (e.g. track-
ing faces or faces from a single view point), there exist multiple scenarios where this is
not true, e.g. non-rigid and articulated objects. All the geometrical deformations of the
target that could be handled in a geometrical framework have to be accounted for with

a holistic model update that can cause drifting.

7

Figure 2.5

Tracking with multiple
appearance models [59].
The tracker integrates a
set of appearance models
that are defined according
to their appearance, state
representation, and ob-
servation types, as well as
multiple motion models.
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2.1.2  Local appearance models

The key motivation of local appearance models is to explicitly handle spatial deforma-
tions that frequently occur in target appearance change. The general idea is that the ap-
pearance model is decomposed in separate elements, each describing a part of the object
with its own (local) appearance model. These parts are can be connected together using
some type of geometrical constraints. The actual types of appearance models of these
parts, as well as the geometrical constraints used can vary from model to model.
Generally, the types of appearance models utilized in each part are simpler than in
tracking with a single global appearance model because of increased computational com-
plexity. Frequently used appearance models for parts are single pixels [60], histograms
of local regions [61, 62], image patches [63] that can be used simply for optical-flow esti-
mation [10, 64], as well as stable region descriptors [21, 65] and superpixels [66, 67]. In-
vestigated geometrical constraints are are also diverse, ranging from simple flock heuris-
tics [10]to sparsely [68] or densely [69] connected graphs and to rigid constellations [47,
70]. As with the review of global appearance models we will now highlight several im-

portant research directions in the past decade.

Optical flow: One of the early part-based trackers that used local optical-flow features
was proposed by Kélsch and Turk [10]. It was inspired by simple bird flocking heuristics
that were used to geometrically constrain the set of local features. A feature is removed
from a set if it drifts too far away from the flock or it occludes another feature. The set
is renewed by sampling new features given a color model of the object. The flock-of-
features tracking approach was later extended by Hoey et al. [11] who integrated flocking
constraints directly into particle filter optimization.

Tracking with a set of optical-flow trackers has been also used by Kalal et al. [22, 71]
who made tracking more robust with introduction of a forward-backward error where
the optical-flow estimate is computed forward and backward in time and is deemed reli-
able only if the two estimates are similar. Local optical flow estimates are fused via robust
median estimator. Vojir etal. [64] replaced median estimator with RANSAC algorithm

as illustrated in Figure 2.6.

Stable regions: Another approach that has been investigated for part-based tracking is
detection and matching of stable regions. The key property of stable regions is that they

can be reliably detected in multiple images of the same scene. Re-identification of these
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t — 1: model state t: optical flow features t: robust transformation estimation

regions is done using one of numerous proposed descriptors. The general idea of track-
ing using stable regions is to remember the regions that appear on the object in the initial
frame as well as their geometrical relations and use this appearance knowledge for detec-
tion of the object in the following frames.

Yin and Collins [63] detect feature points and enforce a single global affine transforma-
tion constraint to avoid drifting. Since generating ad-hoc reliable geometrical constraints
between parts is a weakly defined problem for an unknown object, a relaxed method
based on generalized Hough transform has been proposed by [72]. Zhou etal. [73] usea
stable region based visual representation that combines this SIFT descriptor representa-
tion with the mean-shift. Specifically, SIFT features are used to find the correspondences
between the regions of interest across frames. In parallel mean-shift procedure is used to
locate the object by color similarity. Tracking is done by mutual support mechanism
between SIFT features and the mean shift. The algorithm is sensitive to background
clutter that leads to noisy SIFT matches and contradictory predictions by both compo-
nents. Tang and Tao [65] construct a relational graph using SIFT-based attributes for
object representation. The graph is based on the stable SIFT features which persistently
appear in several consecutive frames. However, such stable SIFT features are unlikely
to exist in complex situations such as shape deformation and illumination changes. Re-
cently SIFT features were also used by Pernici et al. [21] in a more sophisticated track-
ing system that considers also features in the background for more robust detection as
illustrated in Figure 2.7. Other feature descriptors have been proposed for tracking as
well. Tran and Davis [74] propose a tracker that constructs a probabilistic pixel-wise oc-
cupancy map for each MSER feature detected that is then used for locating the object.
Donoser and Bischof [75] improve the stability of MSER features for tracking by taking
into account the temporal consistency across frames. He et al. [76] proposed a tracking

algorithm using a SURF features that exhibit similar properties to SIFT features in terms
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Figure 2.6

Tracking with optical

flow [64]. A robust rigid
transform is robustly
estimated based on a weakly
constrained set of optical
flow trackers.
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Figure 2.7

Tracking with stable
regions according to [21].
The appearance model is
represented by an object
and context region (left).
If similar stable features
appears in both regions
(middle) it is considered
non-discriminative and
is not used in estimation
object state (right).
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of repeatability, distinctiveness, and robustness, but are computed much faster.
Generally the number of stable regions is highly dependent on the appearance proper-
ties of the object (e.g. texture). The performance of a tracker depends on the availability
and repeatability of stable regions and if the color of the object is homogeneous, no sta-
ble features will be found repeatably in the mentioned case and the tracking will fail. An
interesting approach to track texture-less object has been recently presented [77] where
pairs of edge features are robustly joined together into object position. While this ap-
proach works well even for objects without clear texture (e.g. sheet of paper), it does not

handle well geometrical deformations of objects.

Superpixels: Superpixel algorithms group pixels into perceptually meaningful regions.
The image, partitioned in superpixels is usually over-segmented, however, superpixels
capture image redundancy and provide a convenient primitive concept from which to
compute image features, that greatly reduces the complexity of subsequent image pro-
cessing tasks. Superpixels have become popular in many computer vision tasks, most
notably as object segmentation [78]. Recently, superpixels have also been used for vi-
sual tracking. Wang et al. [79] use superpixels to infer the position of the object using
mean-shift clustering and classifier. As shown in Figure 2.8, an image is segmented into
multiple superpixels, each of which corresponds to a local region. By building a local
template dictionary based on the mean shift clustering, an object state is predicted by
associating the superpixels of a candidate sample with the local templates in the dictio-
nary. The visual size of the object must stay the same during tracking as this tracker relies
on this information for robust tracking. Superpixels have also been used to track specific

class of object with additional prior knowledge about the structure of the objects, e.g. ve-
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Original image  Superpixel segmentation Classification

hicles [80]. Recently Cai et al. [67] presented a graph matching approach for superpixel
assignment that achieves competitive results in many challenging tracking scenarios, but
is also computationally expensive.

In contrast to stable regions, superpixels always appear in consistent numbers, how-
ever, the segmentations are not guaranteed to be temporarily connected which makes
the assignment problem hard, especially for multi-color objects or in presence of image

blur.

Optimizing geometry: Considering the alignment of connected parts as an optimization
problem, Fan et al. [47] proposed to track a target with a set of kernels which are con-
nected by a global affine transformation constraint. This kind of assumption is violated
in many visual tracking scenarios, but also significantly simplifies the optimization prob-
lem and makes it more robust and also more adaptable than using a single global kernel.
The rigidity constraint was relaxed by Martinez and Binefa [61] that proposed a appear-
ance model that connects multiple kernels together in triplets that are locally constrained
with a local affine transform. The model therefore contains N — 2 constraints for N
kernels as shown in Figure 2.9. This kind of structure is successful in addressing minor
deformations, such as short out-of-plane rotations as well as handle occlusions of indi-
vidual parts. On the other hand, the proposed appearance model lacks kernel-set update
capabilities needed for longer tracking sessions with significant deformations. The other
problem is tedious manual initialization as the performance of the tracker significantly
depends on the initial positions of individual kernels.

A fully-connected graph of local appearance descriptors has been proposed Badri-

narayanan et al. [69] for face tracking in combination with particle filter optimization.
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Figure 2.8

Anillustration of super-
pixel tracking from [79].
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Figure 2.9

An illustration of multi-
kernel tracking [61]. The
red rectangles show posi-
tions of individual kernels,
the green triangles show the
connected triplets of ker-
nels that are geometrically
constraints.

In [81] Markov random fields are used to encode the spatial constraints between the
parts. The problem of these approaches is that each part has to be manually initialized
based on the target’s structural properties. This is undesirable in many tracking scenar-
ios. Furthermore, the set of parts is fixed, therefore the tracker cannot adapt to the larger
deformations of the target.

Nejhum et al. [62] propose to track articulated objects by partitioning a segmenta-
tion mask in multiple parts using a greedy algorithm. These blocks are re-generated ev-
ery frame from the updated segmentation that assumes approximately stationary fore-
ground color. A more flexible geometrical constraints that allow long-term updating
of part set during tracking have been presented by Kwon and Lee [68]. A simple star-
shaped model is used to constrain individual parts that can be removed or added to the
set. New parts are added to the appearance model using a global color model combined
with a stable region detector, which means that the process fails for objects that lack tex-
tured surfaces. Another method that uses high-level global appearance representation to
position new parts has been proposed by Godec et al. [72], where a segmentation algo-
rithm is initialized using well-matching features and whose result is then used to sample
new features. This approach is directly dependent on the robustness of segmentation
which can be low in blurred or cluttered scenes. A simpler, but less reliable, segmenta-
tion has been proposed Duffner and Garcia [60], where each pixel is evaluated indepen-
dently to form a segmentation. The success of these approaches shows the need for some

high-level appearance information that would enable part-based trackers to extend the
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lifespan of the part-set in situations where the appearance of the object changes, e.g. sig-
nificant deformations. However, the mechanism of the integration of local and global

appearance remains poorly investigated and leaves a lot of room for improvement.

The main advantage of part-based appearance models is that they can adapt to geo-
metrical deformations, which is especially useful when tracking non-rigid and articulated
objects. On the other hand, part-based models also require estimation of a larger number
of parameters compared to global appearance models. Finding the optimal combination
of parameter values in this high-dimensional space can be difficult and can quickly result
in update errors if such appearance model is updated in a self-supervised manner. Con-
straining the parameter space by enforcing constraints reduces this risk, but also reduces

the adaptability of the model to geometrical deformations that violate the restrictions.
2.2 Performance evaluation of visual trackers

Visual tracking is one of the rapidly evolving fields of computer vision. Dozens of new
tracking algorithms are presented and evaluated in scientific journals and at numerous
research conferences every year. Evaluation of these new trackers and comparison to the

state-of-the-art raises several questions:

1. Is there a standard set of sequences that we can use for the evaluation?
2. What kind of performance measures should we use?
3. Is there a standardized evaluation protocol that can compare trackers?

4. How to correctly interpret results to get new research insights?

Unlike some other fields of computer vision, like object detection and classification [82],
optical-flow computation [83] and automatic segmentation [84], where widely adopted
evaluation protocols are used, visual tracking is still largely lacking a consistent evalua-
tion methodology. In this section we will review the most notable research efforts in this
direction.

The absence of homogenization of the evaluation protocols makes it difficult to rig-
orously compare tracking algorithms across scientific publications and stands in the way
of a faster development of the field. The authors of new trackers typically compare their

work against a limited set of related algorithms due to the difficulty of adapting these
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for their own use in the experiments. One of the key issues here is the choice of tracker
performance evaluation measures, which seems to be almost arbitrary in the tracking
literature. Worse yet, an abundance of these measures are currently in use. Because of
this, experiments in many cases offer a limited insight into the tracker performance, and
prohibit comparison across different papers.

Until recently, the majority of methodological research that addressed performance
evaluation in visual tracking was concerned with multi-target tracking scenarios. Smith
et al. [85] explore the tracking characteristics important to measure in a real-life applica-
tion, focusing on tracking scenario and consistent labeling of objects over time. Kasturi
et al. [86] present a framework for evaluating object detection and tracking in video,
focusing on face, text, and vehicle object categories, including an annotated dataset, per-
formance metrics, and evaluation protocols. Black et al. [17] present a methodology
for evaluating the performance of video surveillance tracking systems pseudo-synthetic
video. Brown et al. [18] measure the performance of a surveillance system under several
different scenarios. A well-known PETS workshop (e.g. [87]) has also been organized
yearly for more than a decade with the main focus on performance evaluation of surveil-
lance and activity recognition algorithms. Kao et al. [88] present a pair of information
theoretic metrics with similar behavior to the Receiver Operating Characteristic (ROC)
curves from signal detection theory on vehicles and people detection and tracking for
surveillance applications. Carvalho et al. [89] propose to use different types of reference
information and the combination of heterogeneous metrics to approximate the actual
error of a tracker. Leichter and Krupka [90] investigate the theoretical properties of
existing multi-target tracking performance measures with respect to two fundamental
properties: monotonicity and error type differentiability.

One might view the multi-target tracking as a generalization of single-target tracking,
however, as already mentioned in Section 1.1, there is a crucial difference in the objec-
tive which leads also to differences in evaluation. In multi-target tracking, the focus is
is primarily a reliable registration of multiple same-class objects. This means that the
measures are usually sensitive to correctness of target labeling assignments coupled with
target detection and occlusion handling. In single-target tracking the focus is on a single
object trajectory and the performance measures focus on the accuracy and robustness of
the tracking algorithm on a wide range of tracing scenarios.

Recently, parts of research community became aware of the need for a more consis-

tent evaluation and comparison approaches suited for single-target tracking algorithms.
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This is noticeable in large-scale evaluation attempts as well as in research in the method-
ology of the evaluation. Wang et al. [66] compared several trackers using center error
and overlap measures. Their research is focused primarily on investigating strengths
and weaknesses of a fixed set of trackers. Wu et al. [91] authors perform an experimen-
tal comparison of several trackers. The performance measures in this case are chosen
without theoretical consideration which results in a poor qualitative analysis of the re-
sults. Nawaz and Cavallaro [92] have presented a system for evaluation of video trackers
that aims at addressing the real-world conditions in sequences. The system can simu-
late several real-world sources of noisy input, such as initialization noise, image noise
and changes in the frame-rate. They have also proposed a new performance measure to
address the trackers scoring under these simulated conditions. These recent experimen-
tal evaluations show the need for a better evaluation of visual trackers, however, none
of them seems to address an important prerequisite for such evaluation, that is, what
subset of the many available measures should be used for the evaluation. Frequently,
multiple measures are used to cover multiple aspects of tracking performance without
considering the fact that some measures describe the same aspects which leads to bias of
the results. Instead, the selection should be grounded in a prior analysis of performance
measures which is the main focus of this paper. Recently, Smeulders et al. [93] provided
an experimental survey of several recent trackers together with an analysis of several per-
formance measures. The interesting aspect of their general disposition and methodology
is that they search for multiple measures that describe different aspects of tracking per-
formance. On the other hand, their selection of measures is from the start biased in favor
of detection-based tracking algorithms, which also affects their choice of final measures
and the derived conclusions.

Finally, evaluation of tracker performance without ground-truth annotations has been
investigated by Wu et al. [94], where the authors propose to use time-reversible nature
of physical motion to evaluate trackers performance. As noted by SanMiguel et al. [95],
this approach is not suitable for longer sequences. They propose to extend the approach
using failure detection based on the uncertainty of the tracker. The problem is that the
method has to be adapted to each tracker specifically and is useful only to estimate cur-
rent performance of a tracker and not for comparative purposes.

An interesting approach to tracker comparison has also been recently proposed by
Pang and Habin [96]. They aggregate existing experiments, published in various re-

search paper, in a page-rank fashion to form a ranking of trackers. The authors acknowl-
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edge that their meta-analysis approach is not appropriate for ranking recently published
trackers for which sufficient evaluation data is not yet available. Furthermore, their ap-
proach does not remove bias that comes from correlation in multiple performance mea-
sures.

The technical issue that arises in evaluation of visual trackers is how to perform the
experiments objectively, in repeatable manner, on a large scale and without a lot of ex-
tra work from the researchers. Since the process of visual tracking evaluation, especially
in case of on-line data availability constraint, tends to be more complex than that of
classification or detection, where classical machine learning approaches can be used, the
tools for visual tracking performance evaluation have to be specialized as well. Unfortu-
nately, only few such semi-automatic evaluation frameworks were presented in the past
and none of them gained enough popularity to become a de-facto standard. Most no-
table and general are the ODVIiS system [19] and the ViPER tooklit [97]. The first one
is focused on design of surveillance systems, while the second one is a set of utilities for
annotation and computation of different types of performance measures. Several other
systems also exist (e.g. [91, 92]), however, they are all limited to a specific evaluation pro-
tocol and/or a small set of explicitly integrated trackers. Note that none of the systems
above enable performing a fully automatic large-scale tracking experiment nor allowing
third-party trackers to be integrated into this experiment easily by a researcher who is not
familiar with the systems internal structure. These features are important for the wide-
spread acceptance of a standardized evaluation system that would allow researchers to

compare their trackers in a consistent manner.
2.3 Summary

The related research work that we have reviewed in Section 2.1 shows that visual tracking
is a challenging research problem that can be approached from multiple angles. Because
of this diversity it is impossible to encompass it with a single theoretical concept, even if
we focus only on single-target tracking, as we have in this review. A lot of approaches can
be characterized with the term holistic tracking, where the tracker used a global appear-
ance model to maintain a global representation of the target appearance. These models
have proven to be very successful in many tracking scenarios, however, they assume that
the target does not deform significantly. On the other hand, part-based appearance mod-
els can easily adapt to geometrical deformations, but also require estimation of a larger

number of parameters compared to global appearance models, which presents problems
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in case of self-supervised updating, meaning that the errors in parameter estimation are
amplified with time. Our work on hierarchical appearance models is an attempt to bring
together the best properties of both worlds, the flexibility of part-based models and the
well-defined nature of global appearance models. This is partially addressed in Chapter 4
with the coupled-layer appearance model, but even more thoroughly in Chapter s with
a appearance model that switches between both extremes during tracking.

As mentioned in Section 2.2, the methodology of performance evaluation in visual
tracking has been a neglected part of the research in visual tracking for a long time. Only
recently researchers have become aware of the problem on a larger scale which resulted
in many uncoordinated attempts to propose new benchmarks and evaluation protocols.
Despite this, none of them acknowledges the fact, that many performance measures that
are still being used today suffer from serious design flaws or are being misused. In our
work on evaluation, that is presented in next chapter, we primarily focus on this aspect
of performance evaluation as we believe that a selection of well-behaved performance
measures is the foundation for reducing the bias and increasing the interpretation power

of the evaluation methodology.
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Due to algorithmic complexity and sequential nature of visual tracking, detailed eval-
uation of visual tracking algorithms is a non-trivial task that has only recently gained
increasing attention of research community. Either for evaluation of research progress
in sequential iterations of the same visual tracker or in comparison of a new tracker to the
established state-of-the-art, the absence of a widely accepted evaluation protocol is slow-
ing down the progress of the field due to the difficulty to rigorously compare trackers
across publications. The key issues here are the choice of tracker performance evaluation
measures and the choice of the dataset, which seems to be almost arbitrary in the track-
ing literature. Because of this, experiments in many cases offer a limited insight into the
tracker performance, its strengths and, equally important, its weaknesses.

In this chapter we focus on the problem of performance evaluation in monocular
short-term single-target visual tracking. We first discuss the requirements that can be ex-
pected of a comprehensive evaluation methodology in Section 3.1. We then set the foun-
dation for a new performance evaluation methodology based on these requirements.
Our proposed methodology is based on theoretical and empirical analysis of the set of
most widely used performance measures that we describe in Section 3.2 and Section 3.3
respectively. We show that from a standpoint of tracker comparison, some performance
measures are equivalent. Since some measures reflect certain aspect of tracking perfor-
mance, combining those that address the same aspect introduces bias to the result. We
identify a pair of complementary measures that are sensitive to two different aspects of
trackers performance. We also demonstrate some side-products of our analysis, e.g., how
the selected measure pair can be used to interpret sequence properties that makes the in-
terpretation of the results easier. Our preliminary work on this topic has been published
in [98, 99]. In Section 3.4 we then use the selected performance measures as a basis for a
ranking methodology that can be used to compare multiple trackers. In Section 3.5 we
introduce the evaluation system that implements the evaluation protocol and discuss
the technical challenges that had to be taken into account during its design and develop-
ment. We conclude the chapter in Section 3.6 with a summary and a brief description of
the Visual Object Tracking Challenge [100-102] initiative that has been founded on the

results of our research.
3.1 Requirements for performance evaluation in visual tracking

There are three main requirements that make up a good and comprehensive perfor-

mance evaluation framework:
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= Performance measures. An abundance of performance measures have been pro-
posed for single-object tracker evaluation, however, there is no consensus on which
should be preferred. Ideally, measures should clearly express certain aspects of
tracking and should enable ranking of trackers. Apart from merely ranking, we
also need to determine cases when two or more trackers are performing equally
well due to their stochastic nature which results in different trajectories on each
run on the same data. Good measures should allow easy interpretation and clear

tracker comparison and support means of establishing a well defined tracker equiv-

alence.

= Evaluation systems. For a rigorous evaluation, an evaluation system that performs
the same experiment on different trackers using the same dataset is required. The
wide-spread practice is to initialize the tracker in the first frame and let it run until
the end of a sequence, which is a technically simple approach, however, the tracker
might fail (drift from the target) right at the beginning of the sequence due to
some visual degradation. For short-term tracking scenario this effectively means
that the system utilized only the first few frames for evaluation of this tracker. A
good system should fully use the data, which means that once the tracker fails,
the system has to detect the failure and reinitialize the tracker. A certain level of
interaction, that goes beyond simple running until the end of the sequence, is
required in this case. Furthermore, the evaluation system has to also account for
the fact that the trackers are typically coded in various programming languages

and that researchers use various platforms for their research.

m Datasets. The dataset for evaluation of visual trackers includes a set of annotated
video sequences. A good dataset should include video sequences with various
properties like occlusion, clutter and illumination change. One approach is to
construct a very large dataset, however, that does not guarantee diversity in vi-
sual attributes. A better approach is to annotate each sequence with the visual
attributes occurring in that sequence. For example, a sequence is deemed to in-
clude occlusion globally even if the target is occluded only at a specific interval
in the sequence. The trackers can then be compared only on the sequences cor-
responding to a particular attribute. However, many visual phenomena do not
usually last throughout the entire sequence. For example, an occlusion might oc-

cur at the end of the sequence, while a tracker might fail due to some other ef-
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fects occurring at the beginning of the sequence. In this case, the failure would be
falsely attributed to occlusion. A per-frame dataset labeling is therefore required

to facilitate a more precise analysis.

In this thesis we address the first two aforementioned requirements. The last require-
ment was addressed as a part of the Visual Object Tracking Challenge, in year 2013 [100]
and additionally in year 2014 [101]. Since both of these challenges utilize our discoveries
in terms of evaluation methodology as the theoretical foundation and adopted the eval-
uation system that we are presenting in Chapter 3.5 as the core software infrastructure

component, we briefly review them at the end of this chapter.
3.2 A review of performance measures

As stated in the previous section, the first requirement for a good performance evalua-
tion methodology is a good choice of performance measures. There are numerous per-
formance measures that have become popular and are widely used in the literature when
evaluating short-term single-target trackers, however, none of them is a de-facto stan-
dard. Our premise is that, while all of these measures do exhibit the properties required
for tracker comparison, they can also be misused in various ways. In this section we re-
view these measures and point out their theoretical issues.

All established performance measures for short-term single-object visual tracking as-
sume that manual annotations are given for a sequence. Therefore we first establish a

general definition of an object state description in a sequence with length IV as

A = {(Re,x¢)} iy, (3.1)

where x; € R? denotes a center of the objectand R; denotes the region of the object at
time ¢. In practice the region is usually described by a bounding box (that is most com-
monly axis-aligned), however, a more complex shape could be used for a more accurate
description. An example of two single-frame annotations can be seen in Figure 3.1. In
some cases the annotated center can be automatically derived as a centroid of the region,
but for some articulated objects, the centroid does not correspond to x; (right case in
Figure 3.1), therefore the center has to be annotated separately.

With established definition of object state we can now define performance measures as
functions thataim at summarizing the extent to which the tracker’s predicted annotation

AT agrees with the ground truth annotation, i.e., Ag.
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3.2.1  Center error

Perhaps the oldest means of measuring performance, which has its roots in aeronautics,
is the center prediction error. It is still a popular measure in visual tracking [42, 48, 59,
70, 103, 104]. The main idea is to measure the difference between the target’s predicted
center from the tracker and the ground-truth center.

ANGAT) = {8}, b = IIxE = x{ I (32)

The popularity of center prediction measure comes from its minimal annotation ef-
fort, i.e., only a single point per frame. The results are usually shown in a plo, as in

Figure 3.12 or summarized as average error (3.3), or root-mean-square-error (3.4):

N
1
A9 AT) = >0, (33)
t=1
1 N
G Ty __ G
RMSE(A®, AT) = N;th —x{ 2. (3-4)

The main drawback of this measure is its sensitivity to vague definition of the ob-
ject’s center. Because most trackers report center as a centroid of the region that they are
tracking, this may not correspond to the actual center of the object that is provided in the
groundtruth and results in systematic error. The center-error measure also completely
ignores the target’s size and does not reflect the apparent tracking failure [92]. To remedy
this, a normalized center error 3(, -) is used instead, e.g. [30, 93], in which the center

error at each frame is divided by the tacker-predicted visual size of the target, size(RS),
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Fignre 3.1

Two examples of an anno-
tation for a single frame
from the woman and the
driver sequence. In the left
example the center of the
object can be estimated
using the centroid of R¢,
which is not true in the
second case.
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Figure 3.2

An illustration of the
overlap of ground-truth
region with the predicted
region for four different
configurations.
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Nevertheless, despite the normalization, this measure may give misleading results as
the center error is reduced proportionally to the estimated target size which makes the
measure much more sensitive for smaller targets than larger targets. Furthermore, when
the tracker fails and is drifting over a background, the actual distance between the an-
notated and reported center, combined with the estimated size (which can be arbitrarily
large) overpowers the averaged score which does not properly reflect the important in-

formation that the tracker has failed.

3.2.2  Region overlap

The normalization problem and other issues of center-error measures are rather well ad-
dressed by the overlap-based measures [49, 72, 93]. These measures require region an-
notations and are computed as an overlap between predicted target’s region form the

tracker and the ground-truth region:

G T
G T N Rt N Rt
S(AT, A7) = {o¢} Ot = —e——+ (3.6)
’ t=1> a T .
R UR;
R FP = o FP —
yid
V3
V3
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An appealing property of region overlap measures is that they account for both posi-
tion and size of the predicted and ground-truth bounding boxes simultaneously, and do
not result in arbitrary large errors at tracking failures, as is the case on center-based error
measures. In fact, once the tracker drifts to the background, the measure becomes zero,
regardless of how far from the target the tracker is currently located. In terms of pixel
classification (see Figure 3.2), the overlap can be interpreted as

R N RT TP

RCURT TP+ FN+FP’ (7)
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a formulation that s similar to the F-measure in information retrieval, which can be writ-

_ 2T P . )
tenas F' = smperres TFNTFE- Another closely related measure, used in tracking to account

for un-annotated object occlusions is precision [72]

. TP
5 1.€. TP+FP"

threshold

overlap

>
I time (frames)

The overlap measure is summarized over an entire sequence by an average overlap (e.g.

in [91, 103]) that is defined as an average value of all region overlaps in the sequence

o=y %
t

Another measure based on region overlap is number of correctly tracked frames IV, =

(3.8)

> {tloe > 7'}?]:1 ||, where 7 denotes a threshold on the overlap. This approach
comes from the object detection community [82], where the overlap threshold for a cor-
rectly detected object is set to 7 = 0.5. The same threshold is often used for tracking
performance evaluation, e.g. in [49] and [66], however, this number is too high for
general purpose tracking evaluation. As seen in Figure 3.2 this threshold is reached even
for visually well overlapping rectangles. This is especially problematic when considering
non-rigid articulated objects.

To make the final score more comparable across a set of sequences of different lengths,

the number of correctly tracked frames is divided by the total number of frames

N
(a0, 4y = 10> 70 o)

where T denotes the threshold of the overlap. The P, also known as percentage of cor-

rectly tracked frames, is a frame-wise definition of the true-positive score, an interpre-
tation that has become popular in tracking evaluation with the advent of tracking-by-
detection concept. As noted in [93], the F-measure is another score that can be used in

this context, however, it is worth noting that the detection based measures disregard the
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Figure 3.3

Anillustration of overlap
being used as a detection
measure. The plus signs
mark the intervals with
positive detections (overlap
above threshold), while
minus signs mark the
intervals with negative
detections (interval below

threshold).
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sequential nature of the tracking problem. Asitisillustrated in Figure 3.3, these measures
do not necessarily account for complete trajectory reconstruction which is an important
aspect in many tracking applications.

The most popular measures for multi-target tracking performance, the Multiple Ob-
ject Tracking Precision (MOTP) and Multiple Object Tracking Accuracy (MOTA) [86]
can also be seen in the context of single-object short-term tracking as an extension of re-
gion overlap measures. MOTP measure is defined as average overlap over all objects on
all frames, taking into account different number of objects that are visible at different

frames, i.e.

St Yoy bi
MOTP = &zt =1 Oit

M (3.10)

t=1
where M denotes the number of different objects in the entire sequence and M; de-
notes the number of visible objects at frame ¢. In single-target short-term tracking M =
M; = 1, therefore MOTP can be simplified to an average overlap measure, defined
in equation (3.8) earlier in this section. The MOTA measure, on the other hand, takes
into account three components that account for accuracy of multiple-object tracking al-
gorithm: number of misses, number of false alarms and number of identity switches, i.

€.

SN (emMI 4 ¢ FP; + ¢, SWy)
Sl NE

where M I; denotes the number of misses, F'P; denotes the number of wrong detec-

MOTA=1- , (3.11)

tions, SW; denotes the number of identity switches, ¢, ¢y, and cs, are weighting con-
stants and N denotes the number of annotated objects at time ¢. In single-target short-
term tracking scenario there is only one object (NEF =1, SW; = 0) whose location
can and should always be determined (F'P; = 0, M I; € {0, 1}), which means that the
MOTA measure can be simplified to the percentage of correctly tracked frames, defined

in equation (3.12) earlier in this section.

3.2.3  Tracking length

Another measure that has been used in the literature to compare trackers is tracking

length [68, 104]. This measure reports the number of successfully tracked frames from



Visual tracking

tracker’s initialization to its (first) failure. A failure criterion can be a manual visual in-
spection (e.g. [72]), which is biased and cannot be repeated reliably even by the same
person. A better approach is to automate the failure criterion, e.g., by placing a thresh-
old 7 on the center or the overlap measure (see Figure 3.4). The choice of the criterion
may impact the result of comparison. As the overlap based criterion is more robust with
respect to size changes, we will from now on denote in the following the tracking length

measure with an overlap-based failure criterion by L .

;HA tracking length

z

@ threshold
D o AL
(]

+~

=

5

o -

time (frames)

While this measure explicitly addresses the tracker’s failure cases, which the simple
average center-error and overlap measures do not, it suffers from a significant drawback.
Namely, it only uses the part of the video sequence up to the first tracking failure. If
by some coincidence, the beginning of the video sequence contains a difficult tracking
situation, or the target is not visible well, which results in a necessarily poor initialization,
the tracker will fail, and the remainder of the sequence will be discarded. This means that,
technically, one would require a significant amount of sequences exhibiting the various

properties right at its beginning to get a good statistic on this performance measure.

3.2.4 Failure rate

A measure that largely addresses the problem of the tracking length measure is the so-
called failure rate measure 20, 105]. The failure rate measure casts the tracking problem
as a supervised system in which a human operator reinitializes the tracker once it fails.
The number of required manual interventions per frame is recorded and used as a com-
parative score. The approach is illustrated in Figure 3.5. This measure also reflects the
trackers performance in a real-world situation in which the human operator supervises
the tracker and corrects its errors.

Compared to the tracking length measure, the failure rate approach has the advantage

that the entire sequence is used in the evaluation process and decreases the importance of
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Figure 3.4

An illustration of the
tracking length measure for
center error.
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Figure 3.5

An illustration of the failure
rate measure for overlap
distance.
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the beginning part of the sequence. The question of a failure criterion threshold is even
more apparent here as each change in the criterion requires the entire experiment to be
repeated. Researchers in [106, 107] consider a failure when the bounding box overlap
is lower than 0.1. This lower threshold is reasonable for non-rigid objects, since these
are often poorly described by the bounding-box area. An even lower threshold could
be used for overlap-based failure criteria if we are interested only in the most apparent
failures with no overlap between the regions. We will denote the failure rate measure

with an overlap-based failure criterion with threshold 7 as

FTzlfT‘7 ]:T:{fz}, (3'17‘)

where F denotes the set of all failure frame numbers f;. A drawback of the failure rate
is that it does not reflect the distribution of these failures across the sequence. A tracker
may fail uniformly in approximately equal intervals or it may fail more frequently at cer-
tain events. We can analyze these different distributions by looking at the fragmentation
of the trajectory that is caused by the failures. Using an information theoretic point of

view [108], we define the following trajectory fragmentation indicator, Fr(F,),

1 Afi Afi
F(F7) = g B f; N ey

i

, (31)

Af; = {fi+1 — fi when f; < max(F:)
o fi+ N —f; when fi = max(F;)

where F' denotes the number of failures and f; denotes the position of the i-th failure.

The special case for the last failure ensures that the resulting value is not distorted by the
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beginning and end of the sequence’. Fragmentation can only be computed when || >
1 as we are observing the inter-failure intervals. Maximum value 1 is reached when the
failures are uniformly distributed over the sequence and the value decreases when the
inter-failure intervals become unevenly distributed. Note that the fragmentation can
only be used as a supplementary indicator to the failure rate since it contains only limited
information about the performance of a tracker, e.g. it will produce the same value for
trackers that fail uniformly throughout the sequence no matter how many times they fail.
However, it can be used to discriminate between trackers that fail frequently at a specific
interval and those that fail uniformly over the entire sequence. As the evaluation datasets
are getting larger, additional scores like fragmentation can help interpreting results on a

higher level which we will demonstrate in Section 3.3.5.

3.2.5  Hybrid measures

Nawaz and Cavallaro [92] propose a threshold-independent overlap-based measure that
combines the information based on tracking accuracy and tracking failure into a single
score. This hybrid measure is called the Combined Tracking Performance Score (CoTPS)
and is defined as a weighted sum of an accuracy score and a failure score. High score
indicates poor tracking performance. The intuition behind CoTPS is illustrated in Fig-
ure 3.6. At a glance, an appealing property of this measure is that it orders trackers by
accounting for two separate aspects of tracking. However, no justification, neither the-
oretical nor experimental, is given of such rather complicated fusion which makes inter-
pretation of this measure rather difficult. It can be shown (see Appendix A.2) that the
CoTPS measure can be reformulated in terms of average overlap, ¢, and percentage of

failure frames (where overlap is 0), o, i.e.

CoTPS =1—¢—(1—Xo)Xo. (3.14)

The equation (3.14) conclusively states that two very different basic measures are being
combined in a rather complicated manner, prohibiting a straightforward interpretation.
Precisely, if one tracker is ranked higher than another one it is not clear if this is due to
a higher average overlap or less failed frames. Furthermore, if equation (3.14) is reformu-

latedas CoT'P.S = (1—Xo)(1 — ¢) + A2, where the ¢ denotes the average overlap on

"We interpret the sequence as a circular time-series and join the first and the last fragment. This way the value

of F'r stays the same for the shifts of the same distribution of failures.
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Figure 3.6

An illustration of the
the CoTPS measure as
described in [92].

3 Performance evaluation methodology Luka Cehovin

non-failure frames (where the overlap is greater than 0), multiple combinations of two
values produce the same CoTPS score. In Figure 3.7 we illustrate several such equality
classes, where the same CoTPS score is achieved using different combinations of the two
components, which makes the interpretation of the results difficult. The combined score
is also inconvenient in scenarios where a different combination of performance proper-

ties is desired.

(I@, CoTPS

ilure (o)

overlap

time (frames)

In terms of performance score, we therefore believe that a better strategy is to focus
on a few complementary performance measures with a well-defined meaning, and avoid

fusing them into a single measure early on in the evaluation process.

3.2.6  Performance plots

Plots are frequently used to visualize the behavior of a tracker since they offer a clearer
overview of performance when considering multiple trackers or sets of tracker parame-
ters. The most widely-used plot is a center-error plot that shows the center-error with
respect to the frame number [30, 42, 49, 70]. While this kind of plots can be useful for
visualizing tracking result of a single tracker, a combined plot for multiple trackers is in
many cases misused if applied without caution, because the tracker with an inferior per-
formance diverts focus from the information that we are interested in with this type of
plots, i.e. the tracker accuracy. An illustration of such a problematic plot is shown in
Figure 3.8 where two trackers appear equal due to a distorted scale caused by the third
tracker. Aless popular but better bounded alternative approach is to plot region overlap,
e.g. in [103].

In the previous section we have seen that a failure criterion plays a significant role in
visual tracker performance evaluation. Choosing an appropriate value for the thresh-
old may affect the order and can also be potentially misused to influence the results of

a comparison. Generally it is better to avoid the use of a single specific threshold alto-
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gether, especially when the evaluation goal is general and a specific threshold is not a
part of the target task. To avoid the choice of a specific threshold, results can be pre-
sented as a measure-threshold plot. This kind of plots have some resemblances to a ROC
curve [109], like monotony, intuitive visual comparison, and a similar calculation algo-
rithm. Measure-threshold plots were used in [42], where the authors used center-error
as a measure as well as in [91], where both center-error and overlap are used.

The percentage of correctly tracked frames, defined in (3.12) as P, is a good choice for
ameasure to be used in this scenario, although other measures could be used as well. The

P; measure can be intuitively computed for multiple sequences which makes it useful
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Figure 3.7

Equality classes for different
values of CoTPS measure.
Each line denotes pairs

of average overlap on
non-failed frames (43) and
percentage of failure frames
(o) that produce the same
CoTPS score.

Figure 3.8

An example of center-error
plot comparison for three
trackers. Tracker 2 has
clearly failed in the process,
yE[ its large center errors
cause the plot to expand its
vertical scale, thus reducing
the apparent differences of
trackers 1 and 3.
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Figure 3.9

An illustration of the
measure-threshold plot for
two trackers. It is apparent
that different values of the
threshold would clearly
yield different rankings for
the trackers.
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for summarizing the entire experiment (an example of P plotisillustrated in Figure 3.9).
Interpretations of such plots have been so far limited to their basic properties which in a
way negates the information verbosity of a graphical representation. For example, sim-
ilarly to ROC curves, we can compute an area-under-the-curve (AUC) summarization
score, which is used in [91, 92] to reason about the performance of the trackers. How-
ever, the authors of [91, 92] do not provide an interpretation of this score. We prove in
this paper (see Appendix A.1) that the AUC is in fact the average overlap, which results
in two important implications: (1) the complicated computation of ROC-like curve and
subsequent numerical integration for calculating AUC can be avoided by simple averag-
ing of overlap over the sequence and (2) the AUC has a straight-forward interpretation.

A curve that is visually similar to P- plot is the survival curve [93]. In this case the
curve summarizes the trackers’ success (various performance measures can be used) overa
dataset of sequences that are ordered from the best performance to the worst. While this
approach gives a good overview of the overall success, itis not suitable for a sequence-wise
comparison as the order of sequences differs from tracker to tracker. Not all sequences
are equal in terms of difficulty as well as in terms of the phenomena that they contain
(e.g. occlusion, illumination changes, blur) which makes it very hard to interpret the

results of a survival curve on a more detailed level.
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3.3 Experimental analysis of performance measures

The theoretical analysis so far shows that different measures may reflect different aspects
of tracking performance, so it is impossible to simply say which the best measure is. Fur-
thermore some measures are proven to be equal (e.g., area-under-the-curve and average
overlap). We start our experimental analysis by establishing similarities and equivalence
between various measures, by experimentally analyzing which measures produce consis-

tently similar responses in tracker comparison.

In order to analyze the performance measures, we have conducted a comparative ex-
periment. Our goal is to evaluate several existing trackers according to the selected mea-
sures on a number of typical visual tracking sequences. The selection of measures is based

on our theoretical discussion in Section 3.2. We have selected the following measures:

1. average center error (Section 3.2.1),
2. average normalized center error (Section 3.2.1),
3. root-mean-square error (Section 3.2.1),

4. percent of correct frames for 7 = 0.1, Py.1 (Section 3.2.2),
5. percent of correct frames for 7 = 0.5, Py s,

6. tracking length for threshold 7 > 0.1, Lo.1 (Section 3.2.3),
7. tracking length for threshold 7 > 0.5, Lo s,

8. average overlap (Section 3.2.2),

9. hybrid CoTPS measure (Section 3.2.5),

10. average center error for Fo,

1. average normalized center error for Fp,

2. root-mean-square error for Fo,

13. percent of correct frames for 7 = 0.1, Po.1 for Fo,

14. percent of correct frames for 7 = 0.5, Py_5 for Fp,
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15. average overlap in case of Fy,
16. failure rate Fo (Section 3.2.4).

The first nine measures were calculated on trajectories where the tracker was initialized
only at the beginning of the sequence, and the remaining seven measures were calculated
on trajectories where the tracker was reinitialized if the overlap between predicted and
ground-truth region became 0.

Since the goal of the experiment is not evaluation of trackers but selection of mea-
sures, the main guideline when selecting trackers for the experiment was to create a di-
verse set of tracking approaches that fail in different scenarios and are therefore capable
of showing differences of evaluated measures on real tracking examples. We have selected
a diverse set of 16 trackers, containing various detection-based trackers, holistic gener-
ative trackers, and part-based trackers, that were proposed in the recent years: A color-
based particle filter (PF) [39], the On-line boosting tracker (OBT) [40], the Flock-of-
features tracker (FOF) [10], the Basin-hopping Monte Carlo tracker (BHMC) [68], the
Incremental visual tracker (IVT) [48], the Histograms-of-blocks tracker (BH) [62], the
Multiple instance tracker (MIL) [42], the Fragment tracker (FRT) [70], the P-N tracker
(TLD) [110], the Local-global tracker (LGT) [107], Hough tracker (HT) [72], the L1
Tracker Using Accelerated Proximal Gradient Approach (L1-APG) [30], the Compres-
sive tracker (CT) [49], the Structured SVM tracker (STR) [41], the Kernelized Corre-
lation Filter tracker (KCF) [38], and the Spatio-temporal Context tracker (STC) [ss].
The source code of the trackers was provided by the authors and adapted to fit into our
evaluation framework.

We have run the trackers on 25 different sequences, most of which are well-known
in the visual tracking community, e.g. [48, 49, 66, 68, 70, 72, 106, 107], and several
sequences were acquired additionally. Representative images from the sequences are
shown in Figure 3.10. The sequences were annotated with an axis-aligned bounding-box
region of the object (if the annotations were not already available), as well as the central
point of the object, in cases where the center of the object did not match the center of the
bounding-box region. To account for stochastic processes that are a part of many track-
ers, each tracker was executed on each sequence 30 times. The parameters for all trackers
were set to their default values and kept constant during the experiment. A separate run
was executed for the fzilure rate measure as the reinitialization influences other aspects

of tracking performance.
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3.3.1 The correlation analysis

A correlation matrix was computed from all pairs of measures calculated over all tracker-
sequence pairs. Note that we do not calculate the correlation on rankings to avoid han-
dling situations where several trackers take the same place (if differences are not statisti-
cally significant). The rationale is that strongly correlated measure values will also pro-
duce similar order for trackers. Since we have run 16 trackers, each of the stochastic ones
was run 30 times on every sequence, this means that every performance measure has
about 10000 samples. This is more than enough for statistical evaluation of whether cor-
relation across the measures exists. The obtained correlation matrix is shown in Figure
3.11. Using automatic cluster discovery by affinity propagation [111] we have determined
five distinct clusters, one for measures 1 to 3, one for measures 4 to 9, one for measures
10 to 13, one for measures 14 and 15, and one for measure 16. All these correlations are
highly statistically significant (p < 0.001).

The first cluster of measures consists of the three center-error-based measures. This

is expected since all of these measures are based on center-error using different averaging
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Figure 3.10

Overview of the sequences
used in the experiment.
The number in brackets
besides the name denotes
the length of a sequence in
frames.
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Figure 3.11

Correlation matrix for all
measures visualized as a
heat-map overlaid with
obtained clusters. The
image is best viewed in
color.

Figure 3.12

A comparison of overlap
and center error distance
measures for tracker CT
on sequence hand [106].
The dashed line shows the
estimated threshold above
which the center error is
greater than the size of the
object. The tracker fails
around frame 50.
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methods. The second cluster of measures contains average overlap, percentage of correctly
tracked frames for two threshold values (Po.1 and Po.5) and tracking length (Lo.1 and
Lo.5). Measures in the second cluster assume that incorrectly tracked frames do not in-
fluence the final score based on the specific (incorrect) position of the tracker. Because of
this and the insensitivity to the scale changes they are a better choice to measure tracking
performance than the center-error-based measures. An illustration of this difference for
overlap and center-error is shown as a graph in Figure 3.12, where we can clearly see that
the center-error measure takes into account the exact center distance at frames after the
failure has occurred, which depends on the movement of an already failed tracker and

does not reflect its true performance.

Center error
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The first cluster of measures in Figure 3.11 implies that the first three measures are
equivalent and it does not matter which one is chosen. The second cluster requires fur-
ther interpretation. Despite the apparent similarity of overlap-based measures 4 to 8 and
of the CoTPS measure, the correlation is not perfect and the order of trackers differ in
some cases. One example of such a difference can be seen for the TLD tracker on the
woman sequence (Figure 3.13). We can see that the tracker loses the target early on in the
sequence (during an occlusion), but manages to locate it again later because of its dis-
criminative nature. The average overlap (Measure 8) and the percentage of correct frames
(Measures 4 and 5) therefore order the tracker higher than the tracking length (Measures
6and 7). On the general level we can also observe that the choice of a threshold can influ-
ence the outcome of the experiment. This can be observed for tracking length measures
Lo.1 and Lo.5 and to some extent for the percentage of correct frames measures Po. 1
and Py 5. In those cases, the scores for a higher threshold (0.5) result in a different order
of trackers compared to the lower threshold (0.1). This means that care must be taken
when choosing the thresholds as they may affect the outcome of the evaluation. While
a certain threshold may be given for a specific application domain, it is best to avoid it
in general performance evaluation. The last measure in the second cluster is the hybrid
CoTPS measure [92] which turns out to be especially strongly correlated with the av-
erage overlap measure. By looking back at our theoretical analysis in Section 3.2.5 the
CoTPS produces identical results for trajectories where the overlap never reaches 0 (no
failure). In other cases the percent of failed frames, which can be approximated using
1 — Py.1, is also strongly correlated with average overlap. This means that the entire
measure is biased towards only one aspect of tracking performance.

We can in fact observe a slight overlap between the first two clusters in the correlation
matrix, implying similarity in their information content. Based on the above analysis
and discussion in Section 3.2 we conclude that the average overlap measure is the most
appropriate to be used in tracker comparison, as it is simple to compute, it is scale and
threshold invariant, exploits the entire sequence, and it is easy to interpret. Note also
that it is highly correlated with a more complex percentage-of-correctly-tracked-frames
measure.

The failure rate measure influences the trackers’ entire trajectory, because of the reini-
tializations. The data for measures 9 to 16 was therefore acquired as a separate experi-
ment. The advantage of the supervised tracking scenario is that the entire sequence is

used, which makes the results statistically significant at smaller number of sequences. It
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Figure 3.13

An overlap plot for
tracker TLD on sequence
woman [70]. The dashed
line shows the threshold
below which the tracking
length detects failure (for
threshold 0.1), which
happens around frame
120.

Figure 3.14

An overlap plot for tracker
LGT on sequence bicy-

cle [107]. The green plot
shows the unsupervised
overlap, and the blue plot

shows the overlap for super-

vised tracking, where the
failure is recorded and the
tracker reinitialized.
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does not matter that much if one tracker fails at the “difficult” beginning of the sequence,
while the other one barely survives and then tracks the rest successfully. While supervised
evaluation looks more complex, this is a technical issue that can be solved with standard-
ization of evaluation process, for example using a standard communication protocol as
the one that we present in Appendix B. In Figure 3.14 we can see the performance of
the LGT tracker on the bicycle sequence. Because of a short partial occlusion near frame
175 the tracker fails, although it is clearly capable of tracking the rest of the sequence reli-
ably if reinitialized. Measures that are computed on the trajectories with reinitialization
exhibit similar correlation relations than for the trajectories without reinitialization.
According to the correlation analysis the least correlated measures are failure rate and
average overlap on reinitialized trajectories. These findings are discussed in next section
where we propose a conceptual framework for their joint interpretation. To further sup-
port the stability of the measurements, we have also performed the correlation analysis
on different subsets of approximately half of the total 25 sequences and found that the

these findings do not change.

A(Clxﬂ”ﬂ[y vs. robustness

3.3.2

An intuitive way to present tracker performance is in terms of accuracy (i.e., how accu-

rately the tracker determines the position of the object) and robustness (i.c., how many



Visual tracking

times the tracker fails). Based on the correlation analysis in Section 3.3.1 we have selected
a pair of evaluated measures that estimates the aforementioned qualities. The average
overlap measure is the best choice for measuring the accuracy of a tracker because it takes
into account the size of the object and does not require a threshold parameter. How-
ever, it does not tell us much about the robustness of the tracker, especially if the tracker
fails early in the sequence. The failure rate measure, on the other hand, measures the
number of the failures which can be interpreted as robustness of the tracker. According
to correlation analysis in Section 3.3.1, if we measure average overlap on the reinitialized
data, used to estimate failure rate, the measures are not correlated. This is a desired prop-
erty as they should measure different aspects of tracker performance. We thus propose

measuring the short-term tracking performance by the following A-R pair,

AR AT) = (B(A7, A7), (A% AT)) 315

where ® denotes average overlap and Fy denotes the failure rate for 7 = 0. Note that
the value of failure threshold 7 can influence the final results. If the value is set to a
high value (i.e. close to 1) the tracker is restarted frequently even for small errors and
the final score is hard to interpret. Based on our analysis, we propose to use the lowest
theoretical threshold 7 = 0 to only measure complete failures where the regions have no
overlap at all and a reinitialization is clearly justified. In theory, a tracker can also report
an extremely large region as the position of the target and avoids failures, however, the
accuracy will be very low in this case. This is an illustrative example of how the two
measures complement each other in accurately describing the tracking performance.
Itis worth noting that there are some parallels between the hybrid CoTPS measure [92],

and the proposed A-R measure pair. In both cases two aspects of tracking performance
are considered. The first part of the CoTPS measure is based on the AUC of the over-
lap plot, which, as we have shown, is equal to average overlap. The second part of the
measure attempts to report tracker failure by measuring the number of frames where the
tracker has failed (overlap is 0), which could also be written as Py. Despite these apparent
similarities, the A-R measure pair is better suited for visual tracker evaluation for several
reasons: (1) the chosen measures are not correlated, (2) the supervised evaluation proto-
col uses sequences more effectively because of reinitializations, (3) different performance
profiles for average overlap and failure rate produce different combinations of scores that

can be interpreted, which is not true for CoTPS measure.

%
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Figure 3.15

An accuracy-reliability data
visualization for all trackers
over all sequences.
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A pair of measures is most efficiently represented via visualization. We propose to vi-
sualize the A-R pair asa 2-D scatter plot. This kind of visualization is indeed very simple,
butis easy to interpret and has been used in visual tracking visualization before, e.g. [44].
An example of an A-R plot for the data from the experiment can be seen in Figure 3.15,
where we show the average scores for all sequences, from which one can read the track-
ers performance in terms of accuracy (the tracker is more accurate if it is higher along the
vertical axis) and robustness (the tracker fails fewer times if it is further to the right on the
horizontal axis). Because the robustness does not have an upper bound we propose to in-
terpret it as reliability for visualization purposes. The reliability of a tracker is defined as
an exponential failure distribution, Rs = e~ "M The value of M denotes mean-time-
between-failures, i.e. M = %, where N is the length of the sequence. The reliability
of a tracker can be interpreted as a probability that the tracker will still successfully track
the object up to .S frames since the last failure, assuming a uniform failure distribution,
which is of course not completely true in all cases. Note that this formulation and the
choice of S do not influence the order of the trackers and have the advantage that the

value of S can be adjusted as a scaling factor for clearer visualization. While visualizing
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results this way is useful for quick interpretation of results, one should still consult the
detailed raw values of average overlap and failure rate before making any final assump-

tions.

3.3.3  Theoretical trackers

For a better understanding of the complementing nature of the two measures we intro-
duce four theoretical trackers denoting extreme prototypical tracker behaviors. The first
theoretical tracker, denoted by TTA, always reports the region of the object to equal the
image size of the sequence. This tracker provides regions that are too loose, but does not
fail (overlap is never 0) and is therefore displayed in the bottom-right corner as it is ex-
tremely robust, but not accurate at all. The second theoretical tracker, denoted by TTS,
reports its initial position for the entire sequence. This tracker will likely fail if the object
moves, and will achieve better accuracy because of frequent manual interventions. The
third theoretical tracker, denoted by TTF only tracks one frame and then deliberately
reports a failure. This way the tracker maintains a high accuracy, however the failure
rate is extremely high and the tracker is placed in top-left corner of the plot. The fourth
theoretical tracker is denoted as TTO and represents an oracle tracker of fixed size. The
tracker always correctly predicts the center position of the object, however, the size of the
object is fixed. This tracker represents a practical performance limit for trackers that do
not adapt the size of the reported bounding box which is the same as the initialization
bounding box.

The performance scores for the theoretical trackers can be easily computed directly
from ground-truth. The simplicity, intuitive nature, and the parameter-less design make
them excellent interpretation guides in the graphical representations of results, such as
A-R plot. In other words, they put the results of evaluated trackers into context by pro-

Viding reference points fora given evaluation sequence.

3.3.4 Interpretation of results using the A-R plots

By establishing the selection of measures, visualization and the theoretical trackers as an
interpretation guide, we can now provide several examples of results interpretation. The
A-R plot in Figure 3.15 shows results, averaged over entire data-set. We can see that the
LGT tracker is on average the most robust one in the set of evaluated trackers (positioned
most right), but is surpassed in terms of accuracy by KCF, IVT and TLD (positioned

higher). Especially the TLD tracker is positioned very low in terms of robustness, so the

sI
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high accuracy may in fact be a result of frequent reinitializations, a behavior that is similar
to the TTF tracker. We acknowledge that this behavior of TLD is a design decision as the
TLD is actually a long-term tracker that that does not report the position of the object if
it is not certain about its location. The FOF tracker, on the other hand, is quite robust,
butits accuracy is very low. This means that it most likely sacrifices accuracy by spreading
across a large portion of the frame, much like TTA.

As the averaged results can convey only a limited amount of information, Figure 3.16
also contains per-sequence A-R plots for the trackers considered in our experiments.
These plots show that the actual performance of trackers differs significantly between
the sequences. Theoretical trackers TTA and TTF remain worse on their individual
axes as expected, while the relative position of the other trackers changes depending on
the properties of the individual sequence. In many sequences the TTO tracker achieves
the best performance because of its ability to “predict” the position of the target. In cases
where the size of the object changes this advantage becomes less apparent and trackers
like IVT, Li-APG, HT, and LGT that account for this change can even surpass it in terms
of accuracy (e.g. in biker, child, and persz001-2). The sequence diveris interesting consid-
ering the results. Even though the object does not move a lot in the image space, which
is apparent from the high robustness of the T'TS tracker, the sequence has nevertheless
proven to be very challenging for most of the trackers because of the large deformations
of the object. The BH and BHMC trackers are on average very similar to the T'TS tracker
which would mean that they do not cope well with moving objects. At a closer look we
can see that this is only true for some sequences (e.g. rorus, bicycle, and petszo00). In
other sequences both tracker perform either better than TTS, where the background re-
mains static and can be well separated from the object (e.g. sunshade, david_outdoor, and
gymnasticsz), or worse, where the appearance of the background changes (e.g. morocrossi,
child, and david_indoor). Considering the good average performance of the LGT tracker
we can see that the tracker performed well in sequences with articulated and non-rigid
objects (e.g. hand, bandz, dinosaur, can, and rorus), while the difference in case of more
rigid objects (e.g. face, petsz001-1, and petsz001-2) is less apparent. In the plot for the bolt
sequence we can see that the TLD tracker behaves similarly to the TTF tracker, i.e. failsa
lot without actually drifting. On the other hand the TLD tracker works quite well in the
case of petsz000, petszo01-1, and petsz001-2 sequences where the changes in the appearance

of the object are gradual.
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3.3.5  Fragmentation

Recall that we have introduced the fragmentation indicator as a complementary indica-
tor for the number of failures measure in Equation 3.13. Using this measure we can infer
some additional properties of a tracker that would otherwise require looking at raw re-
sults. Fragmentation reflects the distribution of failures throughout the sequence. If
the fragmentation is low then the failures are likely clustered together around some spe-
cific event (which can indicate a specific event that is problematic for the tracker). On
the other hand, if the fragmentation is high, then the failures are uniformly distributed,
independently of localized events in the sequence and can be most likely attributed to
internal problems of the tracker. To demonstrate this property we have selected several
cases where the number of failures is the same, but the fragmentation is different. In
Figure 3.17 we can see three such cases. Several trackers, despite failing the same number
of times do this for different reasons and in different intervals. On the band sequence,
the FRT tracker fails almost uniformly, while the BH tracker manages to hold to the
target for a long time (the region is, however, estimated very poorly), but then fails to
successfully initialize around frame 170 because of background clutter and motion. In
bicycle and bolr sequences, the failures of PF tracker are concentrated on a specific event,
most likely because of color ambiguity or small target size. The failures of the BHMC
tracker are almost uniformly distributed over both sequences, most likely because of the

problems of the tracker implementation (e.g. inability to cope with small target size).

3.3.6  Sequences from the perspective of theoretical trackers

The theoretical trackers, introduced in Section 3.3.3, provide further insights into each
sequence from the perspective of the basic properties that each theoretical tracker repre-
sents. Because of their simplicity and absence of parameters, they can easily be applied to
any annotated sequence and provide some insight about its properties. These properties
can then be used when constructing an evaluation dataset or interpreting the results.
The TTA tracker will always achieve good robustness (no failures), but will produce
high accuracy values only when the target will cover large part of the image frame. This
tracker therefore measures the average relative size of the object. The TTS tracker will
only achieve good robustness when the object remains stationary with respect to the im-
age plane (e.g. the diver and the face sequence) and will also achieve good robustness

when the size of the object does not change with respect to the initialization frame. The
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TTF tracker will fail uniformly, however it will produce high accuracy only when there
is no rapid motion predominantly present over the entire sequence. In Figure 3.16 we
can observe that the assumption of no rapid motion is not true for the sequences hand,
handz, and sunshade. The TTO tracker will achieve good robustness (no failures), how-
ever, it will not achieve a good accuracy when the size of the object region changes a lot,
e.g. in sequences diver and gymnastics. These observations can be extended to the entire
set of sequences using clustering. As a demonstration we have used K-means clustering
with expected number of clusters set to K = 3 to generate labels that are shown in Ta-
ble 3.1. The labels are of course relative to the entire set, but they summarize these relative
properties well, e.g., we can see that face sequence is similar to diver sequence in terms
of movement, however, the diver sequence contains a lot of size changes. This simple
approach could be in future extended to provide automated and less-biased sequence

descriptions.
3.4  Evaluating multiple trackers

The performance measures that we have analyzed in the previous sections can tell us if a
tracker performs better than another tracker on a given sequence, but in case of multiple
trackers and a larger dataset, we need an extension of the methodology that would take
into account the structure of the dataset and cases where some trackers are essentially
equal.
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Figure 3.17

Selected results of the
fragmentation analysis.
Failures are marked on the
time-line with symbols, the
corresponding fragmen-
tation values are shown

in brackets next to tracker
name.
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Table 3.1

Sequence properties according to theoretical tracker performance.

Luka Cehovin

Size (TTA) Motion (TTS) Speed (TTF) Size change (TTO)
bicycle small high medium medium
biker large medium low high
bolt small high medium medium
can medium high medium low
car small medium medium low
child large medium medium high
david_indoor small low medium low
david_outdoor small high medium low
dinosaur large medium low medium
diver small low medium high
face medium low low low
gymnastics medium low medium high
gymnastics2 small low low medium
hand small high high medium
hand2 small high high medium
Motocrosst medium high medium high
mountainbike small medium low medium
pets2000 small medium low medium
pets2001-1 small medium low high
pets2001-2 small medium low high
sunshade small high high low
torus small high medium low
trellis small low medium high
turtlebotr medium medium low medium
woman small medium medium medium

3.4.1  Ranking trackers

Our approach to ranking multiple trackers is inspired by [ 82, 112, 113]. The key idea is that
trackers are not merely ordered according to their performance scores, but that a group
of trackers is assigned an equal rank if they perform equally well on a given sequence.
After ranking trackers on a given sequence by ordering the raw scores, the ranks are
corrected as follows. For tracker ¢, a group of equivalent trackers I2; is determined. This
group contains indices of trackers that performed equally well as the selected tracker (in-
cluding the tracker 7). The corrected rank of the 4-th tracker is then calculated based on
the ranks of trackers in the group of equivalent trackers. One way of correcting the rank

is to assign tracker ¢ an average rank of all trackers in F;
A 1
R, = —— g R;
1 E:| 4 v
JEE;

where R. denotes uncorrected rank and R. denotes corrected rank. Note that this equal-

ity is not transitive, and should not be mistaken for a classical equivalence relation. For
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example, consider trackers T1, T2 and T3. It may happen that a tracker T performs
equally well as T and T, but this does not necessarily mean that T performs equally
well as both, T3 and T3. The equality relation between trackers should therefore be es-
tablished for each tracker separately.

To determine for each tracker the group of equivalent trackers, a measure of equiva-
lence on a given sequence is required. In case of accuracy, a per-frame overlap is available
for each tracker. One way to determine equivalence in this case is to apply a paired test to
determine whether the difference in accuracies is statistically significant. When the differ-
ences are distributed normally, the Student’s t-test, which is often used in the aeronautic
tracking research [114], is the appropriate choice. However, in a preliminary study we
have applied Anderson-Darling tests of normality [115] and have observed that the accu-
racies in frames are not always distributed normally, which might render the t-test inap-
propriate. As an alternative, the Wilcoxon Signed-Rank test as in [112] can be used. In
case of robustness, several measurements of the number of times the tracker failed over
the entire sequence in different runs is obtained. These values cannot be paired, and the
Wilcoxon Rank-Sum (also known as Mann-Whitney U-test) [112] is used instead to test
the difference in the average number of failures.

We can calculate the average rank for the i-th tracker by averaging over all sequences.
The averaging over sequences assumes that every sequence contributes equally to the fi-
nal ranking, regardless of their length. Another thing that has to be taken into account
is that while statistical equivalence is a widely accepted method, it is also very conserva-
tive. When establishing an equivalence between two trackers, we have to keep in mind
that statistical significance does not directly imply a practical difference [116]. If a sin-
gle rank is needed (e.g. for a competition) the most straightforward way of obtaining it
is by giving an equal weight to both performance measures and simply average the two
corresponding rankings for accuracy and robustness. Note, however, that this severely

reduces the interpretability of the results.

3.4.2  Visualization of ranking results

Ranking results can be visualized using plots similar to the A-R plots proposed in the
Section 3.3.1 (Figure 3.15). We display the rank results either for a particular sequence
or averaged over the entire dataset. Since each tracker is presented in terms of its rank
with respect to robustness and accuracy, we can plot it as a single point on the corre-

sponding 2D A-R rank plot as shown in Figure 3.18. Trackers that perform well relative
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Figure 3.18

Example of an A-R rank
plot for the experiment,
presented in Section 3.3.
The data was averaged over
sequences.
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to the others are positioned in the top-right part of the plot, while the, relatively speak-
ing, poorly-performing trackers occupy the bottom-left part. Because the A-R ranking
plot tends to normalize the distances between trackers, we recommend to always use it
in tandem with the raw A-R plot on the same results when interpreting the results.
Comparing the ranking results in Figure 3.18 to the averaged raw results in Figure 3.15
shows that ranking “normalizes” the plot, but the overall structure remains similar. The
LGT tracker is the most robust, while the KCF tracker achieves the best accuracy ranking
and also achieves the best average ranking if both performance aspects are considered

equal.
3.5 Performance evaluation systems

Comparing a set of tracking algorithms on several dozen sequences using many measures
is a complex, large-scale experiment that has to be properly managed. The easiest way to
perform complex experiments objectively is to automate the entire process. To address
this issue we have created two visual tracking evaluation systems, both designed to per-
form large-scale experiments, but satisfying different evaluation scenarios. Both systems
are run on multiple platforms and support the same tracker integration mechanism that
enables multi-programming language compatibility. More details about the software is

provided in Appendix C.



Visual tracking
3.5.1  VOT toolkit

The VOT toolkit is an evaluation system that was implemented in Matlab/Octave lan-
guage and was designed to perform comparative evaluation of multiple trackers, using
proposed evaluation methodology, on a set of sequences and a set of experiments that
can include sequence transformations such as gray-scale conversion, image noise, etc
(which is performed on-the-fly by the system). The main focus of the VOT toolkit is to
enable execution of multiple tracking algorithms as well as the analysis of the results and
generation of informative reports. To solve the problem of integrating various trackers,
written in different languages into our evaluation system, we have designed a simple pro-
tocol that uses standard input and output stream for communication between a tracker
and our system. The 774X protocol is described in detail in Appendix B. Because of
the simplicity of the protocol, existing trackers can be adapted for basic use within the
system within an hour. The system is available as an open-source software as a part of
the Visual Object Tracking Challenge initiative and can be used by other researchers to

perform low-effort evaluation of their trackers and comparison to the state-of-the-art.

3.5.2  TraXror

The second evaluation system is called T72Xzor and is written in Java. Its main purpose
is to support tracker development and continuous evaluation. In comparison to the
VOT toolkit the TraXtor allows parallel execution of individual tracker runs, therefore
shortening the required execution time for evaluation on the entire set of sequences. It
also supports parameter space exploration, but does not have advanced result analysis

capabilities. As it is evident from the name, it also supports the TraX protocol.
3.6 Performance evaluation in practice

The measures and protocols that were proposed in this chapter have already been adopted
as the foundation of the evaluation methodology of a recently organized visual tracking
challenges VOT2o013 [100] and VOT2o014 [101], where a rigorous analysis in terms of
accuracy and robustness has provided multiple interesting insights into performance of
individual trackers. In this section we briefly summarize the two challenges that were
organized as a legacy of our research that was reaffirmed by the interest and acceptance

of the research community.
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3.6  The VOTzo13 challenge

For this challenge, the presented tracker evaluation and comparison methodology was
applied first to a practical large-scale experiment in a form of a research competition that
we have co-organized in an international consortium of researchers. Instead of imple-
menting or adapting the code of various existing state-of-the-art trackers ourselves, we
invited researchers to participate by running the experiments themselves, using the first
version of the evaluation system that was described in Section 3.6, and sending us the
raw results of the experiments. The dataset that was used in the competition was con-
structed in a novel way using clustering by sequence properties which resulted in a diverse
selection of a small set of sequences. In comparison to the previous trends in visual track-
ing evaluation that proposed using more and more sequences, this approach of dataset
construction, together with the proposed performance methodology that efficiently uses
the evaluation material offers a scalable alternative while providing a good estimation of
the true performance. The results of the challenge were presented at a VOT2o013 [100]
workshop that was held in conjunction with the International Conference on Computer

Vision (ICCV2o013) and was well accepted.

3.62  The VOTz014 challenge

Based on the success from the previous year we have co-organized another challenge that
extended the previous one. We constructed a new dataset with additional sequences. The
sequences were annotated using rotated rectangle annotations that were better estimate
the region of rotated or articulated objects. In addition we have introduced the concept
of practical difference that takes into account the noise of the annotations when consid-
ering if two trackers are equivalent in terms of accuracy. From the technical side we have
presented an improved evaluation toolkit that also introduced the communication pro-
tocol that we describe in Appendix B. The results of the challenge were presented at a
VOT?2014 [101] workshop that was held in conjunction with the European Conference
on Computer Vision (ECCV2014). The VOT2014 benchmark was also adopted by the

OpenCV Challenge for evaluation of promising visual tracking algorithms.
3.7  Summary

In this chapter we have addressed the problem of performance evaluation in monocular

single-target short-term visual tracking. We have presented three core requirements for a
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comprehensive evaluation framework. We have addressed two of them, the first one be-
ing selection of the evaluation measures. Through theoretical and experimental analysis
we have investigated various popular performance evaluation measures, discussed their
pitfalls and showed that many of the widely used measures are equivalent. Since some
measures reflect certain aspect of tracking performance, combining those that address
the same aspect provides no additional information regarding the performance or even
introduces bias toward a certain aspect of performance to the result. Based on the results
of our experiment we have proposed to use a pair of two existing complementary mea-
sures. This pair, that we call the A-R pair, takes into account the accuracy (using average
overlap) and the robustness (using failure rate) of each tracker. We have also proposed
an intuitive way of visualizing the results in a 2-dimensional scatter plot, called the A-R
plot. Additionally, we have introduced fragmentation as an additional indicator for dis-
tribution of failures. We have introduced several theoretical trackers that can be used to
quickly review the results of the evaluated trackers in terms of basic properties that the
theoretical trackers exhibit. We have also shown that the theoretical trackers can be used
for automatic annotation of sequence properties from a tracker viewpoint.

The A-R measures were also extended to ranking multiple visual trackers on a given
set of sequences where equivalent performance is also important and has to be accounted
for. We have described the basic properties of the two performance evaluation systems
that we have developed. Both systems support the same way of third-party tracker inte-
gration using a custom communication protocol that we have designed. Both systems
and areference protocol implementation are available as open-source software. This way
researchers in the field of visual tracking can save time when it comes to evaluation by
reusing existing evaluation tools or develop new specialized evaluation software that is
immediately usable to a large number of people.

As we have shown in the last section, the work on visual tracking performance evalu-
ation that we have described in this chapter was accepted by the community and is now
integrated into and being built upon in the scope of the Visual Object Tracking Chal-
lenge that represents an ongoing effort to promote a consistent evaluation methodology,

thus pushing forward the field of visual tracking.

01







Tracking with a coupled-layer
appearance model



04

Figure 4.1

Tllustration of the proposed
coupled-layer appearance
model. The local layer is a
geometrical constellation

of local parts that describe
the target’s local visual
properties. The global
layer encodes the target’s
global visual features in a
probabilistic model.
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In this chapter we present a first working instance of a hierarchical appearance model,
based on the concept, described in Section 1.2. The description is based on our earlier
work, published in [106, 107], where the appearance model was presented as the coupled-
layer appearance model because of the collaborative interaction of local and global ap-
pearance description that form a visual hierarchy of two layers. In Section 4.1 we present
the details about the proposed appearance model. In Section 4.2 we describe the inte-
gration of the appearance model with a motion model in a tracking framework and the
software implementation details. Section 4.3 contains an in-depth evaluation of the re-
sulting tracker, both in terms of parameter analysis and as a comparison to the related

work. We conclude the chapter with a summary in Section 4.4.
4.1 The coupled-layer appearance model

The main idea behind the proposed appearance model is to couple the local appearance
description thatis able to adapt to the geometrical deformations of non-rigid targets with
a global appearance model of an object that guides the appearance model across changes
in the appearance of the object. The coupled-layer appearance model contains only two
layers according to the hierarchical appearance model concept and is this respect the sim-
plest non-trivial hierarchical appearance model, however, as we show in the experimental
evaluation that we will present in Section 4.3, the tracker that uses a coupled-layer model

is capable of tracking in many hard cases of short-term tracking scenarios.
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As illustrated in Figure 4.1, the coupled-layer appearance model is organized in a local

and a global layer,

Vi = {fmgt}

The local layer L is a geometrical constellation of visual parts (parts) that describe the
target’s local visual/geometrical properties. As the target’s appearance changes or a part
of the object gets occluded, some of the parts in the appearance model cease to corre-
spond to the target’s visible parts. Those are identified and gradually removed from the
model. The allocation of the new parts in the local layer is constrained by the global layer
Gt that encodes the target’s global visual features. The global layer maintains a proba-
bilistic model of target’s global visual features such as color, shape and apparent motion
and is adapted during tracking. This adaptation is in turn constrained by focusing on

the stable parts in the local layer.

¢.1.1 The local layer

The local layer is the layer that is closest to the current appearance of the object and is up-

dated all the time to adapt to small changes that occur during two frames in a sequence.

Definitions: Thelocal layer is defined as a geometrically constrained constellation of local
parts. Each part has its own appearance model. The state, Ly, of the the local layer at

time-step t is described by a geometrical constellation of parts:

L= {<Xgi)7z(i>vwt(ti)>}’i:13Nt7 (4.1)

where xgi) and z(¥) are the position in image space and the appearance model of the
i-th part, respectively, and wgi) is a weight that reflects belief that the target is well-
represented by that part, i.e. the weights sum to one across all parts. An example of
such part-set is illustrated in Figure 4.2. The target’s center, c; is defined as a weighted
average over the parts. In the definitions that follow we will denote the set of positions
of all parts at time-step ¢ by X; = {x\" }i1.n,.

The main idea of part-based appearance models is that appearance models of individ-
ual parts, in our case denoted by 2 are not too complex as the strength of the entire
appearance model is not in their individual matching ability but in their joint descriptive

strength.
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Figure 4.2

Describing appearance

of an object using a con-
stellation of parts. In this
example simple histograms
are used as appearance
models of individual parts.

4 Tracking with a coupled-layer appearance model Luka Cehovin
w!" = 0.85)
w? =0.82) )
w® =0.23)
r Ly
2 = ur,(“) =0.73)
7

The local appearance model of a part is encoded by a gray-level histogram 2z which
is extracted when a part is initialized in the constellation and remains unchanged during
tracking to prevent drifting; the size of the extraction region is also constant for all the
parts. We have chosen this simple appearance representation due to its simplicity and
invariance to rotation. Let z; be a histogram extracted at the current location of a part
x¢. We define the visual likelihood p(-, -) between the appearance model of the part
and the visual information at position X; as the Bhattacharryya distance between the

histograms [39]

p(z P 20) =3 /20 [b]za[b], (42)

b=1
where B denotes the number of bins in the histogram and [-] represents addressing of

individual bin in a histogram.

Matching: Matching of the local layer to a new image is a process of finding the optimal
positions of individual parts while also taking into account the geometrical constraints
between the parts from previous frames. At each frame we start from an initial estimate
from the previous frame, X;_1, and the set of current image measurements Y, and
seck the value of X that maximizes the joint probability p(Y'¢, X¢|X;_1). By treating
the local layer appearance model L as a mixture model, in which each part competes to

explain the target’s appearance, we can decompose the joint distribution into
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Ny
POV, X[ Xim1) = Y wip(Ye, Xi[Xi1,2("), (4.3)
i=1

where wii) quantifies the representativeness of the i-th part for the tracked model using
weights of the parts. This is a very general formalization and assumes that all parts are
directly mutually dependent. This may not be the case, espectially in case of non-rigid
objects some parts are only linked between themselves through their neighbors. A neigh-
borhood of the i-th part is a subset of parts that are directly connected to the part; the

relation is symmetrical. We can therefore write

p(Yt7 Xﬁi) |Xt*1a Z“)) X p(th XE’L) |E§i)v Z<i))7 (4-4)

where egl) denotes the set of the i-th part’s local neighbor parts. Assuming the indepen-
dence of geometrical constraints and appearance similarity the distribution in the right-
hand side of (4.4) can now be further decomposed in terms of visual and geometrical

aspects as

p(Ye,x71el?,20) = p(Ye|x(?, 2D )p(x{V [e0D), (43)

where we assume that the visual likelihood measurement at the ¢-th part is independent

from the other parts. We define the visual likelihood of the i-th part to the location as

i ) — z(i> z x(i)
p(Y4|x\",2V) o A=l ) (4.6)

where p(+, -) is the visual distance between the appearance model of part (zV) and ex-
tracted visual information, as defined in (4.2), and A is a constant factor.

In the case of non-rigid objects, the neighborhood of a part is a set of parts that con-
straints the movement of the part. Since non-rigid objects tend to deform quickly and
because we do not know the properties of the object in advance, the estimation of the
neighborhood has to be derived from the available information about the structure of
the object, which is scarce in most tracking scenarios where the exact type of the tracked
object is not known. In this case one has to rely on generally applicable heuristics like
proximity of parts. We propose two proximity heuristics to determine the neighbor-
hood of a part. In the first approach, the neighbors of a part are the parts that are di-

rectly connected with that partin a Delaunay triangulated mesh of an entire set of parts.
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Figure 4.3

Determining the neigh-
borhood of a part. The
figure shows: positions

of the parts (a), Delaunay
mesh edges for the point
set (b), neighborhood of a
single part in a Delaunay
graph (c), neighborhood of
a single part according to
the proximity threshold 7.
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The second approach is to consider Euclidean distance between parts. The neighbors of
a part are the parts whose distance to that part is lower than a specific threshold. Both
approaches are illustrated in Figure 4.3. The advantage of the first approach is that it
ensures a small size neighborhood even if the parts are positioned far apart, but the dif-
ference in distance between closest and farthest neighbor can be big. This approach is
more suitable for sparse evenly distributed part-sets, where the mesh can be computed
reliably . The second approach is faster and more suitable for dense part-sets, but it can
be sensitive to the neighborhood threshold parameter and object size change.

The constraints enforced on the local geometry by the neighborhood are formalized
using an elastic deformation model

. . (2) (1), (%)
p(x{? |ef) oc e el AETDx (47)

where A(sﬁ")) is a transformation matrix computed from correspondences between the
i-th part’s initial and current neighborhoods and Ag is a constant factor. Similarly to
Martinez and Binefa [61], we assume that the movements of a parts in a neighborhood is
constrained by an affine transformation, which means that the transformation A(aﬁ“)
in (4.7) can be calculated by estimating an affine transformation from the past (timet—1)
and current (time t) positions of the parts in neighborhood 8,(5”.

Note that this geometric model assumes that the deformations of the constellation

are locally approximately affine. Therefore, during adaptation of the local layer to the

"Delaunay triangulation is numerically unstable when points lay close together.
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target’s current appearance, we seck a deformation X; of an initial set of parts from
previous frame X1 that maximizes the joint probability in (4.3)

X, = arg rr)l(axp(Yt7Xt|Xt,1). (4-8)
t

Determining the parameters of the unknown deformation Xt is a difficult optimiza-
tion problem due to the high dimensionality and complexity of the problem space. The
objective function (4.3) may contain many local maxima and the optimization may con-
verge to the wrong one, therefore the optimization method has to be designed to take
thisinto account. A two-stage optimization approach that is based on the idea of Gradu-
ated Non-Convexity [117] can be used in such occasions to ensure a more stable solution.
An intuitive approach, based on an observation that transformation of a part-set can be
split in a global rigid transformation and residual corrections, is to split the optimiza-
tion into coarse global optimization that determines the optimal state approximately in
alow-dimensional sub-space and refinement phase that improves this estimate further,

ie.

0 = AxP 469, 59 e A, (4.9)

Determining the parameters A; and Ay of (4.8) is a high-dimensional optimization
problem that we approach by optimizing (4.3) using the cross-entropy stochastic op-
timization method [118]. First we make an initial estimate by opptimizing (4.3) w.r.t.
the global affine deformation. The problem is considered in a five-dimensional problem
space G = [ta, ty, T, Sz, Sy], where t, and t,, represent the target’s position, r repre-
sents rotation and s, and sy, represent scale. The five parameters define a transformation

matrix A(G) as

sgeos(r)  —sin(r) tg
A(G)=| sin(r)  sycos(r) ty] - (4.10)
0 0 1

The cross entropy method iteratively searches for an optimal combination of param-
eters according to the cost function by updating the candidate probability distribution
over the parameters of G. In our case we model the probability distribution as a nor-
mal distribution, defined by a mean value p and the covariance matrix X as seen in

the overview of the algorithm in Figure 4.4. At the beginning the parameters of the
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Figure 4.4

Initial global optimization
using [he Cross»en[ropy
method.
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= Input: The set of parts X; 1.
= Initialization: Set the initial mean and covariance o = pg and Lo = .
w Forj=1...Mg:

Sample S samples of parameter values from N (p1;—1, 35 _1).

For each sample construct the corresponding affine transformation and evaluate

(4.3) for X; = {AtGXle Yi=1..N,-

Select Eg best samples according to (4.3) and use them to recalculate 45 and
;.

Break the loop if det (X ;) is smaller than convergence threshold.

= Output: The optimal global affine transformation A&, constructed from the param-

eters of f1;.

distribution are initialized using constant values, i.e. pe = [0,0,0,1,1] and B¢ =
diag(ma, ma,ra, sa, sa). The idea of the cross-entropy method is that the param-
eters of the distribution are iteratively updated using only the Eg best samples of the
total S samples sampled from the distribution A (p, ). This can be done by com-
puting a weighted mean and a weighted covariance of the best samples using the cost
function to determine the weights. This process is then repeated for M iterations or
until the distribution collapses, i.e. the determinant of the covariance matrix falls bellow
a convergence threshold.

Note that in the case of the global optimization step, equation (4.3) can be simplified.
Because a global affine transformation constraint is assumed in the problem space it is
clear that every local affine transformation A(ai“) from (4.7) equals to the global affine
transformation A (G), therefore the value of (4.7) is 1 for every part. Therefore, (4.5)

can be reduced to a weighted sum of a visual likelihood for every part

N¢ )
i) — 2() 2 x(l)
p(Ye, X¢|Xi-1) = E wi JemAvpleulx ))7 (4.1m)
i=1

After convergence of the first stage, the value of A(G) is fixed and the positions of
each part xgl) are additionally refined by using a stochastic coordinate descent in the
cross-entropy framework. The search for optimal position of every part is represented as

a cross-entropy optimization problem in a two dimensional problem space using (4.5)
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= Input: The set of parts xgi) = AtGXEi,)l

= Initialization: Set the initial mean vectors and covariance matrices ué = AtG XEZ_) 1
and 26 =37.
Compute the neighborhood of each part.

] Forj = 1...ML:

For each part xii) :

Sample S, samples from ./\/—(,u,; _1s E; 1)

For each sample A" evaluate (4.5) forx{”) = AGx() 4+ Al
Select 7, best samples according to (4.5) and use them to recalculate u;'.

and Z;

= Output: The optimized set of points Xy = {xgi) = Ath,(fi) 1t ,u; Yi=1...N,

as a cost function. The initial distribution for all parts is set using constant values, i.e.
pr =[0,0] and X = diag(mr, mr). For each iteration of the algorithm we iterate
through all the parts and perform an iteration of the cross-entropy method for the part,
while fixing the positions of all other parts. The algorithm outline for the second step of

the optimization is presented in Figure 4.5.

Updating: The parts in the set are reasonably small, focused only on alocal section of the
object, the appearance of which is described using a grayscale histogram. This simple ap-
pearance representation is robust to some deformations, e.g., rotation and provides good
short-term tracking support, especially when using more such parts together. However,
itis not sufficient for more than a short period of time, usually ten to twenty frames. In
the long run some parts become outdated. Updating appearance models of individual
parts would result in drifting, therefore we employ an alternative update strategy where
entire parts are replaced with new ones once the old parts become outdated. Because
different parts become outdated at different points in the sequence, the membership
changes that occur in the part-set are gradual.

Recall from (5.1) that there is an importance weight wgi) associated with each part.
It reflects the belief of the corresponding part in the mixture of parts that can change

over time, depending on how reliable is a specific part. The dynamics of the weights is
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Figure 4.5

Refinment optimization
step using the cross-entropy
method.
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governed by two rules simple, but effective rules: (x) the quality of visual match for a part
which is based directly on the visual likelihood, defined in (5.6), and (2) the drift from
the flock [10], which is defined by a sigmoid function:

1

(2)
p(x [ Xe) = : ;
(71 Xe) 1 4+ eXp(mdst(x{”) ,Xs)~Tp)

(4.12)

where mdst(xy)7 X¢) stands for the median of Euclidean distances between the part
position and position of every other part in the set. The T'p and Ap are constants that
determine the size of the object and the influence of the consistency constraint respec-

tively. The new proposed weight Wi equals to

@i = p(Ye|x{”)p(x("X). (4.13)

After matching the part set to the new frame, each part is analyzed and its weight is

modified in an autoregressive manner using the proposed estimate 0y

wi = Awwi_y + (1 — Aw )iy, (4.14)

where A\w is defined as a persistence constant and 12);” is defined as the estimated weight
in the current time step. If a certain part does not represent the object well for a period
of time, its weight becomes very low (lower than a threshold Tr) which results in the
removal of the part from the set. To maintain numerical stability * and avoid unnecessary
computations, we also merge parts that are too close to each other by only retaining part

with the highest weight. We define a subset of outdated parts as

£h= {(xm,z(i),w(i)) € £|w(i) < TrV
(37 : ||x(i) — x(j)H <Tu Aw'® > w(j))}. (4.15)

A quality of a good part-based representation of an object is that the object is well
covered with the parts. To ensure a good coverage of the object, new parts have to be
added in the local layer to replace the ones that are removed. The parts are allocated

by sampling their position from a probability density function (pdf) that determines

*E.g., Delaunay triangulation works better if the input points are not too close to each other.
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locations in the image which are likely to belong to the object. This pdfis provided by
the global layer using the process that is described in the next section.

The weight wii) of the allocated part is initialized with a value of twice the threshold
for part removal, i.e., wo = 2TR. The remaining question is how many parts should be
allocated to cover the entire object. Since we do not known the exact size of the object,
we propose the following approximation. Let Nt denote the number of parts in the local
layer after removing the irrelevant parts. We define N, " to be the local layer’s capacity,
i.e., the maximum number of parts allowed in the local layer at time-step ¢. To allow
the number of allocated parts to vary with the target’s size, we always try to allocate at
most Nf' < N7 — Ny + 1 new parts. To prevent sudden significant changes in the

estimated capacity, we adapt it using the autoregressive scheme:

NEE = ceap Ny + (1 — crcap) Vi, (4.16)

where N; = N 4+ N, and @cap is an exponentially forgetting factor.

4.2 The global layer

The global layer in the coupled-layer appearance model captures different aspects of the
target’s global appearance. In total we have evaluated the following three visual proper-
ties: color C'¢, apparent motion My and shape S, therefore the state of the global layer,

Gy, is denoted as

G: = {Ct,Mt,St}- (4-17)

When required, this information can be used to allocate new parts that are added to
the part-set. The position of a new part is determined by drawing samples from the

following distribution

p(x|Cy, My, Si) < p(Cy, My, Si|x). (4.18)

Assuming that the modalities are independent given a position X, equation (4.18) fac-

tors into

p(x|Ct, My, St) o< p(Ci|x)p(M¢|x)p(St|x). (4.19)

Each visual modality has to be addressed in its own manner regarding storing the vi-

sual information, updating the representation as well as comparing the information to
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the image to generate a probability distribution. Below we describe the details about all

three modalities.

Color: The global color model is encoded by two color histograms hf and hZ, the first
corresponding to the object and the second to the background. This way the model can
focus on the colors that separate the object from the background, which is particularly
important if some of the background color enters the foreground model. Let I (x) be a
pixel value at position x in image I. Using the histograms, the probability that a pixel
corresponds to the background or foreground is p(z|F) = h{ (I(x)) and p(z|B) =
hf (1(x)), respectively. The likelihood that a pixel at location x belongs to a target is

p(x[F)p(F) _
p(F)p(x|F) + (1 — p(F))p(x|B)

Both histograms are updated during tracking as follows. After the matching operation

therefore

p(Cilx) = (4.20)

in the local layer is completed, a histogram flf is extracted in the current image from the
regions that correspond to the parts of the local layer. The background histogram hP is
extracted from a ring-shaped region defined by the convex hull of the parts in the local
layer. These histograms are used to update the global color model by an autoregressive

scheme A
h{\, = arh{ + (1 — ap)hf{

(4.21)
hf, = agh? + (1 — ap)h?,

where ar and ap determine the rate of adaptation.

Motion: The apparent motion model is defined by the local-motion model from [33].
Briefly, the local motion model [33] first determines salient points {x; }1v*, with suffi-
cient texture in the image. It then computes the motion likelihood p(x;|M;) at each
salient point x; by comparing the local velocity of a pixel v(x;) (estimated by Lucas-
Kanade optical flow [119]) with the global velocity v¢ estimated by the tracker. In our
implementation we apply Harris corner detection [120] to determine the salient points.

As in [33], the motion likelihood at salient point x; is defined as
p(xi|My) oc (1 — aN)e_)‘M(d(V(xi)th)) + an, (4.22)

where d(v(x;), v¢)) is the distance between two velocities as defined in [33] and anx

is a small constant that represents uniform noise. Finally, to obtain a dense estimation,
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the set of salient points is convolved with a smoothing kernel. We therefore define the

motion likelihood as

Ns
POM) ox > plxil M) x — ), (42)

i=1

where @5 (x) is a Gaussian kernel with covariance X and Ny is the number of salient
parts. The covariance is estimated automatically from the weighted set of salient points

using the multivariate Kernel Density Estimation [121].

Shape: The shape model is an estimate of the object’s shape. An approximate object
shape at time-step ¢ is defined as an object-centered region P, which is calculated by a
convex envelope over the parts from the local layer. To maintain the growing capability
we dilate the hull by a constantamount of D pixels. We definea function s(x, S¢) =1
ifx € St and 0 otherwise and the shape likelihood model for a pixel at x is thus defined

as

p(St]|x) o s(x,S¢). (4.24)

As mentioned before, (4.19) is used for allocating new parts in the local layer. We do
not sample (4.19) directly, but rather discretize it first, by calculating its value for each
pixel in the image. This discretized distribution is then used to draw positions for new
parts from the potential target region. The process of probability map construction is
illustrated on a real example in Figure 4.12. To make sure that parts are allocated only
in regions whose likelihood of containing the target is high enough, we set to zero those
regions of the discretized distribution, whose value is smaller than the third of the maxi-
mal value from p(x|Cy, My, St). The regions of the discretized distribution that corre-

spond to existing parts are masked out (set to zero) in order to prevent part duplication.

. . Sampling probability
Original image
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Figure 4.6

Tllustration of the cumu-
lative probability map
construction.
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Figure 4.7

An illustration of the local
layer initialization for a
given initialization region.
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4.2 Tracking with the coupled-layer appearance model

In this section we present the integration of the coupled-layer appearance model into a
visual tracker, which is also denoted as Local-Global tracker or LGT tracker in the follow-
ing text due to the interleaved combination of local and global appearance description.
The section describes how the appearance model is initialized in the short-term tracking
context and how it interacts with a motion model of a tracker. At the end we present

our software implementation of the tracker together with some technical details.

4.2.1  Appearance model initialization

In the first frame, the tracker has to initialize the appearance model using the information
it receives as an input. Based on common practice in computer vision, we assume that
a rectangular region encompassing the target will be provided, although more detailed
information about the region of the object can be used efficiently by the LGT in contrast
to many other trackers. Since no other structural information about the object is given in
advance, the the local layer is initialized by uniformly placing the parts in a grid pattern
within the given rectangular region, as illustrated in Figure 4.7. The weights of the parts
are initialized to the same value. The global information in the middle layer is initialized

based on the information from the parts from the local layer.

4.2.2  Motion model

The proposed tracker also utilizes a motion model that predicts the motion of the ob-
ject, which is used to provide a better initial estimate when matching the local layer. The

coupled-layer appearance model starts from an initial estimate of the target’s position



Visual tracking

and then refines its estimate by adapting to the current image as described in Section 4.1.1.
The center of the target can then be identified as a weighted average c; of the part’s po-
sitions. During tracking we can use prediction of the motion of the parts to initialize the
matching of the local layer, the better the prediction the faster the part set will converge.
For this we utilize a motion model that predicts the motion of the object. We apply a
Kalman filter [122] with a nearly-constant velocity (NCV) dynamic model [123] to filter
the estimates of the target’s center ¢;. Thus, at time-step ¢, the target’s velocity Vv esti-
mated by the Kalman filter is used as an initial estimate for the local layer parts. A better
initial position does normally (when the motion model correctly predicts the position
of the object) result in faster convergence of the optimization algorithm and a more ro-
bust solution. The translation transformation also does not change the neighborhood

properties of the set.

4.2.3  The tracking loop

We now overview the LGT tracker by iterating through the steps of matching and up-
dating the appearance model during tracking. An list of steps is shown in Figure 4.8.
Using a new image from the image sequence we start from an initial position, predicted
by the motion model. The object is located by matching the local layer to the new frame
to maximally explain the visual data. The global layer is used to identify and remove the
parts from the local layer that do not correspond to the target. The good parts parts are
used to update the middle layer of the appearance model that is then is used to allocate
new parts in the local layer if necessary. Finally, a new position of the object is calcu-
lated and used to update the motion model. Additionally, we summarize the sequence

of relevant steps of our tracking algorithm in Figure 4.9.

4.2.4  Implementation

The reference implementation of the LGT tracker that was used in the experiments in
Section 4.3 was written in a mixture of Matlab and C++ code using the OpenCV library.
This implementation is based on the implementation of the LGT tracker that was writ-
ten for [107] also used in the evaluation and comparison in the next section. Addition-
ally, we have also implemented the LGT tracker purely in C++ within the Legit tracker
library that is mentioned in Appendix C.

77




78

Figure 4.8

A schematic overview of
the main steps in processing
of a single frame. 1 - pre-
diction from the motion
model, 2 - matching the
local layer, 3 — updating
weights and removing
parts, 4 — updating the mo-
tion model, 5 — updating
the global layer, 6 — adding

new parts.
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4.3 Experimental analysis

In this section we describe the experiments that we have performed in order to evaluate
the proposed coupled-layer appearance model and discuss the results. Throughout the
experiments we extensively use the evaluation methodology that we have proposed in
Chapter 3, predominantly the A-R measure pairs and the A-R plots for visualization.
Using the A-R methodology we evaluate different properties of the appearance model
on the local and global layer using the sequences from VOT2o013 benchmark [100]. We
compare these changes to the reference configuration, that was derived from [107] and

that is summarized in Table 4.1.

4.3.1  Resource requirements analysis

In terms of memory requirements of the coupled-layer appearance model, the size of the
bottom layer is directly correlated with the number of parts. Each part stores a fixed size
histogram, a position and a weight. The size of the global layer is fixed during tracking
and depends on the number of bins in the color histograms and the size of probability
maps.

To obtain a realistic distribution of computational requirements of individual parts
of the tracker, we have run the tracker on several sequences from VOTzo13 dataset and

recorded the times for individual parts of the algorithm. From this we have observed that
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= Input: A rectangular region that encompasses the object.

= Initialization: Distribute parts in a regular grid in the region and assign uniform weights,
initialize global model.

= Fort=1,2,3...

Predict the target’s velocity V¢ using the Kalman filter and initialize the local-layer
parts with the NCV model.

Adapt the local layer parts by maximizing p(Y¢, X¢|X¢_1) as described in al-
gorithms in Figure 4.4 and Figure 4.5.

Recalculate the target’s center ¢4 and update the Kalman filter estimate.
Identify and remove irrelevant parts.
Update the global model using the remaining parts.

Sample new parts from the distribution p(x|C¢, My, St).

the computational complexity of the algorithm depends on the number of parts in the
part set, which on average takes about 80% of the total tracker update time for a set of
30 to 40 parts, which is a typical set size on most of the evaluated sequences. Processing
of the top layer (updating the representations and generating a joint probability distri-
bution) takes about 15% of the time. The most expensive global modality is motion
modality that requires detection of corner features and estimation of optical flow.

On average, the tracker performed at about 2 to 2.5 frames per second on VOT2o013
dataset on a AMD Opteron 6238 processor. No explicit parallelization was used in our
implementation, although we have observed that more than a single core of a proces-
sor was utilized during tracking, most likely because of Matlab implicit parallelization
of matrix operations. We also acknowledge that some segments of the algorithm could
run in parallel, for example evaluating visual similarity function for parts in each iter-
ation of the optimization algorithm as well as image processing algorithms (histogram
backprojection, morphological operations, optical flow calculation, etc.) in the global

layer.

4.3.2  Parameter analysis

Parameter analysis can provide valuable information about the behavior of a given model

for same input data, but with varying configurations of model parameters. Since the pa-
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Figure 4.9

The integration of the
LGT appearance model in a
tracking framework.
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Table 4.1

Reference parameters, according to [107].

Section Parameters

parts patch size: 6 X 6 pixels, histogram bins: 16.

matching | cost function parameters: Ay = 1, Ay = 0.015.

global optimization: Mg = 10, S¢ = 300, Eg = 10, mg =
20,r¢ = 0.08, s¢ = 0.001.

refinment step: My, = 5, S, = 50, B, =5, mp = 5.
guiding Ap =3,Tp =40,Tr = 0.1, dcap = 0.8.

modalities | color: 16 bin HSV histogram, updating: ar = 0.95,ap = 0.5.

motion: Ay; = 1.

shape: Ds = 10.

rameters of a model can be numerous, as it is the case for the proposed coupled-layer
appearance model, the combinatorial explosion prohibits detailed study of mutual in-
teractions. However, individual parameters can still be analyzed and can provide a lot
of valuable insights. For the analysis of individual parameters of the appearance model
we have chosen a subset of VOT2013 dataset that presents a sufficient challenge for the
LGT tracker in various aspects. We have selected sequences bicycle, bolt, diving, gymnas-
tics, hand, iceskater, sunshade, and woman.

All the experiments were performed in the following manner: the tracker was eval-
uated on a specific sequence for a specific parameter 30 times to account for stochastic
processes in cross-entropy optimization and positioning of new parts. The performance
scores obtained on individual trials were then averaged together. When averaging the
scores between sequences, the length of individual sequences was taken into account.
In total the algorithm was run more than 20000 times for the parameter analysis alone,
a feat that can only be achieved consistently with good software automation approach.
We have used the TraXzor tracker development environment that we have already men-

tioned in Chapter 3 and is described in more details in Appendix C.

Local layer: The first aspect of the appearance model that we have investigated is the
matching operation of the local layer. The operation specifies several parameters, related

to the cost function and optimization method. The first parameters are the matching
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cost function constants that regulate the influence of visual similarity and geometrical
constraints, i.e. Ay and Ag. Since we are only interested in the maximum value of the
cost function (4.4), the actual value of the function is notimportant. The analysis can be
therefore focused on the ratio between Ay and Ag. We can assume that one of the con-
stants, e.g. Ay is fixed to 1 and we only observe changes of Ag, which we call the rigidiry
factor. The higher the Ag, the more the geometry constraints in the neighborhood of
parts are enforced. An A-R plot visualizing performance for various values of Az for a
set of sequences is shown in the left A-R plot in Figure 4.10. We can see that the per-
formance on many sequences is improved for lower values of parameter g, especially
when it comes to non-rigid objects, like diving, hand, and iceskater. On the other hand,
the performance is not increased constantly, for extremely low values of Ag it starts de-
creasing again, e.g. for sequences bolr and gymnastics, which means that some degree of
geometrical constraints is still required. Another sequence, which is apparently heavily
influenced by the rigidity parameter is sunshade, where the object (head) is more rigid.
A more rigid model would in theory be beneficial for this kind of object, however, the
rapid transitions from sun to shade and back, that occur in the sequence, present a rigid
constellation with a problem. A lot of parts become unreliable outliers. In a weaker con-
stellation such parts simply drift, but if the constraints are too strong, they also corrupt

the overall solution, much like in the case of least-square optimization.

Rigidity Neighborhood
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diving 06 diving
0§ 4 i
hand hand
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0ss < ! ©
: \ 045 s "Io
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Both stages of optimization are influenced by the choice of initialization parameters

ma, Ta, rq, and, my, that set the scope of the search region, and the cross-entropy
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Figure 4.10

Influence of rigidity pa-
rameter Ag (left) and
the neighborhood selec-
tion technique (right) on
tracking performance.
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Figure 4.11

Influence of parameters
mag.rG,sgandmyp,
on [racking performance.
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parameters Ma, Sa, Eg for the global step and M, S, and E, for the local step.
The performance of the LGT tracker for various values of initialization parameters on
test sequences are visualized in A-R plots in Figure 4.13. We can see that there is not
a lot of change in performance even if the search space is increased with respect to the
reference setup, which means that the cross-entropy algorithm robustly converges even

in case of more sparse sampling (the number of samples is kept constant).
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Choice of part neighborhood is another aspect that can influence the tracking perfor-
mance. In Section 4.1 we have proposed two approaches, the first is to use a Delaunay
graph, the second is to use the parts within a fixed radius. The results for Delaunay graph

and several fixed radii is presented in the right A-R plot in Figure 4.10. We can see that
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both techniques perform approximately equally well on average. Larger differences can
be observed only in some sequences, e.g. gymnastics and diving, where the object is elon-
gated most of the time and the differences in neighborhoods are more clear. The main
advantage of Delaunay triangulation for neighborhood selection is the absence of an ex-
plicit parameter, that can be beneficial as in case of the gymnastics sequence, or not, as in
case of the diving sequence.

We have also investigated the type of local appearance models and compared several
simple descriptions: 8-bit, 16-bit, 32-bit gray-scale histograms matched using Bhattachar-
ryya distance and gray-scale templates matched using sum-of-square-distances (SSD) and
normalized cross-correlation (NCC). Despite our expectations that more discriminative
template-based matching could give a better result than histogram-based approaches,
the results in Table 4.2 show that the template-based approaches are in fact performing
worse. This is likely due to rotation invariance of histogram representations and the fact
that an appearance model of a single part does not have to be very discriminative on its
own. However, we also acknowledge the fact that the performance of individual descrip-

tions could be improved by adjusting other related parameters, like A .

Table 4.2

Average overlap and average number of failures for different types of local appearance models. Arrows indicate sorting direction.

8-bit hist | 16-bit hist | 32-bithist | SSD | NCC
Overlap 1 0.48 0.48 0.47 0.46 | o.50

Failures | 0.58 0.54 0.61 2.95 1.09

Modalities selection: In the global layer, the most important question regarding config-
uration of coupled-layer appearance model is how do the three global modalities (color,
motion and shape) influence the tracking performance. We have performed evaluation
on selected sequence with all modalities, only subset of two and subset of one modality.
For completeness, we have also added a tracker configuration, where the global layer is
completely absent. In this case the tracking is performed by matching of a fixed set of
parts that are initialized at the first frame.

The results of the experiment are shown in Figure 4.12 as a series of A-R plot for se-
lected test sequences. We can observe several trends in the plots. The fully inclusive

tracker setup is in most cases the best, which confirms that a multi-modal fusion is ben-
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eficial for the performance of the appearance model. In many cases this first position is
shared with at least one other setup that excludes one modality. In case of sequences bolr,
diving, and hand where removing the motion modality results in no apparent degrada-
tion, or even in improvement in case of the hand sequence. All three aforementioned se-
quences do not contain a uniform global motion of the object because of the non-rigid
properties of the object. In case of sequences woman, bicycle, and iceskater, removing
the shape modality does not change the performance, as the object can be clearly sepa-
rated from the background by the color modality. Removing the color modality from
the global layer results in impaired performance on most sequences, which makes it the
most important (and most complex) modality. The sequence that stands out in terms of
modalities selection is the sunshade sequence. Removing any one of the three modalities
actually even slightly improves the performance, while removing any two of them de-
creases it. This shows that the modalities can be used to complement each other. Clearly
not all three modalities are beneficial in all tracking scenarios, the usefulness of a cer-
tain modality can even change during sequence. A modality selection technique could
therefore improve the overall performance.

The last observation of results in Figure 4.12 is related to the case, where the global
layer is not used altogether and only a fixed set of parts is used. This is clearly not a
sustainable tracking approach as the geometry of the part set can only accommodate a
certain level of appearance change and cannot account for the outdated parts. This is
confirmed by the results. The only sequence, where the local layer alone is successful is

the gymnastics sequence, because the object is being followed by the camera all the time.

Color modality: The color modality has some parameters that influence its generaliza-
tion and adaptation. One of the parameters is the choice of color space. The coupled-
layer appearance model in [107] uses a HSV color model that is considered suitable for
tracking for its robustness to illumination changes. We have compared the HSV model
to a RGB model and found that they both work similarly well. Furthermore we have
also evaluated the adaptation rate for the foreground and background histograms and
the number of bins. Asseen in A-R plots in Figure 4.13, the performance decreases nearly
always when the adaptation parameter of either histograms is set to 1, which means that
the histogram is acquired at the beginning and does not change after that. If at least
some adaptation is allowed, the performance improves significantly in all test sequences,

except in the case of the foreground histogram for diving sequence. The reason for that
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performance.

is that the color of the object does not change in this sequence, while the deformations

of the object make it very hard to maintain the correct representation of that color. If

the histogram is static it is therefore more robust. The other notable exception is the

sunshade sequence where the change of the background adaptation parameter does not

influence the performance, even if the adaptation is disabled, most likely because the

background is static and can be estimated from the first frame well enough.

Motion modality: The only notable parameter in motion modality is Aas that defines

the contribution of individual points of local motion estimation on the sampling proba-
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Figure 4.13

Influence of parameters
ap and a g and the
number of bins in the
model’s histograms on
tracking performance.
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bility map, as described in (4.22). The results, presented in the left A-R plotin Figure 4.14
show that the parameter does not have a uniform effect over the sequence. Sequences
hand and bolr benefit from lower influence of individual points, while sequences bicycle
and sunshade benefit from higher influence. In the first two sequences the optical flow
estimates are likely unreliable due to lack of texture in case of hand and small size and
frequent appearance changes in case of bolr. In case of the second two sequences the

motion is actually beneficial because the objects are textured and does not deform a lot.

Shape modality: The parameter D controls the expansion of the shape estimation,
which directly influences the region where new samples can be positioned. The results,
presented in the right A-R plot in Figure 4.14 show that the expansion is beneficial: in
case of low expansion the average accuracy of the tracker is reduced. Interestingly, the
two sequences that seem least affected by this are bicycle and gymnastics. While the na-
ture of those sequences is in many aspects different, the visual size of the object in both
sequences is reduced. This means that only a few parts have to be added to the local layer

to account for size change.

4.3.3  Comparative evaluation

To put the performance of the LGT tracker into perspective, we have conducted a com-
parative performance evaluation to a set of baseline, as well as current state-of-the-art
trackers. Our tracker was evaluated on a recent VOT2013 [100] benchmark, which pro-
vides a fully annotated dataset, evaluation protocol and the evaluation toolkit along with
the results of a large number of state-of-the-art trackers. The large number of available

tested trackers makes the benchmarks one of the largest short-term tracking benchmarks
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to date. In the evaluation we follow the official protocol of VOT challenges, the results
are summarized in terms of accuracy (average region overlap) and robustness (number
of re-initializations). The three experiments in the benchmark (normal sequences, ini-
tialization region perturbation, and conversion to gray-scale) were performed using the
official VOT toolkit which also provides ranking analysis that takes into account statisti-
cal difference on accuracy and robustness performance measures to ensure a fair compar-
ison. The analysis can be performed on per-attribute or per-sequence basis. The details
about the methodology are available in [100, 101].

Based on our parameter analysis, presented in Section 4.3.2, we have determined a
parameter configuration that improves the original LGT parameter configuration, used
in [107]. Note that we have not performed intensive fine-tunning of the algorithm, but
only used a subset of sequences to determine very general observations that some con-
straints, like the scope of global optimization and shape modality expansion parameter,
can be relaxed. The new parameter configuration is listed in Table 4.3 The tracker that

uses the improved configuration is denoted as LGTi.

The overall VOT2013 benchmark results are visualized in terms A-R ranking plot and
A-R plot for the baseline experiment in Figure 4.15, which is also the focus of our dis-
cussion. For completeness we also provide ranking results for all three experiments in
Table 4.4. From the A-R plots we can see that the LGT tracker family (LGT [107] and

LGTi) are one of the most robust trackers in the experiment. In terms of accuracy they

&

Figure 4.14

Influence of parameters
A (left) and D g (right)
on tracking performance.
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Table 4.3

Improved parameters of the LGTi tracker.

Section Parameters

parts patch size: 6 X 6 pixels, histogram bins: 16.

matching | cost function parameters: Ay = 1, Ay = 0.01.

global optimization: Mg = 10, S¢ = 300, Eg = 10, mg =
40, rg = 0.1, sSg = 0.01.

refinment step: My, = 5, St = 50, B, = 5, mp, = 10.
guiding Ap =3,Tp =40,Tr = 0.1, dcap = 0.8.

modalities | color: 16 bin HSV histogram, updating: ar = 0.95,ap = 0.5.

motion: Ay; = 1.

shape: Ds = 15.

perform below average, however, the improved parameter configuration significantly
improves the tracker in this respect. In comparison to LGT++ [124] tracker, that is
based on the original LGT algorithm, but introduces several modifications that address
explicit problems of LGT on VOT2o013, the results of LGTi show that an even better
performance may be achieved by a good parameter analysis. This also clearly shows the
importance of tools that enable consistent automation of such analysis.

The LGTi tracker is outperformed by two trackers, the FoT and PLT. The FoT tracker [64]
is a clear example of a tracker that is indeed very accurate, but also fails in many cases. Be-
cause of this the tracker gets even more accurate as every re-initialization corrects the scale
estimate. On the other hand, the PLT tracker excels in both aspects, most apparently in
terms of robustness. The PLT tracker results are hard to comment in detail as its al-
gorithm was never described in any kind of publication. It is known that conceptually
the tracker is an extension of the Struck tracker [41] and that it uses color information
to weight features used by the SSVM dlassifier. Interestingly the PLT tracker does not
adapt scale, but still achieves good-enough accuracy. This means that scale adaptation
may not be required to successfully track an object in many scenarios, which makes the
problem easier due to reduced number of parameters that have to be estimated.

The results for two additional experiments in Table 4.4 show that the LGT tracker is
very robust even in case of initialization noise. Additionally the LGT tracker performs

reasonably well even in case of gray-scale sequences, which is especially interesting, since
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the coupled-layer appearance model utilizes color information on the global layer as the
most important global modality, as we have demonstrated in Section 4.3.2.

More detailed results in term of individual per-frame attributes for baseline experi-
ment are presented in Table 4.5. The LGT tracker is very robust in case of illumination
change. Taking into account the fact that attributes are not equally represented in the
dataset, the hardest attribute is occlusion (there are not many occlusions in the dataset).
This is expected as the coupled-layer does not have a mechanism to explicitly handle oc-
clusions and is at the same time prone to adaptations that maximally explain the visual
information available.

Looking at the results from per-sequence perspective we can identify sequences that
are the most problematic for the coupled-layer appearance model - the results are pre-
sented in Table 4.6. In terms of robustness the most problematic sequences are bicycle
and diving, the first one because of the occlusion, the second one because of rapid aspect-
ratio changes and foreground-background color similarity. Nevertheless, the tracker ex-
cels at many sequences with non-rigid objects like iceskaterand hand, but the main ad-

vantage is that the tracker achieves a reasonably low failure count over the entire sequence
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Figure 4.15

Results for VOT2013
benchmark presented as
per-attribute ranking A-R.
plot (left) and per-attribute
raw A-R plot (right).
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Figure 4.16

Visual comparison of
trackers PLT (red), FoT
(green), LGT (blue), and
LGTi (white) on sequences
hand, iceskater, and torus
from VOT2013 dataset.

4 Tracking with a coupled-layer appearance model
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Table 4.4

Luka Cehovin

Ranking results for all three experiments in the VOT2013 benchmark. The table shows accuracy rank (A) and robustness rank
(R) for all three experiments, as well as average accuracy and robustness rank and the average rank over all three experiments
(final column). First, second and t)ird best values are highlighted. Trackers that did not participate in all three experiments were

omitted.
baseline region_noise grayscale

A R A R A A R Rank

PLT 8.1 3.17 5.19 3.67 | 595 3.17 6.45 333 4.89
FoT [64] 4.61 11.99 542 .68 3.25 10.02. 4.43 11.23 7.83
LGTi 12.16 5.51 8.40 4.08 14.69 5.0 175 4.90 8.32
LGT++ [124] 15.67 467 | 12.44 172 | 1497 | 777 14.36 572 | 10.04
EDFT [125] 10.04 | 196 | 9.63 14.52 6.17 .58 8.61 12.69 | 10.65
LT-FLO [77] 617 | 18.40 | 6.96 15.18 6.83 | 13.54 6.65 15.71 118
CCMS 9.43 11.86 6.96 9.70 .35 19.27 9.25 13.61 .43
SCTT 4.75 17.30 7.21 17.40 5.97 17.40 5.98 17.37 .67
LGT [107] 17.66 5.97 14.75 5.78 18.40 | 8.05 | 16.94 | 6.60 | 177
Struck [41] .78 | 14.49 | 12.85 13.55 9.55 .58 11.39 1B21 | 1230
MTR [126] 11.62 13.13 .56 15.38 8.71 14.03 | 10.63 | 148 | 12.40
IVT [48] 8.89 1612 | 1074 | 1616 8.80 | 14.93 9.48 15.74 | 12.61
ATF [127] 8.15 15.67 | 10.42 | 1625 6.54 | 19.64 | 837 17.19 | 12.78
DFT [128] 9.09 15.16 .64 | 16.49 | 1221 | 1224 | 1098 | 14.63 | 12.80
PJS-S 12.84 | 17.93 13.33 15.84 10.61 15.05 226 | 1628 | 1427
ORIA 13.42 | 1687 | 15.02 | 16.84 11.25 14.18 13.23 15.96 | 14.60
TLD [110] 9.28 23.21 6.74 | 20.67 9.31 19.52 8.44 2113 | 14.79
MIL [42] 2039 | 1518 19.27 13.93 15.66 | 12.09 | 18.44 13.73 | 16.08
RDET [129] 22.57 | 1B.0s | 2042 | 180 18.25 | 10.80 | 20.41 | 1.89 16.15
GSDT 22.88 | 12,01 | 2333 | 13.47 | 1810 | 1052 | 2144 | 1230 | 16.87
HT [130] 20.85 | 1419 | 19.80 13.53 | 2075 | 13.82 | 20.46 | 13.85 17.16
CT [49] 2333 | 14.77 | 22.08 | 13.85 19.50 | 13.60 | 21.64 | 14.07 | 17.86
Meanshift [32] | 20.67 | 15.03 | 1777 | 17.86 | 23.00 | 16.88 | 2048 | 16.59 | 18.54
STMT 23.81 | 2231 | 22.60 | 20550 | 2131 | 17.85 | 22.57 | 2022 | 2140
CACTuS-FL 2619 | 2057 | 25.08 | 16.38 | 23.75 19.33 25.01 | 18.76 | 21.88

set, while trackers like EDFT and FoT fail several times in sequences where their individ-

ual assumptions are violated. Qualitative examples of tracking on VOTz2o013 sequences

of LGT tracker in comparison to two reference tracker can be seen in Figure 4.16.
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Table 4.5
Results of CCMS, EDFT, FoT, PLT, LGT, and LG Ti trackers for individual attributesin VOT2o013 dataset in terms of average
overlap (O) and number of failures (F). First, second and best values are highlighted. Arrows indicate sorting direction.
CCMS EDFT [125] FoT [64] PLT LGT [107] LGTi
Or | Fl [0 | FL |[Ort | Fl O+ | FL O+ | Fl |OT | F|
cam. mot. 0.59 6.00 | 0.58 | 13.00 | 0.65 | 17.00 0.00 | 0.53 0.58 333
ill. ch. 0.50 oo | 078 | 0.00 | 0.65 | 0.00 [ os2 | 0.00 | 0.61 | 0.00
occlusion 2.00 | 0.67 | 300 | 058 | 7.00 | 072 | 0.00 | o.45 052 | 073
size 0.50 0.40 | 3.00 057 | 7.00 | 0.44 | 0.00 | 0.43 | rO7 0.40
motion 0.60 | 4.00 5.00 0.71 6.00 0.62 | 0.00 | 0.60 0.63 0.73
empty 0.72 | 0.00 0.00 | 0.65 | 0.00 | 0.71 | 0.00 | 057 | 0.00 [ 059 | 0.00
Querall 0.58 | 4.09 7.61 | 0.66 | 1029 | 0.60 | 0.00 | 053 058 | 174

The main differences between LGT and LGTi in terms of improvement occur in se-
quences woman, sunshade, hand and gymnastics, most likely due to relaxed optimization
parameters that account for quicker movement of the object and the increased shape
expansion parameter that enables faster recovery. On the other hand the performance
is decreased in case of bolt, car, and diving sequences, because of poor initial color his-
togram estimation which, in combination with larger part sampling region resulted in

many parts being initialized on the background.

Table 4.6
Results of CCMS, EDFT, FoT, PLT, LGT, and LGTi trackers for individual sequences in VOT2013 dataset in terms of average
overlap (O) and number of failures (F). First, second and best values are highlighted. Arrows indicate sorting direction.
CCMS EDFT [125] FoT [64] PLT LGT [107] LGTi
Ot | FL Ot | FL | O | Fl | Ot | FL [ O | Fl | Of | F|
bicycle 0.49 | 100 | 0.44 | 0.00 | 0.74 | Loo | 0.43 | 0.00 Loo | 056 | roo
bolt 0.81 | 0.00 | 0.84 1.00 0.43 3.00 0.00 | 0.44 0.13 0.45
car 0.47 0.56 0.44 | 0.00 | 0.45 0.00 | 0.42 0.27
cup 0.72 | 0.00 | 0.77 | 0.00 0.00 | 0.81 | 0.00 [ 071 | 0.00 | 0.75 | 0.00
david 0.53 L.00 0.68 | 0.00 | 0.80 | 0.00 | 0.74 | 0.00 | 0.61 | 0.00 0.00
diving 0.00 | 033 | 4.00 | 0.25 3.00 0.35 | 0.00 | 0.43 0.87 | 0.47
face 0.00 | 0.88 | 0.00 | 0.66 100 0.87 | 0.00 | 059 | 0.00 | 0.61 | 0.00
gymnastics | 0.59 | 0.00 1.00 | 053 | 2.00 | 0.56 | 0.00 | o.s1 0.50 | 0.40
hand 0.6s | 0.00 0.51 0.00 [ 0.56 0.57 | 0.00 0.20 0.68 | 0.00
iceskater 0.63 | 0.00 | 0.35 3.00 0.35 | 0.00 0.51 0.00 0.00 0.61 0.00
juice 0.63 | 0.00 | 0.64 | 0.00 | 0.89 | 0.00 | 0.64 | 0.00 | 0.80 | 0.00 0.00
jump 0.53 1.00 0.00 | 0.74 | 0.00 | 034 [ 0.00 0.63 0.00 | 0.60 | 0.00
singer 0.39 100 0.00 | 0.81 | 0.00 035 | 0.00 | 0.1 0.00 | 0.1 | 0.00
sunshade 072 | 0.00 | 0.65 | 3.00 | 0.62 | 0.00 | 059 | 0.00 | 057 0.07
torus 0.83 [ 0.00 | 0.82 | 0.00 0.00 | 0.79 | 0.00 | 0.69 | 0.00 | 0.70 | 0.00
woman 0.06 | 2.00 | 0.60 8.00 | 0.69 | 0.00 | 036 113 0.51 0.20
QOuerall 0.61 0.56 | 0.60 | 0.79 | 0.64 154 0.00 | 0.54 0.58 0.18
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Figure 4.17

Results for subset of
VOT2013 benchmark

sequences that contain non-

rigid objects presented as
per-attribute ranking A-R.
plot (left) and per-attribute
raw A-R plot (right).
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4.3.4 Non-rigid objects

To analyze the behavior of the LGT tracker specifically on non-rigid objects we per-
form have selected five sequences from VOT2o013 dataset that include non-rigid objects,
i.e. bolt, diving, gymnastics, band, and iceskater and performed ranking analysis on this
subset. The results are summarized in Figure 4.17, where we can observe that the LGT
tracker retains its relative performance in comparison to other trackers. While the global
accuracy for all trackers is decreased and many reference trackers, the performance of
LGT and LGTi remains similar to the results on the entire VOT2013 dataset, which
means that the proposed appearance model can be used to track non-rigid as well as rigid
objects. More globally, the performance of less geometrically constrained trackers, like
CCMS and SwATrack, becomes apparent. It is also interesting to observe that the dif-
ference between LGT and LGTi has decreased on a subset, meaning that the parameter

changes in LGTi were more beneficial for tracking more rigid objects.
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4.3.5  Failure cases

Overall, the proposed visual tracker achieves competitive performance, even in compari-
son to many visual tracking approached that have been presented recently. The coupled-
layer appearance model especially excels in robustness, however, there is plenty of room
for improvement. In the previous section we have already mentioned some sequences
from the VOT2o013 dataset, where the coupled-layer appearance model is unable to adapt

correctly and the tracking fails.

Figure 4.18

Failure cases for LGT
tracker (blue), demon-
strated on sequences bicycle,
diving, and singer. The
ground-truth region is
shown with white color.

In first two cases the strip
focuses on behavior before
the failure.

In Figure 4.18 we can see the failure that occurs due to occlusion in sequence bicycle.
The problem of part-based appearance models is that constellation geometry adapts to
gradual occlusion and the tracker gets “swept away” by the occluding semaphore pole.
In contrast, in sequence diving the failure originates from the global layer. In this case
the color model gets corrupted because of rapid deformation of the object. Addition-
ally the motion modality is compromised because it assumes globally uniform motion,
which is not true in case of rotating target. All this results in global layer slowly corrupt-
ing the local layer by positioning new parts on the background. The last failure case in
sequence singer is not detected, because the target still lies withing the region, predicted
by the tracker and the failure criterion is not fulfilled, however, the LGT is cleatly not
tracking it anymore. This is caused by slow shrinking of the target combined with rapid

illumination change that causes the appearance model to start adapting to background.
4.4  Summary

In this chapter we have presented a working instance of a hierarchical appearance model

that is also called a coupled-layer appearance model because of the collaborative interac-
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tion of local and global appearance description. We have presented the required details
for the implementation of the proposed appearance model: the visual description of
parts that describe the local appearance of the object, an efficient optimization for the
matching operation for the set of parts, a set of heuristics for part weight dynamics, and
the structure of a multi-modal global appearance model. We have described how the ap-
pearance model is integrated in a visual tracker and how it interacts with a motion model
of the tracker. In the second part of the chapter we have presented the results of an in-
depth analysis of the reference implementation of the tracker, both in terms of parameter
analysis and as a comparison to the related work. The experimental analysis has shown
that the proposed appearance model is indeed capable of tracking objects robustly with
no a-priori knowledge. As predicted, the model excels in many situations with non-rigid
deformations. The analysis has also shown some weak-spots of the proposed conceprt,

some of which we will address in the next chapter.
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Figure 5.1

Anillustration of the pro-
posed idea of combining
holistic appearance model
and a part-based appear-
ance model by switching
between them.

5 Tracking with template anchors Luka Cehovin

In this chapter we present another appearance model, based on the concept of a hi-
erarchical appearance model. The work is based on the experimental analysis of the
coupled-layer appearance model, presented in Chapter 4, which shows that deformable
well-designed part-based models exhibit excellent performance in tracking non-rigidly
deforming targets, but are usually outperformed by holistic models when the target does
not deform or in the presence of uncertain visual data. The reason for that is that part-
based models deform freely to match the visual data and account for outdated or oc-
cluded parts. The uncertainty of the visual data thus introduces potentially small errors
in the large number of parameters that have to be estimated in comparison to holistic
models, which leads to poor position estimate. Even if the target is deforming non-
rigidly, a low-parameter holistic model might lead to a smaller position error in a short
run than the part-based models that would over-fit the uncertain visual data. Sdill, in
presence of low visual uncertainty, the deformable part models typically outperform the

holistic models.

Rigid objects Non-rigid objects

Holistic tracking

+ Good accuracy
— Cannot handle deformations

Anchored tracking

+ Robust updating
+ Accurate in deformations

Part-based tracking

+ Good robustness
= Mediocre accuracy

We address the problem of self-supervised estimation of a large number of parameters
by proposing a new hierarchical appearance model composed of three layers, each de-
scribing the target at a different level of detail. The level of detail varies in the type of fea-
tures used, the number of parameters estimated in the layer and the aggressiveness of the
adapration. In particular, the three layers used are: part-based, holistic coarse and holistic

detailed. Conceptually, the function of the bottom two layers is similar to the local and
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global layer in the coupled-layer appearance model. The top layer is designed as a mem-
ory system of holistic templates that constrains the lower layers if a memorized template
is detected reliably. All three layers interact during target localization and, depending on
the visual uncertainty, can be used for mutually supervised updating by accounting for
the potential uncertainty of the visual information. This makes the appearance model
shift between purely holistic and part-based behavior, depending on the visual uncer-
tainty, as illustrated in Figure s.1. A new tracker is proposed based on this model which
exhibits the qualities of part-based as well as holistic models.

In Section 5.1 we present the details about the proposed appearance model. In Sec-
tion 5.2 we describe the integration of the appearance model in a tracking framework.
Section 5.3 contains an in-depth evaluation of the resulting tracker, both in terms of
parameter analysis and as a comparison to the related work that confirms that the the
constraints of the third layer indeed improve performance of the tracker. We conclude

the chapter with a summary of our work in Section s.4.
5.1 The anchored appearance model

The proposed appearance model is formalized as a hierarchical three-level set of layers
in which the state at time-step ¢ is specified by a state of the bottom part-based layer
‘Pt (Section 5.1.1), middle color-based segmentation layer St (Section 5.1.2) and the top

template-based layer T; (Section 5.1.3), i.e.,
Vt = {pt7 Sta 7;} (SI)

The appearance model is illustrated in Figure 5.2. The bottom layer is a geometrical
constellation of parts that describe the target’s local visual properties. The middle layer
provides mask estimates for the entire object by using color segmentation. The top layer
is a long-term memory that stores static instances of object appearance and uses them
to help lower layers recover. Since the top-layer templates act as anchors that strongly
influence the lower layers, we refer to the presented model as an anchored appearance

model.

5.1 The part-based layer

Definitions: The representation of the bottom layer is a geometrically constrained con-

stellation of local parts. We use the the same formalization as in the local layer for the

97
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Figure 5.2

Tllustration of the anchored
appearance model.
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coupled-layer appearance model, described in Section 4.1.1, however, the matching and

update process are different. The state, P¢, of the the layer at time-step ¢ is described as:

Pe={(x{", 2", w)}ic1,, (52)
where xgi) and z(?) are coordinates and appearance model of the i-th part, respectively,

and wgi) is a weight that reflects belief that the target is well-represented by that part.

Matching: In contrast to the coupled-layer appearance model from Section 4.1.1 that uses
stochastic optimization to optimize a joint cost function over all the positions of parts,
the anchored appearance model uses a three-stage deterministic matching approach that
exploits the fact that the position of some parts can be determined reliably using optical
flow. Using these estimates the matching of parts, for which optical flow cannot be used,
is more constrained and can be quickly refined using iterative optimization. An added
benefit of this multi-stage approach is that that the computationally demanding evalu-
ation of visual similarity function can be avoided in many cases which results in lower
computational requirements.

At each frame we start from an initial estimate from the previous frame, X¢_1, and
the set of current image measurements Y, and seek the value of X; that maximizes

the joint probability p(X |Y+,X¢—1). The final state X is estimated by optimizing
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the probability of constellation state X conditioned on the measurements Y, estima-
tion from the previous time-step X1, and the displacement-prior certainties C; =

{ng Vim1:n, ie.,

Ny
p(Xt |Yt 5 Xt,1 5 Ct) X H p(Xt |th7 Xt71 5 Cgl) 5 Zy)). (53)

i=1
Assuming that parts are only linked between themselves through their neighbors, we
again introduce a concept of neighborhood as a subset of parts that are directly connected

to a certain part and simplify right-hand side of (5.3) into

P [Y 1, X1, e, 27 o p(x(V Y, e, 27), (5-4)

where 5,@ denotes the set of the i-th part’s local neighbor parts. Assuming the inde-
pendence of geometrical constraints of individual parts and appearance similarity the

distribution in the right-hand side of (5.4) can be further decomposed as

@ @ () (%) (&) _
) S p(Yelx:/ 2" )p(x;" le;’) whene,” =0
p(xgl) |Yta Egl)v C§1)7 Z(z)) =

p(xgi) \vii)) when c{”) = 1 7
(s:s)
where p(xgi) |v§i)) = 5(x§i) \vti>) is a Dirac-delta positioned at the flow displacement
V,EZ). In case the optical flow was not estimated reliably for a part (cﬁ” = 0), the prob-

ability of position of individual part is defined as a product of visual similarity and geo-

metric constraint functions. The visual similarity is defined as

. . _ (i) (i)
p(Yt|x§Z)7Z(Z>) x e Avp(z'",z(x; ))7 (5.6)

where p(+, -) is the visual distance between the appearance model of part (zV) and ex-

tracted visual information, as defined in (4.2), and Ay is a constant. The geometric con-

straint is defined as

D _5(0)2
b

i i —Acl|x
p(x(" ) = el (s:7)
()

where X; " is a position predicted by the neighboring parts and A¢ is a constant. This
)

prediction is obtained by computing a similarity transform between the neighbors e

from X1 and the current positions of the neighbors.

99




100 s Tracking with template anchors Luka Cehovin

Similarly to the two-stage stochastic optimization, presented in Section 4.1.1, we split
the the optimization into three steps: (a) optical flow calculation, (b) global alignment
step, and (c) a refinement step. As shown in Figure 5.3, the first step of our match-
ing approach calculates the candidate displacement of each part V,Ei) using the Lucas-
Kanade optical flow [119]. The new position of some parts can be estimated reliably this
way, but this may not be true for all parts. Therefore the displacement-prior certainty
cgi) € [0, 1] of this estimation is calculated by forward-backward optical flow criterion
based on [64]. The aim of a second stage of the optimization is to find good initial posi-
tion for remaining parts that cannot be updated using optical flow. For this we employ
a Generalized Hough Transform [131] voting scheme, where the voting function of indi-

vidual parts for a global translation vector is defined as

p(Yt|X£i>, zY)  when cgi) =0

(%) (@) )y —
(%Y, ¢ 2") = N v
N(xgl) |v§l), ov) when cil) =1

, (5-8)

where N/ (x,@ \vgl) , 0v') denotes a normal distribution with mean in VEZ) and standard
deviation oy . The global displacement T is then determined as maximization of sum
of (5.8), i.e.

T; = arg m%pr(Xil) +TY:, ", 29).

The MAP estimate of (4.4) is then refined by the Iterated Conditional Modes (ICM)
algorithm [132], which iterates over the parts and for each part computes a new posi-
tion as the expected position under the conditional p(Y+, xii) |X¢—1). Note that the
algorithm only has to iterate over the parts whose displacement certainty cgi) iszero. The
new part position at each iteration is computed by expected position over p(Y¢, xii) |X¢-1, A ).
Ateach iteration of the ICM, only the Gaussian predicted by the neighbors p(x,@ |e§i) )
is re-computed and multiplied with the visual likelihood. The optimization typically
converges in less than ten iterations. This makes the MAP optimization of (4.4) grace-
fully shifting between flock-of-features estimation during confident period and fully constellation-
constrained optimization in the other extreme. The object region can be estimated ac-

cording to bottom layer as the smallest axis-aligned rectangle containing all parts.

Update: The parts in the bottom layer are added and removed to faithfully reflect the

appearance changes. A region with high part-density is estimated and parts outside the
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= Input: The set of parts X 1.
= Initialization: For each part estimate optical flow V,El)

" e {0,1}.

and determine its suitability

= Find the global translation T'¢ using Generalized Hough Transform [131].

= Apply T to all parts where cgi) -0

m Forj=1...Mp:

(1) _

ii) wherec; = 0:

= For each partx

Determine similarity transform based on 67(5 )) and use it to determine

£,
Calculate new xgi) as the expected position ofp(xii) Y, X¢—1,20). Figure 5.3

Part-set optimization

= Output: The refined set of parts Xy.

algorithm.

region are removed. The region is estimated by applying a mean shift mode detection
on a kernel density estimate with a uniform kernel on the part locations. In particular,
the target bounding box estimated at the previous time step is used for the kernel. For
illustration of the algorithm, see Figure 5.4.

o

o

]

i

1

i Figure 5.4

Tllustration of outlier
detection algorithm. The
region from frame t — 1
is used in frame ¢ to detect
an outlier (red color) by
converging to inliers with

higher density (green color).

New parts are added to the set to increase the object coverage by using the target seg-
mentation mask S (x) provided by the middle layer (see Section 5.1.2). To balance be-

tween uniform coverage and placing the patches at positions with a high likelihood of
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certain flow estimation, the following quality score is used for part sampling:
q(x) = H(x) + avU(x), (5.9)

where H (x) is the Harris corner score at position X, U (x) is a periodic function' that
enforces uniform coverage of sampling points in homogeneous regions and oy is 2 mix-
ing constant. A non-maxima suppression is applied to ¢(x) and the local maxima at
locations of existing parts or outside the segmentation mask S; (x) are removed. The re-
maining maxima are ordered according to the color similarity likelihood (middle layer)

and at most Ny new parts are added at every time-step to enforce a gradual adaptation.

5.z The segmentation layer

In comparison to the global layer of the coupled-layer appearance model, the middle
layer of the anchored visual maintains only a global color model of the target and the
immediate neighborhood described by a foreground and background RGB histograms,
ie, St = (h{, hf). These models are used to construct a coarse segmentation mask
of a current region of interest. This mask can then be used for two purposes: (a) for
sampling new parts at the bottom layer and (b) proposing the object region for top layer
updates.

Given an estimate of the target bounding box, R, the segmentation mask S (x) is
estimated as follows. The initial region R is expanded by cvs to account for the scale un-
certainty. Foreground and background histograms are backprojected into the expanded
region resulting in two backprojection maps, which are further smoothed by a Gaussian
kernel to enforce spatial coherence, resulting in foreground and background probabil-
ity maps, p(x|F¢) and p(x|B;), respectively. The foreground posterior is calculated at

each pixel using the Bayes rule

p(F)p(x|F+)
p(F)p(x|F:) + (1 — p(F))p(x|Be)’

where p(F) denotes the object prior. A likelihood threshold is estimated such that the

p(Filx) =

(5.10)

ratio between the number of pixels exceeding this threshold within the region Rs and
the expanded region is greater than a high ratio As. If such a threshold cannot be set,
the discrimination between foreground and background cannot be determined a suffi-

ciently high confidence and the values in the color-based map are set to zero. To reduce

"In our case we use a two-dimensional cosine signal that produces a grid pattern.
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the probability of initializing new parts on the background, this map is further post-
processed by removing all connected components fully outside Rs. The segmentation

process is illustrated in Figure s.5.

Foreground and background likelihood Object likelihood

N

Input image

likelihood" threshold

Final segmentation Thresholded likelihood

For updating both histograms we use the same approach as in the coupled-layer ap-
pearance model. After the matching operation in the bottom layer is completed, a his-
togram flf is extracted in the current image from the regions that correspond to the
parts of the local layer. The background histogram h? is extracted from a ring-shaped
region defined by the convex hull of the parts in the local layer. These histograms are

used to update the global color model by an autoregressive scheme

hf_H = OLFhf —+ (1 — OLF)l:ltF
hf, = aghf + (1 - ap)hf,

(s.11)

where oo and o g determine the rate of adaptation.

5.3 The memory system layer

In case of longer sequences the interaction between a part-based bottom layer and a gen-
erative middle layer is not enough. The global appearance information in the middle
layer can be slowly corrupted and the local layer is unable to recover. Another layer,
even more conservative in adaptation, is needed that is able to correct the lower layers
when needed. This layer is inspired by a memory system concept that is used successfully

in long-term tracking. The long-term tracking field considers objects that can leave the
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Figure 5.5

Segmentation mask S¢ (x)
construction. Object
likelihood at each pixels

is estimated by histogram
backprojection, followed
by an automatic threshold
selection using cumulative
likelihood histograms

and morphological post-
processing.
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field of view for indefinite amount of time and have to be re-detected upon re-entering
the scene. Such scenarios are extremely drift-prone and instance-based memory systems
have been largely used to mitigate this problem [21, 22]. The idea of a memory system
is that multiple snap-shot instances of the object are stored during tracking. Such in-
stances are not adapted, but rather removed from the set when the memory saturates.
New instances are added to the memory very conservatively to prevent corrupting the
representation and keeping low false-positive rate at detection. Kalal et al. [22] combine
a short-term tracker based on optical-flow features [64] with a template memory sys-
tem. A set of foreground and background templates is kept and updated depending on
agreement of the short-term tracker and detector. Similar approach is applied by Per-
nici et al. [21] who represent the object by a redundant set of keypoints and maintain a
short-term representation of the object surrounding context to improve the accuracy of
detection.

In the anchored appearance model we use a very simple memory system, presented as
a set of static appearance templates of object’s appearance acquired at different points in

time

T = {1\, Ts,...}.

Instances can be of any form of an appearance representation that can be used to find
a response in an image. They can be as simple as an image patch representation of an
object, but also much more complex, e.g. a discriminative detector, or a set of keypoints.
The fact that we have multiple instances implies that a single instance does not have to
account for all the variability of the object’s appearance and can instead focus on a par-
ticular object pose and viewpoint. On the other hand, some appearance generalization
is still required, otherwise the memory is too specific and cannot guide the lower layers.
In Section 5.3.2 we discuss two simple representations that fit this description, a grayscale
template, matched using normalized cross-correlation (NCC) and kernelized correlation
filters with HOG (histogram of gradients) features [38]. At each frame, all templates are
matched within a search region and a candidate with the maximal response is taken as
the output.

The set of templates is updated in two stages conservatively by adding new templates
only after they have been verified to consistently match the output of the lower and mid-
dle layers. A candidate template is sampled from a region proposed by the middle layer

only if this region overlaps significantly with the region predicted by the bottom layer.
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This template is added to the list of potential templates. A potential template is pro-
moted into the set of active templates only after the overlap with the output region ex-

ceeds a predefined threshold Az for Q7 frames.
5.2 Tracking with the anchored appearance model

In this section we present the integration of the anchored appearance model into a visual
tracker, which is also denoted as Anchored Templates tracker or ANT tracker in the fol-
lowing text due to the important role of instance templates in the appearance model in
comparison to our previous work. The section describes how the appearance model is
initialized in the short-term tracking context and how it interacts with a motion model
of a tracker. At the end we present our software implementation of the tracker together

with some technical details.

5.2.1  Appearance model initialization

The only supervised example of the target is provided by the initialization bounding
box. A top layer is initialized by extracting a template from the region, the middle layer
is initialized by extracting the foreground and background histograms from within and
outside the region. The segmentation from the middle layer is used to sample parts at
the bottom layer and automatically determining the number of parts for sufficient object

coverage.

s.2.2 The tracking loop

We now overview the ANT tracker by iterating through the steps of matching and up-
dating the appearance model during tracking. Figure 5.6 overviews interaction of layers
of the appearance model during tracking: A tracking iteration starts by initializing the
tracker at a location predicted by a motion model. The part-based model is deformed
to match the detailed appearance change and the holistic templates are matched to the
image (a). Depending on the strength of the match, these templates can either provide a
complete detection of the object or merely focus and guide the update process of the mid-
dle and bottom layers (b). The middle layer generates the object segmentation mask (c).
The bottom layer is updated by removing and adding patches using the outputs from
the top and middle layers (d). The middle layer is updated next, and if the middle and

bottom layer outputs agree, a new template is considered for addition to the top-layer
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Figure 5.6

The overview of the ANT
tracker and its update
process.

s Tracking with template anchors Luka Cehovin

template set (d). Finally, the motion model is updated using the estimated bounding
box (e).
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The confidence of layers varies during tracking, which is reflected in the three modes
of tracking operation: (i) detection, (ii) guiding, (iii) free. These modes primarily depend
on the matching score of the top-layer template, i.e. the anchor. If the template score
exceeds A\g, the tracker enters a detecrion mode. The region provided by the template
is considered as the target output region and is used for updating the middle and the
bottom layer. If the template score is lower than Ag, but exceeds a lower threshold Ap,
then the tracker enters a guided mode. The region provided from the template is used
in combination with the middle layer only for adding new parts, but the bottom layer
is used to estimate the output bounding box. If the template score is below the low
threshold Ap, the tracker enters a free mode. In this mode, the bottom layer estimates
the output bounding box, which is also used for updating the middle layer and part

allocation in the bottom layer.

5.2.3  Motion model

The proposed tracker also utilizes a motion model that predicts the bounding box of the
object, which is used to provide a better initial estimate when matching the appearance
model to a new image. At each time-step, the initial bounding box is estimated by a
Kalman filter [122] with a nearly-constant-velocity (NCV) motion model for position
and random-walk (RW) motion model for size. The appearance model is fitted to the

image. We can use prediction of the object’s position to provide a prior for the matching
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of the part set. The output region from the multi-layer appearance model is then used

to update the Kalman filter estimate.

5.2.4  Implementation

A prototype of our tracker is implemented in a combination of Matlab and C++. De-
spite the fact that some calculations are performed several times for implementation clar-
ity the implementation performs at about five frames per second. Based on our previous
experience of porting the LG T tracker Matlab implementation to native code, we believe
that a native implementation of the ANT tracker would run in real-time on an average

modern computer as well.
5.3 Experimental analysis

In this section we describe the experiments that we have performed in order to evaluate
the anchored appearance model and discuss the results. Throughout the experiments
we extensively use the evaluation methodology that we have proposed in Chapter 3,
predominantly the A-R measure pairs and the A-R plots for visualization. Using the
A-R methodology we evaluate different properties of the appearance model using the

sequences from VOTzo13 benchmark [100].

5.3.1  Resource requirements analysis

In terms of memory requirements, the bottom two layers of the anchored appearance
model have approximately the same memory footprint as the coupled-layer appearance
model. The growing of the top layer is unconstrained, therefore a removal scheme is
required in practice to maintain a finite memory consumption as well as low compu-
tational time. A random selection removal scheme is commonly employed in memory
systems if the set is large enough. In case of smaller memory systems a strategy like least-
recently-used (LRU) or first-in-first-out (FIFO) may also be employed.

In terms of computational requirements, the two critical parts are the matching of
the part set and the matching of the anchor templates which are both dependent on the
number of elements. The time required to match a set of parts is reduced by using optical
flow to quickly determine the new position of individual parts, however, the number of
confident estimations depends on the local properties in the image, so the time of the es-

timation may vary between the time of optical flow calculation for IV parts and the time

107




108

s Tracking with template anchors Luka Cehovin

for optical flow calculation plus the time for evaluation of visual similarity function for
N parts. To obtain a realistic distribution of computational requirements of individ-
ual parts of the tracker, we have run the tracker on several sequences from VOTz2o13
dataset and recorded the times for individual parts of the algorithm. On average, optical
flow reduces the number of number of visual similarity function evaluations for about
80%. This accounts for about 8% of the entire time to process a frame, in comparison
to matching of anchor templates that accounts for about 75% of time. The remaining
time is distributed between color segmentation and other tasks.

The ANT tracker performed at about 5.5 to 6 frames per second on VOT2014 dataset
ona AMD Opteron 6238 processor, which means that the implementation of the ANT
tracker is about twice as fast as the implementation of the LGT tracker. This can be at-
tributed mostly to using optical-flow in the part-set matching process that reduces the
number of expensive visual similarity function evaluations. No explicit parallelization
was used in our implementation, although we have observed that more than a single
core of a processor was utilized during tracking, most likely because of Matlab implicit
parallelization of matrix operations. We believe that a large part of the algorithm could
be explicitly parallelized, for example evaluation of visual similarity function and match-
ing of anchor templates, which contribute significantly to the overall computational re-

quirements.

5.3.2  Parameter analysis

We have performed several experiments in order to evaluate the properties of the an-
chored appearance model. Again, we extensively employ the evaluation methodology
that we have proposed in Chapter 3, predominantly the A-R measure pairs and the A-R
plots for visualization. Using the A-R methodology we evaluate different parts and pa-
rameters of the appearance model using the sequences from VOT2o014 benchmark [1o1].
We compare these changes to the reference tracker configuration, whose parameters are
summarized in Table s.1. Since the tracker is fully deterministic it was only evaluated once
on a specific sequence for a specific parameter combination. For the analysis of individ-
ual parameters of the appearance model we have chosen a subset of VOT2014 dataset
that presents a sufficient challenge for the ANT tracker in various aspects. We have se-
lected sequences ball, car, drunk, fernando, fishz, handz, motocross, and tunnel. In our
preliminary experiments we have determined that a lot of findings about the coupled-

layer appearance model, presented in Section 4.3.2 (e.g. the color histogram update rate)
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Table 5.1

Reference parameters for the ANT tracker.

Section Parameters

parts patch size: 6 X 6 pixels, histogram bins: 16.
matching Av =3, Ac = 3,0y = 0.001.

guiding av =104 Ny = 2.

segmentation | 32 bin RGB histogram, p(F) = 0.4

updating: ar = 0.95,ap = 0.5, \s = 0.9.

memory Qr =7, Ar=0.8
mode Ap = 0.85,A\¢ = 0.5

also apply to the anchored appearance model. In this section we therefore focus on the

properties of the top layer and the general properties of the appearance model.

Template type: We have evaluated two types of templates, used in top layer to model
instance appearance representation of the object - a gray-scale template, matched using
normalized cross-correlation (NCC) and kernelized correlation filters (KCF) with gray-
scale and HOG features [38]. In case of KCF templates we have used the same sets of
parameters as proposed in [38], but note that the correlation filter templates are used
in different way than in case of the tracker, proposed in [38], where a single template is
updated over time. From the results for five different configurations that are presented
in Table 5.2 we can observe that correlation filters using HOG features are best suited
for our use. Normal gray-scale templates are less much less robust because they do not
generalize the appearance and become redundant even at minimal changes in the im-
age. The HOG features are sensitive only to image gradients at a lower spatial resolution
(topically blocks of multiple pixels are used to construct a histogram), which goes in ac-
cordance with our requirement that the instance templates should be robust to some

level of image variability.

Mode switching: Parameters that have the largest impact on model’s behavior are Ap
and Aqg. This is expected as they directly influence the selection of the tracking mode.
Because of this importance to the entire idea of the anchored appearance model, we have

analyzed the joint effect of both parameters by measuring the performance on different
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Figure 5.7

Average failure rate (left)
and overlap (right) over all
test sequences for different

combinations of parameters

Apand Ag.
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Table 5.2

Average overlap and average number of failures for different types of instance templates. Arrows indicate sorting direction.

NCC KCF-gray KCF-HOG linear | KCF-HOG polyi- | KCF-HOG gauss-
nomial sian
Overlap T | 0.47 0.59 0.46 0.43 0.46
Failures | | r.25 145 0.77 0.57 0.57

combinations of both parameters. In Figure 5.7 we show average failure rate (left) and

average overlap (right) over all eight sequences with respect to Ap and Ag.

We omit the values for A\p < 0.5 because the performance of the tracker drastically
decreases for lower detection threshold. More generally we can see that lowering the
Ap parameter first increases robustness as good templates can contribute to tracking.
However, further decreasing of the threshold rapidly decreases tracker robustness as it
allows entering detection mode with less reliable template matching scores. Raising A
decreases the effects of guide mode which lowers the accuracy of the tracker. The black
line denotes the condition where Ap = Ag, above this line the guide mode is disabled.
We can see that best performance in terms of failure rate can be achieved if Ag is set to
lower values than A p, which means that templates with less reliable matching scores can
still contribute to the appearance model in the context of the guided mode. Again, if the
Ag is decreased too much, the performance again decreases, however, the performance
drop is not large, due to limited influence of the template in the guided mode.

In terms of average overlap the effect of Ap and A is not as clear. In case of low Ap
the accuracy is increased due to frequent re-initializations. The average overlap lowers

in case of high values of both thresholds because the tracking is left to often unreliable
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part-set. The average overlap also fluctuates around theline A\p = Ag, but stabilizes for
other threshold combinations, which means that the best performance may be achieved
with an appearance model that supports all three tracking modes. The findings are vali-

dated again in the next section on the entire VOT2o013 dataset.
5.3.3  Comparative evaluation

In the following section we present the comparative performance evaluation of the ANT
tracker to a large set of state-of-the-art visual trackers. In order to continue the story from
Section 4.3.3 we perform the initial evaluation using the VOT2o013 benchmark [100].

The final evaluation was performed on a more recent and even more challenging VOT2014 [101]

benchmark.
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VOT2013: The details about the VOT2013 benchmark were already described in Sec-
tion 4.3.3. The overall VOT2013 benchmark results are visualized in terms of A-R rank-

ing plot and A-R plot, both shown in Figure 5.8. We can see that the ANT tracker out-
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performs all reference trackers by achieving the best combination of accuracy and robust-
ness. Itis important to note that some trackers, like FoT [64] and LT-FLO [77], achieve
a higher accuracy due to many re-initializations, which is not the case with ANT. The
proposed tracker shares the first place with the winner of VOTzo13 challenge, PLT, in
robustness. Both trackers do not fail on any sequence, but PLT achieves a lower accuracy
in case of deformations and scale changes due to its holistic appearance model. As seen
in Table 5.3, most of the other holistic trackers, like IVT [48], Struck, and EDFT are less
robust in tracking non-rigid objects, but achieve a higher accuracy in comparison to the
part-based LGT and LGT++, which are related to ANT. On the other hand, the ANT
achieves an accuracy comparable to the holistic models and simultaneously outperforms
related part-based trackers in robustness. This further confirms our hypothesis about

retaining the best properties from holistic and part-based trackers.

Table 5.3

Results for VOT2013 sequences in terms of average overlap (O) and number of failures (F). First, second and best values are
highlighted. Arrows indicate sorting direction.

CCMS EDFT [125] FoT [64] PLT LGT [107] ANT
Ot | FL [Or | FL | Ot | FL | Ot | FL | O | Fl | Ot | Fl
bicycle 0.49 | .00 | 0.44 | 0.00 | 0.74 | Loo | 0.43 | 0.00 1.00 0.61 | 0.00
bolt 0.81 | 0.00 | 0.84 0.43 3.00 0.65 | 0.00 | 0.44 0.13 0.00
car L.00 0.45 1.00 0.56 1.00 0.44 | o0.00 0.45 0.00 | 0.66 0.00
cup 0.72 | 0.00 0.00 [ 0.76 | 0.00 | 0.81 | 0.00 | 071 | 0.00 | 0.78 | 0.00
david 0.53 100 | 0.68 | 0.00 | 0.80 | 0.00 | 0.74 | 0.00 | 0.61 | 0.00 0.00
diving 0.39 | 0.00 | 033 | 4.00 | 0.25 0.35 | 0.00 | 0.43 0.87 0.00
face 0.00 | 0.88 | 0.00 | 0.66 | rLoo 0.87 | 0.00 | 059 | 0.00 | 050 | 0.00
gymnastics | 0.59 | 0.00 053 | 2.00 | 0.56 | 0.00 | ost | 0.80 | os2 | 0.00
hand 0.65 [ 0.00 0.51 0.00 | 0.56 0.00 0.03 0.20 0.52 | 0.00
iceskater 0.63 0.00 0.35 3.00 0.35 0.00 o.51 0.00 0.00 | 0.69 | 0.00
juice 0.63 | 0.00 | 0.64 | 0.00 | 0.89 | 0.00 | 0.64 | 0.00 0.00 0.81 | 0.00
jump 0.53 1.00 0.60 | 0.00 | 0.74 | 0.00 | 0.34 | 0.00 0.00 0.65 0.00
singer .00 0.37 | 0.00 0.81 0.00 0.35 0.00 0.21 0.00 0.53 0.00
sunshade 072 | 0.00 | 0.65 0.00 | 059 | 0.00 | 057 | 0.27 | 0.60 | 0.00
torus 0.83 | o0.00 0.00 [ 0.79 | 0.00 | 0.79 | 0.00 | 0.69 | 0.00 | 0.83 | 0.00
woman 0.66 | 2.00 | 0.60 | roo 8.00 | 0.69 | 0.00 | 036 0.61 | 0.00
Overall 0.60 | 0.79 0.64 1.54 0.61 0.00 0.54 0.26 | 0.64 | o.00

Qualitative examples of tracking on VOT2013 sequences that show stable scale adap-
tation of ANT tracker in comparison to several reference tracker can be seen in Fig-
ure 5.10. We can see that the ANT tracker successfully adapts to geometrical and scale
changes. In comparison to LGT the tracker manages to survive short occlusion in bi-
cylce sequence thanks to the template instance memory system. Another two sequences
that are very hard for LGT are car and singer sequences. In car sequence the aspect ra-

tio of the object’s region changes together with viewing angle. The sequence is hard for
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LGT because of a long static period from frames 90 to 180, where the coupled-layer
appearance model slowly spreads to the background. The anchored appearance model,
on the other hand, constraints the adaptation because of a good match with a template
which provides a strong spatial cue in such cases. The singer sequence is also challenging
due to simultaneous shrinking of the target and illumination changes. In this case the
spatial cue again ensures a more constrained update of the bottom layers. On the other
hand, the bottom layers ensure that the memory system is gradually updated with new

template instances of the object on multiple scales, as visualized in Figure s.9.

v l-

AT

Benefits of the proposed guiding mechanism: In Figure 5.8 we have included the results

for three special derivations of the ANT tracker to demonstrate the contributions of
individual tracking approaches and the proposed interaction: The ANT-D tracker is a
tracker that only uses the top-layer static template, ANT-P used only parts and segmen-
tation (bottom and middle layer), and ANT-DP uses part-set together with the mem-
ory system (bottom and top layer), but the system only acts as a detection mechanism,
it does not guide the update of the part set. Since these three trackers can be obtained
using special combinations of parameters Ap and Ag this analysis can be seen as an-
other re-evaluation of the mode switching parameter analysis, presented in the previous
section.

The results are also summarized in Table 5.4. The ANT-D tracker achieves good ac-
curacy, mainly at the expense of robustness since a single static template cannot prop-

erly address the appearance changes. On the other hand ANT-P achieves good robust-
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Figure 5.9

Visualization of anchor
templates function in
tracking with anchored
appearance model on
sequence singer from the
VOT2o013 dataset. The

set of templates on the
bottom illustrates the

set of templates acquired
over the sequence, their
introduction into the set is
illustrated with an arrow
and the their function is
illustrated with timeline
segments - black denotes
detection and gray denotes
guiding role.
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Figure 5.10

Visual comparison of
trackers CCMS (red), LGT
(green), PLT (blue), and
ANT (white) on sequences
bicycle, car iceskater, singer,
and juice from VOT2013
dataset.
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Table 5.4

Average overlap and average number of failures on VOT2013 benchmark for ANT tracker derivations. Arrows indicate sorting
direction.

ANT-D | ANT-P | ANT-DP | ANT
Overlap 1 0.64 0.39 0.46 0.64

Failures | 2.39 0.88 0.39 0.00

ness, but the accuracy is low since the part-based model applies self-supervised updating
without external supervision and recovery capability from the top-layer memory system.
The ANT-DP combines the traits of ANT-D and ANT-P trackers, and benefits from
switching between the detection and part-based tracking. The complete ANT tracker
improves performance in terms of accuracy and robustness by using anchor templates
not only to detect the object, but also to guide the update process of the bottom layer
even if the template detection is not reliable enough for a full detection. In particular,
ANT improves over the variations ANT-D, ANT-P and ANT-DP in accuracy as well as
robustness. The results thus clearly support our hypothesis that the proposed combina-
tion of part-based appearance model and holistic appearance model improves the overall

tracking performance.

VOTz2014: Since the VOT2013 benchmark is saturated in terms of tracking robustness,
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we have also performed a comparison using the more challenging VOT2014 dataset. The
VOT2014 introduces several methodological improvements: more accurate annotations
and practical difference in case of accuracy. The benchmark also provides results for 38
state-of-the-art visual trackers.

The overall VOT2014 benchmark results are visualized in terms of A-R ranking plot
and A-R plot for the baseline experiment, both shown in Figure s.11 and in Table 5.5,
where we show both experiments of VOT2014 challenge, the baseline experiment and
the experiment with initialization region perturbation. While the tracker does notachieve
the best performance in this case, the results have to be observed in more detail.

As seen in Figure s.11, the ANT is ranked lower than two variants of PLT tracker and
similarly as the part-based DGT in terms of robustness. The raw results in Table 5.6 and
Table 5.7 reveal that the PLT_13 and PLT 14 are indeed a bit better in term of failure
rate, but the DGT tracker in fact fails approximately four times more often, but only
on certain sequences. The DGT failures occur in sequences where the assumptions re-

quired for efficient color segmentation are violated. The hybrid nature of the anchored
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Figure s.11

Results for VOT2014
benchmark presented as
per-attribute ranking A-R.
plot (left) and per-attribute
raw A-R plot (right).
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Ranking results for both experiments in the VOT2014 benchmark. The table shows accuracy rank (A) and robustness rank (R)
for both experiments, as well as average accuracy and robustness rank and the average rank over both experiments (final column).

First, second and

best values are highlighted.

baseline region_noise

A R A R A R Rank
DSST [54] 12.91 13.10 13.00 9.30
SAMF [104] 530 | 1443 | 536 | 3oz | 537 | 175 | 950

DGT [133] 10.97 9.30 8.51 10.28 9.74 9.79
KCF [38] 503 | 1549 | 529 | 1324 | 52t | 1436 | 9.79
PLT 14 14.30 6.45 13.52 5.01 13.91 5.73 9.82
PLT-13 18.05 3.83 16.90 4.83 17.48 4.33 10.90
eASMS [134] 14.00 | 14.10 11.23 1436 | 12.61 1423 | 13.42
ANT 17.55 9.13 18.36 9.67 | 17.96 13.68
HMM-TxD 9.65 20.88 9.45 19.74 9.55 20.31 14.93
ACAT 13.32 15.41 17.30 15.04 15.31 15.22 15.27
MCT [135] 1637 | 14.44 | 17.23 13.12 16.80 | 13.78 15.29
MatFlow 21.83 18.82 | 14.84 | 2033 1L.95 16.14.
ABS 2039 | 18.77 15.18 15.49 17.78 17.13 17.46
ACT [136] 20.66 | 16.76 | 22.02 | 1527 2134 16.01 18.68
qwsEDFT [137] 1723 | 19.42 | 1855 2114 17.89 | 2028 | 19.09
LGT [107] 29.11 m92 | 25.85 27.48 | 1074 19.11
VIDMG 21.43 1839 | 2039 17.17 20.91 17.78 19.34
BDF [138] 23.00 | 17.93 21.57 18.26 | 22.28 18.09 | 20.19
Struck [41] 2072 | 2n13 2117 | 18.88 | 20.94 | 20.00 | 20.47
DynMS 2212 19.63 2117 19.66 | 21.64 19.65 | 20.64
ThunderSeruck [41] | 22.39 | 20.20 | 2r91 18.72 | 2215 19.46 | 20.81
aStruck 21.90 | 19.26 | 2055 | 22.01 | 2122 | 20.63 | 20.93
Matrioska [126] 2181 | 2077 | 2175 | 2429 | 2178 | 22.53 22.15
SIR-PF 2429 | 20.89 | 22.5 22.54 | 23.22 2172 | 22.47
EDFT [125] 20.01 | 24.63 | 21.96 | 2427 | 20.99 | 24.45 | 22.72
OGT [139] 1425 | 3043 | 16.67 | 30.0 | 15.46 301 | 22.79
CMT [140] 19.33 25.45 | 22.03 | 2513 | 20.68 | 2529 | 22.99
FoT [64] 18.97 | 26.59 | 2141 2705 | 2009 | 26.87 | 23.53
LT-FLO [77] 1639 | 30.85 | 20.09 | 3120 | 1824 | 3r02 | 24.63
IPRT 27.41 | 22.55 | 2625 | 23.63 | 26.83 | 23.09 | 24.96
1IVTv2 25.42 | 25.64 | 25.14 23.88 | 2528 | 24.76 | 25.02
PT+ 33.04 2151 3004 | 2020 | 3159 | 20.86 | 26.22
FSDT 2421 | 32.08 | 2411 | 2914 | 2416 | 30.61 | 27.38
IMPNCC 26.20 | 2851 | 29.03 2903 | 27.62 | 28.82 | 28.22
IVT [48] 2814 | 2981 | 2739 | 2812 | 27.76 | 28.97 | 2837
NCC [141] 18.27 35.17 | 23.06 | 37.08 | 20.66 | 3612 | 2839
FRT [70] 24.05 | 3122 | 27.05 | 3178 | 2555 3150 | 28.52
CT [49] 32.49 | 28.62 | 30.43 | 27.87 | 3146 | 2825 | 29.85
MIL [42] 3495 | 25.03 | 35.61 | 2572 | 3528 | 2537 | 3033

appearance model in ANT is robust to a wider array of visual degradations, hence the

lower failure count. This is also noticeable in per-attribute results in Table 5.6 - the ANT

tracker is the most vulnerable to occlusion considering the number of failures and the

fact that this attribute is only present in a small number of frames in the entire sequence

dataset.

In terms of accuracy, the proposed tracker performs less well than on VOT2013 bench-
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Table 5.6
Results of SAMF, PLT 14, DSST, KCF, DGT, and ANT trackers for individual attributesin VOT2014 dataset in terms of average
overlap (O) and number of failures (F). First, second and thirc best values are highlighted. Arrows indicate sorting direction.
SAMEF [104] PLT.14 DSST [54] KCF [38] DGT [133] ANT
o1 Fl |OT | FL [ O7 Fl [ Fl O1T | Fl |OT | Fl
cam. mot. | 0.66 | 24.00 | 0.56 | 4.00 0.66 | 20.00 | 0.67 | 24.00 | 056 | 19.00 | 052 | 700
ill. ch. 0.67 .00 050 | Loo | 075 L.00 0.74 .00 0.47 | 14.00 | o054 | 0.00
occlusion 0.61 4.00 0.59 | 2.00 0.03 3.00 0.64 5.00 0.48 1.00 0.51 | 4.00
size 0.56 18.00 0.51 | 4.00 | 0.52 15.00 0.58 | 20.00 | 0.58 6.00 0.50 | 6.00
motion 0.67 25.00 0.57 | 4.00 0.65 24.00 | 0.67 | 26.00 0.58 14.00 0.5 7.00
empty 057 | 0.00 | 053 | 0.00 | 056 | 0.00 | 054 | 0.00 | 0.68 | 0.00 | 057 | 0.00
Overall 0.64 19.23 0.55 3.41 0.64 | 16.90 | 0.66 | 19.79 | 0.56 1378 | 053 | s5.09

mark. This can be at least to some degree attributed to different annotation format, that
uses rotated bounding boxes, which reduces region overlap with axis-aligned bounding
boxes, reported by ANT. Trackers like DGT achieve better accuracy by utilizing com-
putationally expensive segmentation. Holistic trackers, like DSST, KCF and SAMF per-
form better in accuracy, at a relative difference of about 10%, but fail approximately
four times more often. This means that they are also more often reinitialized which con-
sequently corrects the region estimate, resulting in artificially improved final accuracy.
On the other hand, both PLT trackers perform comparably in terms of accuracy. The
PLT 14 tracker, which extends the VOT2o013 challenge winner, denoted with PLT 13,
also provides size adaptation. This ensures the tracker with marginally higher accuracy,
however, the relaxation of constraints also results in lower robustness. With this we can
see the importance of looking at both aspects of tracking performance, as we have al-

ready emphasized in Chapter 3, where we have proposed the performance evaluation
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Figure 5.12

Visual comparison of
trackers KCF (red), LGT
(green), PLT 14 (blue), and
ANT (white) on sequences
diving, gymnastics trellis,
and woman from VOT2014
dataset.
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methodology. Considering the fact that the anchored appearance model is even more
relaxed in its free mode (tracking only with part-set), it is not surprising that it is also
most vulnerable in this case. In fact most failures in VOT2014 dataset can be traced back
to longer periods of appearance model working in free mode due to fast visual changes
that prevented guidance from the top layer.

Another important observation is that ANT tracker outperforms the LGT tracker in
accuracy at relative increase of approximately 10% and significantly outperforms it in
robustness. This means thatimproved accuracy is not due to re-initializations, but more
robust and accurate tracking. In the second experiment (random perturbations of ini-
tialization region) both trackers are ranked approximately similar in terms of robustness,

however, the ANT tracker is much more accurate.

Table 5.7
Results of SAMF, PLT 14, DSST, KCF, DGT, and ANT trackers for individual sequencesin VOT2014 dataset in terms of average
overlap (O) and number of failures (F). First, second and best values are bighlighted. Arrows indicate sorting direction.
SAMEF [104] PLT.14 DSST [54] KCF [38] DGT [133] ANT
Ot | FL [Ot | FL |[Ot | FL |Ot | FL | Ot | Fl | OF | F|
ball 0.77 | roo | o070 | 0.00 | 056 | roo oo | 081 | 0.00 | 042 | roo
basketball | 0.75 | 0.00 | 0.74 | 0.00 | 0.64 | roo 0.00 [ 050 | 0.00 | o055 | 0.00
bicycle 0.00 | 057 | 0.00 | 058 | 0.00 | 0.62 0.00 | 0.63 | 0.00 | 0.61 | 0.00
bolt 0.56 0.47 | 0.00 | 0.56 | roo | 0.49 | 3.00 0.00 | 0.47 | 0.00
car o.s1 | 0.00 | 038 | 0.00 | 073 | 0.00 | 0.70 | 0.00 | 057 | 0.00 1.00
david 0.82 0.00 | 0.65 | 0.00 0.00 | 0.82 | 0.00 | 0.3 1.00 0.72 | 0.00
diving 0.24 0.00 | 0.44 100 0.25 0.34 | 0.00 | 0.47 | 0.00
drunk 057 | 0.00 | os2 | 0.00 | 055 | 0.00 | 053 | 0.00 | 0.67 | 0.00 0.00
fernando 0.39 1.00 0.40 1.00 0.34 1.00 1.00 0.61 | 0.00 | 0.44 1.00
fishr 0.49 0.41 | 0.00 | 0.32 100 0.56 [ 0.00 | 033 | 0.00
fisha. 030 | 5.00 | 025 | 0.00 026 | 6.00 [ 0.48 | 200 | 038 | 2.00
gymnastics | 0.54 0.00 | 0.63 | 5s.00 | 0.53 roo | 0.8 | 0.00 | 0.6r | 0.00
handr 0.54 3.00 | 0.66 | 0.00 | o0.21 3.00 0.63 1.00 0.55 | 0.00
hand2 0.46 0.61 | o.00 6.00 | 0.49 | 6.00 | 0.52 0.56 | 2.00
jogging 0.82 100 0.70 00 100 0.79 100 0.66 | 0.00 | 0.65 1.00
motocross | 0.40 0.51 1.00 0.42 0.36 2.00 1.00 0.56 1.00
polarbear 0.00 | 0.63 | 0.00 | 0.63 | 0.00 | 0.78 | 0.00 | 081 | 0.00 | 0.65 | 0.00
skating 0.45 | 0.00 0.00 | 059 | 0.00 | 0.68 | roo | 039 0.42 | 0.00
sphere 0.00 | 0.67 | 0.00 | 0.92 | 0.00 | 0.90 | 0.00 | 0.84 | 0.00 | 0.66 | 0.00
sunshade 0.00 0.73 0.00 | 0.78 0.00 0.76 | 0.00 0.51 0.00 0.61 0.00
surﬁng 0.80 0.00 0.00 | 0.90 [ 0.00 | 0.79 | 0.00 0.63 0.00 0.75 0.00
torus 0.84 0.00 0.71 0.00 0.81 0.00 0.85 0.00 0.83 0.00 0.00
trellis 0.81 0.00 0.50 | 0.00 0.80 0.00 0.00 | 0.48 | 0.00 0.57 0.00
tunnel 0.00 0.27 | 0.00 [ 0.80 | 0.00 0.68 0.00 | 0.44 8.00 0.23 0.00
woman 0.76 | 1oo oo | 079 | Loo | 074 | 1oo | os4 | 0.00 | 0.62 | 0.00
Overall 0.64 | 0.92 | 0.6 0.13 0.64 | 0.99 | 0.8 LIS 0.54 0.27

Looking at the results for individual sequences of the VOT2o014 dataset in Table 5.7,
the most problematic ones for the ANT tracker are fishz, bhandz, and fernando due to
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frequent target deformations and ambiguous color palette. Other notable failure cases
will be analyzed in detail in Section 5.3.5. On the other hand, the ANT tracker excels on
many other sequences, some examples are shown as time-strips in Figure s.12. Sequences
diving, gymnastics, and woman were also part of the VOT2o013 dataset (with different
annotations). We can see that the ANT tracker performs much better than the LGT
tracker. It is also much better in estimating the size of the object than two top-ranking

trackers.
5.3.4  Non-rigid objects

To further analyze the behavior of the proposed tracker on non-rigid objects we perform
a similar analysis than in Section 4.3.4. We have selected nine sequences from VOT2014
dataset that include non-rigid objects, i.e. bolt, diving, fernando, fishr, fishz, gymnastics,
handr, bandz, and skating and performed ranking analysis on this subset. The results are
summarized in Figure s.13. The three correlation filter trackers that performed really well
on account of high accuracy on the entire VOT2014 dataset (DSST, SAMF, and KCF),
are performing much worse on the subset of non-rigid objects, as are many other holistic
trackers, e.g. IVT, MIL, and CT. The most robust trackers are still PLT .13 and PLT 14,
aswellas LGT and ANT. The difference between the LGT and ANT is actually smaller
on this subset, which could indicate that the LGT and ANT perform similarly on non-
rigid sequences, but the ANT tracker performs better on the remaining subset because

of its template memory system.

5.3.5  Failure cases

Overall, the proposed visual tracker achieves state-of-the-art performance on VOTz2013
benchmark, where it achieves both state-of-the-art robustness and accuracy. In case of
the more challenging VOT2014 benchmark, the tracker is still competitive, but the dataset
also reveals some of its weak spots. In the previous section we have already mentioned
some sequences from the VOT2014 dataset, where the anchored appearance model is
unable to track the object successfully. In this section we will analyze some notable fail-
ure cases of the proposed model and discuss how they could be avoided.

Occlusion is the main cause of failure in case of jogger (most of the reference trackers
fail in this case) and car. The car sequence occlusion is especially interesting as the occlu-
sion is not complete, as seen in Figure 5.14, the car is partially occluded by tree branches.

This still causes a lot of problems for the part-based model, which causes the failure. Se-
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Figure 5.13

Results for subset of
VOT2014 benchmark

sequences that contain non-

rigid objects presented as
per-attribute ranking A-R.
plot (left) and per-attribute
raw A-R plot (right).
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quence morocross is challenging due to rotation of the object, which is not accounted for
by the template representation that we are using in the evaluated implementation of the
top layer of the anchored appearance model. A feature-based representation of template
instances would probably be better suited in such cases. A very interesting that tells a lot
about the appearance model occurs in sequence ball. The ball has a very distinct texture,
that would be easy to localize in case of object translation. But since the ball starts to
roll, such object becomes hard to match for a template method. On the other side, the
part-based bottom layer also adapts to the changes - this means that all the parts move
towards the edge of the ball because of the rotation. Both phenomena result in poor
accuracy and eventual failure of the tracker.

Another case of poor accuracy can be seen in sequence tunnel. The ANT tracker did
not fail this time, however, it achieved its lower average overlap on the entire dataset.
Only one part of a motorcycle is annotated as the target, which is good for holistic track-
ers, however, the sequence contains a lot of illumination changes and saturated colors.

Despite surviving these changes and recovering from the accuracy problems in the begin-
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ning of the sequence, the tracker then starts tracking the other part of the motorcycle,

reducing the overlap even further.

5.4 Summary

In this chapter we have presented a new hierarchical appearance model that addresses
some of the problems of the coupled-layer appearance model, presented in Chapter 4.
The model is composed of three layers that differ in the level of detail by which they
describe the target. We use holistic detailed, holistic coarse and part-based layers that
mutually interact in localization and updates by accounting for the potential uncertainty
of the visual information. This makes the appearance model shift between purely holistic
and part-based behavior, depending on the visual uncertainty.

A tracker thatuses the anchored appearance model was evaluated on two recent bench-
marks - VOT2013 [100] and VOT2o014 [101]. Analysis of the influence of different layers
showed that all layers contribute to improved performance and that the significant im-
provement comes from the mutual interaction between them. The tracker was also com-
pared to a large set of state-of-the-art trackers in each benchmark. Results confirm the
hypothesis that the proposed tracker outperforms related part-based trackers (like LGT)
both in accuracy and robustness and can compete with the top-performing trackers. Fur-
thermore, the top-layer anchors in our tracker are very general and can easily be replaced
by object-class-specific detectors like face detectors to aid tracking in specific applications

like face tracking. Another direction of improvement that we will also pursue is better
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Figure 5.14

Failure cases for ANT
tracker (blue), demon-
strated on sequences ball,
car, motocross, and tunnel.
The ground-truth region
is shown with white color.
In first three cases the strip
focuses on behavior before
the failure.
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segmentation in the middle layer that could provide better object region estimate and

consequentially improve tracking accuracy.
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This doctoral thesis we have addressed the field of visual tracking, one of the major re-
search topics in computer vision. As stated in the introduction in Chapter 1, where we
have defined our research scope, we are dealing with a subtopic of on-line single-target
short-term tracking using a monocular camera system. We have described a novel for-
malization of appearance model structure, called a hierarchical appearance model. The
concept was designed to address some of the problems with existing work that we high-
light in the review of the related work in Chapter 2, most importantly non-rigidness of
tracked objects with unknown geometrical properties as well as integration of higher-
level appearance cues into the appearance model. We have also presented a new method-
ology that we have developed for unbiased evaluation of visual trackers and used it evalu-
ate our titular work in this thesis - the two visual trackers that implement the hierarchical
appearance model concept. The body of the thesis can be summarized from the perspec-

tive of the claimed research contributions, first listed in Section 1.3:

A novel visual tracking algorithm formalization that integrates local and global appear-
ance information. The idea of a hierarchical appearance model was introduced in Sec-
tion 1.2. In Chapter 4 we have presented the first working instance of a hierarchical ap-
pearance model, the coupled-layer appearance model. This appearance model combines
local and global appearance description. We have presented the required details for the
implementation of the proposed appearance model: the visual description of parts that
describe the local appearance of the object, an efficient optimization for the matching
operation for the set of parts, a set of heuristics for part weight dynamics, and the struc-
ture of a multi-modal global appearance model. We have described how the appearance
model is integrated in a visual tracker and how it interacts with a motion model of the
tracker. The tracker was then evaluated in terms of parameter configuration and in com-
parison to the related work. The experimental analysis shown that the proposed appear-
ance model is indeed capable of tracking objects robustly with no a-priori object-specific
knowledge and that the model excels in many situations with non-rigid deformations.
Our work on the coupled-layer appearance model for visual tracking has already been
published in [106, 107].

The analysis of the coupled-layer appearance model has also shown some weak-spots
of the proposed concept, like reduced accuracy. Some of these problems were addressed
by our second hierarchical appearance model, described in Chapter s. In this appearance

model the appearance information is structured in three layers. The bottom two are
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conceptually similar to the local and global layer of the coupled-layer appearance model.
The main advantage of the new appearance model is the added third layer that guides the
lower two layers by constraining their adaptation. This layer contains a memory system
that accumulates snap-shots of objects appearance over time, enabling the appearance
model to recover if the object is re-detected. The experimental analysis confirms that the

the constraints of the third layer indeed improve performance of the tracker.

A new evaluation methodology for visual tracking. In terms of performance evaluation
visual trackers we have focused on the problem of performance evaluation in single-
target short-term visual tracking. In Chapter 3 we have first presented three core re-
quirements for a comprehensive evaluation framework. In the scope of this thesis we
have addressed two of these requirements - the first one is the selection of the evalua-
tion measures. Through theoretical and experimental analysis we have investigated var-
ious popular performance evaluation measures, discussed their pitfalls and showed that
many of the widely used measures are equivalent. Since some measures reflect certain
aspect of tracking performance, combining those that address the same aspect provides
no additional information regarding the performance or even introduces bias toward a
certain aspect of performance to the result. Based on the results of our experiment we
have proposed to use a pair of two existing complementary measures. This pair, that we
call the accuracy-robustness, or A-R pair, measures the accuracy and the robustness of
each tracker. We have also proposed an intuitive way of visualizing the results as an A-R
scatter plot. Our preliminary work on this topic has been published in [98, 99]. We have
also introduced several simple theoretical trackers that can be used to quickly review the
results of the evaluated trackers in terms of basic properties. The A-R measures were
also extended to the case of ranking multiple visual trackers on a given set of sequences.
We have introduced appropriate statistical tests to determine performance equivalence
that as a first step towards determining tracker equivalence classes. We have described
two performance evaluation systems that we have developed, both supporting the same
third-party tracker integration approach using a custom communication protocol that
we have designed to make performance evaluation and analysis of tracking algorithms

easy and extensible.
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6.1 Future rvesearch directions

In the end it is important to remember that visual tracking is in fact an ill-posed problem
if it is considered as a solitary task, especially if we compare the tracking capability of a
visual tracker to a human one. Being able to follow appearance changes and movement
of objects in video sequence at the level of people requires complex prior knowledge and
understanding of the scene, which supersedes the task of object tracking alone. In order
to completely solve visual object tracking, an algorithm would have to address a large
part of the computer vision field.

At the same time, many applicative tracking scenarios provide prior constraints that
make tracking much more realistic problem, even when it is considered as a separate
problem. The exciting aspect of a hierarchical appearance model concept, when think-
ing about it as a formal way of structuring appearance information for visual tracking,
is that it offers a great deal of flexibility. It offers a way of introducing prior knowledge
about the object in the appearance model with pre-trained higher layers in the visual hi-
erarchy. At the same time it also provides an opportunity to build a temporal-invariant
model of an object on-line by ensuring high-confidence learning samples. This presents
an opportunity to connect tracking to other fields of computer vision, like detection and
categorization, which is one of the research directions that we plan to investigate in the
future. Having a more temporal-invariant representation of an object can also be applied
to multi-camera tracking. An object that is observed from multiple viewpoints can be
represented by a common higher layer representation, while the lower layer representa-
tion remains view-dependent.

Visual tracking research has to be supported by interpretable empirical analysis. In
this context we would like to emphasize the fact that our work on performance evalu-
ation is already gaining momentum in the research community. As we have shown at
the end of Chapter 3, the performance measures described in this thesis are now an in-
tegral part of the Visual Object Tracking Challenge that represents an ongoing effort to
promote a consistent evaluation methodology, thus pushing forward the field of visual
tracking. The biggest test of the VOT Challenge and similar initiatives in the next years
will be to withstand the temptation of reducing visual tracking performance evaluation
to a mindless competition that is only interested in minor improvements of some mea-
sure of performance on a finite sequence set, but instead acknowledge the diversity of

the research problem and offer meaningful interpretations of strengths and weaknesses
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of various tracking approaches. Hopefully, the adoption of thorough performance anal-
ysis will also be easier due to evaluation software that we have presented as a part of this
thesis as well as a reference communication protocol implementation, all of which are
available as open-source software. This way researchers in the field of visual tracking can
save time when it comes to evaluation by reusing and contributing to existing evalua-
tion tools. Good evaluation systems can also help researchers understand the behavior
of a visual tracker through parameters analysis, which can lead to new discoveries and

improvements, thus pushing forward the entire field of visual tracking.
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A.r Proof that AUC equals to average overlap

Problem: Let ¢1, ¢2, . . . , ¢~ be frame overlaps for a sequence of length V. We assume
that the frame overlaps are ordered by scale from minimal to maximal value and ¢o = 0,

ie.

0=¢o < 1 <--- < ¢n.

Let P(7) = |{j : ¢; > 7}| be the number of overlaps greater than 7. The AUC
measure is an integral of % from O to 1. We want to prove that the average overlap,

@, for the sequence @1, @2, . . ., N equals to the computed AUC, i.e.
N 1
1 1
— ¢ = — / P(7)dr.
N2HEN ),

Proof: Function P is a step function (constant between ¢; and ¢;y1). Therefore its

integral I is

N-1

I= Z P(¢i)(div1 — b4).

i=0

I'=P(¢o)(¢1 — ¢o) + P(d1)(d2 — ¢1) + P(d2)(d3 — ¢2) + ...
= ¢1P(do) — ¢oP(d0) + ¢2P(d2) — ¢1P(¢1) + 3P (¢3) — paP(¢pa) + ...
= —¢oP (o) + ¢1(P(¢o) — P($1)) + d2(P(d1) — P(2)) + -+
=0-P(¢o) +¢1-1+¢2-1+4--- (A)
=go+ b1+ ot (A2)

N
= Z bi
i=1

In (A.1) we have assumed that the shift between the two consequential values of P(7),
ie. P(¢ps) — P(¢it1) equals to 1, that is true if all ¢; are different. If k consequential
@i are equal then the corresponding k — 1 shifts are 0, while the last one is k. However,
in (A.1) weadd (¢; - 1) k times. W
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Az Reformulation of CoTPS measure

Let ¢1, ¢2, . .., ¢~ be frame overlaps for a sequence of length V. In [92], the CoTPS
measure is defined as a weighted average of two factors, that the authors define as rracking
accuracy, S, and tracking failure, Ao, that are combined using a dynamically computed

factor, (3, as

CoTPS = B2+ (1—B)Ao. (A3)

The tracking failure factor Ao is computed as the percentage of frames where the
tracker failed, i.e. Ao = %, where No is a number of frames where the overlap be-
tween ground-truth region and the predicted region is 0. The weight factor is defined
as 3 = %, where IV denotes the number of frames where the overlap is higher than 0,

therefore 3 = 1 — Ag. The definition for tracking accuracy part €2 is

Q= > N(AT), (A.4)

7€(0,1]
where N(1) = [{j : ¢; > 0 A ¢; < 7}| denotes the number of frames that is

higher than 0, but lower than 7. We observe that (A.4) is actually an approximation of

the integral with respect to threshold 7, that can also be reformulated as

15 15
Q= / ]\{T dr=1- / ij—dﬂ (Ass)
o N o N

where P(7) = |{j : ¢; > T}|. According to the proof in Appendix A.1, the integral

results in average overlap over a set of frames, therefore @ = 1 — ¢, where ¢ is the
average overlap over {¢; : ¢; > 0}. Therefore, the CoTPS measure can be rewritten

as

CoTPS = (1—Xo)(1—¢)+ s (A.6)

Considering that average overlap over the entire sequence can be writtenas ¢ = (1 —

)\0)(2), we can further derive

CoTPS =1—¢—(1—Xo)o, (A7)

meaning that the CoTPS measure is a function of average overlap as well as the percent-

age of frames where the overlap is 0.
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One of the problems in visual tracking research is fragmentation of evaluation method-
ology. While authors of new tracking methods provide comparative experimental results
for their methods and the state-of-the-art in the papers, the evaluation procedures and
datasets differ from one papers to another. Besides that the results are usually trimmed
down to some summarizing performance scores due to paper length limitations. This
makes it difficult for other researchers to simply reuse these results in their own evalua-
tion. One way to overcome this problem is to share the tracker implementation. In the
past years researchers tend to provide a binary form or even a source code of their imple-
mentation more frequently as a supplementary material to their papers. However, while
these resources are indeed valuable as they encourage other people to repeat the experi-
ments or perform new tests, the process of preparing such a tracker for such evaluation
is still time consuming. In case of binary versions it can be even impossible to properly
run the tracker on arbitrary testing image sequence and obtain results that can be then
compared with other trackers.

A common challenge a computer vision researcher faces when designing a new visual
tracking algorithm is how to perform comparative experiments without spending too
much time on technical details of reference trackers. In this appendix we present a simple
stateful communication protocol [142] that allows researchers to quickly set up a second-
party code in an evaluation environment or enable their own trackers to be integrated
across a variety of different evaluation or visualization tools. The protocol is called TraX
which stands for Visual Tracking eXchange protocol and was first officially published as
a technical report [143] with the VOT2o014 challenge.

The rest of the chapter is organized as follows: Section B.1 provides the basic founda-
tions of the protocol. Section B.2 describes the message structure structure in Section B.3
defines protocol states and Section B.4 defines the supported data formats. In Section B.s
we provide tips for protocol implementation and integration and we draw concluding

remarks in Section B.6, where we also describe the future plans for the protocol.
B.r Overview and definitions

The TraX protocol is designed with simplicity of integration in mind as well as flexibility
that allows extensions and custom use-cases. The protocol is based on the a mechanism
that all modern operating systems provide: standard input and output streams of a pro-
cess. The main idea is that we embed the communication between the tracker process

and the control process in these streams. The communication is divided into line-based
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messages. Each message can be identified by a prefix that allows us to filter out tracker
custom output from the protocol communication.

First we define the basic terminology of the protocol:

1. Server: We adopt the standard client-server terminology when describing the in-
teraction. A server is a tracker process that is providing tracking information to
the client that is supplying the server with requests — a sequence of images. Unlike
traditional servers that are persistent processes that communicate with multiple
clients, the server in our case is started by a single client and is only communicating

with it.

2. Client: A clientisa process that s initiating tracking requests as well as controlling
the process. In most cases this would be an evaluation software that would aggre-
gate tracking data for performance analysis, however, additional use-cases can be

determined.

3. Message: Server and client communicate with each other using messages. Each
message begins in new line, is prefixed by an unique string and ends with the end
of the line. Types of messages are defined in Section B.3 and the exact structure of

a message is defined in Section B.2.

B2 Message format

Individual message in the protocol is aline, which means thatitis separated from the past
and future stream content by the new line (EOL) character. The format of all client or
server messages is the same. To distinguish between arbitrary program outputs and em-
bedded TraX messages a prefix “@@TRAX :” is used. The prefix is followed immediately
(without white space character) by the name of the message, which is then followed by
space-separated arguments. The format is illustrated in Figure B.1. The message header
is followed by a number of mandatory message arguments. This number depends on
the type of the message and on the runtime configuration. The mandatory arguments
are then followed by a variable number of optional named arguments that can be used
to communicate additional data.

All the arguments can contain spaces, however, they have to be enclosed by double-
quote symbols. To use the same symbol inside the argument, it has to be prefixed by
back-slash symbol. To use newline symbol inside the argument, it has to be replaced

using \n symbol sequence.
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Figure B.1

Anillustration of a typical
protocol message (green
box) embedded within the
process Durput stream (gray
boxes).
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B3 Protocol messages and states

Below we list the valid messages of the protocol as well as the states of the client and
server. Despite the apparent simplicity of the protocol its execution should be strict.
An inappropriate or indecipherable message should result in immediate termination of

connection in case of both parties.

= hello (server): The message is sent by the server to introduce itself and list its
capabilities. This message specifies no mandatory arguments, however, the server
can report the capabilities using the optional named arguments. The official ar-

guments, recognized by the first version of the protocol are:

trax.version (integer): Specifies the supported version of the protocol. If

not present, version 1 is assumed.

trax.name (string): Specifies the name of the tracker. The name can be used

by the client to verify that the correct algorithm is executed.

trax.identifier (string): Specifies the identifier of the current implementa-

tion. The identifier can be used to determine the version of the tracker.

trax.image (string): Specifies the supported image format. See Section B.4

for more details.

trax.region (string): Specifies the supported region format. See Section B.4

for more details.

= initialize (client): This message is sent by the client to initialize the tracker.

The message contains the image data and the region of the object. The actual
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format of the required arguments is determined by the image and region formats

specified by the server.

= frame (client): This message is sent by the client to request processing of a new
image. The message contains the image data. The actual formart of the required

argument is determined by the image format specified by the server.

= state (server): This message is used by the server to send the new region to the
client. The message contains region data in arbitrary supported format (most

commonly the same format that the server proposed in the introduction mes-

sage).

= quit (client, server): This message can be sent by both parties to terminate the
session. The server process should exit after the message is sent or received. This

message speciﬁes no mandatory arguments.

The state diagram of server and client is defined by a simple automata, shown in Fig-
ure B.2. The state changes upon receiving appropriate messages from the opposite party.

The client state automata consists of the following states:

1. Introduction: The client waits for hello message from the server. In this mes-
sage the server describes its capabilities that the client can accept and continue
the conversation by moving to initialization state, or reject it and terminate the

session by sending the quit message.

2. Initialization: The client sends a initialize message with the image and the

object region data. Then the client moves to observing state.

3. Observing: The client waits for a message from the server. If the received message
is state then the client processes the incoming state data and either moves to
initialization, termination or stays in observing state. If the received message is

quit then the client moves to termination state.

4. Termination: If initiated internally, the client sends the quit message. If the
server does not terminate in a certain amount of time, the client can terminate

the server process.

The server state automata consists of the following states:
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1. Introduction: The server sends an introductory hello message where it option-

ally specifies its capabilities.

2. Initialization: The server waits for the initialize or quit message. In case
of initialize message a tracker is initialized with the given data and the server
moves to reporting state. The new state is reported back to the client witha state

message. In case of the quit message the server moves to termination state.

3. Reporting: The server waits for the frame, initialize, or quit message. In
case of frame message the tracker is updated with the new image information
and the new state is reported back to the client with a state message. In case of
initialize message a tracker is initialized with the given data and the new state
is reported back to the client with a state message. In case of the quit message

the server moves to termination state.

4. Termination: If initiated internally, the server sends the quit message and then

exits.

Client ‘ | * ¢

[ 4 [Introduction Initialization e Observing ]—> Termination —>@®
[ A
[initialize ] [ frame ] qU|t
he||o state state
|

V|

Introduction }‘»E Initialization Reporting }‘»E Termination }—).

Figure B.2

A graphical representa-
tion of client and server
automata together with Server
protocol states.

Spawn process

B.4  Data formats

The protocol is designed to be scalable, however, only a few basic data formats have been
specified in this first iteration of the protocol. There are three region formats and two

image formats.
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B.4.1  Region formats

Regions can be encoded in multiple ways. The traditional axis-aligned rectangles are
supported, next to more sophisticated polygon format. Both region formats are shown

graphically in Figure B.3.

1. Rectangle: The simplest form of region format is the axis-aligned bounding box.
It is described using four values, 1eft, top, width, and height that are sepa-

rated by commas.

2. Polygon: A more complex and flexible region description that s specified by even
number of at least six values, separated by commas that define points in the poly-

gon (x and y coordinates).

(left, top)
(x5, y5)
height
(x11, y1l) (x9, y9) (x7, y7)
Figure B.3
(x10, y10) Anillustration of rectan-
gle and polygon region
width encoding.

B.4.2  Image format

In the current version of the protocol, image can be provided to the server by specifying
an absolute path on a local file-system that points to a JPEG or PNG file. The server

should take care of the loading of the image to the memory.
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B.s  Integration

To integrate the protocol into an existing tracker one has to identify the tracking loop in
the algorithm and place the protocol handles to the appropriate locations. A sketch of

integration in a pseudo-code tracker is shown in Figure B.4.

Setup tracker
TraX: Initialize protocol, report introduction message
loop
TraX: Wait for message from client
if initialize message then
Initialize tracker with provided region and image
TraX: Report state message
else if frame message then
Update tracker with provided image
TraX: Report state message
else if quit message then
Break the tracking loop
end if
end loop

Figure B.4 Cleanup tracker

Pseudo-code sketch of
server protocol integration.

TraX: Cleanup protocol (terminate if necessary).
A far better solution than implementing the protocol yourselfis to use an open-source

reference implementation library, presented in Appendix C.
B.6  Summary

In this appendix we have presented the first iteration of a visual tracking exchange pro-
tocol that attempts to standardize the communication between evaluation toolkits and
tracker implementations. The idea of the tracker is to make the development of tracking
algorithms easier by separating the core algorithm implementation from the auxiliary
functionality like visualization and performance evaluation. Publicly available evalua-
tion tool that supports the protocol is the Visual Object Tracking toolkit, which uses

the protocol as the default integration technique since the VOT2014 challenge [101]. We
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hope that the presented protocol will be adopted by the community which will result in
interoperability of evaluation tools, which will in turn benefit the research community

in general.
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In most computer vision research, the theoretical work has to be substantially supported
by good software implementation. In the course of this doctoral thesis we have produced
many software products that we have, or will in the near future, release to the research
community under open-source software licenses. In this appendix we list the most ma-

ture and notable software projects that are closely related to the topic of this thesis.
Cr libtrax

The libtrax library is a reference implementation of the TraX communication proto-
col, described in Appendix B. It is written in C programming language without any
external dependencies. The library implements the server and client side of the pro-
tocol. Additionally, the library also provides a simple command-line client as well as
some example trackers that demonstrate the integration principles. The native C li-
brary also has bindings to several other languages, such as Matlab and in the future
also Python and Java. The source code of the library is available on Github: https:
//github.com/lukacu/trax.

Cz2 VOT toolkit

VOT toolkit is the official evaluation toolkit for the Visual Object Tracking Challenge.
It is mostly written in Matlab/Octave language, with some parts implemented in C++.
The first use case of the toolkit is evaluation of multiple trackers in multiple experimen-
tal scenarios on a fixed set of sequences. By default the entire evaluation is performed se-
quentially as described by the pseudo-code in Figure C.1. Each trial contains one or more
executions of the tracker. The idea is that if the tracker fails during tracking the execution
(the failure criterion can be experiment dependent) it is repeated from the point of the
failure (plus additional offset frames if specified). In the case of stochastic trackers, each
sequence is evaluated multiple times. If the tracker produces identical trajectories two
times in a row, the tracker is considered deterministic and further iterations are omitted.
Itis therefore important that the stochastic nature of a tracker is appropriately addressed
(proper random seed initialization).

The second use case of the toolkit is results analysis. Results of more than one tracker
can be used to generate performance reports, such as ranking report (as described in
Section 3.4), and many others. The code of the VOT toolkit is available on Github:
https://github.com/vicoslab/vot-toolkit.


https://github.com/lukacu/trax
https://github.com/lukacu/trax
https://github.com/vicoslab/vot-toolkit
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tracker t
for experiment e = e1 to eE do
for sequence s = s1 to sS do
st = transfrom sequence according to e
while repeat r times (if tracker is stochastic) do

perform trial for (t, ¢, st)

end while Figure C.1
end for A pseudo-code of an
d f_- experiment stack execution
end for in the VOT toolkit.

C3 Aibu annotator

Aibu is an image sequence annotator written in Java. Its main goal is to enable easy and
fast annotation of single-target sequences, although the architecture supports easy exten-
sion to multi-target sequences. The user interface (Figure C.2) supports easy navigation
to an arbitrary position in a sequence, intuitive region editing and productivity utili-
ties, such as region interpolation. The editor supports annotation storage format that is
compatible with the VOT toolkit.

Sequence fernando, frame 0

w92 ma<«rmm 1 aasa
50 oo TS0 200 =0

Keyframes

e —— —_ Figure C2

Tagilum_change.

A screen-shot of the Aibu

- @0 atss) annotator.

Tagisize_change.
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Figure C3

A screen-shot of the
TraXtor interface. A project
can organize multiple
experiments that either
compare multiple trackers
or a tracker on a set of
parameter values.
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C.4 TraXror

Similarly to VOT toolkit, TraX is a visual tracking performance evaluation tool. It is
written in Java and supports TraX protocol for easy tracker integration. Contrary to
VOT toolkit, TraXtor is primarily designed for fast exploratory evaluation. It can be
used to quickly evaluate a new tracker on various sequences and change the parameters
of the tracker without recompiling the code, as seen in Figure C.3. This functionality
enables quick exploratory parameter investigation in order to gain a deeper understand-
ing of the tracking algorithm and discover problematic behavior. On multi-core com-
puters TraXtor supports parallel execution of trackers, which, in combination with the
responsiveness of the communication protocol provides a powerful tool for tracker de-

velopment and testing.

TraXtor [ ocal/tracki peri i ject.xml] — 4 x
Project Experiment Tools
o Workers % | @) Messages X | b Newewperiment X % test % A TestinglGT2 X% | ¥ test X = & Resources X
Identifier Tracker Sequence Failure count Average overlap |
@ |Igt-gt3_vot2013-bicycle Igt:Igt3 vot2013:bicycle 0.0 0.6506528857408261
@ lgtgt3_vot2013-bolt Igt:igt3 vot2013;bolt 0.0 0.5866727001736073
@ |gt-gt3_vot2013-car Igt:lgt3 ot2013:car 0.0 0.6861115795602183
@ |gtlgt3_vot2013-cup lgt:Igt3 /0t2013:cUp 0.0 0.7958354404807259
@ |gtgt3_vot2013-david lgt:Igt3 /0t201 3:david 0.0 0.5959537568053692
O Igt-gt3_vot2013-diving Igt:Igt3 0t2013:diving <undefined= <undefined>
@ |gtlgt3_vot2013face Igt:lgt3 vot2013:face 0.0 0.7186387009706541
@ |gtlgt3 vot2013-gymnastics |gt:Igt3 0t2013: gymnastics 0.0 0.6120177245559144
@ |gt-gt3_vot2013-hand lgt:lgt3 vot2013:hand 0.0 0.28908039961 395854
O Igt-gt3_vot2013-iceskater  |gt:lgt3 vot201 3riceskater l<undefined> <undefined>
O Igtgt3_vot2013uice Igt:Igt3 vot201 3:juice <undefined= <undefined>
@ lgtlgt3_vot2013ump Igt:lgt3 vot2013:ijump. 0.0 0.43036623443900485
@ |gtlgt3_vot2013-singer Igt:Igt3 0t2013:singer 0.0 0.3386505610151738
@ |gtgt3_vet2013-sunshade |gt:lgt3 0t2013:sunshade 0.0 0.4897808506289254
@ |gt-lgt3_vot2013-torus Igt:Igt3 ot2013:torus 0.0 0.8408075221363864
@ lgtgt3_vot2013-woman Igt:igt3 0t2013;woman 0.0 0.5652583261024711
L - 4 B @

Cs  Legit library

Legit library is a C++ library that contains several visual tracker implementations within
a common interface (API). The library is accompanied by a command-line utility that
enables easy tracker testing on a various sequence formats, such as series of stored im-
ages or a video file and even a video stream from a camera. The command-line utility

also supports TraX communication protocol for fast integration with client tools, such
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as TraXtor or VOT toolkit. In addition the library also provides bindings to other pro-
gramming languages, e.g. Java and Python. The code is available on Github: https:
//github.com/vicoslab/legit.



https://github.com/vicoslab/legit
https://github.com/vicoslab/legit
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V doktorski disertaciji obravnavamo vizualno sledenje, ki je eno izmed pomembnih raz-
iskovalnih podpodrotij v okviru ratunalniSkega vida. Glavni cilj vizualnega sledenja je
dolotitev stanja enega ali ve¢ objektov v toku slik ob upostevanju tasovne soslednosti
le-teh. Razviti algoritmi, ki opravljajo nalogo vizualnega sledenja in jih imenujemo tudi
vigualni sledilniki, so lahko uporabljeni v okviru mnogih, tako novih kot tudi ze uvelja-
vljenih, tehnoloskih podrotij, kot so npr. robotika [1], video-nadzorni sistemi [2, 3], inte-
rakcija med lovekom in ratunalnikom [9-11], avtonomna vozila ter analiza $porta [14].
Zaradi Siroke palete moznosti uporabe vizualnega sledenja se je razvilo veliko podvrst
formalizacije problema, vsaka s svojimi izzivi in predpostavkami. V okviru te doktor-
ske disertacije naslavljamo tip vizualnega sledenja, kjer sledimo samo enemu objektu v
enem samem toku slik. Geometrijskih lastnosti objekta ne poznamo vnaprej, predposta-
vljamo tudi, da objekt ne bo nikoli izginil iz opazovanega obmodja v sliki, ¢emur pravimo
tudi kratkorocno sledenge, ter da je tok slik potencialno neskonten in ga torej ne moremo
shraniti in nato obdelati v celoti. Glavni cilj take formalizacije vizualnega sledenja je torej
dolotitev poloZaja objekta v zaporedju slik, ¢e imamo podan zateten polozaj v prvi sliki
zaporedja. Vizualni sledilniki za dosego cilja naloge uporabljajo razli¢ne modele izgleda,
ki na razliéne natine opisujejo izgled objekta. Ker se le-ta tekom sekvence spreminja, je
potrebno model izgleda posodabljati, to pa pogosto predstavlja problem, saj neuspesna
posodobitev, ki je lahko rezultat netotne lokalizacije ali toge zasnove vizualnega modela,
vodi v potasno spiralo odklona opisa izgleda objekta od realnega stanja, to pa pripelje do
odpovedi sledilnika oziroma zdrsa.

V predlagani doktorski disertaciji naslavljamo dve pomembni vprasanji v okviru vi-
zualnega sledenja. Predlagamo nov koncept konstrukcije vizualnega modela, ki temelji
na hierarhitnemu zdruZevanju vizualnih informacij. Tak model izgleda nudi moZnosti
za uspesno sledenje v mnogih tezkih scenarijih, $e posebej pa je primeren za sledenje ne-
togih in artikuliranih objektov. Uporabo vizualnega modela smo potrdili z razvojem
dveh sledilnikov, ki temeljita na hierarhi¢ni zasnovi in ki se, glede na empiri¢ne primer-
jave, uvrdtata v sam vrh raziskav na tem podrodju. Poleg tega predlagamo tudi novo
metodologijo za evaluacijo vizualnih sledilnikov, tako z namenom primerjave ve¢ sledil-
nikov kot tudi za pridobivanje dodatnih informacij o delovanju dolotenega sledilnika. V
okviru doktorske disertacije torej opisujemo naslednja prispevka k raziskovalnemu po-

drogju ratunalniSkega vida:

= Novi algoritmi za vizualno sledenje z zdruzevanjem lokalne in globalne vizualne
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informacije. Predstavljamo dva sledilnika, ki vsebujeta nov tip hierarhi¢nega vi-
zualnega modela in ki omogocata sledenje tartam tudi v primeru netogih defor-
macij ter drugih sprememb izgleda. Analiziramo obnasanje predlaganega sledil-
nika v razli¢nih scenarijih sledenja ter ga primerjamo z drugimi znanimi sledilniki.
Poleg tega predlagamo razsiritve vizualnega modela, ki bodo na intuitiven natin
omogocale integracijo predhodnih informacij o izgledu objekta, vendar e vedno
omogotale modelu, da se prilagaja spremembam izgleda objekta med samim sle-

denjem.

= Nova metodologija za ocenjevanje vizualnib sledilnikov. Naslavljamo dva pro-
blema, ki se pojavljata pri ocenjevanju in primerjavi vizualnih sledilnikov: (i) defi-
niramo reprezentativno mnozico mer uspednosti, ki jih lahko uporabimo za opis
razli¢nih aspektov sledenja, (ii) predlagamo metodologijo za eksperimentalno pri-
merjavo velikega Stevila sledilnikov. Predlagana metodologija je poleg teoreti¢nega
opisa podprta tudi z implementacijo v obliki odprtokodnega evaluacijskega oko-

Jja.
D.r  Pregled podrocja

Vizualne modele lahko razvrstimo glede na tip uporabljenih vizualnih znatilnic za opis
objekta in glede na nalin hranjenja ter obdelave informacij o izgledu [27]. Najbolj raziirjena
vrsta vizualnih modelov so bolisticni vizualni modeli, ki hranijo globalno reprezentacijo
izgleda objekta, kar se je izkazalo za dovolj dobro strategijo v scenarijih sledenja, kjer se
objekt ne deformira prevet. Pogosto uporabljene znalilnice, ki se uporabljajo v takih
modelih, so barvni histogrami [9, 32, 33], slikovne predloge [28-31, 48], obrisi [36] in
tekstura [37]. Pogosto uporabljene metode iskanja maksimalnega ujemanja vizualnega
modela s sliko uporabljajo sekven¢no jedrno [9, 32] ter Monte-Catlo [33, 39] optimi-
zacijo. V zadnjem desetletju je postalo popularno sledenje z uporabo diskriminativnih
modelov. V tem primeru vizualni model vsebuje diskriminativni klasifikator, ki dolodi,
e dolotena regija vsebuje objekt ali ne. Ta klasifikator je med sledenjem sproti osvezevan,
da ohrani dobro razlikovanje med izgledom objekta ter izgledom ozadja. Ena izmed pr-
vih uspe$nih implementacij sledenja z uporabo detekcije je predstavljena v [40]. V tem
primeru je bil uporabljen kaskadni ojatevalni (boosting) detektor [s1], prirejen za spro-
tno osveZevanje. Pristop je bil kasneje raziirjen na delno-nadzorovano utenje [50] ter

udenje z mnozicami primerkov (multiple instance learning) [42]. V [41] avtorji predsta-
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vijo zaokrozen postopek modeliranja vizualne informacije ter sledenja z uporabo metode
strukturiranih podpornih vektorjev. Avtorji v [49] predlagajo uporabo naklju¢nih pro-
jekeij za kompresijo prostora znatilnic, kar ugodno vpliva na obvladljivost problema dis-
kriminacije. Kljub otitnemu uspehu holisti¢nih vizualnih modelov pa hitre spremembe
strukture objekta 3e vedno predstavljajo velik izziv. V primeru holisti¢nih modelov je na-
mre¢ celotna reprezentacija izgleda objekta osvezena naenkrat, kar povetuje verjetnost,
da bo pravilen del vizualne informacije pokvarjen z na novo pridobljeno informacijo. To
se lahko zgodi, ker sledilnik ne uspe dolotiti pravilnega poloZaja objekta, kar pomeni, da
bo vizualni model osveZen z izgledom, ki ne pripada ozadju, ali ker sledilnik ne upora-
blja znatilnic, ki bi bile v danem scenariju zmoZne razlotevati objekt od ozadja. Drugi
problem holisti¢nih vizualnih modelov je predpostavka, da objekt lahko opi§emo s pra-
vokotno regijo v sliki. Kljub temu, da je to smiselna predpostavka v mnogih praktiénih
primerih (npr. sledenje obrazov ali avtomobilov), obstaja veliko scenarijev, kjer ta pred-
postavka ne drZi, npr. pri netogih in artikuliranih objektih. Vse geometrijske deformacije
tarCe, ki bi jih lahko naslovili v geometrijskem okviru, morajo biti v holisti¢tnem vizual-
nem modelu naslovljene s korakom osveZzevanja, kar povetuje moznost drsenja (driffing).
En izmed natinov naslavljanja nekaterih pomanjkljivosti posameznih holisti¢nih sledil-
nikov je njihovo zdruzevanje [44, 57, 59]. Ideja v tem primeru je, da se vsak sledilnik
obnasa dobro v dolo¢enih okolid¢inah in da lahko s pametnim preklapljanjem med njimi
izbolj$amo njihovo skupno delovanje. A tudi ta pristop dejansko ne naslavlja sledenja ne-
togim objektom, ki se deformirajo in spreminjajo obliko.

Po drugi strani je glavna ideja vizualnih modelov, ki so osnovani na vet delib, da je iz-
gled razdeljen na vet lokalnih vizualnih modelov, ki so med seboj omejeni preko geome-
trijskih povezav. Dejanski tipi lokalnih vizualnih modelov posameznega dela in oblike
geometrijskih omejitev se lahko med sledilniki te druZine zelo razlikujejo. Eden izmed
zgodnjih primerov na delih osnovanih sledilnikov je bil predlagan v [10] in temelji na
mnozicilokalnih sledilikov, ki sledijo z ocenjevanjem opti¢nega toka. Sledenje z optitnim
tokom je bilo kasneje robustificirano s primerjavo ocene opti¢nega toka z oceno povra-
tnega optitnega toka, pri éemer je zanesljivost definirana kot podobnost obeh [22, 71].
Nato so lokalne ocene premika zdruZene z robustno oceno mediane. Uporaba stabil-
nih regij je $e en pristop k sledenju z ve¢ deli. V [63] avtorji zaznajo stabilne dele ter z
predpostavljanjem globalne afine transformacije omejijo iskanje ujemanj ter se izognejo
drsenju. Ker je zanesljive ad-hoc geometrijske omejitve med deli tezko dolotiti za vnaprej

nepoznan objekt, avtorji v [72] za sledenje predlagajo uporabo posplosenega Hougho-
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vega transforma. Ta pristop je raz8irjen v [60]. V [21, 65] so uporabljene znalilnice SIFT,
izgled objekta je predstavljen kot mnozica znadilnic, ki se pogosto pojavijo skupaj. Za-
nimiv pristop k sledenju objektom brez znalilne teksture je opisan v [77], kjer sledilnik
uporablja pare robov kot znatilnice, na podlagi katerih doloti poloZaj celotnega objekta.
Ta pristop sicer deluje na objektih brez jasne teksture (npr. prazen list papirja), vendar pa
ne omogota robustnega obravnavanja deformacij objekta. V splo$nem je tevilo stabil-
nih regij odvisno od vizualnih lastnosti specifi¢nega objekta (npr. jasnosti teksture), to
pa neposredno vpliva na uspednost sledilnika, saj je le-ta odvisna od $tevila in ponovlji-
vosti stabilnih regij. Ce imamo opravka z barvno homogenimi objekti, SIFT zna&ilnice,
omenjene v prejnjem primeru, ne bodo Steviléne in ponovljive, sledilnik pa bo zato ne-
uspesen.

V [47] avtorji obravnavajo problem postavitve delov v sliko kot optimizacijski pro-
blem in predlagajo sledenje objektu s pomo&jo mnoZice lokalnih jeder, ki so med seboj
povezana preko omejitev v obliki afine transformacije. Avtorji v [61] to omejitev razra-
hljajo in enotno afino transformacijo razbijejo na lokalne afine transformacije trojic de-
lov. Avtorji v [69] predlagajo polno povezan graf omejitev v kombinaciji s filtrom z delci
zauporabo prisledenju obrazu. V [81] avtorji za zapis prostorskih omejitev med deli upo-
rabijo Markovska naklju¢na polja. Problem vseh omenjenih pristopov je, da morajo biti
omejitve roéno nastavljene glede na strukturne lastnosti objekta, kar pa je v mnogo scena-
rijih nezazeleno. Poleg tega je mnoZica delov v teh vizualnih modelih fiksna in se ne more
prilagajati vejim spremembam v izgledu objekta. V [62] avtorji predlagajo sledenje arti-
kuliranim objektom s poZre$nim deljenjem segmentacijske maske objekta na ve¢ delov.
Tej pravokotni deli so generirani za vsako novo sliko iz osvezene segmentacijske maske,
ki predpostavlja priblizno nespremenljiv barvni opis. Bolj prilagodljiv geometrijski mo-
del, ki omogota dolgorotno osveZzevanje, je predstavljen v [68]. Preprost zvezdast model
povezuje posamezne dele, le-te pa lahko s ¢asom dodajamo in odvzemamo. Novi deli so
v model dodani z uporabo globalnega barvnega modela, ki je kombiniran z detektorjem
stabilnih regij, kar pomeni, daje postopek omejen na teksturirane objekte. Naslednji mo-
del, ki uporablja vijenivojski globalni izgled za postavljanje delov, je predstavljen v [72].
V tem primeru je segmentacijski algoritem inicializiran z uporabo najdenih ujemanj lo-
kalnih znatilnic, rezultat segmentacije pa je nato uporabljen za ulenje novih znatilnic.
Uspeh tega pristopa je neposredno odvisen od robustnosti segmentacije, ki je v primeru
zamegljenih ali Sumnih scen dokaj nizka. Bolj preprosta, hitrejsa, a tudi manj zanesljiva

segmentacija je uporabljena v [60]. V tem primeru je vsak slikovni element za pripadnost
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objektu obravnavan loteno. Uspednost vseh teh pristopov kaze na uporabnost visoko-
nivojske informacije, saj le-ta omogoca daljo Zivljenjsko dobo sledilnikov, ki temeljijo na
kombinaciji lokalnih opisov v scenarijih, kjer se izgled objekta spreminja. Kljub temu pa
ostaja mehanizem integracije globalne in lokalne informacije o izgledu objekta le delno

raziskan.

Razvoj na podrogju vizualnega sledenja poteka z bliskovito hitrostjo in vsako leto je
predstavljenih na desetine novih sledilnikov. Ce hotemo nov sledilnik ustrezno preuiti
in ga kriti¢no ovrednotiti s primerjavo z ostalimi sledilniki na podrogju, je pomembno,
da izberemo standardno mnozico testnih sekvenc, standarden evaluacijski protokol in
informativne mere performans. Na Zalost na podro&ju vizualnega sledenja trenutno ni
soglasja glede izbire le-teh. Velina znanstvenih objav, ki obravnavajo metodologijo za
ocenjevanje vizualnih sledilnikov, se ukvarja s sledenjem ve¢ objektom [85-87]. Na prvi
pogled izgleda sledenje ve¢ objektom kot pospolositev sledenja enemu objektu, vendar
se v primeru sledenja ve¢ objektom bolj osredototimo na merjenje pravilnosti dodelje-
vanja identitete posameznemu objektu v vnaprej doloteni domeni, npr. sledenje ljudem
ali avtomobilom [17, 18], Zivalim [20] ali sledenje v $portu [14], ne pa na lastnosti, ki
jih ima sledilnik v okviru sledenja posameznega objekta. Ocenjevanje sledenja enemu sa-
memu objektu se osredotota ravno na to: na natantnost, robustnost, pa tudi na splo$no
uporabnost posameznega vizualnega sledilnika. Glavni cilj je ocenjevanje uspednosti v ra-
znolikih scenarijih (razli¢ni tipi osvetlitve, gibanje kamere, $um itd.). Iz tega cilja izhajajo
avtorjiv [66], ki primerjajo mnoZico sledilnikov z uporabo povpreéne napake sredid¢a ter
mere povpretnega prekrivanja. Njihova $tudija je osredotodena primarno na odkrivanje
pozitivnih in negativnih lastnosti omejenega 3tevila sledilnikov. Avtorji v [91] razSirijo
mnozico sledilnikov in testnih sekvenc. Velikost njihovega eksperimenta je impresivna,
vendar njihova izbira mer ni posreena, kar je razvidno iz skope kvalitativne analize rezul-
tatov. V [92] avtorji predstavijo sistem za evaluacijo sledilnikov, ki lahko simulira ome-
jeno $tevilo scenarijev degradacije video sekvenc. Poleg tega predlagajo tudi novo mero
ocenjevanja performans, vendar je ne podprejo s teoretitno analizo. V [96] je predsta-
vljena zanimiva ideja zbiranja obstojetih primerjalnih eksperimentov iz razli¢nih virov za
njihovo skupno povzemanje, ki naj bi zmanj$alo mozno pristranskost posameznih eks-
perimentov. Avtorji tudi sami priznavajo, da ta pristop ni primeren za vrednotenje novih
sledilnikov, poleg tega pristop ne naslavlja vpliva korelacije razliénih mer. V [93] avtorji

predstavijo eksperimentalen povzetek raznolike mnoZice nedavno predstavljenih sledil-
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nikov skupaj zanalizo nekaterih mer performans. Zaradi omejene mnozice mer za analizo
je njihova konéna izbira Ze od zatetka bolj naklonjena diskriminativnim sledilnikom, kar
vpliva tudi na konéno izbiro uporabljenih mer ter posledi¢no na interpretacijo rezulta-
tov. Vsa omenjena dela jasno kaZejo na pomen dobre in razumljive evaluacije sledilnikov,
vendar pa v nobenem izmed njih niso naslovljeni vsi pogoji za tako evaluacijo.

Za objektivno in temeljito evaluacijo potrebujemo tudi orodja, ki nam omogotajo
delno-avtomatsko opravljanje eksperimentov. V preteklosti sta bili predlagani dve taki
orodji, ODVIS [19] ter ViPER [97]. Prvi sistem je narejen za sledenje v sistemih za nad-
zor, pri drugem pa gre za skupek orodij za anotacijo sekvenc in naknadno ratunanje
razli¢nih mer. Kasneje je bilo predstavljenih tudi nekaj drugih podobnih orodij (npr. [91,
92]), vendar so vsa ta orodja omejena na doloten evaluacijski protokol ter omejeno mnozico
vnaprej prilagojenih sledilnikov. Noben izmed omenjenih sistemov ne nudi fleksibilne,
robustne in avtomatske evaluacije vedjega Stevila sledilnikov, niti ne omogota prepro-
ste in hitre integracije poljubnega sledilnika. Te lastnosti so klju¢ne za 3irde sprejemanje
orodja ter posleditno standardizirano evaluacijo, ki bi raziskovalcem omogoctala konsi-

stetno primerjavo njihovih sledilnikov.
D.2  Hierarbicni vizualni model

Nase delo v okviru izdelave robustnega vizualnega sledilnika temelji na fuziji obeh glav-
nih paradigem zasnove vizualnih modelov, se pravi holisti¢nega natina opisa izgleda v
kombinaciji z opisom z deli, saj holisti¢ni vizualni modeli niso primerni za vse scenarije
sledenja. V tej doktorski disertaciji predstavljamo novo formalizacijo vizualnega modela,
ki mu pravimo hierarhi¢ni vizualni model. Motivacija za hierarhi¢ni opis izgleda objekta
izhaja iz Zelje po prostorskem in ¢asovnem strukturiranju teh podatkov, kar omogota
vizualnemu modelu, da je dovolj specifiten, da lahko lokalizira objeke v sliki, obenem
pa tudi dovolj proZen, da se lahko hitro prilagodi poljubni spremembi izgleda objekta.
Konceptualno je hierarhiéni model definiran kot mnozica plasti, vsaka izmed njih opisuje
izgled na drugaten nadin. Spodnja plast vsebuje najbolj jasno informacijo o trenutnem
izgledu objekta, visje plasti pa informacijo o bolj splo§nem izgledu, ki je manj odvisen od
trenutka v ¢asu. Funkcija posameznih plasti se odraza tudi v osveZevanju vizualnega mo-
dela. Spodnje plasti so pri svojem osvezevanju vodene s strani vi§jelezedih plasti, visje pla-
sti pa so osvezevane z izlu$¢eno in posplo$eno vizualno informacijo spodnjih plast, &e je
le-ta dovolj zanesljiva. Ce informacija v nekem trenutku ni zanesljiva, se osvezevanje visjih

plasti ustavi, plasti pa so tako za$¢itene pred drsenjem in lahko z vodenjem osvezevanja
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spodnjih plasti pripomorejo k okrevanju celotnega vizualnega modela.

Hierarhi¢ni vizualni model nudi odprt in proZen teoreti¢ni okvir, ki lahko sluzi kot
vodilo za razvoj bolj robustnih sledilnikov. Spodnja plast je najbliZje trenutnemu izgledu
objekta, vendar se mora neprestano spreminjati in prilagajati spremembam v sliki. To
lahko dosezemo z uporabo vizualnega modela z visoko stopnjo prostih parametrov, kot
je prozna konstelacija delov, vendar pa se lahko pri taki predstavitvi na dolgi rok hitro
pojavijo problemi. Prav pri tem pridejo do izraza vi§je plasti vizualnega modela, ki nudijo
spodnji plasti vodenje, na primer z odvzemanjem zastarelih delov ter dodajanjem novih.

V dokrorski disertaciji predstavljamo dva vizualna modela, ki sledita ideji hierarhitne
organizacije vizualne informacije. Prvi model imenujemo sklopljeni vizualni model. Gre
za vizualni model, ki izgled objekta opisuje v dveh plasteh in tako zdruzuje lokalno in
globalno predstavitev izgleda objekta. Spodnja plast je sestavljena iz ve¢ med seboj pove-
zanih delov, ki so se sposobni prilagajati geometrijskim spremembam netogih objektov,
zgornja plast pa vsebuje veémodalno globalno predstavitev izgleda, ki vodi proces poso-
dobitve spodnje plasti. Prilagajanje spodnje plasti je formalizirano kot stohasti¢na opti-
mizacija, ki uposteva tako vizualno podobnost delov s sliko kot tudi geometrijske ome-
jitve med deli. Ker dolo¢eni deli objekta med dolgorotnim sledenjem izginejo, pokazejo
pa se lahko novi, je osveZevanje mnoZice delov nujno za uspeh sledilnika. Odvzemanje in
oddajanje delov je vodeno preko zgornje plasti, ki dolo¢i podro&ja v sliki, ki, glede na vizu-
alno informacijo, z veliko verjetnostjo pripadajo objektu. Prav tako se preko dobrih delov
iz spodnje plasti osvezuje tudi zgornja — obe plasti lahko vzajemno osveZujeta ena drugo.
Opisani vizualni model smo uporabili za razvoj sledilnika. Delne rezultate teh raziskav
smo kot del znanstvene diseminacije v okviru doktorske disertacije objavili v ve¢ih obja-
vah [106, 107], v katerih smo pokazali, da je predlagana kombinacija lokalne in globalne
informacije smiselna, sledilnik namre¢ zagotavlja robustno in ratunsko u¢inkovito slede-
nje objektom, $e posebno pa se vizualni model izkaZe pri sledenju objektov, ki se netogo
deformirajo. S preprosto implementacijo opisanih idej smo v eksperimentalni primer-
javi presegli najboljie sledilnike v ¢asovnem obdobju objave ¢lankov, kot prikazujemo v
eksperimentih, opravljenih v okviru doktorske disertacije, pa se lahko uspe$no kosa tudi
z novej§imi pristopi. Po drugi strani pa analiza razkrije tudi nekaj pomanjkljivosti mo-
dela, ki se kaZejo v nizki natantnosti sledenja, $e posebno v primerih, ki so dokaj preprosti
za sledilnike, ki objekt ocenjujejo z manj parametri, le-te pa lahko tako ocenijo bolj na-
tan¢no. V okviru analize smo predlagali nekaj moZznosti za izboljSave, ki smo jih naslovili

v drugem opisanem vizualnem modelu.



Visual tracking

Drugi prestavljeni vizualni model razsirja hierarhijo s tretjo plastjo, uvaja pa tudi kon-
cept sidrnih predlog. Prvi dve plasti drugega vizualnega modela sta konceptualno zelo
podobni prvemu vizualnemu modelu. V spodnji plasti za iskanje ujemanja namesto sto-
hasti¢ne optimizacije uporabljamo deterministi¢no, ki pa jo inicializiramo z uporabo
optitnega toka v posameznih delih. Srednja plast je, podobno kot v prvem vizualnem
modelu, namenjena dolotanju podrotij v sliki, ki pripadajo objektu, le-to pa dosezemo
s preprosto in hitro segmentacijo na podlagi barvnega modela. Tretja plast vsebuje spo-
minski sistem statiénih predlog, ki vizualnemu modelu nudijo zanesljivo informacijo o
poloZaju in velikosti objekta v primeru dobrega ujemanja ene izmed predlog s sliko. Na
ta nadin tretja plast pripomore k hitremu okrevanju celotnega vizualnega modela. Pred-
stavljena eksperimentalna analiza koristi tretje plasti potrdi, saj sledilnik s tem vizualnim

modelom izbolj$a natan¢nost, pa tudi splodno kvaliteto sledenja.
D.3  Metodologija za primerjavo sledilnikov

Zaradi kompleksnosti algoritmov za vizualno sledenje in sekvenéne narave sledenja je
ocenjevanje kvalitete posameznih algoritmov netrivialna naloga, katere pomembnost je
Sele pred kratkim pritegnila $irSo pozornost raziskovalne skupnosti. Zanesljivo ocenje-
vanje kvalitete sledilnikov je pomembno tako za kriti¢tno ovrednotenje napredka v raz-
iskavah kot tudi za interpretacijo delovanja razli¢nih pristopov pri razvoju sledilnikov,
pomanjkanje soglasja pa upotasnjuje napredek na tem podro&ju. Klju¢no je predvsem
soglasje glede mer performans ter metodologije, pa tudi glede mnoZic posnetkov, na ka-
terih se algoritme primerja, v vetini trenutnih del je izbira vseh treh komponent bolj ali
manj poljubna.

V okviru te doktorske disertacije zato naslavljamo problem izbire enotne metodolo-
gije za krititno ocenjevanje performans kartkorotnih sledilnikov. V nasprotju s prevla-
dujotimi trendi v zadnjih desetletjih trdimo, da lastnosti vizualnih sledilnikov ni mogote
opisati zeno samo mero uspe$nosti, po drugi strani pa tudi ne smemo uporabiti poljubne
mnozice mer, za katere ne poznamo medsebojnih odnosov. Razvoj nove evalucijske me-
todologije smo priteli s kriti¢no analizo mer performans ter evalucijskih protokolov. V
ta namen smo opravili teoreti¢no in empiri¢no analizo mer, ki so pogosto uporabljene
za ocenjevanje zmogljivosti vizualnih sledilnikov. Analiza obsega tako pogosto upora-
bljane ocene, ki se uporabljajo za primerjavo sledilnikov, kot tudi bolj opisne mere, npr.
razlitne tipe grafov. V nai raziskavi smo s pregledom in analizo pokazali, da nekatere iz-

med mer odraZajo iste kvalitete ali pa so celo teoreti¢no ekvivalentne. Na temelju te ana-
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lize smo predlagali par dveh $ibko koreliranih mer, ki odraZata natantnost in robustnost
sledilnega algoritma. Natan¢nost sledilnika se odraza v povpreénem prekrivanju regije
objekta v anotacijah z regijo, ki jo za objekt predlaga sledilnik, robustnost pa se odraza
v $tevilu odpovedi sledilnika, ko je le-ta zdrsnil s tarée in ga je bilo potrebno ponovno
inicializirati. Predlagamo tudi ustrezen prikaz takih rezultatov v obliki dvodimenzional-
nega tockastega grafa ter analizo celotne metodologije s pomogjo predlaganih teoreti¢nih
sledilnikov, ki izrazajo ekstremno obnasanje sledilnih algoritmov, na primer dolotitev ce-
lotne slike za regijo objekta ali neprestano odpovedovanje. Poleg tega predlagamo tudi
indikator fragmentacije, ki odraza razporeditev odpovedi po sekvenci, ter pokazemo,
kako se lahko teoretitne sledilnike uporabi za dolotanje preprostih lastnosti sekvenc,
kar nam olaja interpretacijo rezultatov. Izbiro mer nato nadgradimo $e z metodolo-
gijo razvritanja vedjega Stevila sledilnikov. Pri tem upostevamo morebitno stohastitno
naravo sledilnikov, kar pomeni, da moramo sledilnik na isti sekvenci pognati veckrat, saj
rezultati ne bodo vedno enaki. Poleg tega pa pri dolotitvi vrstnega reda upostevamo tudi

statisti¢no ekvivalenco sledilnikov.

Primerjava ve¢jega Stevila sledilnikov na veliki mnozici sekvenc je zapletena naloga,
ki pa mora biti opravljena ponovljivo in brez napak. V ta namen smo v okviru diserta-
cije implementirali odprtokodno okolje, ki je zmozno samodejno opraviti eksperimente
na podlagi nade predlagane metodologije, obdelati rezultate ter generirati informativna
porotila. V okviru tega okolja naslavljamo tudi problem hitre integracije razli¢nih imple-
mentacij sledilnikov, spisanih v razli¢nih programskih jezikih. V ta namen predlagamo
preprost komunikacijski protokol, ki za medij komunikacije med sledilnikom in evalu-
acijskim okoljem uporablja standardne koncepte operacijskih sistemov, kot so datoteke
ter vhodno-izhodni tokovi. Glavno vodilo za naértovanje protokola je preprostost in-
tegracije, ki bo raziskovalcem omogotala hitro vklju¢itev podpore v lastno kodo. Na ta
nadin se lahko raziskovalci ukvarjajo predvsem z razvojem novih metod, po drugi strani
pa lahko nova orodja za analizo sledilnikov hitro postanejo dostopna in uporabna Siroki
mnozici uporabnikov. Orodje za primerjavo sledilnikov, preko njega pa tudi predla-
gano metodologijo, sedaj uporabljajo tudi v okviru delavnic in tekmovanj Visual Object

Tracking (VOT) challenge.



Visual tracking
D.4 Zakljucek

V doktorski disertaciji smo obravnavali problem vizualnega sledenja, v okviru dela pa

smo predstavili dva velika prispevka k znanosti:

= Nov algoritem za vizualno sledenje z zdruzevanjem lokalne in globalne vizualne
informacije za sledenje netogih artikuliranib objekrov. Predstavljamo in analizi-
ramo dva sledilnika, ki vsebujeta nov tip hierarhi¢nega vizualnega modela in ki
omogocata sledenje tartam tudi v primeru netogih deformacij ter drugih spre-

memb izgleda.

= Nova metodologija za ocenjevanje vizualnib sledilnikov. Definiramo reprezenta-
tivno mnozico mer uspe$nosti, ki jih lahko uporabimo za opis razlitnih aspek-
tov sledenja ter predlagamo metodologijo za eksperimentalno primerjavo velikega

$tevila sledilnikov.

Ob tem je potrebno poudariti, da je problem vizualnega sledenja sam po sebi zelo slabo
definiran, saj sledenje stanju poljubnega objekta zahteva integracijo veliko vegje koli¢ine
znanja, kot je samo trenutni izgled objekta. Da bi lahko poljuben objekt lahko zanesljivo
sledili v poljubni situaciji, kjer je tega zmozen &lovek, bi moral sistem integrirati podsis-
teme iz ve¢ podrodij ratunalniskega vida in sklepanja, kar dale¢ presega trenutno stanje na
tem raziskovalnem podro&ju. Po drugi strani pa Ze sedaj obstaja veliko moZnosti uporabe
vizualnega sledenja v okviru dologenih aplikacij, kjer je scenarij sledenja bolj definiran in
omejen. Prav med tema dvema pogledoma vidimo veliko priloznost hierarhi¢nih vizu-
alnih modelov, saj nudijo teoreti¢ni okvir, ki omogo¢a po eni strani postopen prehod iz
problema sledenja na druge domene ratunalniskega vida, kot sta kategorizacija in detek-
cija, po drugi strani pa na podoben natin omogoc¢a tudi intuitivno uvajanje omejitev, ki
izvirajo iz aplikacije.

Napredek v vizualnem sledenju sloni tudi na razumljivi empiri¢ni analizi teoreti¢nih
modelov. V tem okviru je pomembno poudariti, da predlagana metodologija za analizo
in primerjavo kratkoro¢nih sledilnikov pridobiva prepoznavnost v raziskovalni skupno-
sti, predvsem po zaslugi tekmovanja VOT, ki predstavlja platformo za razvoj in promo-
cijo konsistentne metodologije, preko tega pa za pospesen razvoj podrodja vizualnega
sledenja. Najvedji izziv, s katerim se soocajo iniciativa VOT ter podobne ideje, je, kako

se upreti sku$njavi redukcije opisa lastnosti sledilnih algoritmov na eno samo §tevil¢tno
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oceno ter nesmiselni bitki za njeno izbolj$avo. Namesto tega moramo priznati raznovr-
stnost pristopov ter sprejeti smiselne interpretacije prednosti in slabosti le-teh, k temu ra-
zumevanju pa bo najverjetneje prispevala tudi konsolidacija evaluacijskih orodij, ki bodo
omogoctala temeljito analizo posameznih algoritmov ter s tem njihovo nadgradnjo ter

napredek celotnega podrogja.
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