
University of Ljubljana

Faculty of Computer and Information Science

Aleksandar Dimitriev

A Markov random field based

autonomous image segmentation

BACHELOR’S THESIS

UNDERGRADUATE UNIVERSITY STUDY PROGRAMME

COMPUTER AND INFORMATION SCIENCE

Mentor: doc. dr. Matej Kristan

Ljubljana 2014





Univerza v Ljubljani
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The Faculty of Computer and Information Science issues the following thesis:

Analyze the problem of autonomous image segmentation designed for cases in

which the object of interest occupies a significant portion of the image. Formulate

the segmentation as inference in Markov random fields and apply discriminative

approaches for modelling object visual properties. In addition, propose appropriate

visual features for efficient representation of the visual properties required for

segmentation. Analyze the proposed approach on a standard publicly-available

dataset and evaluate it against related approaches.





Fakulteta za računalnǐstvo in informatiko izdaja naslednjo nalogo:

Analizirajte problem avtonomne segmentacije slik, kjer objekti zanimanja

predstavljajo dovolj velik del slike. Za segmentacijski model uporabite Markovo

slučajno polje in ga povežite z diskriminativnimi postopki modeliranja izgleda

objektov. Predlagajte tudi izbiro primernih značilnic za opis vizualne informacije za

segmentacijo. Predlagani postopek segmentacije analizirajte na standardnih javno

dostopnih zbirkah in ga primerjajte s sorodnimi deli.
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Abstract

Image segmentation is a widely-researched topic with many algorithms available.

Our goal is to segment an image, in an unsupervised way, into several coherent

parts with the help of superpixels. To achieve that, we propose an iterative

segmentation algorithm. The algorithm models the image by a Markov random

field, whose nodes are the superpixels, and each node has both color and texture

features. The superpixels are assigned labels according to their features with the

help of support vector machines and the aforementioned MRF. As a first step,

the algorithm oversegments an image into hundreds of superpixels and extracts

features. This is followed by expectation maximization iterations, in which both the

labels and the classifier parameters are estimated. In each iteration the SVMs are

trained and produce outputs, that are combined with spatial information encoded

in the MRF. Each iteration removes labels with a low number of superpixels, and

similar labels are merged. The tentative segmentations after each iteration are

refined and the result is a segmentation of an image into several semantically

meaningful regions with requiring any user input. The segmentation algorithm

was tested on a standard evaluation database, and performs on par with state-

of-the-art segmentation algorithms in F-measures. In terms of oversegmentation,

our approach significantly outperforms the state of the art by greatly reducing the

oversegmentation of the object of interest.

Keywords: segmentation, support vector machines, SVM, Markov random field,

MRF, unsupervised learning.





Povzetek

Segmentacija slik je zelo raziskovano področje, za katero so na voljo številni

algoritmi. Naš cilj je segmentacija slike s pomočjo superpikslov na več skladnih delov

in na nenadzorovan način. Da bi to dosegli, predlagamo iterativni segmentacijski

algoritem. Algoritem predstavlja sliko kot slučajno polje Markova (MRF), katerega

vozlǐsča so superpiksli, ki imajo barvne in teksturne atribute. Superpikslom

dodelimo oznake na podlagi njihovih atributov s pomočjo metode podpornih

vektorjev (SVM) in že omenjenega MRF. Kot prvi korak algoritem razdeli sliko

na več kot sto superpikslov in izračuna barvne in teksturne atribute. Temu

sledijo iteracije maksimizacije pričakovanja, v katerih se hkrati ocenjuje oznake

in parametre klasifikatorja. V vsaki iteraciji SVM so usposobljeni in ustvarjajo

rezultate, ki jih algoritem združuje s prostorskimi informacijami, zakodiranimi v

MRF. Vsaka iteracija odstrani oznake, ki imajo premalo superpikslov, in združi

podobne oznake. Negotovo segmentacijo po vsaki iteraciji se izbolǰsuje in rezultat

je segmentacija slike na več semantično smiselnih delov, brez pomoči uporabnika.

Algoritem je bil testiran na segmentacijsko podatkovno bazo in F ocene so podobne

najsodobneǰsim algoritmom. Glede fragmentacije slike naš pristop bistveno prekosi

stanje tehnike z zmanǰsanjem števila segmentov, iz katerih je sestavljen predmet

zanimanja.

Ključne besede: segmentacija, metoda podpornih vektorjev, SVM, slučajno polje

Markova, MRF, nenadzorovano učenje.





Razširjeni povzetek

Segmentacija je razdelitev slike na majhno število delov, kjer so piksli, iz katerih

je sestavljen ta del, medsebojno podobni, medtem ko se bistveno razlikujejo od

pikslov drugih delov slike. Je zelo raziskovano področje, za katero so na voljo številni

algoritmi, ker je njihova praktična uporaba velika, na primer za področje strojnega

vida, detekcije objektov, medicinsko upodabljanje slike itd. Kljub temu, da je bilo

veliko segmentacijskih algoritmov razvitih v zadnjih dveh desetletjih, so še vedno vir

številnih člankov, ker računalnikom segmentacija ni tako enostavna kot je ljudem.

Ko človek vidi sliko, jo avtomatsko razdeli na več semantičnih delov, recimo

ozadje in ospredje, ki sta oba lahko razdeljena na več objektov, kot je nebo, tla itd.

Človeku pomaga veliko različnih napotkih, kot avtomatska ocena globine in detekcija

objektov, medtem ko računalnik vidi samo dvodimenzionalno matriko intenzitet

oziroma trodimenzionalno, če upošteva barve.

Zaradi tega je bilo raziskovanih veliko različnih načinov segmentacije, na primer:

detekcija robov oziroma mej, zaporedno združevanje podobnih regij v sliki na podlagi

različnih atributov, kot je barva in tekstura, uporaba pikslov kot vozlǐsč grafa in

naknadni rez tega grafa ter razvrščanje pikslov v več skupin na podlagi že omenjenih

atributov.

Zelo uspešna metoda, ki se je pred kratkim pojavila, je razčlenitev slike na stotine

superpikslov. To je samo ime za majhne dele slike, v katerih so si piksli medsebojno

zelo podobni. Takšna segmentacija se pogosto uporablja kot prvi korak, kjer se

algoritmi naknadno izvajajo na podlagi teh superpikslov namesto navadnih pikslov.

Metode, ki temeljijo na grafih, so kot začetni korak uporabljale zlasti superpiksle.

Naš algoritem jih tudi uporablja na enak način, s katerim zgradimo neusmerjeni

graf, ki mu pravimo pogojno naključno polje Markova.
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Naš cilj je bil razviti splošni nenadzorovani segmentacijski algoritem, ki lahko

razčleni katero koli sliko na več skladnih delov. Nenadzorovani način pomeni, da

uporabnik ne pove, koliko segmentov naj ima slika ali kje se približno nahajajo. Da

bi to naredili, smo formulirali iterativno metodo, ki uporablja metode podpornih

vektorjev in pogojno slučajno polje Markova. Postopek je naslednji: najprej se

naredi segmentacijo slike s pomočjo SLIC superpikslov na približno 300 superpikslov.

SLIC [1] je izbolǰsava razvrščanja z voditelji in ima manǰso oziroma linearno, časovno

kompleksnost ter poda bolǰse rezultate zaradi upoštevanja prostorske informacije.

Sledi izračun barvnih in teksturnih atributov vsakega superpiksla s pomočjo

COLOR CHILD deskriptorja. COLOR CHILD [4] je najsodobneǰsi algoritem, ki

je sestavljen iz dveh delov: barvne in teskturne informacije. Barvni atributi so

povprečje, standardni odklon in tretji centralni moment vseh treh barvnih kanalov

iz izbranega prostora. Drugi del deksriptorja je sestavljen iz dveh teksturnih

komponent. Grobo rečeno, prva komponenta je izračun odvoda slike v x in y

smer, ki je velik v teksturnih regijah in robovih. Druga komponenta teksturnega

dela je orientacija odvoda, ki nam tudi da informacije o tesksturi superpiksla. Oba

teksturna dela sta kvantizirana, ker se na koncu dobi dvo-dimenzionalni histogram,

ki ju združi. COLOR CHILD je sestavljen iz tega histograma in že omenjenih

barvnih momentov.

Sledi glavni del algoritma, ki je iterativen in sestavljen iz dveh korakov:

ocena verjetnosti, da vsak superpiksel pripada vsakemu segmentu, in posodobitev

parametrov na podlagi zgoraj navedene ocene, analogno algoritmu maksimizacija

pričakovanja (EM) [14]. Oceno verjetnosti določimo s pomočjo metode podpornih

vektorjev (SVM) [12] in naključnega polja Markova (MRF). Ker je možnih

segmentov več, SVM uporablja ”eden proti vsem” strategijo, ki sestoji iz grajenja

N klasifikatorjev, kjer je N število oznak, oziroma segmentov (na začetku je enako

številu superpikslov). SVM klasificira superpiksle na podlagi barvnih in teksturnih

atributov. Vsaka iteracija odstrani oznake, ki imajo premalo superpikslov, in proste

superpiksle SVM razvrsti med ostalimi.

Glede upoštevanja strukturnih informacij, kot je bližina superpikslov v sliki,

uporabljamo naključno polje Markova (MRF), ki je zgrajeno na njih. MRF je

neusmerjen graf, v katerem imajo vozlǐsča, ki so superpiksli, povezavo s tistimi
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superpiksli, ki so sosedje, kjer so sosedje superpiksla vsi, ki se ga dotikajo. MRF

kaznuje tiste sosede, ki imajo različne oznake, sorazmerno z energijo te povezave,

kjer je energija obratna barvni podobnosti teh dveh sosedov.

Bolj formalno; pri vsaki iteraciji zgradimo SVM klasifikator za vsako oznako, pri

katerih so pozitivni primeri superpiksli s to oznako, negativni primeri pa so vsi ostali.

Izračunamo verjetnost pripadnosti vsakega superpiksla vsaki oznaki. Dobljene

verjetnosti spreminjamo z MRF. Vplivajo sosedje, ki so bolj barvno podobni oznaki,

ki jo imajo. Na koncu vzamemo za vsak superpiksel oznako z največjo verjetnostjo in

dobimo trenutno segmentacijo. Ker se oznake lahko spreminjajo pri vsaki iteraciji,

imamo zdaj nove parametre, s katerimi spet zgradimo nove SVM klasifikatorje v

naslednji iteraciji.

Izvedi SLIC in razdeli sliko na superpiksle;

for vsak superpiksel do

Izračunaj barvne in teksturne atribute;

end

while ni konvergiral do

for vsako oznako do

Izračunaj verjetnost pripadnosti vsakega superpiksla tej oznaki;

Združi dobljeno verjetnost z verjetnostjo predhodne iteracije;

Posodobi združeno verjetnost z MRF in pridobi končne

verjetnosti;

end

Vsakemu superpikslu dodeli oznako z največjo verjetnostjo;

for vsako oznako do

Odstrani, če nima superpikslov;

Zgradi SVM klasifikator za njo;

end

end
Algorithm 1: Algoritem za segmentacijo slike

Poleg tega uporabljamo predhodno verjetnost pri izračunu končne verjetnosti,
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ki je združena končna verjetnost vseh preǰsnjih iteracij. Na začetku je verjetnost

vsakega superpiksla za vse oznake enaka. Rečemo lahko tudi, da je to avtoregresijski

model. Povzetek algoritma je podan na Sliki 1.

Na koncu je bil algoritem testiran na segmentacijsko podatkovno bazo, ki je

sestavljena iz slik, na katerih je en predmet in ozadje. Rezultati so podobni

najsodobneǰsim algoritmom, segmentacije, ki jih dobimo, pa so podobne človekovi.

Natančnost je blizu rezultatov ostalih algoritmov, vendar je povprečno število

segmentov, iz katerih je sestavljen predmet oziroma ospredje, bistveno manǰse

in je blizu 1, posledično pa je fragmentacija najmanša. Torej naš algoritem

uspešno segmentira sliko na več delov, ki se medsebojno razlikujejo, medtem ko

so (super)piksli znotraj enega segmenta podobni.



Chapter 1

Introduction

1.1 Motivation

The problem of image segmentation is well-established in the field of computer vision.

It entails partitioning an image into multiple fragments, the number of which can

vary from two to several hundred. When the number is on the low side, e.g. fewer

than ten segments, each segment can be said to contain a meaningful part of the

image, e.g. sky, ground or tree. On the other hand, when the number of segments

is on the order of a hundred or more, the image is said to be partitioned into

superpixels, which are groups of pixels that are similar in color, texture, or some

other attribute.

The motivation behind this work was to create a general-purpose algorithm that

works on any image and provides a segmentation similar to what a human would

present. Such an algorithm would be of use to many fields where it can be integrated

with domain knowledge, e.g medical imaging, object detection, content-based image

retrieval etc.

1.2 Our approach and contributions

In this thesis, we use both kinds of segmentation, first clustering the hundreds of

thousands of pixels into a few hundred superpixels, then iteratively applying another

1
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algorithm to merge those superpixels into a few meaningful image segments. To

achieve this goal, we concentrated our work on the latter step of the segmentation

and used an existing algorithm, namely Simple Linear Iterative Clustering [1], or

SLIC, to segment the image into several hundred segments - also called superpixels.

Color and texture features for each one are computed using a state-of-the-art local

descriptor called COLOR CHILD [4] (COLOR moments augmented Cumulative

Histogram-based Image Local Descriptor), and iteratively merged until the visual

similarity between the segments is sufficiently high. The superpixels are merged

according to the output of a classifier, namely a support vector machine (SVM) [12],

combined with a Markov random field (MRF) to encode structural properties and

enforce local regularization in the segmentation. Our method is tested on a standard

dataset and achieves state-of-the-art results.

1.3 Related work

The topic of image segmentation has generated many useful results and still

remains a hot topic. Relatively recently, however, the use of superpixels as a

way to (over)segment an image in a first step has emerged in many segmentation

approaches [45, 28, 6, 25]. Although segmenting the image into a few regions is still

the main point, there has been a lot of work in superpixel segmentation specifically,

beginning with normalized cuts [39] and followed by [16], which are graph-based

algorithms. There are also mode-seeking algorithms, namely mean shift [11], quick

shift [43], and SLIC [1]. All of the aforementioned algorithms have been utilized for

superpixel segmentation, but there have been significant results without involving

superpixels, e.g. GrabCut [35] and others [26, 33, 5, 22].

Aggregating small regions of the image into larger segments has also been proven

to yield good segmentations [3], using shape and texture cues [38], or by using

contours [6]. Applying a superpixel segmentation as a first step is very useful

for graph-based algorithms like [46], since it offers a considerable speed-up when

superpixels are used as nodes in the graph instead of superpixels. Many have

used this as a first step, e.g. in tree graph partitioning [45], segmentation by data

compression [49] [28], the aforementioned contour algorithm [6], a greedy merge
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algorithm [34], and a bipartite graph partioning approach [25] which uses two types

of superpixels, [11] and [16], as the first step.

The most related work is probably [20], even though its goal is object detection,

since it uses CRFs to encode structural information, an SVM classifier, as well a

preliminary superpixel segmentation as the first step. Another very related work is

a segmentation algorithm [42], which uses a GMM with a HMRF, first presented in

[51], for structural properties, but does not use superpixels.

1.4 Structure

The rest of this thesis is structed as follows: Chapter 2 describes the theory behind

our algorithm. It includes the SLIC superpixel segmentation algorithm, the COLOR

CHILD descriptor that computes color and texture features, Markov random fields,

their extensions and the expectation maximization algorithm for inference used on

those models, and ends with a brief overview of support vector machines. It is

followed by our segmentation algorithm in Chapter 3, which incorporates all of the

previous methods. Next are some experimental results on a segmentation database

in Chapter 4, followed by the conclusion and future work in Chapter 5.
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Chapter 2

Methods used

2.1 SLIC superpixels

Simple Iterative Linear Clustering, henceforth SLIC, is a state-of-the-art algorithm

that segments an image into a desired number of groups of pixels called superpixels.

The usefulness of a superpixel is its ability to remove redundancy in color or texture

information in neighboring pixels by grouping them together. Consequently, it

reduces the computational cost of any algorithm that works on the pixel level,

especially graph-based methods.

For example, if every pixel in a 300-by-400-pixel image is a node, then the

resulting graph has N = 120000 nodes. Grouping similar pixels, however, can yield

several hundred superpixels, if we set the number of desired superpixels to 300. This

graph, on the other hand, has only N = 300 nodes, which can dramatically reduce

the computational cost of even a linear algorithm that works on graph nodes or

edges.

Although SLIC is an adaptation of k-means, it has reduced complexity and

yields better results due to two specific improvements. The superpixels should be

compact, and computing the distances between estimated centers for all pixels in

the image is undesired. Instead, they are computed only for a region proportional

to the size of the superpixel. Secondly, Euclidean distance in the five dimensional

feature space of color and space, or x and y coordinates, is a poor measurement

5
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because it does not offer a way to control the compactness of a superpixel. Therefore,

SLIC uses a weighted distance measure that combines a Euclidean distance in the

three-dimensional colorspace YCbCr and the two-dimensional cooordinate space,

computed as follows:

dY CbCr =
√

(Yi − Yj)2 + (Cbi − Cbj)2 + (Cri − Crj)2 (2.1)

dxy =
√

(xi − xj)2 + (yi − yj)2 (2.2)

D = dY CbCr +
m

S
dxy (2.3)

where Yi,Cbi and Cri denote the Y ,Cb and Cr channels of the ith pixel.

The parameter m controls the compactness of the superpixel. Higher values give

more weight to the Euclidean coordinate distance and produce uniformly shaped

superpixels, and is m = 10 is set by the authors in the original paper [1]. Lastly,

S =
√

N
K , where N is the number of pixels and K is the number of desired

superpixels, regardless of the amount of texture in the image or its size.

The value of S is also used to limit the search space. Since we expect each

superpixel to be roughly of size S-by-S, we only compute the distance measure

for each pixel in the neighborhood of size 2S-by-2S, which greatly reduces the

complexity. When initializing the cluster centers, the coordinates are perturbed

in a 3− by− 3 neighborhood to the lowest gradient, which is the combined gradient

in the x and y direction, computed as follows:

G(x, y) = ||I(x+ 1, y)− I(x− 1, y)||2 + ||I(x, y + 1)− I(x, y − 1)||2 (2.4)

This is done to prevent edge pixels from becoming cluster centers. The pseudocode

for the SLIC algorithm is summarized in Algorithm 2.

While regular k-means has time complexity on the order of O(N ∗K ∗ I), where

N is the number of pixels, K is the desired number of superpixels and I is the

number of iterations, SLIC has O(N) time complexity. This is because the number

of iterations is fixed to 10 by the authors, and K is a varying number less than 8,

because each pixel is at most in the neighborhood of 8 cluster centers.

In this thesis we use SLIC as a preliminary segmentation step, so that a classifier

like SVM is trained for each superpixel instead of each pixel, but more importantly,
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Initialize cluster centers Ck = [Yk Crk Cbk xk yk]
T in a grid S pixels wide;

Perturb each cluster center to the lowest gradient;

while not converged do

for each cluster center Ck do
Compute the distance shown in Eq. (2.3) to each pixel in its

2S − by − 2S neighborhood;

end

Compute new cluster centers;

end

Algorithm 2: Simple Linear Iterative Clustering (SLIC) as proposed in [1]

the MRF used has a small number of nodes (the number of superpixels, instead of

pixels) that is fixed to 300 for an image of any size. As can be seen, this number

is small enough to ensure computational efficiency, yet large enough to properly

describe the structure of the image. Three different values of the desired number of

superpixels, more specifically 100, 300 and 900, can be seen in Fig. 2.1, respectively.

2.2 COLOR CHILD

Color moments augmented Cumulative Histogram-based Image Local Descriptor, or

COLOR CHILD [4], is a local image descriptor that uses both color and texture.

Descriptors are useful for many computer vision tasks like object recognition and

tracking, and play a particularly important role in image segmentation. In our

approach, the COLOR CHILD descriptor is used to encode the color and texture

properties of image regions. We provide an overview of the descriptor in this section

and refer the reader to [4] for further details.

2.2.1 Color features

The descriptor is comprised of two distinct types of features, color and texture.

The color features come from the first, second, and third moments of the image

colorspace (in our case, YCbCr), or the mean, standard deviation, and skewness.
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Figure 2.1: Clockwise from top left: Original image from [27], SLIC with 100,

300, and 900 superpixels.
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These are calculated for each color channel as follows:

µi =
1

N

n∑
j=1

pij , (2.5)

σi =

√√√√ 1

N

n∑
j=1

(pij − µi)2 (2.6)

si = 3

√√√√ 1

N

n∑
j=1

(pij − µi)3 (2.7)

where pij is the value of the ith color channel at the jth pixel, and N is the number

of image pixels. Thus, we obtain nine color features for each pixel.

2.2.2 Texture features

An equally important part of this descriptor are the texture features, which are

computed as a combination of two components, namely, differential excitation and

gradient orientation. The resulting features are a two-dimensional histogram that

quantizes and combines the two components, which are explained in more detail in

the following sections.

Differential excitation

The Laplacian of Gaussian is a well-known blob detection technique in the field

of computer vision [18]. It consists of smoothing (or blurring) the image with a

Gaussian kernel (Eq 2.8) and applying the Laplace operator (Eq 2.10), which is

the sum of the second partial derivatives, at each pixel of the blurred image. If

the resulting image is normalized with the pixel intensity (or value) and insert it

into the arctan function to reduce noise (Eq 2.11), then the differential excitation

component can be obtained.
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h(x, y) = e−
x2+y2

2σ2 (2.8)

g(x, y) = h(x, y)⊗ f(x, y) (2.9)

∇2g =
1

πσ4
(
x2 + y2

2σ2
− 1)e−

x2+y2

2σ2 (2.10)

ξ(x, y) = arctan(
∇2g

f(x, y)
) (2.11)

where (x, y) are the image coordinates, f(x, y) the intensity at that position, h(x, y)

the two-dimensional Gaussian (smoothing) function, ∇2 the Laplacian, or second

derivative operator, and ⊗ the convolution operator. Then the aforementioned

equations present the step-by-step algorithm for producing the differental excitation,

which can be seen in Fig. 2.2.

The differential excitation measures the ”roughness” of an image, yielding high

values in textured regions. The intuition behind it is simple. Computing the first

derivative of an image produces high values where pixels suddenly change intensity

in any direction and is commonly used for edge detection. Therefore, the second

derivative, or the Laplacian, tells us where in the image we have changes in edge

detection, which is usually in highly textured regions. In those regions the pixel

intensity in any direction vary wildly, and this component registers that. The image

is quantized into M bins, so that a histogram can be be built in the last step.

Fractional gradient orientation

Although discriminating between flat and textured regions provides useful

information, the orientation of the gradient image (the direction in which the

intensity of a pixel changes) also plays an important part. COLOR CHILD employs

a fractional derivative, i.e. gradient, that is computed using the following equations.

Using fractional calculus, for a general function f(x) and 0 < α < 1, the complete

fractional derivative is:

dα

dxα
f(x) = Dαf(x) =

1

Γ(1− α)

d

dx

∫ x

0

f(t)

(x− t)α
dt (2.12)

where D is the derivation operator, α is the desired fractional derivative, and Γ is

the extension of the factorial function. Now if f(x) = y, any fractional derivative of
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(α2−α)
2

−α 0 α (α2−α)
2

(α2 − α) −2α 0 2α (α− α2)

3(α2−α)
2

−3α 0 3α 3(α−α2)
2

(α2 − α) −2α 0 2α (α− α2)

(α2−α)
2

−α 0 α (α−α2)
2

Table 2.1: Fractional differential mask of size 5x5 for x direction

a function can be restated with the Fractional differential finite impulse (FIR) filter

transfer function as follows:

Dα(y) = (
1− y−1

T
)α (2.13)

where T is the sampling period. Using the binomial series expansion (1 + x)n =

1 + nx+
∑∞

k=2
n!

k!(n−k)!x
k, we can rewrite Eq 2.13 as:

Dα(y) =
1

Tα
(

∞∑
k=0

(−1)k
Γ(α+ 1)

Γ(k + 1)Γ(α− k + 1)
y−k (2.14)

For any real-world application, the sum is truncated to a predetermined number

N , and the derivation is discretized for application in the two-dimensional and

discrete image domain. Yang et al. [50] provide the fractional derivative masks

of size 5x5 for x and y direction, shown in Table 2.1 and 2.2, respectively.

If the outputs of convolving the aforementioned masks in x and y direction are

νx and νy, then the fractional gradient orientation for a pixel at coordinates (x, y)

is obtained by taking the inverse tangent function of their ratio, or:

θ(x, y) = arctan(νy, νx) (2.15)
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(α2−α)
2

(α2 − α) 3(α2−α)
2

(α2 − α) (α2−α)
2

−α −2α −3α −2α −α

0 0 0 0 0

α 2α 3α 2α α

(α−α2)
2

(α− α2) 3(α−α2)
2

(α− α2) (α−α2)
2

Table 2.2: Fractional differential mask of size 5x5 for y direction

The angle, or orientation, is quantized into T dominant directions, so that a

histogram can be properly built. The value of the fractional derivative α is set to

0.6 in this thesis. The resulting gradient orientation image after quantization can

be seen in Fig. 2.2.

Texture descriptor generation

The final step in generating the texture features is to create a one-dimensional

histogram. Since each image pixel can have T orientations and M excitations, the

resulting histogram image is a two-dimensional T − by −M histogram. By simply

concatenating each dimension, a one-dimensional texture histogram is obtained that,

together with the color moments, presents the output of this descriptor.

2.3 Markov random fields

Widely used in low-level vision problems, Markov random fields, or MRFs, provide

a useful way of encoding spatial dependencies of image locations. They have been

extensively utilized in problems like image restoration [17, 7] and completion [36],

texture synthesis [29, 15], structure from motion [21], stereo vision [41, 37], and of

course, segmentation [40, 51, 48, 20]. A brief introduction and background follows,
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Figure 2.2: The texture components of COLOR CHILD, namely, the

differential excitation, shown on the left, and the fractional gradient orientation

with α = 0.6, shown on the right.
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Figure 2.3: A graphical representation of a Markov chain.

though the reader may consult [24] for more information.

2.3.1 Background

The Markov property of a temporal model means that future states depend only on

the current state, i.e. a future state depends only on the present and not the past

states. There are variations where a state depends on the past m states, i.e. the

Markov property is of order m, or even variable-order Markov models, though the

most widely used are Markov models that depend only on the previous step.

We can also replace the temporal dependency by a spatial dependency, e.g. in a

graph. The Markov property here means that a node is conditionally independent

of all other nodes in the graph, given its neighbors (the nodes with which it shares

an edge).

2.3.2 An example of a temporal Markov chain

To better illustrate the aforementioned Markov property, we shall consider the

simplest Markov model, namely, the Markov chain of order one, seen in Fig. 2.3. It

is a system where the the transition from each state depends only on the previous

one. It should not, however, be confused with a finite-state machine, or FSM. The

differences are that the state space of a Markov model can be infinite as opposed to

FSMs, and the state transitions of a Markov chain are probabilistic. Both of them

are generalized by probabilistic automata [31].

More formally, the Markov property of the chain is defined as follows:

P (Xn = xn|X1 = x1, X2 = x2, ..., Xn−1 = xn−1) = P (Xn = xn|Xn−1 = xn−1)

(2.16)
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where the probability of any combination of states (in the state space) is always

positive, or P (X1 = x1, ..., Xn = xn) > 0.

Example

A textbook example [8] is a simplified weather model, with the only possible states,

or days, being Xi ∈ {sunny, rainy}. Of course, the weather can depend on many

previous days and have other states, but for illustrative purposes we shall consider

only those two, and a dependence of order one, i.e. only on the previous day. The

set of conditional probabilities is the following transition matrix:

sunny rainy

sunny 0.7 0.3

rainy 0.4 0.6

(2.17)

where the probability of a transition from state i to state j is given by the value

in position aij in the matrix. Predicting the next state in the chain is trivial, as

it only requires selecting the highest probability in the row whose state equals the

previous. Although there is only a first-order dependency defined explicitly, there

are long-range dependencies between states. For example, to get the most probable

state two days from now, we must multiply the probabilities as follows:

P (Xi+2 = xi+2|Xi = xi) = P (Xi+2 = xi+2|Xi+1 = xi+1) ∗ P (Xi+1 = xi+1|Xi = xi)

(2.18)

which shows an implicit long-range dependency. The most probable state can

also be obtained by multiplying the transition matrix with itself and again selecting

the highest probability in the row corresponding to the the first state.

In this simple case we could directly observe the weather and easily predict

the next state. The question that arises, however, is what to do when the desired

prediction states are unobservable, or hidden, and only some other output is directly

visible?
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2.3.3 Hidden Markov Model

A Hidden Markov Model can be thought of as a simple dynamic Bayesian network.

It was popularized by Rabiner [32] when inference algorithms were invented. The

essence of a Hidden Markov Model (HMM) is that we observe values that are not

perfectly corelated with the data we are trying to perceive, but are nonetheless useful

in helping us determine the underlying hidden observations. They are widely used,

since many processes are not fully observable. Visually, a Hidden Markov Model

can be seen in Fig. 2.4, where z = (z1, z2, ..., zn) denote uncertain observations or

measurements, and x = (x1, x2, ..., xn) denote the hidden values to be inferred. For

example, in speech processing, where HMMs are widely used, we are trying to infer

the sequence of words or phonemes, while only having access to spectral data. In

this case, the possible values of x include all phonemes, and the observed and noisy

audio signal constitutes z.

Formally, a Hidden Markov Model of the first order satisfies the following

properties:

P (X = x | Z = z) ∝ P (Z = z |X = x)P (X = x) (2.19)

P (Zi = zi |X = x) = P (Zi = zi|Xi = xi) (2.20)

P (Z = z |X = x) = P (Zn = zn |Xn = xn)...P (Z1 = z1 |X1 = x1) (2.21)

where P (X = x) = P (X1 = x1, X2 = x2, ..., Xn = xn) is just an abbreviation of

the joint probability. In the previous example of a Markov chain, these probabilities

sufficed to create the model. Eq. 2.19 is obtained by applying the Bayes theorem

P (A|B) = P (B|A)P (A)
P (B) . Eq. 2.20 stems from the fact that observing zi at state xi is

dependent only on that state and the conditional probability can be computed as

shown in Eq. 2.21.

For a Markov chain, only a single transition matrix is required to describe the

data. In the case of HMMs, prior probabilities are also required, since we do not

know the starting state, and observation probabilities for each hidden state, or an

x-by-z matrix.

To obtain the most likely sequence of hidden states, the Viterbi algorithm [44]

can be applied on the aforementioned data. It is beyond the scope of this thesis,
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Figure 2.4: A graphical representation of a Hidden Markov Model.

however, since we are interested in a multi-dimensional and undirected HMM, which

uses different algorithms. The next example serves to illustrate HMMs in contrast

to Markov chains.

Example

Previously, we could directly observe the weather and easily compute the most

probable next state. But often we can only observe a by-product, e.g. in the

case of the weather, the actions of an individual who acts according to the hidden

states, which he can observe, but we can not. In this example, the sunny and

rainy states are hidden, or X ∈ sunny, rainy, and we can observe three actions,

Z ∈ walk, shop, clean. To predict the next state, we must first determine the most

probable sequence of states preceding it, which first requires the output probabilities:

walk shop clean

sunny 0.6 0.3 0.1

rainy 0.1 0.4 0.5

(2.22)

as well as the transition matrix, previously defined in Eq. 2.17, and starting

probabilities, Eq. 2.23.

sunny rainy

start 0.4 0.6
(2.23)

Alternatively, we can represent all three matrices in a single diagram, as shown

in Fig. 2.5. It is relatively straightforward to now compute the most likely sequence,
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Figure 2.5: A graphical representation of the probabilities in a HMM.

though we are still using a model that has only a one-way temporal dependency of

the states. The next section delves into spatial dependencies.

2.3.4 Markov random fields

In image processing, encoding structural information into a model is often needed.

Also, in the example of a Markov chain, there is a one-dimensional dependency in

one direction, whereas an image is a two-dimensional undirected graph, where each

(super)pixel is a node connected by edges with its neighbors, or adjacent pixels.

Therefore, a Markov random field can be thought of as a generalization of a Markov

chain in multiple dimensions whose edges are undirected.

Now that the we have spatial dependencies, we need to determine their extent.

Something equivalent to the first-order Markov chain would be a four-connected or

eight-connected neighborhood, where a pixel is dependent only on its immediate

neighbors, or in the case of superpixels, it is dependent on those that it shares a

boundary with. The three such configurations are shown, respectively, in Fig. 2.6.

Formally, an MRF consists of an undirected graph G = (N , E), where N is the
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Figure 2.6: Graph of an image for MRF. a) four-connected neighborhood.

b) eight-connected neighborhood. c) superpixel neighborhood consisting of

bordering superpixels.

set of all nodes and E the set of edges. The neighbor set of any node is defined

as all the nodes that share an edge with it ( 2.24). Given its neighbors, a node

is conditionally independent of every other node in the graph. This is the Markov

property for an MRF, expressed as follows:

Nn = {m ∈ N | (n,m) ∈ E}, (2.24)

P (Xn = xn |X = x) = P (Xn = xn |XN = xN ), (2.25)

, however P (Xn = xn |XN = xN ) is only the local distribution for each node. How

do we then compute the global joint probability distrubution? According to the

Hammersley-Clifford theorem [23] , it can be computed as the exponentiated sum

of the clique potentials of the maximal cliques in the MRF, shown in Eq. 2.27.

A clique is just a fully-connected subgraph, whereas a maximal clique is one

which will cease to be a clique if any other vertex, or node, is added to it. Vc(x) is

the clique potential. In a four-connected neighborhood the maximal clique is of the

second order (an edge) and can also be called a pairwise potential. Such a potential

is the Potts model, shown as follows:

Vpq = −δ(p, q) =

−1, if p = q

0, otherwise
(2.26)

where p and q are neighboring pixel labels, and δ(p, q) is the Kronecker-delta

function, which is 1 when p = q and 0 otherwise.
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The probability that a MRF occupies a state x is written as:

P (X = x) =
1

Z
e
−

∑
c∈C

Vc(x)

=
1

Z
e−E(x) (2.27)

where the Z function consists of the sum of the probabilities of all possible label

assignments. It is a normalizing constant, or a partition function, ensuring that the

distribution is a proper probability density function namely, that
∑
x
P (X = x) = 1.

The right-hand side of the equation is written in terms of an energy function E(x).

Thus, a state that maximizes the probability P (X = x) is the one that minimizes

the energy E(x).

It should be noted, however, that we have not defined any conditional

probabilities of the labels, given some data, over the nodes of the graph. To minimize

the aforementioned energy function, we can just label every node with the same

value and achieve a trivial minimum. What is needed is a way to incorporate the

unary terms that encode the probability of measuring the observation made at the

node, given it is at a particular state. The resulting model is called a Hidden

Markov Random Field, since we are trying to infer the unknown (hidden) labels.

Alternatively, we can use CRFs, or Conditional Random Fields, that also try to

reach the same goal, albeit in a different way.

2.3.5 HMRF vs. CRF

There are two key differences between a HMRF and CRF model, and it has to

be noted that in practice, the term MRF is commonly used to refer to the hidden

Markov random field. The first difference is that, in a HMRF, given the hidden

labels, the observations are independent of each other, whereas in a CRF no such

assumption is made. The second difference is, in essence, the broad divide between

generative and discriminative models. A HMRF is a generative model, which means

it tries to model the joint probability distribution:

P (X = x, Z = z) = P (Z = z|X = x)P (X = x) (2.28)

whereas a CRF does not model the prior P (X = x) and makes no assumptions

about it. Instead, it directly models the conditional distribution P (X = x|Z = z),
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Figure 2.7: A graphical representation of the HMRF model, where zi are

observations and xi are labels at a site i.

since that is enough to make a prediction.

Hidden Markov Random Field

HMRFs are Hidden Markov Models that operate on MRFs instead of Markov

chains; they are widely used in image segmentation, where a structured output

is desired. The usefulness of an HMRF lies in its ability to simultaneously enforce

data faithfulness and spatial smoothness. We may think of the image labels as

hidden variables which need to be inferred, while only having access to the noisy

observations of nodes (pixels) like color and texture. Such a representation can be

seen in Fig. 2.7, where Z denote observations and X the hidden variables.

As can be seen in Fig. 2.7, the MRF is comprised of the hidden variables X,

analogous to the HMMs, and each node has an observation Z, which in our case are

color and texture features.

The figure shows that any observation Zi is independent of the others, given its

hidden variable Xi, in direct analogy with HMMs. The posterior of an HMRF is
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defined as:

P (X = x|Z = z) ∝ P (Z = z|X = x)P (X = x), (2.29)

but there is usually a dependence on parameters θ. Therefore, a more formal

definition is the following:

P (X = x|Z = z, θ) ∝ P (Z = z|X = x, θ)P (X = x, θ). (2.30)

Finding the most likely configuration is done by a maximum a posteriori

estimation (MAP) in the form of:

x∗ = arg max
x

P (Z = z|X = x, θ)P (X = x, θ)) =

arg max
x

P (X = x|Z = z, θ) =

arg min
x

E(X = x|Z = z, θ) (2.31)

Therefore, minimizing the energy function maximizes the probability. A very

popular energy function is the combination of a data term and smoothness term,

formally defined as follows:

E(X = x, Z = z) =
∑
i∈N
−D(Z = zi|X = xi) +

∑
(i,j)∈E

Vij (2.32)

where the pairwise potential is the same as in Eq. 2.26 and the data term D(Z =

zi|X = xi) is just the negative likelihood that the observation zi belongs to xi.

The data constraint, or data faithfulness, is in essence the conditional probability,

since we want the labels to adhere to the data. The prior is the smoothness term,

which encourages neighboring sites to have the same labels, since it results in a lower

energy.

Conditional Random Field

Where a HMRF models the joint probability P (X = x, Z = z) = P (Z = z|X =

x)P (X = x), we notice that we do not actually have to compute it, since the

conditional probability P (X = x|Z = z) would suffice for the purpose of labeling

the sites, as is required in segmentation applications. This means finding the
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configuration of the hidden labels X, given Z. Therefore a CRF maximizes the

following

x∗ = arg max
x

P (X = x|Z = z, θ) = arg min
x

E(X = x|Z = z, θ), (2.33)

whereas a HMRF maximizes the joint distribution, shown in Eq. 2.31. The two

models are very similar, the only key difference being that CRF does not model

the prior P (X = x). The key is to use HMRFs when we can model it well, and

CRFs otherwise. In this thesis, we use a CRF, since we can not say that two

observations are independent, given their hidden labels, but the distinction between

the two models must be made. This is complicated by the fact that many HMRF

models are referred to MRF models, and the fact that CRFs and HMRFs can both

be estimated with the same iterative algorithm, used in our work.

This thesis, however, has the word ”autonomous” in its title, meaning

unsupervised segmentation. This means that we can not compute the most likely

segmentation since user interaction is not required and prior parameters on the

number of components in the image are unknown. What we can do is apply a well-

known iterative algorithm that attempts to present us with the most likely labeling

as well as estimate the unknown parameters (since they are needed to find the most

likely segmentation). This algorithm is described next.

2.3.6 Expectation Maximization

Expectation maximization (EM) is a method, famously presented in [14], that is used

for finding the maximum a posteriori, or MAP, estimates of the model parameters.

It is an iterative method that alternates between estimating the state likelihoods

and the model parameters.

The motivation stems from the chicken-and-egg nature of this problem. If we

have the parameters, it is easy to estimate the hidden variables by maximizing the log

likelihood. Conversely, if we know the hidden variables, the parameters are easy to

infer, as can be seen from the example below. Therefore, an iterative procedure, not

unlike Newton’s method, should yield successively better likelihoods using improved

estimates of the parameters at each step.
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The convergence for the method is proven in [47], and each step is guaranteed

to increase the likelihood, but the result may be a local maxima. If we define

logL(θ |X,Z) = P (X,Z |θ) to be the log-likelihood function, and E the expectation

function, then the two steps may be written as follows:

Q(θ|θ(t)) = E[ logL(θ |X,Z) | Z, θ(t) ], (2.34)

θ(t+1) = arg max
θ

Q(θ|θ(t)), (2.35)

where, as before, Z andX denote the observations and hidden variables, respectively,

and θ(t) are the estimated parameters at step t. Thus, the E step (2.34) consists

of calculating the expectation of the data log-likelihood L, and the M step (2.35)

consists of finding the parameters θ that maximize this function.

2.4 Support Vector Machine

Support vector machines (SVM) are supervised discriminative models known for

utilizing high-dimensional feature spaces without losing predictive power. In their

most basic form, they are linear, binary and non-probabilistic classifiers, but there

exist extensions, shown in the following paragraphs. The most simple way to define

a SVM is to say that it tries to find a hyperplane between the (two) classes, usually

denoted yi ∈ {1,−1}, such that any data points are as far as possible from it. If our

data has N features, we can think of it as an N -dimensional space and, by definition,

the hyperplane is a N − 1-dimensional subspace of our feature space.

We can also state the purpose of SVM as maximizing the margin, which is the

distance between the hyperplane and the closest data point to it. An illustrative

example is Fig. 2.8, where the two-dimensional feature space is composed of X1 and

X2, and contains the hyperplane (which in this case is a line) and the color-coded

class labels. Any hyperplane can be defined as follows:

w · x− b = 0 (2.36)

where x is the set of points that satisfy the equation, w is the vector perpendicular

to the hyperplane, and b
||w|| is the distance along the vector w from the origin to the
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Figure 2.8: A two-dimensional representation of a SVM, the separating

hyperplane, and its margin. Black labels denote the positive class and white

labels the negative. Image from [13].
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hyperplane. If the data is linearly separable, we want to maximize the distance 2
||w||

between the following two hyperplanes:

w · x− b = 1 (2.37)

w · x− b = −1 (2.38)

This means we need to minimize ||w||, formally expressed in Eq. 2.39, with the

constraint shown in Eq. 2.40:

arg min
w

1

2
||w||2, (2.39)

yi(w · xi − b) ≥ 1, (2.40)

for all data points i ∈ 1, .., N . The basic version of an SVM requires the setting

of only a single parameter, and only in the case where the data are not linearly

separable. In this case the ”best” hyperplane can still be found by introducing slack

variables λi for each data point, and Eq. 2.40 now becomes:

yi(w · xi − b) ≥ 1− λi (2.41)

Consequently, Eq. 2.39 becomes:

arg min
w
{1

2
||w||2 + C

n∑
i=1

λi} (2.42)

where C is the regularization parameter, which controls the trade-off between

maximizing the margin and minimizing the error. Finding the optimal w for both

equations is a problem which is easily solved by quadratic programming techniques.

We can also modify SVMs to yield a solution with a non-linear hyperplane by

applying the kernel trick, which transforms the feature space where the seemingly

non-linear hyperplane is actually linear. This can be done by replacing the dot

products a · b with non-linear kernel functions k(a, b). A popular kernel is the

following Gaussian radial basis function:

K(a, b) = e
−γ||a−b||2

2 (2.43)

where γ is the parameter which controls the radius of the kernel.
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Multiclass labeling is easily performed by using multiple binary classifiers. We

can either use a one-versus-one or a one-versus-all approach. The former trains

a binary classifier between each label, which yields n(n−1)
2 labels, where n is the

number of labels. The latter trains n classifiers, that distinguish between label

i ∈ 1, ..n and the rest. In this thesis we used the one-versus-all approach, since it

results in significantly fewer classifiers, while yielding comparable results.

Finally, SVMs can be made to output probabilities using Platt scaling [30]. If we

assume that the labels +1 and −1 are given by some sign function y = sign(f(x)),

whose output is a real-valued function f(x), then we can produce a probability

estimate P (y = 1|x) as follows:

P (y = 1|x) =
1

1 + eAf(x)+B
(2.44)

where A and B are scalar parameters learned from the training set using cross-

validation.

Now we have arrived at a probabilistic, non-linear, multilabel SVM classifier.

This thesis uses the probabilistic output as the likelihood p(y|x) = L(x|y), computed

for each label. We apply a Gaussian radial basis function, since it has improved the

results. The parameters C and γ where optimized by cross-validation on a separate

dataset. The next section explains how all of the previous theory fits into the

algorithm and is followed by the results of this method.
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Chapter 3

The proposed segmentation

approach

The goal of this thesis is to succesfully partition images into a small number of

segments, without any user input. To achieve this goal, we employ all of the methods

in the previous chapters combined into an unsupervised iterative segmentation

algorithm.

For our purposes, pixel-level representation is redundant, because the color

and texture of a pixel is, more often than not, the same as its neighbors’. To

reduce this redundancy, we apply a preprocessing step on the image that consists of

oversegmenting it into several hundred superpixels, where a superpixel is a region

in the image that consists of similar pixels. This is achieved by using the SLIC

algorithm (Sec. 2.1).

The mathematical model behind the structured information in the image is

a conditional random field (Sec. 2.3), where the nodes are superpixels and edges

connect the superpixels that share a boundary. Producing a segmentation means

inferring the hidden label associated with each node. Every node also has some

observation Z, which is the information on which we base our segmentation. To

produce the best segmentation, we need to maximize the following conditional

probability:

x∗ = arg max
x

P (X = x|Z = z, θ) ∝ arg min
x

E(X = x|Z = z, θ), (3.1)
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where, as before, X denote the hidden labels, Z the observations, and θ the

parameters. The goal is to minimize the energy function:

E(X = x|Z = z, θ) =
∑
i∈N

Ψi +
∑
i,j∈E

Φij , (3.2)

where Ψ denotes unary potentials, or the data likelihood term, and Φ is a pairwise

potential between two neighboring superpixels. We definte the unary potentials as

follows:

Ψi = −P (Xi = xi|Zi = zi)P (Xi = xi), (3.3)

where P (Xi = xi) is the prior probability that the node i has the labeling xi.

The pairwise potential encodes the data smoothness, and is dependent on the color

similarity between the two superpixels:

Φij = −P (Xi = xi, Xj = xj |Zi = zi, Zj = zj), (3.4)

To obtain the data likelihood for each superpixel P (Xi = xi|Zi = zi) the visual

observations Z are needed, which are some features computed for each superpixel.

For this purpose, we use COLOR CHILD (Sec. 2.2), which is a descriptor that

computes color and texture features of a region (in our case, the pixels that comprise

the superpixel). We obtain a feature vector for each superpixel. We noticed that it

is beneficial to decorrelate the features in the feature vector and we apply principal

component analysis (PCA) on the feature vectors. It also reduces overfitting by

removing noise and features that are uncorrelated with the labels. As can be seen

in Fig. 3.1, with only a few dimensions we can accurately portray the data.

Each visual observation at a node (superpixel) is now a d-dimensional feature

vector and we need to assign a label to each superpixel using these features. This is

achieved by using a set of discriminative models (classifiers). In general, there are

K classifiers. In this thesis we use SVMs 2.4, but the model is more general and any

classifier can be used. Each classifier has its own parameters. However, both the

superpixel labels and the parameters are unknown. To overcome this problem, we

use expectation maximization (EM), shown in Sec. 2.3.6, to simultaneously estimate

the labels and the parameters in each iteration until convergence.

In each iteration, we obtain the data likelihood P (Xi = xi|Zi = zi) by training

K classifiers, one for each label. We use a one-versus-all approach, such that for each
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Figure 3.1: Plot of fraction of variance explained by the first d principal

components.

label i, the superpixels that are currently labelled as such are the positive examples,

and all the rest are negative examples. On the other hand, we have no information

about the prior P (Xi = xi), which is uniform for all superpixels and labels in the first

iteration, since we do not know the parameters. After each iteration it is updated

as shown in Eq. 3.7. The unary potential is finally obtained by combining the prior

with the probabilistic output from the SVM, as shown in Eq. 3.3.

To calculate the pairwise potentials we compute the probability of a superpixel

i for each label, given its neighbors’ labels and the edge weights connecting them.

The following equation formally expresses the probability:

P (Xi = xi|XN = xN , ZN = zN ) =
∑
j∈N

wijP (Xj = xj |Zj = zj), (3.5)

where XN is the set of neighboring superpixels and wij is the weight of the edge

between the two superpixels i and j computed as follows:

wij = e−
1
2
(dY CbCr+dxy), (3.6)

where the values in the color and coordinate distance measures, dY CbCr (2.1) and

dxy (2.2) respectively, are the mean values of the pixels in each superpixel.
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Figure 3.2: A high-level overview of the segmentation algorithm.

Each iteration consists of the expectation (2.34) and the maximization (2.35)

step of the EM algorithm. In the expectation step, we compute the likelihood of

each label for each superpixel, given its observation. We obtain a K-by-N matrix,

where K is the number of clusters (labels), and N is the number of superpixels.

Next, we multiply the said matrix, the conditional probability P (Z = z|X = x),

with the K-by-N prior probability matrix P (X = x), which yields the unary term.

To take into account the structural information we multiply the probabilities of

the unary term with the pairwise term, computed as shown in Eq. 3.5 to obtain the

final posterior probability. Lastly, the prior P (X = x) is updated autoregressively
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with the posterior from each iteration as follows:

P (X = x) = P (X = x)P (X = x|Z = z). (3.7)

In the maximization step, for each superpixel we choose the label with the highest

posterior probability (MAP estimation) as shown in Eq. 3.1.

After each iteration, the number of labels is automatically reduced due to the

nature of SVMs, which do not overfit the data if carefully parameterized. The

number of labels after an iteration will remain the same only when each classifier

distinguishes between its superpixels and all the rest reasonably well, and how well

depends on the parameter C. Too large a value, and the labels are not merged, too

small a value and labels which are not very similar are merged together.

The algorithm converges to a segmentation in about a dozen iterations, stopping

when the difference in posteriors is too low. A high level overview can be seen in

Fig. 3.2 and the pseudocode for the algorithm is shown in the Algorithm 3.
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Apply SLIC superpixels;

Run COLOR CHILD on each superpixel to obtain features;

while not converged do

//Expectation step;

for each label i do

Compute the likelihood of each data point belonging to class i;

Combine the likelihood with the prior probability to obtain the

data likelihood, using Eq. 3.3;

Update the likelihood with the data smoothness term (Eq. 3.4)

to get the posterior using Eq. 3.2;

Update the prior using Eq. 3.7;

end

//Update step;

Assign each superpixel to the most likely label using Eq. 3.1;

for each label i do

Remove if it contains no superpixels;

Train an SVM classifier for the class i;

end

end
Algorithm 3: The proposed segmentation algorithm.
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Experimental results

We have explained our segmentation approach in the previous section, but it needs

to be compared with state-of-the-art algorithms on some database of images. The

experiment is presented in this section. The parameters of our algorithm were fixed

during comparisons and are shown in the following table: The top row explains to

each algorithm the parameters refer. For SLIC, we have the trade-off in color and

coordinate distance as m, the weight computation scale factor scale, which models

the exponential function used for edge weights, and the number of superpixels N . In

COLOR CHILD, we quantize the differential excitation into Qexcit values. Likewise,

the fractional gradient orientation is quantized into Qorient values. The value of the

fraction is set to α, and importance of the color vs. texture features is controlled by

β.

After applying PCA to our dataset, we take the first n components that together

account for more than V ar percent of the variance. For SVMs, we used the existing

Matlab implementation libsvm [10], which requires setting the penalty value C and

the flatness of the Gaussian kernel γ. The default value for C is the one in the

SLIC COLOR CHILD PCA SVM

m scale N Qexcit Qorient α β V ar C γ

10 0.8 300 7 6 0.6 0.7 97 1 0.0001

Table 4.1: Parameter values.
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table, and for all intents and purposes, the classification is linear, because the value

of γ corresponds to a very flat Gaussian. We tried changing some of the parameters

thought to be important, and presented the results in a later section.

The structure of this chapter is the following: we first describe the dataset

and the performance measure in Sec. 4.1. Next, we present our experimental results

compared to state-of-the-art image segmentation and boundary detection algorithms

in Sec. 4.2, followed by an experiment on the sensitivity of our parameters in Sec. 4.3.

Lastly, in Sec. 4.4 we visually analyze the quality of the segmentations, pointing out

strengths and weaknesses.

4.1 Dataset and performance measures

Having a good segmentation algorithm is useful, but a comparison with state-of-

the-art algorithms on some database of images is needed. Fortunately, there exists

a segmentation evaluation database, first used in [2], that is suitable for the task. It

is comprised of two datasets, which contain one and two objects in the foreground,

respectively (and background). The database also offers the choice of intensity

(grayscale) and color images, and we used the latter. A sample from both the one-

object and two-object segmentation database can be seen in Fig. 4.1 and Fig. 4.2,

respectively.

We chose this database over the Berkeley segmentation dataset [27] (BSD),

because of the lack of ambiguity in the foreground objects, as opposed to the

BSD, where human ”ground truth” segmentations can differ wildly in the number

of segments. In addition, segmentations on the latter database incorporate semantic

cues, which are beyond the scope of any segmentation algorithm, especially those

that use lower-level cues like color, texture and edges. Lastly, this dataset is

especially biased towards soft-boundary-producing algorithms, since the evaluation

computes the best threshold for hard segmentation instead of the algorithm choosing

it. Conversely, we can see the agreement between human subjects in segmenting the

foreground in the datasets of our choice in Fig. 4.1 and Fig. 4.2. The color of a pixel

indicates it being labeled as foreground by one, two and three human subjects, with

the colors red, green, and blue, respectively.
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Figure 4.1: Some of the images in the one-object segmentation dataset and

their corresponding ground truths.

The performance measure we used to evaluate the results is the F-measure as in

[3]. It assesses the consistency of a segment with the ground truth and is defined as

follows:

F =
2PR

P +R
, (4.1)

where P and R denote precision and recall, respectively. Precision measures what

fraction of the segment contains background, whereas recall measures the fraction of

the foreground that is contained by the segment. First, we compute the F-measure

for each segment individually and report the highest number. We also calculated the

combined F-measure, which is chosen as the best value of a combination of segments

covering the foreground object. It is computed as follows:

Fmulti =
1

N

∑
i

Fi, (4.2)

where an exhaustive search of the possible segment combinations is performed, and

the highest average score is reported. Finally, we assess the fragmentation of the



38 CHAPTER 4. EXPERIMENTAL RESULTS

Figure 4.2: Some of the images in the two-object segmentation dataset and

their corresponding ground truths.

object by counting the number of segments that comprise the combined F-measure.

The exact equation is the following:

Fragobject = |1−N |. (4.3)

Lower fragmentation means that the foreground object is more correctly evaluated

as being a single segment.

4.2 Experimental results

In addition to evaluating our approach on a segmentation dataset, we also need

to compare the results to some other state-of-the-art techniques. The choice of

algorithms for comparison was the same as in [3], namely:

• Probabilistic Bottom-Up Aggregation and Cue Integration [3], denoted by

PBACI. It gradually merges pixels into successively larger regions by taking

into account, intensity, geometry, and texture.
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Algorithm F-measure single F-measure multi Object fragmentation

Our method 0.71± 0.01 0.83± 0.01 0.40± 0.03

PBACI 0.86± 0.01 0.87± 0.02 1.66± 0.30

SWA 0.76± 0.02 0.86± 0.01 2.71± 0.33

N-cuts 0.72± 0.02 0.84± 0.01 2.12± 0.17

Gpb 0.54± 0.01 0.88± 0.02 7.20± 0.68

Mean shift 0.57± 0.02 0.88± 0.01 11.08± 0.96

Table 4.2: Results of single and multi-segment coverage on the one-object

dataset (95% confidence).

• Segmentation by weighted aggregation [38], denoted by SWA, which

determines salient regions in the image and merges them into a hierarchical

structure.

• Normalized cuts [26], denoted by N-cuts. It treats the problem of segmentation

by computing multiple minimum ”normalized” cuts on a pixel graph.

• Contour detection and hierarchical Image Segmentation [6], denoted by Gpb,

which reduces the problem to contour detection and uses spectral clustering

to combine local cues into a global framework.

• Mean shift [11], a general mode-seeking algorithm on a non-parametric

probability distribution, in this case, the color or intensity distribution.

The results in the following table present the average scores over all 100 images in

the one-object dataset. The values for the other algorithms were already computed

in [3], to which we add our method.

The results show that our method achieves the least fragmentation, while being

competitive in the other two measures. As can be seen in Table 4.2, there is

an inverse relationship between the two F-measures, which is explained by the

fragmentation of an algorithm. Having high fragmentation results in oversegmenting

the image, which means the foreground will be comprised of several segments.

Thus, algorithms with a high fragmentation have low single-segment F-measure.
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Conversely, having a high number of segments boosts the multi-segment F-measure,

but the effect is not as pronounced. We believe that a good algorithm should

foremost have low object oversegmentation, because it should depict the object as

being comprised of a single segment.

4.3 Parameter sensitivity analysis

Even though our algorithm has a relatively high number of parameters, it is robust

to changes to those parameters as can be seen in Fig 4.4. We have experimented

with four parameters we thought were important and concluded that the algorithm is

robust to changes in their values. More specifically, we varied the importance given

to color as opposed to texture, the cut-off point for PCA, which is percentage of

variance to be saved, the number of superpixels, and lastly, the value of the fractional

derivative between 0 and 1. Because of the inherent capability of SVMs to deal with

noisy and uncorrelated data, the results did not differ much. The parameters we did

not test have the default values, proposed by the original authors.

4.4 Qualitative analysis

We can see some of the segmentations on the one-object dataset in Fig 4.3.

For reference, we further present some successful and unsuccessful results of our

segmentation algorithm on a few images from the BSD, in Fig. 4.5 and Fig. 4.6. We

also evaluted the algorithm on a few images taken from a marine robotic boat, that

is equipped with a RGB camera. The results can be seen in Fig. 4.7.

The advantage of our method is correctly delineating the object in the image

as being comprised of a single segment. This is because similar superpixels are

identified as having the same label early in the iterative process and we are only

left with a few segments. The downside is that sometimes two distinct objects, or

colors that are not too similar, are merged. There is also the problem of very small

foreground objects as big as a single superpixel, which will be merged and lost in

the early iterations.
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Figure 4.3: Images from the one-object dataset, our results, and the

corresponding ground truths.
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Figure 4.4: Clockwise from top left: COLORCHILD between-component ratio,

texture component fractional derivative, PCA variance retained, and number

of superpixels.
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Figure 4.5: Images from BSDS, our results, and the corresponding ground

truths.
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Figure 4.6: Images from BSDS, our results, and the corresponding ground

truths.
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Figure 4.7: Image taken from the marine boat, and the corresponding

segmentation.
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Chapter 5

Conclusion

We developed an algorithm that segments an image without requiring user input. We

aimed to obtain several coherent regions, similar to what a person might present if

asked to segment the object out of the image. The algorithm begins with hundreds

of small segments and iteratively reduces the number of labels until only several

remain. We used an MRF to model the spatial coherence of the segmentation, and

SVMs to assign labels to the superpixels, based on color and texture features.

The algorithm was tested on a segmentation evaluation database, and the results

were similar to state-of-the-art algorithms. The F measure, which combines precision

and recall, is comparable to other segmentation algorithms, but the fragmentation

of our method, which measure the number of segments comprising each object, is by

far the best. This means that we accurately judge an object by describing it with

1-2 segments instead of oversegmenting it like the other algorithms.

There are weaknesses, however, in that background superpixels that are very

similar in color to the foreground object will be misclassified, even though they are

separated. Such a deficiency could be fixed by a more careful choice of the data and

smoothness constraint, as well as the interaction between the two, which leaves it

open for future improvements.

In addition, future work would also involve a comparison of different classifiers.

We chose SVMs for their robustness to overfitting in high-dimensional data. But

other models like random forests [9], linear discriminant analysis, or Adaboost [19]
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might offer an improvement in accuracy. The labeling of the segments is also hard,

so the option of soft-labeling segmentation, where a superpixel belongs to multiple

labels simultaneously, can be explored. We can also use different functions for edge

weights. In this thesis, the weight of the edge is modelled on color similarity, which

leaves options like texture or boundary detection.

Of course, no single algorithm can generate the best results in every domain, let

alone on every image. That’s why it is important to incorporate domain knowledge

and possible prior information which can help produce a better segmentation for

a specific task. This thesis presents a general segmentation algorithm, applicable

for any image, which can be modified and used to any domain-specific problem.

It would therefore be interesting to specialize this method to domains like motion

segmentation and interactive image segmentation.
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