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Integrative clustering by non-negative matrix
factorization can reveal coherent functional groups

from gene profile data
Sanja Brdar, Vladimir Crnojević, Blaž Zupan

Abstract—Recent developments in molecular biology and tech-

niques for genome-wide data acquisition have resulted in abun-

dance of data to profile genes and predict their function. These

data sets may come from diverse sources and it is an open

question how to commonly address them and fuse them into a

joint prediction model. A prevailing technique to identify groups

of related genes that exhibit similar profiles is profile-based

clustering. Cluster inference may benefit from consensus across

different clustering models. In this paper we propose a technique

that develops separate gene clusters from each of available data

sources and then fuses them by means of non-negative matrix

factorization. We use gene profile data on the budding yeast

S. cerevisiae to demonstrate that this approach can successfully

integrate heterogeneous data sets and yields high-quality clusters

that could otherwise not be inferred by simply merging the gene

profiles prior to clustering.

Index Terms—Clustering, Data fusion, Gene profiling, Gene

set enrichment, Non-negative matrix factorization

I. INTRODUCTION

M

ODERN experimental approaches in molecular systems
biology provide us with data that are rich in the number

of observed objects (e.g., genes) and in the conditions where
these are studied. Today, a major challenge to exploit available
data is addressed by crafting of computational approaches
that can propose potentially useful hypotheses from the ever-
increasing volume of data repositories and heterogeneity of
data sources.

A common task in molecular biology is gene function
prediction. We can exploit currently available functional anno-
tations in model organisms in combination with various source
of experimental data to infer functions of yet uncharacterized
genes. A popular approach for this task is gene cluster-
ing [1]. Clustering infers groups of similarly-profiled genes.
The experimental data that characterizes genes is considered
for the assessment of gene similarity and the function of
uncharacterized genes is inferred from the prevailing function
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of the genes in the cluster. This “guilt by association” principle
assumes that gene clusters are also functionally enriched, that
is, genes with similar functions will cluster together, making
the clusters coherent in terms of functions carried out by genes
in the cluster.

Large-scale molecular biology experiments may provide
the data for profiling thousands of genes. These profiles
may include condition- or development stage-specific gene
expressions, mutant-based phenotypes such as growth rates or
measurements of fitness, and gene interactions. Profiles that
stem from different types of experiments may result in gene
clusters of different coherence and hence different utility for
gene function prediction. An open question is how to integrate
the results of clustering coming from different types of gene
profiles to increase the quality of clusters with respect to
enrichment of their associated gene functions.

In bioinformatics, integrative approaches are motivated by
the desired improvement of robustness, stability and accuracy.
Troyanskaya et al. introduced a Bayesian integrative frame-
work [2], [3], [4] that examines information from various
data sources. Each data source provides information to in-
dependently estimate the likelihood that a pair of genes is
functionally related. These likelihoods are then merged across
data sources via the Bayesian approach. The structure of the
Bayesian network and conditional probability tables are often
obtained from domain experts or inferred from Gene Ontology
(GO) [5]. A related, but methodologically different unsuper-
vised approach to data integration was proposed by Tanay et
al. [6], where biclustering of genes and their characteristics led
to identification of groups of genes with correlated behavior
across diverse data sources. The approach proposed in this
paper is motivated by consensus clustering [7], a method
that originally incorporates resampling to yield diverse data
sets of which clustering is a subject to consensus analysis
to find groups of genes that consistently co-cluster across
data samples. Consensus clustering increases the stability of
discovered clusters.

Instead of resampling employed in consensus clustering,
we propose to examine gene clusters that are developed from
different data sources and different similarity measures. We
further propose an alternative technique for cluster integration,
where we use non-negative matrix factorization (NMF) [8].
Approaches based on NMF have become widely accepted for
the analysis of bioinformatics data [9] and useful tools have
emerged [10], [11]. NMF has been applied to reduce dimen-
sions in microarray data and infer reduced features metagenes
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that were then used for clustering and visualization [12]. In
another example, Wang et al. [13] reduced data dimensions
by least squares NMF. The authors observed improved results
when uncertainty measurements of gene expression data were
incorporated in the algorithm. Zheng et al. used NMF for
clustering cancer gene expression data [14]. A Specific NMF
application was reported by Greene et al. [15], where the
authors proposed to ensemble non-negative matrix factoriza-
tions of proteins pairwise similarity matrices, each obtained
with different random initialization of the method. In a text
mining study, Chagoyen [16] developed a corpus of gene-
relevant documents and relied on NMF to transform the initial
high dimensional vocabulary space into reduced semantic
representation. Hierarchical clustering was then used to group
genes in the new feature space. Discovered groups were
functionally coherent, but the authors limited the evaluation
to only eight GO terms.

We here describe the study that proposes data integration
through gene clustering on possibly heterogeneous data sets
and cluster fusion by means of NMF. We show that proposed
integration increases cluster coherence estimated through gene
function enrichment [17]. The clusters discovered through
integration are more representative as they include higher
proportion of genes that share common function. We also
diversify input data by considering various estimates of gene
profile similarity. Integrative approach allows us to better
handle noise and other uncertainties by generalizing across
multiple data sources. In our study, gene clusters are inferred
from gene networks [18] [19] [20], where these can directly
represent the original data (for example, for interactions be-
tween genes or between proteins) or can be constructed from
gene profile data applying some profile similarity measure. For
clustering, we use a state-of-the-art network-based algorithm
SPICi (Speed and Performance In Clustering) [21] and two
well-known Markov Cluster [22] and Affinity Propagation [23]
algorithms. Different clustering algorithms provided us an
opportunity to study their effects on quality of data fusion.
The main contributions of our work include the proposed data
fusion, an algorithm for extracting final clusters after NMF,
and evaluation of proposed data fusion technique within the
scope of functional genomics [24], [25] [26].

II. DATA

We considered three different data sets on budding yeast
(Saccharomyces cerevisiae) that include a collection of gene
expressions measured at 36 different time points of the
metabolic cycle [24] (YMC), gene interaction data from SGA
experiments [25], and gene expression data sets from the
Saccharomyces Genome Database - Expression Connection
(SGD) [26]. SGA interaction data profiles 3,475 query genes
by recording a fitness of a double mutant, where each of
the query genes was knocked-out together with another gene
chosen from the set of 1,712 genes. In gene expression data
from SGD we have merged various SGD data subsets to
derive profiles of genes whose expression was observed under
740 different conditions. The selected data collections include
different sets of genes; we focused on the subset of 1,799
genes that were present in all three data sources.

III. METHODS

A. Inference of Gene Networks

We inferred gene networks from gene profile similarities
and considered three alternative measures: mutual informa-
tion, Pearson correlation coefficient and Euclidean distance.
Each inferred network is an undirected weighted graph G =
(V,E,w), where V is the set of nodes (genes), E ✓ V xV is
the set of edges and w are edge weights that refer to estimated
similarity. In the case of mutual information and Pearson
correlation, two nodes are connected if the profile similarity
between their corresponding genes is above the 99th percentile
of similarities from ten thousand arbitrarily chosen gene pairs
from randomly perturbed data (c.f., [18]). For Euclidean dis-
tance, significant edge weights are those below 25th percentile
of estimated null-hypothesis distribution. Initial threshold that
selects edges below the 1st percentile was too restrictive and
would result in a loss of more than half of networks nodes
that became singletons after thresholding.

After the thresholding described above the resulting gene
networks still include about half a million edges and are too
dense for identification of groups by graph-based clustering.
Hence, we have additionally removed the edges by retaining
at most 100 highest-scored edges for each gene. The choice of
this threshold was inspired from results of the studies of yeasts
co-expression networks in [27], [28] which exhibit small-world
and scale-free typologies with high modularity. The degrees of
our resulting metabolic, expression and SGA networks along
with the other main properties of inferred graphs are reported
in the Table I. Analysis was carried out with the Network
Analyzer [29] plug-in for the Cytoscape [30]. These properties
are similar to those of the co-expression networks from [28]
where clustering coefficient was 0.2 and diameter was 3, and
are similar to properties of the networks from [27], where the
average node degree was 73.4.

B. Clustering Algorithms

The SPICi [21] network clustering algorithm searches for
highly connected regions in the network and uses a greedy
heuristic approach. It calculates the density of sub-network
S ⇢ G as the sum of the weights of all edges in S divided
by the total number of possible edges that would be present
in a complete sub-graph. Another measure used in SPICi is
node support provided by a sub-network S, which is defined
as the sum of the weights of edges that are incident to nodes
in S. The algorithm starts with nodes of the highest-weighted
edge and grows the cluster based on two parameters: Ts -
the support threshold and Td - the density threshold. The
number of clusters is determined by the algorithm. After
clustering, some nodes remain as singleton clusters due to
their relatively low similarity with adjacent nodes and they
are discarded at the end of the process. Our networks were
clustered with parameter Ts set to 0.5 and Td adapted to the
network properties. The starting value was set to 0.5 and was
decreased until coverage, expressed as the ratio between the
number of genes included in the clusters and the total number
of genes, reached at least 50 % of genes.
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TABLE I: Statistical Properties of Inferred Networks

Data Set

Similarity

Score

Number
of Nodes

Average
Degree

Clustering
Coefficient

Network
Diameter

YMC Mutual Inf. 1798 42.32 0.23 6
Pearson 1797 41.38 0.32 7

Euclidean 1788 62.74 0.53 14
SGA Mutual Inf. 1799 76.85 0.07 3

Pearson 1799 73.36 0.09 3
Euclidean 1799 67.19 0.17 5

SGD Mutual Inf. 1799 35.20 0.21 6
Pearson 1797 31.36 0.24 7

Euclidean 1428 33.82 0.33 14

The Markov Clustering (MCL) [22] algorithm uses random
walks and assumes that longer network paths are more likely to
occur for a pair of associated nodes . The algorithm starts with
an adjacency matrix that represents a weighted graph, where
the diagonal elements are added to include self-loops. The
matrix is transformed to a stochastic transition matrix where
each column sums to one. After this, expansion and inflation
operators are applied in iterative steps. Expansion corresponds
to the power of a matrix and provides higher step transition
probabilities. The inflation operator takes entry-wise powers
with coefficient r and it is followed by re-scaling to keep the
matrix stochastic. This operator emphasizes strong connections
and further weakens already weak ones. Inflation parameter
r affects clustering granularity. In our experiments, we start
clustering with r set to 2.0. If the algorithm produced oversized
clusters with more than 300 genes, inflation parameter r was
increased. For SGA/Mutual information, SGA/Euclidean and
YMC/Euclidean networks this parameter was set to 2.0, 2.5
and 4.0, respectively. For all others networks, r = 2.2 fulfilled
this condition and provided good quality and coverage of
clusters. In the initialization step, self-loops were assigned to
the graph with weights that equal the maximum weight of
incident edges for each node [31]. Compared to the case where
the self-loop is left at zero or equal to the sum of incident
weights, this setting produced better results in terms of the
higher gene function enrichment scores.

The third algorithm, Affinity Propagation [23] (AP),
searches for representative nodes (so-called exemplars) that
provide seeds for clusters. Seeds are chosen to maximize
within-cluster similarities. Nodes exchange messages on avail-
ability and responsibility. Responsibility r(i, k) is sent from
non-representative nodes to exemplars and inform on the
suitability of exemplar k for node i, considering other potential
exemplars. Availability a(i, k) is sent from exemplar k to
data point i to inform it on how appropriate it would be for
point i to choose k as its exemplar. Messages trigger actions
on choice of cluster membership, and are exchanged until
reaching convergence. The number of exemplars (clusters)
emerges through the use of a clustering algorithm.

C. Integration by Non-negative Matrix Factorization

The result of network clustering from different data
set/similarity measure combinations can be presented as a
matrix of cluster memberships [32], where one dimension
represents genes and the other clusters. Cluster memberships
by SPICi, AP and MCL are all crisp and the values in

membership matrix are either 1 or 0, indicating whether a
gene was assigned to a specific cluster. Clustering information
from different data sources were merged by concatenating
membership matrices in the cluster dimension to obtain the
joint cluster membership matrix R = {0, 1}m⇥n, where m
is the total number of clusters from all clusterings and n is
the number of genes considered. NMF finds an approximation
R ⇡WH , where W and H are two non-negative factors such
that W 2 Rm⇥k and H 2 Rk⇥n. Parameter k is a factorization
rank and equals to the desired (target) number of clusters.
In the resulting factorization the matrix W contains encoding
coefficients while rows of H are the basis vectors that can
be interpreted as (continuous) memberships to target clusters
discovered by factorization.

NMF used an algorithm with multiplicative updates [33].
Since our input matrix is sparse, multiplicative updates also
provide sparse solutions and there is no need to include
regularization into the process of factorization. Values of H
and W are iteratively updated (Eqs. 1 and 2) by multiplying
the current values with the factors that depend on the quality
of the approximation R t WH:

H  H. ⇤ ((WTR)./(WTWH)), (1)

W  W. ⇤ ((RHT )./(WHHT )). (2)

Under the multiplicative updates, approximation of R im-
proves monotonically in the Frobenius norm of reconstruction
error:

kR�WHk2F =
X

i

X

j

[Rij � (WH)ij ]
2 (3)

The optimization starts with matrices W and H com-
puted by non-negative double singular value decomposition
(NNDSVD) [34], speeding up the convergence of the opti-
mization and supporting the reproducibility of the results.

The cluster reconstruction process involves setting the
threshold on gene cluster memberships. Fig. 1 illustrates NMF
decomposition of an example cluster membership matrix. For
thresholding, we implement a scaling procedure described
below. Namely, the results of non-negative matrix factoriza-
tion are not necessary unique. There may exist nonsingular
matrices D 2 Rk⇥k that satisfy WD � 0 and D�1H � 0,
and we can rewrite factorization as:

WH = WDD�1H = W ⇤H⇤ (4)
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R W H

  NMF 
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0.65  0.61  0.29  0.00  0.00  0.00  0.00
0.00  0.41  0.44  0.41  0.40  0.00  0.00
0.00  0.00  0.00  0.00  0.47  0.47  0.47

W11  W12  

W22 
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0.01  2.37  0.02  
0.00  0.01  2.01  
1.41  0.00  0.00  

 

genes

 

genes

1    1    1    0    0    0    0

1    1    0    0    0    0    0

Fig. 1: Example of NMF decomposition. The original matrix with crisp memberships to four clusters R is transformed to new membership matrix H with
three clusters and fuzzy memberships.

Matrix D can perform transformations such as scaling or
permutation. Difficulty in determination of new clusters comes
from a scale variance. Instead of factorization presented in
Fig. 1 which results in a pair of coefficients w3,3 = 2.10 and
h3,5 = 0.47, NMF can also result in w3,3 = 1.82, h3,5 = 0.54
(other values in W and H are also changed). Therefore, it
would not be appropriate to assign an absolute threshold value
for creation of new clusters. In order to eliminate encoding
variations we rescaled the columns of encoding matrix W and
rows of basis matrix H , and use the following two diagonal
matrices DW and DH :

DW = diag([max(w:,1),max(w:,2)...max(w:,k)]) (5)

DH = diag([max(h1,:),max(h2,:)...max(hk,:)]) (6)

Part of the procedure used in binary matrix factorization [35]
was suitable for rescaling obtained W and H . For matrices
DW and DH , the following relations hold:

DW = D
1/2
W D

1/2
W DH = D

1/2
H D

1/2
H

D�1
W = D

�1/2
W D

�1/2
W D�1

H = D
�1/2
H D

�1/2
H (7)

R̃ = WH = (WD�1
W )(DWDH)(D�1

H H)

= (WD
�1/2
W D

1/2
H )(D�1/2

H D
1/2
W H) (8)

From Equation 8 rescaling matrix D can be expressed as D =
D

�1/2
W D

1/2
H :

W ⇤ = WD
�1/2
W D

1/2
H H⇤ = D

�1/2
H D

1/2
W H (9)

Transformations of W and H into W ⇤ and H⇤ keep product
WH unchanged, but ensure that values in the encoding and
basis matrices are comparable and can be interpreted. Each
element of W and H is rescaled in the following manner:

w⇤
i,k = wi,k

s
max(hk,:)

max(w:,k)
=

wi,k

max(w:,k)

q
max(w:,k)max(hk,:) (10)

h⇤
k,j = hk,j

s
max(w:,k)

max(hk,:)
=

hk,j

max(hk,:)

q
max(hk,:)max(w:,k) (11)

We infer the membership to k new clusters from coefficients
in W ⇤ and H⇤ in either overlapping or exclusive manner. In
overlapping clustering, genes may belong to more than one
cluster, while in exclusive clustering, each gene is assigned
only to one, most likely cluster. Overlapping clustering assigns
genes to clusters according to their membership coefficients
in H⇤, but only if the membership exceeds the threshold of
0.5. For exclusive clustering, additional ranking is used that
takes into account the importance of a gene within cluster
and strength of cluster. Importance is derived from H⇤ and
strength from W ⇤. The ranking algorithm can be summarized
by the pseudo code given in Algorithm 1.

Algorithm 1: Extraction of clusters
1: Inputs: W ⇤ 2 RM⇥K , H⇤ 2 RK⇥N ,

genes [g1, g2, ... gN ], Tr = 0.5
2: Outputs: clusters C = [c1, c2, ... cK]
3: WSUM⇤  sum over columns W ⇤

4: for k  1 : K do

5: for j  1 : N do

6: if clustering = overlapping then

7: if h⇤
k,j � Tr then

8: append cluster ck with gene gj
9: end if

10: else

11: if (h⇤
k,j � Tr) and (h⇤

k,j ⇤ wsum⇤
k = max(h⇤

k0,j ⇤
wsum⇤

k0 , for k0  1 : K)) then

12: append cluster ck with gene gj
13: end if

14: end if

15: end for

16: end for

Factorization of the input matrix R is iterative and runs for
500 iterations. This is also the number of iterations that is
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required for to reach a stable results in terms of a clustering
structure in number of clusters and involved genes.

D. Cluster Scoring
Any useful clustering should infer gene groups that are

coherent in terms of gene function or any other observed gene
properties. To test this aspect of the method, we use gene
annotations from Gene Ontology [5] (GO) and focus on its 92
yeast slim terms that represent the major branches of the GO.
We assume that the quality of the cluster is associated with
the enrichment of a subset of slim terms in the annotations of
genes from the clusters. Term enrichment, expressed through a
p-value, was computed with a hypergeometric test that assesses
the probability that, for a particular GO term, the abundance
of term-annotated genes in the cluster is not the result of
chance. Intuitively, the clusters with no enriched terms are not
useful for function prediction and hence are of poor quality.
In general, good clusters may have several slim terms that
are enriched. Improvements in clustering algorithm should
yield clusters with increased proportion of genes that share
common function, and thus exhibit higher function enrichment
scores [17]. We therefore score the clusters by averaging
�log(enrichment p-value) of the three most-enriched slim
terms.

IV. EXPERIMENTAL STUDY AND DISCUSSION

This section provides in-depth view on different integration
scenarios. The properties of individual clustering used in
integrations are outlined in Table II and include number of
clusters and coverage - the ratio between clustered and total
number of genes. We first describe experiments with this
set of input clusterings. Later, we evaluate method on larger
set created by altering the parameters that affect clustering
properties. In the experiments we have varied the factorization
rank k according to the average number of clusters inferred by
individual clusterings that participate in the integration (bottom
row of Table II). We then used k 2 {150, 200, 250, 300, 350}
for SPICi and k 2 {100, 150, 200, 250, 300} for the other
two methods. In this way we could test the effectiveness of
representing new clusters by virtue of merging, splitting and
combining input clusters.

A. Partial Integration Across Data Sets or Across Different
Network-Specific Similarity Scores

We integrated either a single input data set where the
clustering was inferred from similarity networks obtained with

application of three different similarity measures, or integrated
three different data sets where a single similarity measure
was considered. Experimental results of these six integration
scenarios are summarized in Fig. 2 and corresponding cov-
erages of integrative clusterings can be followed in Fig. 3.
The results demonstrate that integration improves enrichment,
as we always observe higher scores for the clusterings after
integration. The results also suggest that the efficiency of inte-
grative clustering can be boosted not only by considering the
integration of different sources of data, but also by considering
different measures of similarity. Comparison with baseline
enrichment derived from clustering with the same structure of
clusters but arbitrary association of gene cluster membership
demonstrates that improvement from initial clustering is truly
due to integration and appropriate assignment of genes to the
clusters, and is not obtained just by changing the size and
number of clusters.

B. Integration of Complete Set of Input Clusterings

In the next experiment we tested the effectiveness of inte-
grating the entire set of nine clusterings where all data sets
and all similarity measures were involved. This integration
(see Fig. 4a) improves the results over previous models of
integration. NMF grouped genes into clusters with an average
enrichment score from 6.15 to 8.11 for overlapping clustering,
and from 4.91 to 6.19 for exclusive clustering. That is signif-
icantly higher than the coherence in original clusters since
the best clustering that was involved in this integration (SGD
data set, Euclidean measure) has an enrichment score of 4.99.
Integrated clusters have higher gene function coherence than
clusters that served as an input to the integration.

We further tested the behavior of the proposed data fusion
with two other clustering algorithms, MCL and AP. Again,
clustering was carried out on networks inferred from all
three data sets, where we used each of the three similarity
measures. The results (Fig. 4b and 4c) demonstrate better
performance of overlapping representative clusters compared
to all individual clusterings for both MCL an AP. In the
case of MCL, the quality of exclusive representative clusters
outperforms all individual clusterings when k is set to 100
and 150 and it is at the level of the best used in integration
when k is 200. When we increase granularity (250 and 300
clusters), the integrative approach performs slightly worse,
with enrichment scores that are still higher than in seven out
of nine individual clusterings. In the case of AP, our method

TABLE II: Properties of Individual Network-Based Clusterings (Inputs to Integration)

Similarity SPICi MCL AP
Data Set Score Clusters Coverage Clusters Coverage Clusters Coverage

YMC Pearson 221 0.77 197 0.94 185 0.99
Mutual Inf. 183 0.70 214 0.92 252 0.99
Euclidean 141 0.81 179 0.95 136 0.99

SGA Pearson 385 0.76 155 0.73 245 1.00
Mutual Inf. 307 0.86 174 0.91 280 1.00
Euclidean 285 0.89 118 0.76 162 1.00

SGD Pearson 256 0.84 232 0.84 195 0.99
Mutual Inf. 279 0.73 205 0.85 213 1.00
Euclidean 170 0.61 176 0.76 175 0.78

Average 247 0.77 183 0.85 205 0.97
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(a) (b) (c)

(d) (e) (f)

Fig. 2: Comparison of clustering results before and after the integration. The bar charts present the average enrichment scores of SPICi clusters (before the
integration), and the line graphs present the enrichment scores after the NMF integration with both overlapping and exclusive clusters at five granularity levels
(k). Each panel shows result for specific integration scenario: (a) YMC data x 3 measures, (b) SGA data x 3 measures, (c) SGD data x 3 measures, (d) 3 data
sets x Pearson Correlation, (e) 3 data sets x Mutual Information, (f) 3 data sets x Euclidean distance. In all cases the NMF integration results in increased
enrichment scores and with this improved quality of clusters. The enrichment scores are compared to the baseline scores (diamond symbol on bars and dashed
lines) inferred from clustering with random assignment of genes to the clusters. The graphs provide baseline scores for clustering before integration (bar
charts) and for overlapping NMF clustering (line charts); the baseline scores for exclusive clustering were slightly lower and are not shown.

Fig. 3: Coverage of genes as a function of the number of output clusters k.
The figure reports on the coverage of overlapping (left) and exclusive NMF
clusters (right) from six experiments presented in Fig. 2. Letters on the lines
in the graph (from a to f) refer to panels with different integrations scenarios
from Fig. 2.

is able to successfully transform input clusters in 100 and 150
exclusive representative clusters. If we additionally increase
granularity when creating representative clusters, the quality
of the resulting system declines.

C. Choice of the Number of Clusters with Respect to its Effect
on Average Accuracy and Gene Coverage

Both average enrichment and gene coverage depend on the
choice of the number of output clusters k. Results suggest
that both scores improve after integration. For instance, the
average number of input SPICi clusters was 247 with gene
coverage of 0.77 (Table II, bottom row). At similar number
of clusters (k = 250), the integration — especially the one
with overlapping clusters — improves the average enrichment
score (Fig. 2) but has also higher coverage (Fig. 3).

To further study this two-fold benefit of integration, and
isolate its dependency on number of clusters, we altered the
parameters of our network clustering methods that provide for
initial clustering. Our aim was to infer a cluster sets with
specific number of input clusters, and then output the same
number of clusters after the integration. SPICi (k = 150)
and MCL (k = 100) clustering were considered, as AP
clustering is parameter-free. Shrinking the number of clusters
when compared to our previous experiments (Table II) slightly
improved enrichment for MCL clusters, but had a mixed
effect on SPICi-based clusters. Average enrichment score in
a set of SPICi-inferred clusters was 4.56 with best individual
clustering scoring 5.08, at 0.95 coverage. Integration increased
both the coverage to 0.97 and average enrichment score to
5.56 for exclusive, and to coverage of 0.99 and enrichment
of 7.93 for overlapping clustering. Average score in a set
of clusters by MCL was 5.43 with best individual clustering
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(a)

(b)

(c)

Fig. 4: NMF integration of nine clusterings by (a) SPICi, (b) MCL, (c) AP
clusterings (3 data sets x 3 measures). In graphs on the left we report on
average enrichment scores for clusterings that participate in the integration,
and the right part presents average enrichment scores after NMF integration
produced at five different granularity levels. Higher enrichment scores indicate
better functional coherence of clusters. The enrichment scores after integration
are also consistently above the baseline obtained by evaluating random
clusterings of the the same clustering structure.

scoring 6.77 at 0.96 coverage, while NMF again increased the
coverage and enrichment to 0.99 and 7.97 for exclusive and
to 1.00 and 9.65 for overlapping clustering, respectively. This
set of experiments further confirms the utility of integration
by increasing both average enrichment and coverage. We have
obtained qualitatively similar results with cluster reduction by
pruning of the smallest clusters in the input clusterings (results
not presented for brevity).

The number of clusters k after the integration is a user-
specified parameter. When k is small, the effect of integration
is stronger, while for higher values of k the initial clusters
may be split to smaller ones. The choice of parameter k
involves considering the trade-off between enrichment scores

and coverage, and may depend on the goals of particular
application. For an appropriate starting choice we recommend
setting the number of clusters to the average number of
clusters in the input set of clusterings. Our experiments suggest
that under such setup the clustering integration already has
a positive effect by increasing both enrichment scores and
coverage.

D. Further Insight into the Effects of Cluster Integration

To further demonstrate the inner workings of the proposed
approach, we provide an illustration obtained from our ex-
periment with integration of nine clusterings (3 data sets x
3 similarity measures). Fig. 5 shows part of the input matrix
R considered by NMF. Matrix columns correspond to genes
and rows to clusters. Information on the data source and
corresponding similarity scoring is provided in the last column
of the matrix. In the figure, we provide details on two initial
clusters c1 and c21 (the first and the last row) that are the best
among the 21 presented and compare them with the output
clusters after NMF transformation. For each of the clusters we
have analyzed we report on the most enriched GO terms. Since
only a subset of genes is shown in the figure, we print in black
the cluster memberships that comprise only the genes present
in the displayed matrix, and in gray those that also comprise
some genes outside the displayed matrix. Notice how NMF
reorganizes clusters. Based on the supported evidence, NMF
prunes initial clusters and creates functionally more consistent
groups. For 33 genes in Fig. 5 assigned to 21 input clusters,
NMF identified two clusters that are related to this particular
set of genes. Genes CAT2, TCB3, YML131W, YNR014W,
HXK2, MTO1, SIS2 and YIR024C were excluded from these
clusters due to obvious lack of supporting evidence. CAT2
shares label peroxisome - prevailing function assigned to c1,
but except that cluster none of the other input clusters uphold
its connection to genes that remained clustered together after
NMF. We have further examined other clusters that included
CAT2. Interestingly, this gene was assigned to another group
also enriched in peroxisome, but additionally associated with
cellular amino acid and derivative metabolic process. Through
other NMF clusters, YML131W was additionally associated
with membrane, HXK2 and MTO1 with cytoplasm and mito-
chondrion, SIS2 with enzyme regulator activity and YIR024C
with mitochondrion. TCB3 was not assign to any NMF cluster
due to small support, only YNR014W was in cluster were did
not contribute to the enrichment score. Output clusters with
assigned functional labels indicate that not only is the NMF
approach able to identify representatives among input clusters,
but also succeeds in further improving them.

E. On Initialization of Matrix Factorization Procedure

Although there is no guarantee that NMF with multiplica-
tive updates converges to global optimum, obtained solutions
proved useful and improved clustering results. Through the use
of deterministic initialization by NNDSVD [34], our procedure
always converges to the same solution. Alternatively, we could
use a random initialization of matrices W and H . To examine
the differences with deterministic initialization in terms of
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C16
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C18
C19
C20
C21

genes

C1

C21

peroxisome :  4.47e-20 (12/17)
peroxisome organization:  1.62e-17 (11/17)
membrane :  2.46e-06 (16/17)
transport :  6.76e-05 (12/17)

cytokinesis :  2.48e-08 (6/13)
cell wall:  1.07e-07 (6/13)
extracellular region :  1.25e-07 (6/13)
cellular bud:  9.52e-03 (3/13)

NMF1 NMF2
peroxisome :  6.44e-20 (11/13 )
peroxisome organization :  1.06e-19 (11/13)
membrane :  4.05e-06 (13/13)
transport :  7.52-06 (11/13)

cytokinesis :  6.86e-09 (6/11)
cell wall:  2.98e-08 (6/11)
extracellular region:  3.49e-08 (6/11)
cellular bud :  1.91e-05 (5/11)

Fig. 5: Integration of information through NMF discovers more meaningful clusters. The figure shows a fragment of integrated cluster membership matrix.
The black colour indicates that the fragment of matrix encompasses all members of the cluster, and the grey colour indicates that cluster includes other genes
besides those presented. To compare the results we assigned corresponding enriched functional terms to two input clusters (the best in this example) and to
output clusters (obtained through NMF framework). Improved enrichment values demonstrate the benefits of the integrative approach.

quality of resulting clusters, we ran 50 experiments with
random initialization for 6 integration scenarios from Fig. 2.
Results (Fig. 6) indicate that both initialization techniques
lead to data integration of similar quality. In some cases
random initialization may yield better results and hint at
potential utility of assembling of randomly-initialized models.
However, considering substantially increased computational
requirements of such procedure, we therefore prefer a faster,
deterministic, and, as shown in our study, useful initialization
by NNDSVD.

Fig. 6: Comparison of matrix factorization initialization by NNDSVD and
random initialization across six different integration scenarios from Fig. 2
and using five different factorization ranks (k). Initialization by NNDSVD
is deterministic and using it our data integration procedure converges to a
unique solution (blue dots). Results of 50 runs of data integration by random
initialization are summarized with box-plots.

F. On Overlapping vs. Non-Overlapping Cluster Integration

Our proposed integrative method consistently performs bet-
ter in terms of average enrichment scores when inferring
overlapping clusters. This was in part expected as gene an-
notation terms in general overlap in coverage of the genes,
that is, a particular gene may be annotated with more then
one term. The problem considered in this paper, that is, finding
gene groups with enriched annotations, is therefore biased and
benefits from overlapping clustering. We believe that this is
with no loss of generality, as many problems from natural
sciences deal with objects that are annotated with a set of
labels, rather than classified to a single specific class. Being
able to infer overlapping clusters should thus be considered a
major strength of NMF-based integration. Other studies also
indicate that overlapping clustering better address problems in
various fields of molecular biology, such as those investigating
protein complexes [37], [36] and biological processes [38].

V. COMPARISON WITH OTHER INTEGRATION
TECHNIQUES

Our proposed approach belongs to the late integration type
of ensemble techniques, where aggregation is performed after
individual clusterings have already been formed. We have
compared our method to well-known late integration approach
of consensus clustering [7]. Originally proposed for integration
of different clusterings obtained from samples of the same data
sets, consensus clustering may also be used when different
cluster models stem from different data sets or from different
preprocessing steps, as in our case. Consensus clustering
integrates cluster memberships into a consensus matrix that
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(a) (b) (c)

Fig. 7: Comparison of clustering integration approaches for initial clustering by SPICi (a), MLC (b) and AP (c). Box plots refer to the baseline approach
(no integration, the first box plot in each panel), early integration (EARLY), late integration by NMF (NMF-O for overlapping and NMF-E for exclusive
clustering), and consensus clustering (CONS-O for overlapping and CONS-E for exclusive clustering). The length of a box is the interquartile range of the
enrichment score distribution, the line across the box represents the median, and the mean is denoted with a star symbol.

can be viewed as a similarity matrix and post-processed
through additional methods to obtain final clusters. We used
kernel k-means to create exclusive consensus clusters and its
soft version to detect overlapping clusters [39]. Soft kernel k-
means assigns genes to clusters based on distances to cluster
centers. The number of clusters was set to the same level as
in the proposed NMF-based integration. Evaluation score for
consensus integration in each experiment is averaged across
10 runs due to random initialization of kernel k-means.

A different type of data fusion is an early aggregation, where
data is fused before the application of a clustering algorithm
by merging gene profiles or by aggregation of similarity
matrices [40]. To compare our approach to this technique, we
merged gene profiles before clustering and then independently
inferred gene similarity networks with all three measures and
finally ran individual clustering.

To compare various integration approaches we have first
established a collection of different gene networks. We have
considered all nine combinations of three data sets and three
similarity measures. To additionally diversify the networks,
these were pruned so that each node included a maximum
of t edges, where t 2 {80, 85, . . . 125}. Notice that in the
previous experiments this parameter was fixed to 100. In this
way we have obtained 90 different networks. For the case of
early integration, where the data set where first merged, the
number of considered networks was 30 (3 similarity measures,
10 choices of t).

Just like in experiments from Fig. 4, we have considered
three different clustering methods (SPICi, MCL and AP)
to obtain the initial clusters from each of the networks.
Fig. 7 reports on the resulting average enrichment scores for
the baseline approach (no data integration), early integration
(EARLY), and late integration approaches by overlapping and
non-overlapping NMF-based integration (NMF-O and NMF-
E) and overlapping and non-overlapping consensus integration

(CONS-O and CONS-E). Box plots in the figure summarize
the average enrichment scores obtained from each of 90
networks for baseline approaches (no data integration, box
plots labeled SPICi, MCL, and AP) and scores from clusters
from each of 30 networks for early integration. Late integration
techniques were run 50 times, each time on a random sample
of 9 networks from our collection of 90 networks. For the late
integration approaches, box plots in Fig. 7 thus summarize
50 different average enrichment scores. The number of output
clusters for each run of late integration methods was set to the
average number of clusters in 9 sampled networks.

ANOVA test indicate that significant difference exists
among different methods (p < 10�70 for all experiments
within initial clustering by SPICi, MCL and AP). Post-hoc
Tukey test with 99% confidence reveals groups that are signifi-
cantly different. For integration of clusters proposed by SPICi
(Fig. 7.a) the ranking order is (NMF-O, CONS-O, NMF-E,
EARLY, CONS-E, SPICi) with corresponding grouping (A,
B, C, C, D, E). Groups that do not share the same letter are
significantly different. Thus, in results from Fig. 7.a, the score
distribution for NMF-O is significantly different than those
of other methods, while score distributions of NMF-E and
EARLY are different to score distributions of the CONS-E and
SPICi but are, between themselves, not significantly different.
For integration of clusters proposed by MCL (Fig. 7.b), the
ranking is (NMF-O, CONS-O, NMF-E, EARLY, CONS-E,
MCL) with corresponding grouping of (A, A, B, C, D, E),
and for the integration of AP clusters the ranking is (NMF-
O, EARLY, NMF-E, AP, CONS-O, CONS-E) with grouping
of (A, B, C, D, E, F). Notice that all types of integration
surpasses the clustering where no integration took place,
except in experiments with AP where both type of CONS lose
in performance. For all three types of initial clustering the best
results are achieved by overlapping type of NMF integrative
clustering. Scores for NMF-E are higher to those for CONS-E.
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EARLY integration performs comparatively well, but its score
depends on an appropriate choice of similarity measure that,
in our experience, is the parameter causing high variance in
performance of this approach.

VI. CONCLUSION

Clustering that infers gene groups from their profiles that
can be gathered from any of the currently abundant genome-
wide experimental techniques is currently one of the most
common computational tools in functional genomics. While
other more focused and specialized computational approaches
exist that could manifest better accuracy by learning from
class-labeled data [41], clustering is still the prevailing tech-
nique for preliminary and explorative analysis of experimental
data in systems biology. Further gains in the quality of dis-
covered clusters may stem from data integration, as different
data sources may provide different but complementary insight
into the observed system. In this paper we have proposed
an integration method that can fuse clusterings stemming
from different data sets, different data preprocessing steps or
different clustering techniques. The approach based on non-
negative matrix factorization is robust and can infer gene
groups with high functional enrichment and improved gene
coverage. Our proposed method is general and compares
favorably to alternative integration approaches.
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