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Data Fusion by Matrix Factorization
Marinka Žitnik and Blaž Zupan

Abstract—For most problems in science and engineering we can obtain data sets that describe the observed system from
various perspectives and record the behavior of its individual components. Heterogeneous data sets can be collectively mined
by data fusion. Fusion can focus on a specific target relation and exploit directly associated data together with contextual data
and data about system’s constraints. In the paper we describe a data fusion approach with penalized matrix tri-factorization
(DFMF) that simultaneously factorizes data matrices to reveal hidden associations. The approach can directly consider any data
that can be expressed in a matrix, including those from feature-based representations, ontologies, associations and networks.
We demonstrate the utility of DFMF for gene function prediction task with eleven different data sources and for prediction of
pharmacologic actions by fusing six data sources. Our data fusion algorithm compares favorably to alternative data integration
approaches and achieves higher accuracy than can be obtained from any single data source alone.

Index Terms—data fusion, intermediate data integration, matrix factorization, data mining, bioinformatics, cheminformatics
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1 INTRODUCTION

DATA abound in all areas of human endeavour.
We may gather various data sets that are directly

related to the problem, or data sets that are loosely
related to our study but could be useful when com-
bined with other data sets. Consider, for example, the
exposome [1] that encompasses the totality of human
endeavour in the study of disease. Let us say that we
examine susceptibility to a particular disease and have
access to the patients’ clinical data together with data
on their demographics, habits, living environments,
friends, relatives, movie-watching habits, and movie
genre ontology. Mining such a diverse data collection
may reveal interesting patterns that would remain
hidden if we would analyze only directly related,
clinical data. What if the disease was less common
in living areas with more open spaces or in environ-
ments where people need to walk instead of drive
to the nearest grocery? Is the disease less common
among those that watch comedies and ignore politics
and news?

Methods for data fusion can collectively treat data
sets and combine diverse data sources even when they
differ in their conceptual, contextual and typographi-
cal representation [2], [3]. Individual data sets may be
incomplete, yet because of their diversity and com-
plementarity, fusion can improve the robustness and
predictive performance of the resulting models [4], [5].

According to Pavlidis et al. (2002) [6], data fusion
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approaches can be classified into three main categories
depending on the modeling stage at which fusion
takes place. Early (or full) integration transforms all
data sources into a single feature-based table and
treats this as a single data set that can be explored
by any of the well-established feature-based machine
learning algorithms. The inferred models can in prin-
ciple include any type of relationships between the
features from within and between the data sources.
Early integration relies on procedures for feature con-
struction. For our exposome example, patient-specific
data would need to include both clinical data and
information from the movie genre ontologies. The
former may be trivial as this data is already related
to each specific patient, while the latter requires more
complex feature engineering. Early integration also
neglects the modular structure of the data.

In late (decision) integration, each data source gives
rise to a separate model. Predictions of these models
are fused by model weighting. Again, prior to model
inference, it is necessary to transform each data set
to encode relations to the target concept. For our
example, information on the movie preferences of
friends and relatives would need to be mapped to
disease associations. Such transformations may not be
trivial and would need to be crafted independently for
every data source.

The youngest branch of data fusion algorithms
is intermediate (partial) integration. Algorithms in this
category explicitly address the multiplicity of data
and fuse them through inference of a single joint
model. Intermediate integration does not merge the
input data, nor does it develop separate models for
each data source. It instead retains the structure of
the data sources by incorporating it within the struc-
ture of predictive model. This particular approach
is often preferred because of its superior predictive
accuracy [6], [5], [7], [8], [9], but for a given model
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type, it requires the development of a new inference
algorithm.

We here report on the development of a new
method for intermediate data fusion based on con-
strained matrix factorization. Our aim was to con-
struct an algorithm that requires no or only minimal
transformation of input data and can fuse feature-
based representations, ontologies, associations and
networks. We focus on the challenge of dealing with
collections of heterogeneous data sources, and while
showing that our method can be used on sizable
problems from current research, scaling is not the
focus of the present paper. We first present our data
fusion algorithm, henceforth DFMF (Sec. 2), and then
place it within the related work of relational learning
approaches (Sec. 3). We also refer to related data inte-
gration approaches, specifically to methods of kernel-
based data fusion (Sec. 3). We then examine the utility
of DFMF and experimentally compare it with inter-
mediate integration by multiple kernel learning, early
integration with random forests, and tri-SPMF [10],
previously proposed matrix tri-factorization approach
(Sec 4).

2 DATA FUSION ALGORITHM

The DFMF considers r object types E
1

, . . . , E
r

and a
collection of data sources, each relating a pair of object
types (E

i

, E
j

). In our introductory example of the
exposome, object types could be a patient, a disease
or a living environment, among others. If there are
n

i

objects of type E
i

(oi
p

is p-th object of type E
i

) and
n

j

objects of type E
j

, we represent the observations
from the data source that relates (E

i

, E
j

) for i 6= j in
a sparse matrix R

ij

2 Rni⇥nj . An example of such a
matrix would relate patients and drugs by reporting
on patient’s current drug prescriptions. Notice that
matrices R

ij

and R
ji

are in general asymmetric. A
data source that provides relations between objects of
the same type E

i

is represented by a constraint matrix
⇥

i

2 Rni⇥ni . Examples of such constraints are social
networks and drug interactions.

In real-world scenarios we might not have access to
relations between all pairs of object types. Our data
fusion algorithm still integrates all available data if
the underlying graph of relations between object types
is connected. In that case, low-dimensional represen-
tations of objects of certain type borrow information
from related objects of the different type. Fig. 1 shows
an example of an underlying graph of relations and
a block configuration of the fusion system with four
object types.

To retain the block structure of our fusion system
and hence model distinct relations between object
types, we propose the simultaneous factorization of
all relation matrices R

ij

constrained by ⇥
i

. The re-
sulting system contains factors that are specific to each
data source and factors that are specific to each object
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Fig. 1. Conceptual fusion configuration for four object
types, E

1

, E
2

, E
3

and E
4

, equivalently represented by the
graph of relations between object types (a) and the
block-based matrix structure (b). Every data source
relates a pair of object types, denoted by arcs in a
graph (a) or matrices with shades of gray in block
matrix (b). For example, data matrix R

23

relates object
types E

2

and E
3

. Some relations are entirely missing.
For instance, there is no data source relating objects
from E

3

and E
1

, as there is no arc linking nodes E
3

and
E
1

in (a) or equivalently, a matrix R
31

is missing in (b).
Relations can be asymmetric, such that R

23

6= RT

32

.
Constraints denoted by loops in (a) or matrices with
blue entries in (b) relate objects of the same type. In
our example configuration, constraints are provided for
object types E

2

(one constraint matrix) and E
4

(three
constraint matrices).

type. Through factor sharing we fuse the data but also
identify source-specific patterns.

We have developed a variant of three-factor penal-
ized matrix factorization that simultaneously decom-
poses all available relation matrices R

ij

into G
i

2
Rni⇥ki , G

j

2 Rnj⇥kj and S 2 Rki⇥kj , and regularizes
their approximation through constraint matrices ⇥

i

and ⇥
j

such that R
ij

⇡ G
i

S
ij

GT

j

. Approximation can
be rewritten such that entry R

ij

(p, q) is approximated
by an inner product of the p-th row of matrix G

i

and a linear combination of the columns of matrix
S
ij

, weighted by the q-th column of G
j

. The matrix
S
ij

, which has relatively few vectors compared to
R

ij

(k
i

⌧ n

i

, k

j

⌧ n

j

), is used to represent many
data vectors, and a good approximation can only be
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achieved in the presence of the latent structure in the
original data.

The proposed fusion approach is different from
treating an entire system (e.g., from Fig. 1) as a large
single matrix. Factorization of such a matrix would
yield factors that are not object type-specific and
would thus disregard the structure of the system. We
also show (Sec. 5.5) that such an approach is inferior
in terms of predictive performance.

In comparison with existing multi-type relational
data factorization approaches (see Sec. 3) the follow-
ing characterizes our DFMF data fusion method:

i DFMF can model multiple relations between mul-
tiple object types.

ii Relations between some object types can be com-
pletely missing (see Fig. 1).

iii Every object type can be associated with multiple
constraint matrices.

iv The algorithm makes no assumptions about struc-
tural properties of relations (e.g. symmetry of re-
lations).

In order to be applicable to general real-world fusion
problems, data fusion algorithm would need to jointly
address all of these characteristics. Besides DFMF
proposed in this manuscript, we are not aware of any
other approach that would do so. Most real-world
data integration problems would usually consider
a larger number of object types, but with growing
number of object types, it is likely that data relating a
pair of object types is either not available nor mean-
ingful. On the other side, there may be various data
sources available on interactions between objects of
the same type that also require appropriate treatment.
For example of this type of data, consider abundance
of data bases on drug or disease interactions.

In the case study presented in this paper we apply
data fusion to infer relations between two target object
types, E

i

and E
j

(Sec. 2.6 and Sec. 2.7). This relation,
encoded in a target matrix R

ij

, will be observed in the
context of all other data sources (Sec. 2.1). We assume
that our target R

ij

is a [0, 1]-matrix that is only par-
tially observed. Its entries indicate a degree of relation,
0 denoting no relation and 1 denoting the strongest
relation. We aim to predict unobserved entries in R

ij

by reconstructing them through matrix factorization.
Such treatment in general applies to multi-class or
multi-label classification tasks, which are conveniently
addressed by multiple kernel fusion [11], with which
we compare our performance in this paper.

In the following, we present the factorization
model, objective function, derive the updating rules
for optimization, and describe the procedure for pre-
diction of relations from matrix factors. In the op-
timization part, we closely follow [10] in notation,
mathematical derivation and proof technique.

2.1 Factorization Model for Multi-Relational and
Multi-Object Type Data

An input to DFMF is a relation block matrix R that
conceptually represents all relation matrices:

R =

2

6664

⇤ R
12

· · · R
1r

R
21

⇤ · · · R
2r

...
...

. . .
...

R
r1

R
r2

· · · ⇤

3

7775
. (1)

Here, an asterisk (“*”) denotes the relation between
the same type of objects that DMFM does not model.
Notice that our method does not require the presence
of all relation matrices in Eq. (1). Depending on a
particular data setup, any subset of relation matrices
might be missing and thus, unmodeled. A block in the
i-th row and j-th column (R

ij

) of matrix R represents
the relationship between object type E

i

and E
j

. The p-
th object of type E

i

(i.e. oi
p

) and q-th object of type E
j

(i.e. oj
q

) are related by R
ij

(p, q). An important aspect of
Eq. (1) for data fusion and what distinguishes DMFM
from other conceptually related matrix factorization
models such as S-NMTF [12] or even tri-SPMF [10]
is that it is designed for multi-object type and multi-
relational data where the relations can be asymmetric,
R

ji

6= RT

ij

, and some can be completely missing
(unknown R

ij

) (Sec. 2.3).
We additionally consider constraints relating objects

of the same type. Several data sources of this kind
may be available for each object type. For instance,
personal relations may be observed from a social
network or a family tree. Assume there are t

i

� 0

data sources for object type E
i

represented by a set
of constraint matrices ⇥

(t)

i

for t 2 {1, 2, . . . , t

i

}. Con-
straints are collectively encoded in a set of constraint
block diagonal matrices ⇥(t) for t 2 {1, 2, . . . ,max

i

t

i

}:

⇥(t)

= Diag(⇥
(t)

1

,⇥
(t)

2

, . . . ,⇥(t)

r

) (2)

The i-th block along the main diagonal of ⇥(t) is zero
if t > t

i

. Entries in constraint matrices are positive for
objects that are not similar and negative for objects
that are similar. The former are known as cannot-
link constraints because they impose penalties on the
current approximation of the matrix factors, and the
latter are must-link constraints, which are rewards that
reduce the value of the cost function during opti-
mization. Must-link constraint expresses the notion
that a pair of objects of the same type should be
close in their latent component space. An example
of must-link constraints are, for instance, drug-drug
interactions, and example of cannot-link constraints
the matrix of adversaries. Typically, data sources with
must-link constraints are more abundant.

The block matrix R is tri-factorized into block ma-
trix factors G and S:

G = Diag(Gn1⇥k1
1

,Gn2⇥k2
2

, . . . ,Gnr⇥kr
r

),
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S =

2

6664

⇤ Sk1⇥k2
12

· · · Sk1⇥kr
1r

Sk2⇥k1
21

⇤ · · · Sk2⇥kr
2r

...
...

. . .
...

Skr⇥k1
r1

Skr⇥k2
r2

· · · ⇤

3

7775
. (3)

Matrix S in Eq. (3) has the same block structure as R
in Eq. (1). It is in general asymmetric (i.e. S

ji

6= ST

ij

)
and if a relation matrix is missing in R then also
its corresponding matrix factor in S will be missing.
These two properties of S stem from our decision
to model relation matrices without assuming their
structural properties or their availability for every
possible combination of object types.

A factorization rank k

i

is assigned to E
i

during
inference of the factorized system. Factor S

ij

defines
the latent relation between object types E

i

and E
j

,
while factor G

i

is specific to objects of type E
i

and
is used in the reconstruction of every relation with
this object type. In this way, each relation matrix R

ij

obtains its own factorization G
i

S
ij

GT

j

with factor G
i

(G
j

) that is shared across all relations which involve
object types E

i

(E
j

). This can also be observed from the
block structure of the reconstructed system GSGT :

2

6664

⇤ G
1

S
12

GT

2

· · · G
1

S
1r

GT

r

G
2

S
21

GT

1

⇤ · · · G
2

S
2r

GT

r

...
...

. . .
...

G
r

S
r1

GT

1

G
r

S
r2

GT

2

· · · ⇤

3

7775
. (4)

Here, the p-th row in factor G
i

holds the latent
component representation of object o

i

p

. By holding
G

j

and S
ij

fixed, it is clear that latent component
representation of oi

p

depends on G
j

as well as on the
existence of relation R

ij

. Consequently, all direct and
indirect relations have a determining influence on the
calculation of o

i

p

-th latent representation. Just as the
objects of type E

i

are represented by G
i

, each relation
is represented by factor S

ij

, which models how the
latent components interact in the respective relation.
The asymmetry of S

ij

takes into account whether a
latent component occurs as a subject or an object of
corresponding relation R

ij

.

2.2 Objective Function
The objective function minimized by DFMF aims at
good approximation of the input data and adherence
to must-link and cannot-link constraints:

min

G�0

J(G;S) =

X

Rij2R
||R

ij

� G
i

S
ij

GT

j

||2 +

+

maxi tiX

t=1

tr(GT⇥(t)G), (5)

Here, || · || and tr(·) denote the Frobenius norm and
trace, respectively, and R is the set of all relations in-
cluded in our model. Our objective function explicitly
allows that relations between some object types are
entirely missing.

Notice that in Eq. (5) we do not approximate input
data by ||R�GSGT ||2 as was proposed in related ap-
proaches of S-NMTF [12] and tri-SPMF [10]. To model
the data system such as that from Fig. 1, one could be
tempted to replace the missing relation matrices with
zero matrices. This would enable the optimization to
further reduce the value of objective function, but
would also introduce relations in factorized system
that were intentionally not present in the input data.
Their inclusion in the model would distort inferred
relations between other object types (see Sec. 5.1).

2.3 Computing the Factorization

The DFMF algorithm for solving the minimization
problem specified in Eq. (5) is shown in Fig. 2. The
algorithm first initializes matrix factors (Sec. 2.8) and
then iteratively refines them by alternating between
fixing G and updating S, and then fixing S and
updating G, until convergence. Successive updates
of G

i

and S
ij

converge to a local minimum of the
optimization problem.

We derive multiplicative updating rules for regu-
larized decomposition of relation matrices by fixing
one matrix factor (e.g., G) and considering the roots
of the partial derivative with respect to the other ma-
trix factor (e.g., S, and vice-versa) of the Lagrangian
function. The latter is constructed from the objective
function (Eq. 5):

J(G;S) =

X

Rij2R
tr(RT

ij

R
ij

� 2GT

j

RT

ij

G
i

S
ij

+

+ GT

i

G
i

S
ij

GT

j

G
j

ST

ij

) +

+

maxi tiX

t=1

rX

i=1

tr(GT

i

⇥
(t)

i

G
i

). (6)

Regarding the correctness and convergence of the
algorithm in Fig. 2 we have the following two theo-
rems.

Theorem 1 (Correctness of DFMF algorithm): If the up-
date rules for matrix factors G and S from Fig. 2
converge, then the final solution satisfies the KKT
conditions of optimality.

Proof: We introduce the Lagrangian multipliers
�

1

,�

2

, . . . ,�

r

and construct the Lagrange function:

L = J(G;S) �
rX

i=1

tr(�
i

GT

i

). (7)

Then for i, j, such that R
ij

2 R:

@L

@S
ij

= �2GT

i

R
ij

G
j

+ 2G
i

GT

i

S
ij

GT

j

G
j

,
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and for i = 1, 2, . . . , r:

@L

@G
i

=

X

j:Rij2R
(�2R

ij

G
j

ST

ij

+ 2G
i

S
ij

GT

j

G
j

ST

ij

) +

+

X

j:Rji2R
(�2RT

ji

G
j

S
ji

+ 2G
i

ST

ji

GT

j

G
j

S
ji

) +

+

maxi tiX

t=1

2⇥
(t)

i

G
i

� �

i

. (8)

Fixing G
1

,G
2

, . . . ,G
r

and letting @L

@Sij
= 0 for all

i, j = 1, 2, . . . , r, we obtain:

S = (GTG)

�1GTRG(GTG)

�1

.

We then fix S and let @L

@Gi
= 0 for i = 1, 2, . . . , r.

We get an expression for the KKT multiplier �

i

from
Eq. (8). Then the KKT complementary condition for
the nonnegativity of G

i

is:

0 = �i �Gi =

=

2

4
X

j:Rij2R
(�2RijGjS

T
ij + 2GiSijG

T
j GjS

T
ij) +

+

X

j:Rji2R
(�2RT

jiGjSji + 2GiS
T
jiG

T
j GjSji) +

+

maxi tiX

t=1

2⇥
(t)
i Gi

#
�Gi. (9)

Let us here introduce variables �
i

to denote �
i

= �

i

�
G

i

. Eq. (9) is a fixed point equation and the solution
must satisfy it at convergence. We let:

⇥
(t)

i

= [⇥
(t)

i

]

+ � [⇥
(t)

i

]

�

R
ij

G
j

ST

ij

= (R
ij

G
j

ST

ij

)

+ � (R
ij

G
j

ST

ij

)

�

S
ij

GT

j

G
j

ST

ij

= (S
ij

GT

j

G
j

ST

ij

)

+ � (S
ij

GT

j

G
j

ST

ij

)

�

RT

ji

G
j

S
ji

= (RT

ji

G
j

S
ji

)

+ � (RT

ji

G
j

S
ji

)

�

ST

ji

GT

j

G
j

S
ji

= (ST

ji

GT

j

G
j

S
ji

)

+ � (ST

ji

GT

j

G
j

S
ji

)

�

where all matrices on right-hand sides are nonnega-
tive. Then, given an initial guess of G

i

, the successive
updates of G

i

using Eq. (10)–(12) converge to a local
minimum of the problem in Eq. (5). It can be easily
seen that using such a rule, at convergence, G

i

satis-
fies �

i

�G
i

= 0, which is equivalent to �
i

= 0 (Eq. (9))
due to nonnegativity of G

i

. ⇤

Theorem 2 (Convergence of DFMF algorithm): The objec-
tive function J(G;S) given by Eq. (5) is nonincreasing
under the updating rules for matrix factors G and S
in Fig. 2.

Please see the Appendix for a detailed proof of
the above theorem. Our proof essentially follows the
idea of auxiliary functions often used in the conver-
gence proofs of approximate matrix factorization al-
gorithms [13].

Input: A set R of relation matrices Rij ; constraint matrices ⇥(t)

for t 2 {1, 2, . . . ,maxi ti}; ranks k
1

, k
2

, . . . , kr (i, j 2 [r]).
Output: Matrix factors S and G.
1) Initialize Gi for i = 1, 2, . . . , r.
2) Repeat until convergence:
• Construct R and G using their definitions in Eq. (1) and

Eq. (3).
• Update S using:

S (GTG)

�1GTRG(GTG)

�1.

• Set G(e)
i  0 for i = 1, 2, . . . , r.

• Set G(d)
i  0 for i = 1, 2, . . . , r.

• For Rij 2 R:

G
(e)
i += (RijGjS

T
ij)

+

+Gi(SijG
T
j GjS

T
ij)

�

G
(d)
i += (RijGjS

T
ij)

�
+Gi(SijG

T
j GjS

T
ij)

+

G
(e)
j += (RT

ijGiSij)
+

+Gj(S
T
ijG

T
i GiSij)

�

G
(d)
j += (RT

ijGiSij)
�

+Gj(S
T
ijG

T
i GiSij)

+ (10)

• For t = 1, 2, . . . ,maxi ti:

G
(e)
i += [⇥

(t)
i ]

�Gi for i = 1, 2, . . . , r

G
(d)
i += [⇥

(t)
i ]

+Gi for i = 1, 2, . . . , r (11)

• Construct G as:

G G �Diag(

vuutG
(e)
1

G
(d)
1

,

vuutG
(e)
2

G
(d)
2

, . . . ,

vuutG
(e)
r

G
(d)
r

), (12)

where � denotes the Hadamard product. The
p
· and ·

· are
entry-wise operations.

Fig. 2. Factorization algorithm of proposed data fusion
approach (DFMF).

2.4 Stopping Criteria
In this paper we apply data fusion to infer relations
between two target object types, E

i

and E
j

. We hence
define the stopping criteria that observes convergence
in approximation of only the target matrix R

ij

. Our
convergence criteria is ||R

ij

�G
i

S
ij

GT

j

||2 < ✏, where ✏

is a user-defined parameter, possibly refined through
observing log entries of the target matrix approxima-
tion error for several runs of the factorization algo-
rithm. In our experiments ✏ was set to 10

�5. To reduce
the computational load, the convergence criteria was
assessed only every fifth iteration.

2.5 Parameter Estimation
Parameters to DFMF algorithm are factorization
ranks, k

1

, k

2

, . . . , k

r

. These are chosen from a pre-
defined interval of possible rank values such that
their choice maximizes the estimated quality of the
model. To reduce the number of required factor-
ization runs we mimic the bisection method by
first testing rank values at the midpoint and bor-
ders of specified ranges and then for each rank
value selecting the subinterval for which the result-
ing model was of higher quality. We evaluate the
models through the explained variance, the residual
sum of squares (RSS) and a measure based on the
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cophenetic correlation coefficient ⇢ [14]. We compute
these measures for the target relation matrix. The
RSS is computed over observed associations (o

i

p

, o

j

q

)

in R
ij

as RSS(R
ij

) =

P⇥
(R

ij

� G
i

S
ij

GT

j

)(p, q)

⇤
2

.

Similarly, explained variance is R

2

(R
ij

) = 1 �
RSS(R

ij

)/

P
[R

ij

(p, q)]

2

.

We assess the three quality scores through internal
cross-validation and observe how R

2

(R
ij

), RSS(R
ij

)

and ⇢(R
ij

) vary with changes of factorization ranks.
We select ranks k

1

, k

2

, . . . , k

r

where the cophenetic
coefficient begins to fall, the explained variance is high
and the RSS curve shows an inflection point [15].

2.6 Prediction from Matrix Factors
The approximate relation matrix bR

ij

for the target
pair of object types E

i

and E
j

is reconstructed as
bR

ij

= G
i

S
ij

GT

j

. When the model is requested to
propose relations for a new object o

i

ni+1

of type E
i

that was not included in the training data, we need
to estimate its factorized representation and use the
resulting factors for prediction. We formulate a non-
negative linear least-squares and solve it with an
efficient interior point Newton-like method [16] for
min

xl�0

||(G
l

S
li

+ G
l

ST

il

)x
l

� oi,l

ni+1

||2
2

, where oi,l

ni+1

2
Rnl is the original description of object o

i

ni+1

(if
available) and x

l

2 Rki is its factorized representation
(for l = 1, 2, . . . , r and l 6= i). A solution vector given
by

P
l

x⇤T
l

is added to G
i

and a new bR
ij

2 R(ni+1)⇥nj

is computed.
We would like to identify object pairs (o

i

p

, o

j

q

) for
which the predicted degree of relation bR

ij

(p, q) is
unusually high. We are interested in candidate pairs
(o

i

p

, o

j

q

) for which the estimated association score
bR

ij

(p, q) is greater than the mean estimated score of
all known relations of oi

p

:

bR
ij

(p, q) >

1

|A(o

i

p

, E
j

)|
X

o

j
m2A(o

i
p,Ej)

bR
ij

(p,m), (13)

where A(o

i

p

, E
j

) is the set of all objects of E
j

related to
o

i

p

. Notice that this rule is row-centric, that is, given
an object of type E

i

, it searches for objects of the other
type (E

j

) that it could be related to. We can modify
the rule to become column-centric, or even combine
the two rules.

For example, let us consider that we are studying
disease predispositions for a set of patients. Let the pa-
tients be objects of type E

i

and diseases objects of type
E
j

. A patient-centric rule would consider a patient and
his medical history and through Eq. (13) propose a
set of new disease associations. A disease-centric rule
would instead consider all patients already associated
with a specific disease and identify other patients with
a sufficiently high association score.

We can combine row-centric and column-centric
approaches. For example, we can first apply a row-
centric approach to identify candidates of type E

i

and then estimate the strength of association to a
specific object o

j

q

by reporting an inverse percentile
of association score in the distribution of scores for
all true associations of o

j

q

, that is, by considering the
scores in the q-ed column of bR

ij

. In our gene function
prediction study, we use row-centric approach for
candidate identification and column-centric approach
for association scoring, and in the experiment from
cheminformatics we apply row-centric approach to
both tasks.

2.7 An Ensemble Approach to Prediction
Different initializations of G

i

may in practice give
rise to different factorizations of the fusion system.
To leverage this effect we construct an ensemble of
factorization models. The resulting matrix factors in
each model may also be different due to small random
perturbations of selected factorization ranks. We use
each factorization system for inference of associations
(Sec. 2.6) and then select the candidate pair through
a majority vote. That is, the rule from Eq. (13) must
apply in more than one half of factorized systems
of the ensemble. Ensembles improved the predictive
accuracy and stability of the factorized system and
the robustness of the results. In our experiments the
ensembles combined 15 factorization models.

2.8 Matrix Factor Initialization
The inference of the factorized system in Sec. 2.1
is sensitive to the initialization of factor G. Proper
initialization sidesteps the issue of local convergence
and reduces the number of iterations needed to obtain
matrix factors of equal quality. We initialize G by
separately initializing each G

i

, using algorithms for
single-matrix factorization. Factors S are computed
from G (Fig. 2) and do not require initialization.

Wang et al. (2008) [10] and several other au-
thors [13] use simple random initialization. Other
more informed initialization algorithms include ran-
dom C [17], random Acol [17], non-negative double
SVD and its variants [18], and k-means clustering or
relaxed SVD-centroid initialization [17]. We show that
the latter approaches are indeed better over a random
initialization (Sec. 5.4). We use random Acol in our
case study. Random Acol computes each column of
G

i

as an element-wise average of a random subset of
columns in R

ij

.

3 RELATED WORK
Approximate matrix factorization estimates a data
matrix R as a product of low-rank matrix factors
that are found by solving an optimization problem. In
two-factor decomposition, R 2 Rn⇥m is decomposed
to a product WH, where W 2 Rn⇥k, H 2 Rk⇥m

and k ⌧ min(n,m). A large class of matrix fac-
torization algorithms minimize discrepancy between
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the observed matrix and its low-rank approximation,
such that R ⇡ WH. For instance, SVD, non-negative
matrix factorization and exponential family PCA all
minimize Bregman divergence [19].

Although often used in data analysis for dimension-
ality reduction, clustering or low-rank approximation,
there have been only a few applications of matrix
factorization in data fusion. Lange et al. (2005) [20]
proposed an integration by non-negative matrix fac-
torization of a target matrix, which was a convex
combination of similarity matrices obtained from mul-
tiple information sources. Their work is similar to that
of Wang et al. (2012) [21], who applied non-negative
matrix tri-factorization with input matrix completion.
Note that both approaches implement early integra-
tion and can model only multiple dyadic relations.
Their approaches cannot be used to model relations
between more than two object types, which is a major
distinction with the algorithm proposed in this paper.

Zhang et al. (2012) [22] proposed a joint matrix
factorization to decompose a number of data matrices
R

i

into a common basis matrix W and different coeffi-
cient matrices H

i

, such that R
i

⇡ WH
i

by minimizingP
i

||R
i

�WH
i

||2. This is an intermediate integration
approach with different data sources but it can de-
scribe only relations whose objects (i.e. rows in R

i

)
are fixed across relation matrices. Similar approaches
but with various regularization types were also pro-
posed, such as network- or relation-regularized con-
straints [23], [24] and hierarchical priors [25], [26]. Our
work generalizes these approaches by simultaneously
dealing with objects of different types, where we can
vary object types along both dimensions of relation
matrices, R

ij

) and can constrain objects of every type.
There is an abundance of work on matrix factor-

ization models that consider a single dyadic relation
matrix or multiple relation matrices between the same
two types of objects [10], [27], [28], [26], [24], [21]
that are subsumed in our approach. For instance,
Nickel et al. (2011) [29] proposed a tri-factorization
model for multiple dyadic relations that factorized
every R

i

as R
i

⇡ AS
i

AT . Although their model is
appropriate for certain tasks of collective learning, all
R

i

describe relations between the same two sets of
objects, whereas our approach models multi-relational
and multi-object type data.

Rettinger et al. (2012) [30] proposed context-aware
tensor decomposition for relation prediction in social
networks, CARTD. They decompose a tensor into
additive factorized matrices using two-factor decom-
position. They assume that input data is provided
together with the contextual information that de-
scribes one specific relation, the recommendation. The
drawback of their and similar approaches [31], [27],
[32] for r-ary tensors is that in higher dimensions
(r > 3) the tensors become increasingly sparse and the
computational requirements become infeasible. Notice
that here r corresponds to number of different object

types in DFMF. In comparison, the approach proposed
in this paper can handle tens of different object types.

Wang et al. (2008) [10] and Wang et al. (2011) [12]
proposed tri-SPMF and S-NMTF, respectively, a simul-
taneous clustering of multi-type relational data via
symmetric nonnegative matrix tri-factorization. These
two methods are conceptually similar to our approach
and use both inter-type and intra-type relations, but
they require a full set of symmetric relation matrices,
R

ij

= RT

ji

. These assumptions of tri-SPMF and S-
NMTF are rarely met in real-world fusion scenarios
(see, for example, a fusion configuration from Fig. 3,
which is not a 6-clique), where we do not have
access to relation matrices between all possible pairs
of object types (i.e. R

ij

for 1  i < j  r). The tri-
SPMF and S-NMTF algorithms do not converge to a
local minimum if described relations are asymmetric
(R

ij

6= RT

ji

).
We are currently witnessing increasing interest in

the joint treatment of heterogeneous data sets and
the emergence of approaches specifically designed
for data fusion. Besides matrix factorization-based
methods as reviewed above, these approaches include
canonical correlation analysis [33], combining many
interaction networks into a composite network [34],
multiple graph clustering with linked matrix factor-
ization [8], a mixture of Markov chains associated
with different graphs [35], dependency-seeking clus-
tering algorithms with variational Bayes [36], latent
factor analysis [37], [38], nonparametric Bayes ensem-
ble learning [39], approaches based on Bayesian the-
ory [40], [41], [42], neural networks [43], and module
guided random forests [44].

Data integration approaches from the previous
paragraph either fuse input data (early integration)
or predictions (late integration) and do not directly
combine heterogeneous representation of objects of
different types. A state-of-the-art approach that can
address such data through intermediate integration is
kernel-based learning. Multiple kernel learning (MKL)
has been pioneered by Lanckriet et al. (2004) [45] and
Bach et al. (2004) [46] and is an additive extension
of single kernel SVM to incorporate multiple ker-
nels in classification, regression and clustering. The
MKL assumes that E

1

, . . . , E
r

are r different repre-
sentations of the same set of n objects. Extension
from single to multiple data sources is achieved
by additive combination of kernel matrices, given
by ⌦ =

�P
r

i=1

✓

i

K
i

��8i : ✓

i

� 0,

P
r

i=1

✓

�

i

= 1,K
i

⌫ 0

 
,

where ✓

i

are weights of the kernel matrices, � is a pa-
rameter determining the norm of constraint posed on
coefficients (for L

2

, L

p

-norm MKL, see [47], [48], [11],
[49]) and K

i

are normalized kernel matrices centered
in the Hilbert space. Among other improvements, Yu
et al. (2010) extended the framework of the MKL
in Lanckriet et al. (2004) [45] by optimizing various
norms in the dual problem of SVMs that allows non-
sparse optimal kernel coefficients ✓

⇤
i

. Gönen et al.
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(2011) [50] recently reviewed several MKL algorithms
and concluded that, in general, using multiple kernels
instead of a single one is useful. The heterogeneity of
data sources in the MKL is resolved by transforming
different object types and data structures (e.g., strings,
vectors, graphs) into kernel matrices. These transfor-
mations depend on the choice of the kernels, which
in turn affects the method’s performance [51].

4 EXPERIMENTS

We present two case studies from bioinformatics and
cheminformatics, where recent technological advance-
ments have allowed researchers to collect large and di-
verse experimental data sets [52], [53], [54], [39]. From
bioinformatics, we study prediction of gene function,
where the target relation is given by a binary ma-
trix representing relationships between genes of the
amoeba Dictyostelium discoideum and their associated
functions or processes (Gene Ontology (GO) terms,
R

12

). In the cheminformatics study, the binary target
matrix encodes the pharmacologic actions of a sub-
set of chemicals from PubChem database. We apply
DFMF to fuse eleven data matrices for gene function
prediction and six data matrices for the prediction of
pharmacologic actions. During testing, we estimate
the relation for a previously-unseen pair (Gene, GO
Term) or (Chemical, Pharmacologic Action).

We compare DFMF to an early integration by
random forests [55], [56], intermediate integration
by multiple kernel learning (MKL) [11] and rela-
tional learning by matrix factorization (tri-SPMF) [10].
Kernel-based fusion used a multi-class L

2

norm MKL
with Vapnik’s SVM [57]. The MKL was formulated
as a second order cone program (SOCP) and its dual
problem was solved by the conic optimization solver
SeDuMi. Random forests from the Orange data min-
ing suite were used with default parameters. Rela-
tional learning by tri-SPMF used the matrix factoriza-
tion algorithm from Wang et al. [10] and a procedure
described in Sec. 2.6 for predicting associations.

4.1 Setup for Gene Function Prediction Task
Various classification schemes were developed to
standardize the association of genes to its function. Of
these, Gene Ontology (GO) [58] is adopted widely and
is thus suitable for computational studies [34], [59]. In
our study, given a gene, we aimed to predict a set of
its associated GO terms along with the confidence of
the association.

4.1.1 Data

We observed six object types (Fig. 3): genes (type 1),
ontology terms (type 2), experimental conditions (type
3), publications from the PubMed database (PMID)
(type 4), Medical Subject Headings (MeSH) descrip-
tors (type 5), and KEGG pathways [60] (type 6). The

data included gene expression measured during dif-
ferent time-points of a 24-hour development cycle [61]
(R

13

, 14 experimental conditions), gene annotations
with experimental evidence code to 148 generic slim
terms from the GO (R

12

), PMIDs and their associated
D. discoideum genes from dictyBase (R

14

), genes par-
ticipating in KEGG pathways (R

16

), assignments of
MeSH descriptors to publications from PubMed (R

45

),
references to published work on associations between
a specific GO term and gene product (R

42

), and
associations of enzymes involved in KEGG pathways
and related to GO terms (R

62

).
To balance R

12

, our target relation matrix, we
added an equal number of non-associations for which
there is no evidence of any type in the GO. We
constrained our system by considering gene interac-
tion scores from STRING v9.0 (⇥

1

) and slim term
similarity scores (⇥

2

) computed as �0.2

hops, where
hops was the length of the shortest path between two
terms in the GO graph. Similarly, MeSH descriptors
were constrained with the average number of hops
in the MeSH hierarchy between each pair of de-
scriptors (⇥

5

). Constraints between KEGG pathways
corresponded to the number of common ortholog
groups (⇥

6

). The slim subset of GO terms was used
to limit the optimization complexity of the MKL and
the number of variables in the SOCP, and to ease the
computational burden of early integration by random
forests, which inferred a separate model for each of
the terms.

We conducted three experiments in which we con-
sidered either 100 or 1000 most GO-annotated genes
or the whole D. discoideum genome (⇠12,000 genes).
We also examined the predictions of gene associa-
tions with any of nine GO terms that are of specific
relevance to the current research in the Dictyostelium
community (upon consultations with Gad Shaulsky,
Baylor College of Medicine, Houston, TX; see Table 2).
Instead of using a generic slim subset of terms, we ex-
amined the predictions in the context of a complete set
of GO terms. This resulted in a data set with ⇠2.000

terms, each term having ⇠10 direct gene annotations.

4.1.2 Preprocessing for Kernel-Based Fusion

We generated an RBF kernel for gene expression mea-
surements from R

13

with the RBF function (x
i

,x
j

) =

exp(�||x
i

� x
j

||2/2�2

), and a linear kernel for [0, 1]-
protein-interaction matrix from ⇥

1

. This particular
choice of kernels was motivated by the experimental
study and kernel comparison in [5]. Kernels were
applied to data matrices. We used a linear kernel to
generate a kernel matrix from D. discoideum specific
genes that participate in pathways (R

16

), and a kernel
matrix from PMIDs and their associated genes (R

14

).
Several data sources describe relations between object
types other than genes. For kernel-based fusion we
had to transform them to explicitly relate to genes.
For instance, to relate genes and MeSH descriptors,
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Gene

PMID

R14

Experimental
   ConditionR13

Ə1

GO Term
R12

KEGG
Pathway

R16

Ə2

MeSH
Descriptor

R45

R42

Ə5

Ə6
R62

1

2

3

4 5

6

Fig. 3. The fusion configuration for gene function
prediction task in D. discoideum. Some relations are
entirely missing, for instance R

23

. Nodes represent
object types used in our study. Edges correspond to
relation and constraint matrices. The arc that repre-
sents the target matrix R

12

and its object types are
highlighted.

we counted the number of publications that were as-
sociated with a specific gene (R

14

) and were assigned
a specific MeSH descriptor (R

45

, see also Fig. 3). A lin-
ear kernel was applied to the resulting matrix. Kernel
matrices that incorporated relations between KEGG
pathways and GO terms (R

62

), and publications and
GO terms were obtained in similar fashion.

To represent the hierarchical structure of MeSH de-
scriptors (⇥

5

), the semantic structure of the GO graph
(⇥

2

) and ortholog groups that correspond to KEGG
pathways (⇥

6

), we considered the genes as nodes in
three distinct large weighted graphs. In the graph for
⇥

5

, the link between two genes was weighted by the
similarity of their associated sets of MeSH descriptors
using information from R

14

and R
45

. We considered
the MeSH hierarchy to measure these similarities.
Similarly, for the graph for ⇥

2

we considered the GO
semantic structure in computing similarities of sets
of GO terms associated with genes. In the graph for
⇥

6

, the gene edges were weighted by the number
of common KEGG ortholog groups. Kernel matrices
were constructed with a diffusion kernel [62].

The resulting kernel matrices K 2 Rn⇥n were
centered as Kc

(i, j) = K(i, j) � 1/n

P
i

K(i, j) �
1/n

P
j

K(i, j) + 1/n

2

P
ij

K(i, j) and normalized as
Kn

(i, j) = Kc

(i, j)/

p
Kc

(i, i)Kc

(j, j). The parameters
for all kernels were selected through internal cross-
validation. In cross-validation, only the training part
of the matrices was optimized for learning, while cen-
tering and normalization were performed on the en-
tire data set. The prediction task was defined through
the classification matrix of genes and their associated

GO slim terms from R
12

.

4.1.3 Preprocessing for Early Integration

The gene-related data matrices prepared for kernel-
based fusion were also used for early integration and
were concatenated into a single data table. Each row
in the table represented a gene profile obtained from
all available data sources. For our case study, each
gene was characterized by a fixed 9,362-dimensional
feature vector. For each GO slim term, we then sep-
arately developed a classifier with a random forest
of classification trees and reported cross-validated
results.

4.1.4 Preprocessing for tri-SPMF Learning

Relation and constraint matrices prepared for DFMF
were also used for tri-SPMF factorization algorithm.
Tri-SPMF requires a full set of relation matrices be-
tween all pairs of object types. Thus, we used zero
matrices for non-existing relations from Fig. 3. For
instance, R

63

and ⇥
4

were represented by zero matri-
ces of proper dimensions. Because tri-SPMF requires
that relations are symmetric, we set R

ji

= RT

ij

for all
available relation matrices.

4.2 Setup for Pharmacologic Action Prediction
Task

Identification of the mechanisms of action of chemical
compounds is a crucial task in drug discovery [63],
[64]. Here, our aim was to computationally predict
pharmacologic actions of chemical compounds as de-
fined in the PubChem database [65].

4.2.1 Data

We considered six object types (Fig. 4): chemicals (type
1), PubChem’s [65] pharmacologic actions (type 2),
publications from the PubMed database (PMID) (type
3), depositors of chemical substances (type 4) and
their categorization (type 6), and PubChem substruc-
ture fingerprints (type 5).

The data included 1,260 chemicals extracted from
the complete DrugBank [66] database (accessed in
Feb. 2014) that were identified with at least one
pharmacologic action in the PubChem Compound
database. In that way, every chemical (drug) was as-
signed one or more MeSH headings that described its
pharmacologic actions and corresponded to D27.505
tree of the 2014 MeSH Tree Structure (target relation
R

12

). For example, established pharmacologic actions
for Aspirin include “Anti-Inflammatory Agents, Non-
Steroidal”, “Fibrinolytic Agents” and “Antipyretics.”
To increase the number of chemicals assigned to a
particular pharmacologic action, the actions of the
chemical also included those from its direct parents
in the D27.505 tree.
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Chemical

Ə1

Pharmacologic
Action

R12

PMIDR13

Depositor

R14

Substructure
Fingerprint

R15
Depositor
Category

R46

Fig. 4. The fusion configuration for the prediction of
pharmacologic actions of chemicals, with object types
denoted with nodes and relations between them with
edges. The edge representing the target relation and
its corresponding data matrix R

12

is highlighted.

Other data considered were publications from the
PubMed database (R

13

), data on depositors who sub-
mitted substances of the chemicals present in Pub-
Chem Compound records (R

14

), categories of data
depositors (R

46

) and PubChem substructure finger-
prints (R

15

). These fingerprints consist of a series of
881 binary indicators, each denoting the presence or
absence of a particular substructure in a molecule.
Collectively, these binary keys provide a “fingerprint”
of a particular chemical structure form. Chemicals are
constrained by a matrix of substructure-based Tani-
moto 2D similarity (⇥

1

) obtained through PubChem
Score Matrix Service.

4.2.2 Preprocessing for Alternative Learning Meth-

ods

For the kernel-based fusion, we generated the kernel
matrices for chemicals from R

13

, R
14

, R
15

and ⇥
1

(Fig. 4) using the polynomial kernel of degree 2.
We included data on depositors (R

46

) by applying
a polynomial kernel to R

14

R
46

. The resulting ker-
nel matrices were centered and normalized, and the
kernel parameters were selected in internal cross-
validation (see Sec. 4.1.2 for details). Preprocessing
for early integration by random forests and tri-SPMF
learning followed the same procedures as described
in Sec. 4.1.3 and Sec. 4.1.4, respectively. The prediction
task was defined by the associations of chemicals to
pharmacologic actions given by R

12

(Fig. 4).

4.3 Scoring
We estimated the quality of inferred models by ten-
fold cross-validation. In each iteration, we split the
set of genes (chemicals) to a train and test set. The
corresponding data on genes (chemicals) from the test

set was entirely omitted from the training data. We
developed prediction models from the training data
and tested them on the genes (chemicals) from the test
set. The performance was evaluated using an F

1

score,
a harmonic mean of precision and recall, and area
under ROC curve (AUC). Both scores were averaged
across cross-validation runs.

5 RESULTS AND DISCUSSION
5.1 Predictive Performance
Table 1 presents the cross-validated F

1

and AUC
scores for both gene function prediction (data set
of slim GO terms) and prediction of pharmacologic
actions. The accuracy of DFMF is at least comparable
to MKL and substantially higher than that of early
integration by random forests and relational learning
by tri-SPMF. When more genes and hence more data
were considered for the gene function prediction the
performance of all four fusion approaches improved.

Poorer performance of tri-SPMF was most prob-
ably due to required introduction of relations into
factorized system that were not present in the in-
put data. Consequently, the ability of tri-SPMF to
infer relations of interest between other object types
deteriorated considerably. Notice also that tri-SPMF
could not be applied if fusion schemes in Figs. 3 or 4
would contain asymmetric or one-way relations, such
as those from the analysis of signed networks [67] and
computational biology [68], among others. We also
observed numerical instability with tri-SPMF, which
was exhibited as an increase in the value of objective
function between successive iterations. In contrast,
DFMF exhibited numerical stability in all experiments
(results not shown).

The accuracy for nine GO terms selected by do-
main expert is given in Table 2. The DFMF performs
consistently better than the other three approaches.
Again, the early integration by random forests is
inferior to all three intermediate integration methods.
Notice that, with only a few exceptions, both F

1

and
AUC scores of DFMF are high. This is important, as
all nine gene processes and functions observed are
relevant for current research of D. discoideum where
the methods for data fusion can yield new candidate
genes for focused experimental studies.

Our fusion approach is faster than multiple kernel
learning. DFMF required 18 minutes of runtime on a
standard desktop computer compared to 77 minutes
for MKL to finish one iteration of cross-validation of
the whole-genome variant of gene function prediction
task. The factorization algorithm of DFMF also took
less time to execute than tri-SPMF due to redundant
representation of fusion system required by tri-SPMF.

5.2 Sensitivity to Inclusion of Data Sources
Inclusion of additional data sources improves the ac-
curacy of prediction models. We illustrate this for gene
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TABLE 1
Cross-validated F

1

and AUC accuracy scores for fusion by matrix factorization (DFMF), kernel-based method
(MKL), random forests (RF) and relational learning-based matrix factorization (tri-SPMF).

Prediction task DFMF MKL RF tri-SPMF
F
1

AUC F
1

AUC F
1

AUC F
1

AUC
100 D. discoideum genes 0.799 0.801 0.781 0.788 0.761 0.785 0.731 0.724
1000 D. discoideum genes 0.826 0.823 0.787 0.798 0.767 0.788 0.756 0.741
Whole D. discoideum genome 0.831 0.849 0.800 0.821 0.782 0.801 0.778 0.787
Pharmacologic actions 0.663 0.834 0.639 0.811 0.643 0.819 0.641 0.810

TABLE 2
Gene Ontology term-specific cross-validated F

1

and AUC accuracy scores for fusion by matrix factorization
(DFMF), kernel-based method (MKL), random forests (RF) and relational learning-based matrix factorization
(tri-SPMF). Terms in Gene Ontology belong to one of three namespaces, biological process (BP), molecular

function (MF) or cellular component.

GO term name Term identifier Namespace Size DFMF MKL RF tri-SPMF
F
1

AUC F
1

AUC F
1

AUC F
1

AUC
Activation of adeny. cyc. act. 0007190 BP 11 0.834 0.844 0.770 0.781 0.758 0.601 0.729 0.731
Chemotaxis 0006935 BP 58 0.981 0.980 0.794 0.786 0.538 0.724 0.804 0.810
Chemotaxis to cAM 0043327 BP 21 0.922 0.910 0.835 0.862 0.798 0.767 0.838 0.815
Phagocytosis 0006909 BP 33 0.956 0.932 0.892 0.901 0.789 0.619 0.836 0.810
Response to bacterium 0009617 BP 51 0.899 0.870 0.788 0.761 0.785 0.761 0.817 0.831
Cell-cell adhesion 0016337 BP 14 0.883 0.861 0.867 0.856 0.728 0.725 0.799 0.834
Actin binding 0003779 MF 43 0.676 0.781 0.664 0.658 0.642 0.737 0.671 0.682
Lysozyme activity 0003796 MF 4 0.782 0.750 0.774 0.750 0.754 0.625 0.747 0.625
Seq.-spec. DNA bind. t. f. a. 0003700 MF 79 0.956 0.948 0.894 0.901 0.732 0.759 0.892 0.852
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Fig. 5. Adding new data sources (a) or incorporating
more object-type-specific constraints in ⇥

1

(b) both
increase the accuracy of matrix factorization-based
models for gene function prediction task.

function prediction in Fig. 5a, where we started with
only the target data source R

12

and then added either
R

13

or ⇥
1

or both. Similar effects were observed
when we studied other combinations of data sources
(not shown here for brevity). Notice also that due to
ensembling the cross-validated variance of F

1

is small.

5.3 Sensitivity to Inclusion of Constraints
We varied the sparseness of gene constraint matrix ⇥

1

by holding out a random subset of protein-protein in-
teractions. We set the entries of ⇥

1

that corresponded

to held-out constraints to zero so that they did not
affect the cost function during optimization. Fig. 5b
shows that including additional information on genes
in the form of constraints improves the predictive
performance of DFMF for gene function prediction.

5.4 Matrix Factor Initialization Study
We studied the effect of matrix factor initialization on
DFMF by observing the reconstruction error after one
and after twenty iterations of optimization procedure,
the latter being about one fourth of the iterations
required for the optimization algorithm to converge
when predicting gene functions. We estimated the
error relative to the optimal (k

1

, k

2

, . . . , k

6

)-rank ap-
proximation given by the SVD. For iteration v and
matrix R

ij

the error was computed by:

Errij(v) =
||Rij �G

(v)
i S

(v)
ij (GT

j )

(v)||2 � dF (Rij , [Rij ]k)

dF (Rij , [Rij ]k)
, (14)

where G
(v)

i

, G
(v)

j

and S
(v)

ij

were matrix factors ob-
tained after v iterations of factorization algorithm.
In Eq. (14), d

F

(R
ij

, [R
ij

]

k

) = ||R
ij

� U
k

⌃
k

VT

k

||2
denotes the Frobenius distance between R

ij

and its
k-rank approximation given by the SVD, where k =

max(k

i

, k

j

) is the approximation rank. Err
ij

(v) is a
pessimistic measure of quantitative accuracy because
of the choice of k. This error measure is similar
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TABLE 3
Effect of initialization algorithm on reconstruction error

of DFMF’s factorization model.

Method Time G(0) Storage G(0) Err
12

(1) Err
12

(20)

Rand. 0.0011 s 618K 5.11 3.61
Rand. C 0.1027 s 553K 2.97 1.67
Rand. Acol 0.0654 s 505K 1.59 1.30
K-means 0.4029 s 562K 2.47 2.20
NNDSVDa 0.1193 s 562K 3.50 2.01

to the error of the two-factor non-negative matrix
factorization from [17].

Table 3 shows the results for the experiment with
1000 most GO-annotated D. discoideum genes and
selected factorization ranks k

i

< 65, i 2 [6]. The
informed initialization algorithms surpass the random
initialization. Of these, the random Acol algorithm
performs best in terms of accuracy and is also one
of the simplest.

5.5 Early Integration by Matrix Factorization
Our data fusion approach simultaneously factorizes
individual blocks of data in R. Alternatively, we
could also disregard the data structure, and treat R
as a single data matrix. Such data treatment would
transform our data fusion approach to that of early
integration and lose the benefits of structured system
and source-specific factorization. To prove this experi-
mentally, we considered the 1,000 most GO-annotated
D. discoideum genes. The resulting cross-validated F

1

score for factorization-based early integration was
0.576, compared to 0.826 obtained with our proposed
data fusion algorithm. This result is not surprising
as neglecting the structure of the system also causes
the loss of the structure in matrix factors and the
loss of zero blocks in factors S and G from Eq. (3).
Clearly, data structure carries substantial information
and should be retained in the model.

6 CONCLUSION

We have proposed a new matrix factorization-based
data fusion algorithm called DFMF. The approach
is flexible and, in contrast to state-of-the-art kernel-
based methods, requires minimal, if any, preprocess-
ing of input data. This latter feature, the ability to
model multi-relational and multi-object type data, and
DFMF’s excellent accuracy and time response, are the
principal advantages of our new algorithm.

DFMF can model any collection of data sets, each of
which can be expressed as a matrix. Tasks from bioin-
formatics and cheminformatics considered here that
were traditionally regarded as classification problems
exemplify just one type of data mining problems that
can be addressed with our method. We anticipate the
utility of factorization-based data fusion in multi-task

learning, association mining, clustering, link predic-
tion or structured output prediction.

APPENDIX
PROOF OF CONVERGENCE (THEOREM 2)
Our proof follows the concept of auxiliary functions of-
ten used in convergence proofs of approximate matrix
factorization algorithms [13]. The proof is performed
by introducing an appropriate function F (G,G0

),
which is an auxiliary function of the objective J(G;S)

that satisfies:

F (G0
,G0

) = J(G0
;S),

F (G,G0
) � J(G;S).

If such an auxiliary function F can be found and if G
is updated in (m + 1)-th iteration as:

G(m+1)

= arg min

G

F (G,G(m)

), (15)

then the following holds:

J(G(m+1)

;S)  F (G(m+1)

,G(m)

) 
 F (G(m)

,G(m)

) =

= J(G(m)

;S). (16)

That is, if F is an auxiliary function of J(G;S), then
J(G;S) is nonincreasing under the update Eq. (15).
In the proof we show the the update step for G
in Eq. (12) is exactly the update in Eq. (15) with a
proper auxiliary function. For that we make use of
an auxiliary function specified by Wang et al. (2008)
(Appendix II in [10]). Wang et al. (2008) constructed
a function F

Wang

(A,A0
;B,C,D) and showed that

it satisfied the conditions of auxiliary functions for
functions of the form J(A;B,C,D) = tr(�2ATB +

ADAT

)+ tr(ATCA), where C and D are symmetric,
and A is nonnegative. To prove the convergence of
our algorithm, we show that the objective function
from Eq. (5) is a special case of J(A;B,C,D).

Proof of Theorem 2: First, we view J(G;S) in Eq. (6) as
a function of G

1

and construct the auxiliary function
F

Wang

(A,A0
;B,C,D) such that:

A = G
1

,

B =

X

j:R1j2R
R

1j

G
j

ST

1j

+

X

i:Ri12R
RT

i1

G
i

S
i1

,

C =

maxi tiX

t=1

⇥
(t)

1

, (17)

D =

X

j:R1j2R
S
1j

GT

j

G
j

ST

1j

+

X

i:Ri12R
ST

i1

GT

i

G
i

S
i1

.

With these values for A, B, C and D, the
auxilary function F

Wang

is convex in G
1

. No-
tice that each of the two summation terms in
the right-hand side expression for D represents
the sum of the symmetric matrices of the form
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(G
j

ST

1j

)

T

(G
j

ST

1j

) and (G
i

S
i1

)

T

(G
i

S
i1

), respectively.
Thus, D is symmetric. The global minimum (Eq. (15))
of F

Wang

(A,A0
;B,C,D) is exactly the update rule for

G
1

in Eq. (10)–(12).
We repeat this process by constructing the re-

maining r � 1 auxiliary functions by separately con-
sidering J(G;S) as a function of matrix factors
G

2

. . . ,G
r

. From the theory of auxiliary functions
it then follows that J is nonincreasing under the
update rules for each of G

1

,G
2

, . . . ,G
r

. Letting
J(G

1

,G
2

, . . . ,G
r

,S) = J(G;S), we have:

J(G0

1

,G0

2

, . . . ,G0

r

,S) � J(G1

1

,G0

2

, . . . ,G0

r

,S) �
� · · ·
� J(G1

1

,G1

2

, . . . ,G1

r

,S).

Since J(G;S) is certainly bounded from below by
zero, we proved the theorem. ⇤
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